人工神经网络原理与仿真实例第2版 教学课件 高隽 第6章 随机神经网络及模拟退火算法
合集下载
人工神经网络教学课件
2006年
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
第6章人工神经网络算法ppt课件
1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;
人工神经网络讲PPT课件
图2-1 神经元的解剖
2、生物神经元
突触,是一个神经元与另一 个神经元之间相联系并进行 信息传送的结构。 突触的存在说明:两个神经 元的细胞质并不直接连通, 两者彼此联系是通过突触这 种结构接口的。有时.也把 突触看作是神经元之间的连 接。
图2-2 突触结构
2生物神经元
目前,根据神经生理学的研究,已经发现神经元及其间的 突触有4种不同的行为。神经元的4种生物行为有:
ykj ——模式k第j个输出单元的期望值; 式中:
y j k ——模式k第j个输出单元的实际值;
M——样本模式对个数;
Q——输出单元个数。
第二种:误差平方和
E
k 2 ( y y ) j kj k 1 j 1
M
Q
MQ
式中:M——样本模式对个数;
Q——输出单元个数。
1 Q Ek ( y j k ykj ) 2 2 j 1 E Ek
r r (Wi , X , di )
权矢量的变化是由学习步骤按时间t,t+1,…,一步一步进行计算的。在 时刻t连接权的变化量为:
Wi (t ) cr[Wi (t ), X i (t ), di (t )] X (t )
其中c是一个正数,称为学习常数,决定学习的速率。
神经元网络的学习规则
——这一能力可以算作是智能的高级形式 ——是人类对世界进行适当改造、推动社会不断发展的能力
4
联想、推理、判断、决策语言的能力
——这是智能高级形式的又一方面 ——主动与被动之分。联想、推理、判断、决策的能力是主动的基础。
1、引言
5 6 7 8
通过学习取得经验与积累知识的能力 发现、发明、创造、创新的能力 实时、迅速、合理地应付复杂环境的能力 预测,洞察事物发展、变化的能力
人工神经网络ppt课件
LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络讲稿ppt课件
举例:2-3岁小孩能够从人群中认出父母、3-4岁能够顺利地穿过十字路 口,但最先进机器人也难以完成这项任务。
因而模仿人类思维方式能够提升机器人能力
人工神经网络讲稿
5/40
1.2 神经细胞与生物神经网络
1. 神经网络
组织形式 大脑中大约有100亿个神经元,它们相互连接,形成一个复杂庞大网络
系统。所以大脑结构是一个神经(元)网络。 依据预计,每个神经元大约与上千个神经元相互连接。 大脑所形成神经网络是由一些小网络连接而成。依据预计,全部神经元
层次结构:神经元联接按层次排列。 模块结构:主要特点是将整个网络按功效划分为不一样模块,每个模块 内部神经元紧密互联,并完成各自特定功效,模块之间再互联以完成整体功 效; 层次模块结构:将模块结构和层次结构结合起来,使之更靠近人脑神经 系统结构,这也是当前为人们广泛注意一个新型网络互联模式。 依据网络中神经元层数不一样,可将神经网络分为单层网络和多层网络; 依据同层网络神经元之间有没有相互联接以及后层神经元与前层神经元有 没有反馈作用不一样,可将神经网络分为以下各种。
Hopfield网络和BP算法出现,使得人工神经研究出现了复兴。因为人 工神经网络在信息处理方面优点,使得大批学者加入到了这一研究领域, 掀起了神经网络研究新高潮。
人工神经网络讲稿
13/40
4. 全方面发展时期(1987-现在) 1987年在美国召开了第一届国际神经网络学术大会,并宣告成立了
国际神经网络学会,与会代表1600多人。这次大会也宣告了神经网络 学科诞生。神经网络研究进入了一个转折点,其范围不停扩大,领域 几乎包含各个方面。神经网络应用使工业技术发生了很大改变,尤其 是在自动控制领域有了新突破。
互制约,从而能够将层内神经元分为几组,让每组作为一个整体来动作。
人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
人工神经网络理论及应用.ppt课件
ww1ij (k )
m
yi1
j1
1 yi1
w2ji e j
yi1 (1
yi1 )
uj
对比Hebb规则: 各项
如遇到隐含层多于1层,可依次类推
yi (1 yi ) y1jei
yi1(1
yi1) u j
m
yi1
1 yi1
w2jie
j
j1
演示
BP算法演示
BP学习算法评述
优点
代入上式,有 因此
ym yi1
ym (1
ym )wmi
J
T
e
e yi1
m j 1
y j (1
y j ) w2jiej
即误差进行反向传输
BP学习步骤:误差反传(隐含层)
w1
w2
u1
e1
yi1 wi1j
yi1(1 yi1)u j
un
… …
…
em
综合上述结果
y1
