高中数学必修二_知识点、考点及典型例题解析(全)

合集下载

高中必修二数学知识点

高中必修二数学知识点

高中必修二数学知识点高中必修二数学知识1不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中必修二数学知识2空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中必修二数学知识3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程一定两解(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中必修二数学知识4直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中必修二数学知识51、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中必修二数学知识点。

新教材 人教A版高中数学必修第二册全册各章节知识点考点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册全册各章节知识点考点汇总及解题规律方法提炼

人教A 版必修第二册全册知识点汇总第六章 平面向量及其应用 (1)6.1 平面向量的概念 ...................................................................................................... 1 6.2 平面向量的运算 ........................................................................................................ 5 6.3 平面向量基本定理及坐标表示 .............................................................................. 22 6.4.平面向量的应用 ....................................................................................................... 37 第七章 复数 (51)7.1 复数的概念 .............................................................................................................. 51 7.2复数的四则运算 ....................................................................................................... 58 7.3* 复数的三角表示 .................................................................................................. 64 第八章 立体几何初步 .. (69)8.1 基本立体图形 ........................................................................................................ 69 8.2 立体图形的直观图 ................................................................................................ 80 8.3 简单几何体的表面积与体积 .................................................................................. 83 8.4 空间点、直线、平面之间的位置关系 .................................................................. 93 8.5 空间直线、平面的平行 ........................................................................................ 104 8.6 空间直线、平面的垂直 ........................................................................................ 114 第九章 统计 . (132)9.1 随机抽样 .............................................................................................................. 132 9.2 用样本估计总体 .................................................................................................. 138 9.3 统计案例 公司员工的肥胖情况调查分析 ...................................................... 145 第十章 概率 . (150)10.1 随机事件与概率 .................................................................................................. 150 10.2 事件的相互独立性 ............................................................................................ 161 10.3 频率与概率 .. (165)第六章 平面向量及其应用6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型应用1 向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型应用2 向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型应用3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2 平面向量的运算6.2.1 向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a+b|,|a|,|b|之间的关系一般地,|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.3.向量加法的运算律典型应用1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点;②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型应用2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型应用3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型应用1 向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →. 【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型应用2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.典型应用3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型应用1 向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). 【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型应用2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.典型应用3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________. 【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2.【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN→=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD→=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c 与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型应用1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →.【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型应用2 向量模的有关计算(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A.3B.23 C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型应用3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a|=6,|b|=4,(a+2b)·(a-3b)=-72,则a与b的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为______.【解析】(1)设a与b的夹角为θ,(a+2b)·(a-3b)=a·a-3a·b+2b·a-6b·b =|a|2-a·b-6|b|2=|a|2-|a||b|cos θ-6|b|2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3 平面向量基本定理及坐标表示6.3.1平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型应用1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.典型应用2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB→+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a=a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型应用3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨μ=35.所以AP →=45AM →,BP →=35BN →,所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP →=25NB →, CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨μ=23.所以AP →=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型应用1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标.典型应用2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2. 所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型应用3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP →=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b .典型应用1 向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线. 又AB→=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4)=⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型应用2 三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC →=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12),。

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。

人教版数学高一必修二

人教版数学高一必修二

人教版数学高一必修二
人教版数学高一必修二第一章第二节的笔记可以包括以下几个部分:
1. 基础知识:
定义:包括平面角、直线与平面的位置关系等的基本定义。

性质:理解并掌握平面几何的基本性质,例如平行线性质、垂直线性质等。

2. 重点公式:
平面角公式:计算两个平面之间的夹角。

直线与平面位置关系公式:判断直线与平面是平行、相交还是垂直。

3. 解题方法:
解析法:通过建立坐标系,将几何问题转化为代数问题,进而求解。

综合法:根据已知的定理、性质等,通过逻辑推理得出结论。

4. 注意事项:
注意图形的绘制,理解图形与公式的对应关系。

注意公式的适用范围和限制条件。

5. 典型例题:
选择题和填空题:针对本节知识的理解和应用进行练习。

解答题:通过实际问题的解答,加深对知识的理解和应用。

6. 课后习题:
对应本节知识,选取有代表性的题目进行练习。

7. 归纳总结:
对本节知识进行总结,梳理知识点之间的联系,形成知识体系。

请注意,这只是一种可能的笔记结构,具体内容应根据个人的学习情况和需求进行调整和补充。

高中数学必修2知识点加例题加课后习题

高中数学必修2知识点加例题加课后习题

高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。

2018-2019学年人教A版高中数学必修二:空间几何体的表面积和体积(知识讲解+例题演练)

2018-2019学年人教A版高中数学必修二:空间几何体的表面积和体积(知识讲解+例题演练)

空间几何体的表面积和体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2.能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系;3.了解球的表面积和体积公式推导的基本思想,掌握球的表面积和体积的计算公式,并会求球的表面积和体积;4.会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积. 【要点梳理】要点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之和.计算时要分清面的形状,准确算出每个面的面积再求和.棱柱、棱锥、棱台底面与侧面的形状如下表:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积.要点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,圆柱的底面半径为r ,母线长l ,那么这个矩形的长等于圆柱底面周长C=2πr ,宽等于圆柱侧面的母线长l (也是高),由此可得S 圆柱侧=C l =2πr l .(2)圆柱的表面积:2222()S r rl r r l πππ=+=+圆柱表.2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r ,母线长为l ,那么这个扇形的弧长等于圆锥底面周长C=πr ,半径等于圆锥侧面的母线长为l ,由此可得它的侧面积是12S Cl rl π==圆锥侧. (2)圆锥的表面积:S 圆锥表=πr 2+πr l .3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r '、r ,母线长为l ,那么这个扇形的面积为π(r '+r)l ,即圆台的侧面积为S 圆台侧=π(r '+r)l .(2)圆台的表面积:22('')S r r r l rl π=+++圆台表.要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.要点三、柱体、锥体、台体的体积 1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S 和高h 的乘积,即V 棱柱=Sh . 圆柱的体积:底面半径是r ,高是h 的圆柱的体积是V 圆柱=Sh=πr 2h . 综上,柱体的体积公式为V=Sh . 2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S ,高是h ,那么它的体积13V Sh =棱锥. 圆锥的体积:如果圆锥的底面积是S ,高是h ,那么它的体积13V Sh =圆锥;如果底面积半径是r ,用πr 2表示S ,则213V r h π=圆锥. 综上,锥体的体积公式为13V Sh =. 3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S '、S ,高是h ,那么它的体积是1(')3V h S S =棱台.圆台的体积:如果圆台的上、下底面半径分别是r '、r ,高是h ,那么它的体积是2211(')('')33V h S S h r rr r π=+=++圆台.综上,台体的体积公式为1(')3V h S S =. 4.柱体、锥体、台体的体积公式之间的关系如下图所示.要点四、球的表面积和体积 1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积. (2)球的表面积设球的半径为R ,则球的表面积公式 S 球=4πR 2. 即球面面积等于它的大圆面积的四倍. 2.球的体积设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数. 球的体积公式为343V R π=球. 要点五、侧面积与体积的计算 1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键.【典型例题】类型一、简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是 .【答案】03a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成四棱柱时,有三种情况:221(86)2462428s a a =+⨯+⨯=+222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成三棱柱时也有三种情况:表面积为22262(1086)1248a a ⨯+++=+,24a 2+36, 24a 2+32由题意得2224281248a a +<+,解得03a <<. 【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )A .4S πB .2S πC .S πD S 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为r =4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。

高中必修二数学知识点全面总结

高中必修二数学知识点全面总结

第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系222r rl S ππ+=2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

数学高中必修二知识点总结必看

数学高中必修二知识点总结必看

数学高中必修二知识点总结必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学高中必修二知识点的学习资料,希望对大家有所帮助。

高一年级数学必修二知识点总结【两个平面的位置关系】(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

【两平面垂直】两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。

高二数学必修二知识点归纳一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。

2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。

3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。

4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。

5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。

6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。

7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。

8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。

9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。

10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。

高中数学必修2知识点总结:第四章-圆与方程

高中数学必修2知识点总结:第四章-圆与方程

高中数学必修2知识点总结第四章 圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖一、知识概述 1、圆的标准方程圆心为(a ,b),半径为r 的圆的标准方程为(x -a)2+(y -b)2=r 2.由于圆的标准方程中含有三个参数a ,b ,r ,因此必须具备三个独立条件才能确定一个圆.2、圆的一般方程对于方程x2+y2+Dx+Ey+F=0.(1)当D2+E2-4F>0时,方程表示以为圆心、为半径的圆.此时方程就叫做圆的一般方程.(2)当D2+E2-4F=0时,方程表示一个点.(3)当D2+E2-4F<0时,方程不表示任何图形.即圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0).圆的一般方程也含有三个待定的系数D,E,F,因此必须具备三个独立条件,才能确定一个圆.3、圆的参数方程(1)以(a,b)为圆心,r为半径的圆的参数方程为,特别地,以原点为圆心的圆的参数方程为.(2)θ的几何意义:圆上的点与圆心的连线与过圆心和x轴平行的直线所成的角.4、用待定系数法求圆的方程的大致步骤是:(1)根据题意选择方程的形式:标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F,代入标准方程或一般方程.二、重难点知识归纳:1、理解圆的定义,以及圆的标准方程与一般方程的推导.2、注意圆的一般方程成立的条件.3、利用待定系数法求圆的方程.三、典型例题剖析。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学【必修二】[知识点整理及重点题型梳理]_圆的方程_提高

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习圆的方程【学习目标】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.【要点梳理】【圆的方程370891 知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 要点四:几种特殊位置的圆的方程求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程. 要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程;(3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答. 【典型例题】类型一:圆的标准方程例1.求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++=又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x―a)2+(y―b)2=r 2; (2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( ) A .(x―4)2+(y+1)2=10 B .(x+4)2+(y―1)2=10C .(x―4)2+(y+1)2=100D .22(4)(1)x y -++=【答案】A例2.(2015秋 湖北宜昌月考)求下列各圆的标准方程: (1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);(2)圆心在直线2x +y =0上,且圆与直线x +y ―1=0切于点M (2,―1). 【思路点拨】(1)求出圆心和半径,即可求圆C 的方程;(2)设出圆心坐标,列方程组解之.其中由圆心在直线2x +y =0上得出一个方程;再由圆心到直线x +y ―1=0的距离即半径得出另一个方程.【答案】(1)22(1)20x y ++=;(2)22(1)(2)2x y -++= 【解析】(1)∵圆心在直线y =0上, ∴设圆心坐标为C (a ,0), 则|AC |=|BC |,= 即 22(1)16(3)4a a -+=-+, 解得a =―1,即圆心为(―1,0),半径||r AC ===, 则圆的标准方程为 22(1)20x y ++=, (2)设圆心坐标为(a ,b ),则20a b +=⎧⎪=解得a =1,b =-2,∴r =∴要求圆的方程为 22(1)(2)2x y -++=. 举一反三:【圆的方程370891 典型例题1】【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++= 【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-= 所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.类型二:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆. (1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1)3222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t―1<0117t ⇔-<<. (2)圆的方程化为[x―(t+3)]2+[y+(1―4t 2)]2=1+6t―7t 2. ∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤. ∴r的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【总结升华】 在本例中,当t 在1,17⎛⎫-⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程. 举一反三:【圆的方程370891 典型例题2】【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-=【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1),法二:线段AB 的中点为为75,22⎛⎫⎪⎝⎭,321523AB k -==-线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =,所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【变式2】判断方程ax 2+ay 2―4(a―1)x+4y=0(a≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a aa -⎛⎫- ⎪⎝⎭,半径2222||a a r a -+= 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 A .2a <-或23a > B .203a -<< C .20a -<< D .223a -<< 【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<. 例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程; (2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程. 【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x―2y―20=0(2)(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25 【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩. 故所求的圆的方程为x 2+y 2―4x―2y―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y―3=0.∴圆心是两中垂线的交点(2,1),∴半径22(21)(15)5r =++-=,∴所求的圆的方程为(x―2)2+(y―1)2=25,即x 2+y 2―4x―2y―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|. 设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3), ∴圆心在PQ 的垂直平分线上,即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ②由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴22(1)(2)5r a b =-+-=或5.故所求的圆的方程为(x+1)2+(y―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x―2y―3=0或x 2+y 2+4x+4y―17=0. 解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0. ∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩.∴圆C 的方程为x 2+y 2+Dx+(3D―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0. ∴圆C 在x 轴上截得的弦长为212||4(117)x x D D -=--.将x=0代入得y 2+(3D―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为212||(38)4(117)y y D D -=---.由题意有224(117)(38)4(117)D D D D --=---,即D 2―4(11―7D)=(3D―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y―7=0或x 2+y 2+2x―2y―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】30,3⎛⎫ ⎪ ⎪⎝⎭,233,223433x y ⎛⎫+-= ⎪ ⎪⎝⎭ 类型三:点与圆的位置关系例5.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系. 【答案】M 在圆上 N 在圆外 Q 在圆内 【解析】∵圆的方程为(x ―5)2+(y ―6)2=10, 分别将M (6,9),N (3,3),Q (5,3)代入得 (6―5)2+(9―6)2=10,∴M 在圆上; (3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ |<r ;点P 在圆上⇔|PQ |=r ;点P 在圆外⇔|PO |>r .从数的角度来看,设圆的标准方程为(x ―a )2+(y ―b )2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a )2+(y 0―b )2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a )2+(y 0―b )2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a )2+(y 0―b )2<r 2.举一反三:【变式1】点(a +1,a ―1)在圆22240x y ay +--=的内部,则a 的取值范围是________. 【思路点拨】直接把点(a +1,a ―1)代入圆的方程左边小于0,解不等式可得a 的范围. 【答案】(-∞,1) 【解析】∵点(a +1,a ―1)在圆22240x y ay +--=的内部(不包括边界), ∴ 22(1)(1)2(1)40a a a a ++----<,整理得:a <1. 故答案为:(-∞,1). 类型四:轨迹问题 例6.(2016 广东中山市模拟)已知曲线C 上任意一点到原点的距离与到A (3,―6)的距离之比均为12. (1)求曲线C 的方程. (2)设点P (1,―2),过点P 作两条相异直线分别与曲线C 相交于B ,C 两点,且直线PB 和直线PC 的倾斜角互补,求证:直线BC 的斜率为定值.【思路点拨】(1)利用直接法,建立方程,即可求曲线C 的方程.(2)直线与圆的方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线BC 的斜率为定值.【答案】(1)22(1)(2)20x y ++-=;(2)直线BC 的斜率为定值12-. 【解析】(1)曲线C 上的任意一点为Q (x ,y ),221(1)(2)202x y =⇒++-= (2)证明:由题意知,直线PB 和直线PC 的斜率存在,且互为相反数,P (1,―2), 故可设P A :y +2=k (x ―1), 由2222222(1)(1)2(14)830(1)(2)20y k x k x k k x k k x y +=-⎧⇒++--++-=⎨++-=⎩因为点P 的横坐标x =1一定是该方程的解,故可得22831A k k x k +-=+, 同理,22831B k k x k --=+,所以(1)(1)2()12B A B A B A AB B A B A B A y y k x k x k k x x k x x x x x x ------+====----故直线BC 的斜率为定值12-. 【总结升华】本例求轨迹方程的方法是直接法.用直接法求曲线方程的步骤如下: (1)建系设点:建立适当的直角坐标系,设曲线上任一点坐标为M (x ,y ); (2)几何点集:写出满足题设的点M 的集合P ={M |P (M )};(3)翻译列式:将几何条件P (M )用坐标x 、y 表示,写出方程f (x ,y )=0; (4)化简方程:通过同解变形化简方程;(5)查漏除杂:验证方程表示的曲线是否为已知的曲线,重点检查方程表示的曲线是否有多余的点,曲线上是否有遗漏的点. 例7.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程. 【答案】(x―2)2+y 2=1【解析】 设Q 点坐标为(x ,y ),P 点坐标为(x ',y '),则4'2x x +=且0'2y y +=,即x '=2x―4,y '=2y .又P 点在圆x 2+y 2=4上,∴x '2+y '2=4,将x '=2x―4且y '=2y 代入得(2x―4)2+(2y)2=4,即(x―2)2+y 2=1.故所求的轨迹方程为(x―2)2+y 2=1.【总结升华】 本题是求轨迹时常用的方法——代入法,对于“双动点”问题,即若已知一动点在某条曲线上运动而求另一动点的轨迹方程时,通常用这一方法.代入法是先设所求轨迹的动点坐标为(x ,y ),在已知曲线上运动的点的坐标为(x ',y '),用x ,y 表示x ',y ',即x '=f (x,y),y '=g (x,y),并将它代入到已知曲线方程,即求出所求动点的轨迹方程.一般情况下,证明可以省略不写,如有特殊情况,可适当予以说明,即扣除不合题意的解或补上失去的解.举一反三:【变式1】已知定点A (2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.【答案】222439x y ⎛⎫-+= ⎪⎝⎭【圆的方程370891 典型例题5】【变式2】平面内到两定点距离的比值是一个不等于1的常数的动点的轨迹是一个圆.【解析】以两定点所在的直线为x 轴,以两定点所在线段的中垂线为y 轴建立直角坐标系,设两定点分别为()1,0,(1,0)A B -,设动点(,)P x y ,则||(1)||PA c c PB =≠,c =,整理得:()2222221(1)(22)10cxc y c x c -+-+++-=所以222222101c x y x c ++++=-,即()22222221411c c x y c c ⎛⎫+++= ⎪-⎝⎭- 所以动点的轨迹是一个圆.。

(人教版)高中数学必修二_知识点、考点及典型例题解析(全)

(人教版)高中数学必修二_知识点、考点及典型例题解析(全)

必修二第一章 空间几何体 知识点:1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=3、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =5、空间几何体的表面积与体积⑴圆柱侧面积;lr S ⋅⋅=π2侧面⑵圆锥侧面积:lr S ⋅⋅=π侧面典型例题:★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A 21倍 B 42倍 C 2倍 D 2倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是A .28cm πB 212cm π. C 216cm π. D .220cm π二、填空题★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

高中数学必修2空间几何典型例题及讲解

高中数学必修2空间几何典型例题及讲解

数学必修2第一章一、学习目标:1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。

二、重点、难点:重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。

难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。

三、考点分析:三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。

在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。

这部分知识主要考查学生的空间想象能力与计算求解能力。

1. 多面体棱柱、棱锥、棱台2. 旋转体圆柱、圆锥、圆台、球3. 三视图(1)正视图、侧视图、俯视图(2)三种视图间的关系4. 直观图水平放置的平面图形的直观图的斜二测画法表中S表示面积,c′、c分别表示上、下底面的周长,h表示高度,h′表示斜高,l 表示侧棱长。

5. 旋转体的面积和体积公式表中l、h分别表示母线长、高,r表示圆柱、圆锥与球冠的底面半径,r1、r2分别表示圆台上、下底面的半径,R表示半径。

知识点一柱、锥、台、球的结构特征例1. 下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱。

②两个底面平行且相似,其余各面都是梯形的多面体是棱台。

③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。

④直角三角形绕其一条边旋转得到的旋转体是圆锥。

⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台。

⑥用一个平面去截圆锥,底面和截面之间的部分是圆台。

⑦通过圆锥侧面上一点,有无数条母线。

⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体。

高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)

4.3.1.2等比数列的性质及应用要点一 等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *)(2)若p +q =s +t (p 、q 、s 、t ∈N *),则a p ·a q =s t a a 【重点总结】(1)在已知等比数列{a n }中任一项a m 及公比q 的前提下,可以利用a n =a m q n-m求等比数列中任意项a n ;(2)已知等比数列{a n }中的a m 和a n 两项,就可以使用a n a m =q n -m 求公比,其中m 可大于n ,也可小于n.要点二 等比数列的单调性已知等比数列{a n }的首项为a 1,公比为q ,则(1)当⎩⎪⎨⎪⎧ a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,等比数列{a n }为递增数列; (2)当⎩⎪⎨⎪⎧ a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,等比数列{a n }为递减数列; (3)当q=1时,等比数列{a n }为常数列(这个常数列中各项均不等于0); (4)当1<1时,等比数列{a n }为摆动数列. 【重点总结】由等比数列的通项公式可知,公比影响数列各项的符号:一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负交替.要点三 等比数列的其它性质 若{a n }是公比为q 的等比数列,则(1)若m ,p ,n (m ,n ,p ∈N *)成等差数列,则a m ,a p ,a n 成等比数列;(2)数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (3)若{b n }是公比为p 的等比数列,则{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和qp .(4)在数列{a n }中,每隔k (k ∈N *)项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为q k +1. (5)在数列{a n }中,连续相邻k 项的和(或积)构成公比为q k (或qk 2)的等比数列. 【重点总结】若数列{a n }是各项都为正数的等比数列,则数列{lg a n }是公差为lg q 的等差数列; 若数列{b n }是等差数列,公差为d ,则数列{cb n }是以c d (c>0且c ≠1)为公比的等比数列. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( )(3)当q =1时,{a n }为常数列.( )(4)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( ) 【答案】(1)√(2)×(3)√(4)×2.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 【答案】D【解析】∵q <0,a 1>0,∴所有奇数项为正、偶数项为负,故成摆动数列,选D. 3.(多选题)若数列{a n }为等比数列,则下列式子一定成立的是( ) A .a 2+a 5=a 1+a 6 B .a 1a 9=a 25 C .a 1a 9=a 3a 7 D .a 1a 2a 7=a 4a 6 【答案】BC【解析】根据等比数列的性质知BC 正确.4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 【答案】25【解析】∵a 7a 12=a 8a 11=a 9a 10=5,∴a 8a 9a 10a 11=25.题型一 等比数列性质的应用 【例1】已知{a n }为等比数列.(1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【解析】(1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14. (2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10. 【方法归纳】有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项“下标”的指导作用.【跟踪训练1】(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .【解析】(1)法一:⎩⎪⎨⎪⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.题型二 灵活设项求解等比数列【例2】已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为________________.【解析】设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,① 所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18;当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.【变式探究】本例中的条件换为“前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80”,则这4个数为__________________.【答案】1,-2,4,10或-45,-2,-5,-8【解析】由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎪⎨⎪⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.【方法归纳】巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为a q ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.题型三 等比数列与等差数列的综合应用【例3】在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3. (1)求d ,q 的值;(2)是否存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.【解析】(1)由a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧ a 1+d =b 1q ,a 1+7d =b 1q 2,即⎩⎪⎨⎪⎧1+d =q ,1+7d =q 2, 解得⎩⎪⎨⎪⎧ d =5,q =6,或⎩⎪⎨⎪⎧d =0,q =1,(舍去).(2)由(1)知a n =1+(n -1)·5=5n -4, b n =b 1q n -1=6n -1.假设存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立,则5n -4=log a 6n -1+b , 即5n -4=n log a 6+b -log a 6.比较系数,得⎩⎪⎨⎪⎧log a 6=5,b -log a 6=-4,所以⎩⎪⎨⎪⎧a =615,b =1.故存在a =615,b =1,使得对任意n ∈N *,都有a n =log a b n +b 成立.【解题关键】 (1)联立方程组可求.(2)假设存在,由(1)得出方程,注意比较系数可求a ,b. 【方法归纳】求解等差、等比数列综合问题的技巧(1)理清各数列的基本特征量,明确两个数列间各量的关系.(2)发挥两个数列的基本量a 1,d 或b 1,q 的作用,并用好方程这一工具. (3)结合题设条件对求出的量进行必要的检验.【跟踪训练2】已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n, 若a 1,a k ,S k +2成等比数列,求正整数k 的值。

必修二数学知识点归纳必看

必修二数学知识点归纳必看

必修二数学知识点归纳必看求学的三个条件是:多观察、多吃苦、多研究。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。

下面是小编给大家整理的一些必修二数学知识点归纳的学习资料,希望对大家有所帮助。

高二数学必修二知识点总结考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。

由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

2023年人教A版新教材高中数学必修第二册解三角形中周长最大值及取值范围问题 同步讲义

2023年人教A版新教材高中数学必修第二册解三角形中周长最大值及取值范围问题 同步讲义

14、解三角形中周长最大值及取值范围问题【考点分析】考点一:解三角形中角的最值及范围问题①利用锐角三角形,⎪⎩⎪⎨⎧<<<<<<πππC B A 000,求出角的范围②利用余弦定理及基本不等式求角的最值:bca bc bc a cb A 222cos 2222-≥-+=考点一:解三角形中周长的最值及范围问题①利用基本不等式:()bca bc cb bc a c b A 222cos 22222--+=-+=,再利用bc c b 2≥+及a c b >+,求出c b +的取值范围②利用三角函数思想:()B A R B R C R B R c b ++=+=+sin 2sin 2sin 2sin 2,结合辅助角公式及三角函数求最值 【题型目录】题型一:三角形角的最值及范围问题 题型二:三角形边周长的最值问题题型三:三角形边周长的最值范围问题 【典型例题】题型一:三角形角的最值问题【例1】在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=,则A 的最大值为( ) A .2π3B .π6C .π2 D .π3值是( )A .1 BCDA .2C A =B .A 的取值范围是(,)64ππC .2A C =D .2ca的取值范围是 因为ABC 是锐角三角形,所以2sin 2sin sin C A =【例4】已知在锐角ABC 中,tan 1cos A B=+.(1)证明:2B A =; (2)求tan tan 1tan tan B AA B-+⋅的取值范围.,从而根据ABC 是锐角三角形,得到,再逆用正切的差角公式,结合第一问的结论得到因为ABC 是锐角三角形,π0,2A ⎛⎫∈ ⎪⎝⎭sin x 在π2⎛- 由锐角ABC 知:ππ,64A ⎛⎫∈ ⎪⎝⎭tan B A-1.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若cos cos b b A a B +=,则( ) A .2A B = B .64B ππ<<C .(ab∈D .22a b bc =+【答案】ABD【分析】由正弦定理将条件转化为角的关系,判断A ,结合内角和定理和条件及余弦函数的又ABC 为锐角三角形,所以所以2πA -<所以A B -=因为ABC 为锐角三角形,所以022B π<<B ππ<<2.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若22sin()A C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .⎫+∞⎪⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭【详解】在ABC 中,故题干条件可化为2bABC为锐角三角形,故tan A+题型二:三角形边周长的最值问题【例1】已知ABC的内角,,A B C的对应边分别为,,a b c,6c=,60B=︒,则b的最小值为()A.3 B.C.D.6)0,120求解即可sin33B),120,sin3c B=论中正确的是()A.b aa b+取不到最小值2B.b aa b+的最大值为4C.角C的最大值为2π3D.23b a ca b ab+-的最小值为-ABCS=2cos +-b a()()()2sin sin 2sin sin a A B c b B C -=-+,若2AD DB =,1CD =,求: (1)求()cos A B +的值; (2)求2b a +的最大值.32CD CA CB =+,利用平面向量数量积的运算可得出)解:法一:ADC ∠+∠cos 0BDC ∠=22492c b c -=又ABC 中cos 从而(2322a +()22b a +=5法二:由()2232B A D CA CB CD C B D C D A C C D -=-⇒==⇒+ 2222294444cos CD CA CB CB CA b a ab ACB =++⋅=++∠, 24a ab ++, )()2339392922a ab a b ⎛=+=+⋅≤+ ⎝1+cos2C .(1)求角C ;(2)设D 为边AB 的中点,△ABC 的面积为CD 的最小值. 又()12CD CA CB =+,故2211222CD CA CB CA CB a =++⋅=22113322CD a b ab ab =++≥⨯=,当且仅当23a b ==时取得等号例5】ABC (1)求C ∠;(2)已知6c =,求ABC 周长的最大值. 故ABC 周长【题型专练】1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足sin 2sin sin A B C =,则c bb c+的最大值为______,此时内角A 的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二
第一章 空间几何体
知识点:
1、空间几何体的结构
⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=
3、球的体积公式:33
4 R V π=,球的表面积公式:24 R S π=
4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =
5、空间几何体的表面积与体积
⑴圆柱侧面积;l r S ⋅⋅=π2侧面
⑵圆锥侧面积:l r S ⋅⋅=π侧面
典型例题:
★例1:下列命题正确的是( )
A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱
D.棱锥被平面分成的两部分不可能都是棱锥
★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21
倍 B 4
2倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱
B.上部是一个圆锥,下部是一个四棱柱
C.上部是一个三棱锥,下部是一个四棱柱
D.上部是一个三棱锥,下部是一个圆柱
★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是( )
A .28cm π
B 212cm π.
C 216cm π.
D .2
20cm π 二、填空题
★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.
★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 __ 倍.
第二章点、直线、平面之间的位置关系
知识点:
1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

2、公理2:过不在一条直线上的三点,有且只有一个平面。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

4、公理4:平行于同一条直线的两条直线平行.
5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

6、线线位置关系:平行、相交、异面。

7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。

8、面面位置关系:平行、相交。

9、线面平行:
⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行)。

⑵性质:一条直线与一个平面平行,则过这条直线的任一平面
与此平面的交线与该直线平行(简称线面平行,则线线平行)。

10、面面平行:
⑴判定:一个平面内的两条相交直线与另一个平面平行,则这
两个平面平行(简称线面平行,则面面平行)。

⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。

11、线面垂直:
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。

⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称线线垂直,则线面垂直)。

⑶性质:垂直于同一个平面的两条直线平行。

12、面面垂直:
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,则面面垂直)。

⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

(简称面面垂直,则线面垂直)。

典型例题:
★例1:一棱锥被平行于底面的平面所截,若截面面积与底面面积之比是1:2,则此棱锥的高(自上而下)被分成两段长度之比为
A 、1:2
B 、1:4
C 、1:)12(+
D 、1:)12(- ★ 例2:已知两个不同平面α、β及三条不同直线a 、b 、c ,βα⊥,c =βα ,β⊥a ,b a ⊥,c 与b 不平行,则( )
A. β//b 且b 与α相交
B. α⊄b 且β//b
C. b 与α相交
D. α⊥b 且与β不相交
★★ 例3:有四个命题:①平行于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④垂直于同一平面的两个平面平行。

其中正确的是 ( )
A .①②
B .②③
C .③④
D .①④ ★★例4:在正方体1111D C B A ABCD -中,F
E ,分别是1CC DC 和的中点.求证:AD
F E D 平面⊥1
例5:如图,在正方体ABCD -A1B1C1D1
中,E 、F 为棱AD 、AB 的中点.
(1)求证:EF ∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1
第三章 直线与方程
知识点:
1、倾斜角与斜率:1
212tan x x y y k --=
=α 2、直线方程:
⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式:121121y y y y x x x x --=-- ⑷截距式:1x y a b += ⑸一般式:0=++C By Ax
3、对于直线:222111:,:b x k y l b x k y l +=+=有:
⑴⎩⎨⎧≠=⇔2
12121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠;
A 1
⑶1l 和2l 重合⎩⎨
⎧==⇔2121b b k k ; ⑷12121-=⇔⊥k k l l . 4、对于直线:0:,
0:22221111=++=++C y B x A l C y B x A l 有:
⑴⎩⎨⎧≠=⇔122
1122121//C B C B B A B A l l ; ⑵1l 和2l 相交1221B A B A ≠⇔; ⑶1l 和2l 重合⎩⎨⎧==⇔1
2211221C B C B B A B A ; ⑷0212121=+⇔⊥B B A A l l . 5、两点间距离公式:()()21221221y y x x P P -+-=
6、点到直线距离公式:2200B A C
By Ax d +++=
7、两平行线间的距离公式:
1l :01=++C By Ax 与2l :02=++C By Ax 平行,则222
1B A C C d +-=
典型例题:
★例1:若过坐标原点的直线l 的斜率为3-,则在直线l 上的点是( ) A )3,1( B )1,3( C )1,3(- D )3,1(- ★例2:直线02)32()1(:03)1(:21=-++-=--+y k x k l y k kx l 和 互相垂直,则k 的值是( )A.-3 B.0 C.0或-3 D.0或1
第四章 圆与方程
知识点:
1、圆的方程:
⑴标准方程:()()222r b y a x =-+-,其中圆心为(,)a b ,半径为r . ⑵一般方程:022=++++F Ey Dx y x .其中圆心为(,)22D E -
-,
半径为r =
2、直线与圆的位置关系
直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .
3、两圆位置关系:21O O d =
⑴外离:r R d +>; ⑵外切:r R d +=;
⑶相交:r R d r R +<<-; ⑷内切:r R d -=;⑸内含:r R d -<.
4、空间中两点间距离公式:()()()21221221221z z y y x x P P -+-+-= 典型例题:
★例1:圆心在直线y=2x 上,且与x 轴相切与点(-1,0)的圆的标准方程是_______________.
★★ 例2:已知4:22=+y x C 圆,
(1)过点)3,1(-的圆的切线方程为______________.
(2)过点)0,3(的圆的切线方程为________________.
(3)过点)1,2(-的圆的切线方程为_______________.
(4)斜率为-1的圆的切线方程为______________.
★★例3:已知圆C 经过A(3,2)、B(1,6)两点,且圆心在直线y=2x 上。

(1)求圆C的方程;
(2)若直线L经过点P (-1,3)且与圆C相切,求直线L的方程。

相关文档
最新文档