Δwi1j
k
dJ dwi1j
主要内容
神经元数学模型 感知器 多层前馈网络与BP算法※ BP算法评述
神经元数学模型
n
y f wjxj
j1
n
设 p wj x j 则 yi f ( pi ) j 1
作用 函数
f
(
x)
1, 0,
x0 x0
i
f (xi )
(a)
f (x)
1
0 x
(b) 作用函数
MP神经元模型
感知器(感知机)
包含感知层,连接层和反应层。
感知层:接受二值输入; 连接层:根据学习规则不断调整权值 输出层:取为对称型阶跃函数
人工神经网络及其应用[PPT课件]
4〕相互结合型网络〔全互联或局部互联〕
相互结合型网络构造如以下图。这种网络在任意两个神经元 之间都可能有连接。在无反响的前向网络中,信号一旦通过, 某神经元,该神经元的处理就完毕了。而在相互结合的网络 中,信号要在神经元之间反复传递,网络处于一种不断改变 状态的动态之中。信号从某初始状态开场,经过假设干次变 化,才会到达某种平衡状态。根据网络的构造和神经元的特 性,网络的运行还有可能进入周期震荡或其他如混沌等平衡 状态。
2〕有反响的前向网路
其构造如以下图。输出层对输入层有信息反响,这种网络 可用于存储某种模式序列。如神经认知机和回归BP网络都 属于这种类型。
3〕层内有相互结合的前向网络
其构造如以下图。通过层内神经元的相互结合,可以实现 同一层内神经元之间的横向抑制或兴奋抑制。这样可以限 制每层内可以同时动作的神经元素,或者把每层内的神经 元分为假设干组,让每一组作为一个整体进展运作。例如, 可以利用横向抑制机理把某层内具有最大输出的神经元挑 选出来,从而抑制其他神经元,使之处于无输出的状态。
➢它是由简单信息处理单元〔人工神经元,简称神经 元〕互联组成的网络,能承受并处理信息。网络的信 息处理由处理单元之间的相互作用来实现,它是通过 把问题表达成处理单元之间的连接权来处理的。
❖ 多年来,学者们建立了多种神经网络模型,决定 其整体性能的三大要素为:
❖ 〔1〕神经元〔信息处理单元〕的特性。 ❖ 〔2〕神经元之间互相连接的形式——拓扑构造。 ❖ 〔3〕为适应环境而改善性能的学习规那么。 ❖ 神经网络是人脑的某种抽象、简化和模拟,反映
Ep (t)
dp yp (t) 2
1 2 [d p
yp (t)]2
1 2
e2p
(t)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
p~u的关系
*合肥工业大学 计算机与越高时,曲线越平滑,因此,即使 ui有很 大变动,也不会对 vi 取 1 的概率变化造成很大的影 响;反之, T 越低时,曲线越陡峭,当 ui 有稍许变 动时就会使概率有很大差异。即温度高时状态变化 接近随机,随着温度的降低向确定性的动作靠近。 当 T→0 时,每个神经元不再具有随机特性,而具 有确定的特性,激励函数变为阶跃函数,这时 Boltzmann机趋向于Hopfield 网络。
6.1 6.2 6.3 6.4
Boltzmann机 Boltzmann机的改进 模拟退火算法 仿真实例
*合肥工业大学 计算机与信息学院 图像信息处理研究室
前言
随机神经网络是统计力学思想引入神经网络研究 的结果。 统计力学是研究大系统宏观平衡性质的学科,这种 大系统的组成元素服从微观机制。统计力学的主要 目的是寻找从微观粒子(原子、电子)的运动开始 的宏观物体的热力学性质,由于所遇到的自由度数 目很大,因此只能使用概率的方法进行研究。
6.1.1 Boatman机的网络结构
图6-1 boltzmann机的网络结构
*合肥工业大学 计算机与信息学院 图像信息处理研究室
Boltzmann机由输入部、输出部和中间部构成。 输入神经元和输出神经元可称为显见神经元,它 们是网络与外部环境进行信息交换的媒介。中间 部的神经元称为隐见神经元,它们通过显见神经 元与外部进行信息交换。 每一对神经元之间的信息传递是双向对称的, 即wij= wji ,而且自身无反馈即wii=0。学习期间, 显见神经元将被外部环境“约束”在某一特定的 状态,而中间部隐见神经元则不受外部环境约束。
随机神经网络的基本思想: 网络向误差或能量函数减小方向运行的概率大, 同时向误差或能量函数增大方向运行的概率存在, 这样网络跳出局部极小点的可能性存在,而且向全 局最小点收敛的概率最大。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
20世纪80年代,Ackley,Hinton 和Sejnowski等人 以模拟退火思想为基础,对Hopfield网络引入了 随机机制,推出Boltzmann机。 Boltzmann机是第一个受统计力学启发的多层学 习机,它是典型的随机神经网络。其命名来源于 Boltzmann机在统计力学中的早期工作和网络本 身的动态分布行为(其平衡状态服从Boltzmann 分布),其运行机制服从模拟退火算法。
教材其余课件及动画素材请查阅在线教务辅导网 在线教务辅导网:
QQ:349134187 或者直接输入下面地址:
*合肥工业大学 计算机与信息学院 图像信息处理研究室
第6章 随机神经网络及模拟退火算法
*合肥工业大学 计算机与信息学院 图像信息处理研究室
随机神经网络与其他网络的比较:
名称 BP网络 Hopfield 网络 网络类型 网络结构 学习算法
含输入层、隐层、 网络按误差减 多层前向网 输出层。层内神 少的最大梯度 经元无连接 方向调整权值 络 单层神经网络, 网络按照其用 反馈神经网 层内神经元全互 途来设计或训 连 练网络权值 络 含输入部、输出 网络向误差减 随机神经网 部和中间部。神 小的方向运行 经元互连 概率大,但也 络 可能向误差增 大方向运行
*合肥工业大学 计算机与信息学院 图像信息处理研究室
网络陷入局部最小点的原因主要有两点: ( 1)网络结构上存在着输入到输出之间的非线 性函数关系,从而使网络误差或能量函数所构 成的空间是一个含有多极点的非线性空间。 ( 2)在算法上,网络的误差或能量函数只能单 方向减小,不能有一点上升。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
i
u / T i
vi取0的概率:P ( v 0 ) 1 P ( v 1 ) e P ( v 1 ) i i i
由此可见, vi取1的概率受两个因素的影响: (1) ui越大vi则取1的概率越大,而取0的概 率越小。 (2) 参数T称为“温度”,在不同的温度下vi 取1的概率P随ui的变化如图所示。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
6.1 Boltzmann机
6.1.1 6.1.2 6.1.3 6.1.4
Boltzmann机的网络结构 Boltzmann机的工作原理 Boltzmann机的运行步骤 Boltzmann机的学习规则
*合肥工业大学 计算机与信息学院 图像信息处理研究室
*合肥工业大学 计算机与信息学院 图像信息处理研究室
•Boltzmann机中单个神经元的运行特性
v1 v2
vj
wi1 wi 2 wij win
ui bi i Pi
vi
vn
*合肥工业大学 计算机与信息学院 图像信息处理研究室
Boltzmann机中每个神经元的兴奋或抑制具 有随机性,其概率取决于神经元的输入。 神经元i的全部输入信号的总和为ui为:
*合肥工业大学 计算机与信息学院 图像信息处理研究室
Boltzmann 机
BP网络是一种“贪心”算法,容易陷入局部最 小点。 Hopfield网络很难避免出现伪状态,网络是严格 按照能量减小的方向运行的,容易陷入局部极小 点,而无法跳出。 所以,在用BP网络和Hopfield网络进行最优化 的计算时,由于限定条件的不足,往往会使网络 稳定在误差或能量函数的局部最小点,而不是全 局最小点,即所得的解不是最优解。
ui wijv j bi
j n
式中bi是该神经元的阈值。 可以将bi归并到总的加权和中去,即得:
ui wij v j
j
n
*合肥工业大学 计算机与信息学院 图像信息处理研究室
神经元的输出vi依概率取1或0: u T i/ vi取1的概率: P ( v 1 ) 1 /( 1 e )
p~u的关系
*合肥工业大学 计算机与越高时,曲线越平滑,因此,即使 ui有很 大变动,也不会对 vi 取 1 的概率变化造成很大的影 响;反之, T 越低时,曲线越陡峭,当 ui 有稍许变 动时就会使概率有很大差异。即温度高时状态变化 接近随机,随着温度的降低向确定性的动作靠近。 当 T→0 时,每个神经元不再具有随机特性,而具 有确定的特性,激励函数变为阶跃函数,这时 Boltzmann机趋向于Hopfield 网络。
6.1 6.2 6.3 6.4
Boltzmann机 Boltzmann机的改进 模拟退火算法 仿真实例
*合肥工业大学 计算机与信息学院 图像信息处理研究室
前言
随机神经网络是统计力学思想引入神经网络研究 的结果。 统计力学是研究大系统宏观平衡性质的学科,这种 大系统的组成元素服从微观机制。统计力学的主要 目的是寻找从微观粒子(原子、电子)的运动开始 的宏观物体的热力学性质,由于所遇到的自由度数 目很大,因此只能使用概率的方法进行研究。
6.1.1 Boatman机的网络结构
图6-1 boltzmann机的网络结构
*合肥工业大学 计算机与信息学院 图像信息处理研究室
Boltzmann机由输入部、输出部和中间部构成。 输入神经元和输出神经元可称为显见神经元,它 们是网络与外部环境进行信息交换的媒介。中间 部的神经元称为隐见神经元,它们通过显见神经 元与外部进行信息交换。 每一对神经元之间的信息传递是双向对称的, 即wij= wji ,而且自身无反馈即wii=0。学习期间, 显见神经元将被外部环境“约束”在某一特定的 状态,而中间部隐见神经元则不受外部环境约束。
随机神经网络的基本思想: 网络向误差或能量函数减小方向运行的概率大, 同时向误差或能量函数增大方向运行的概率存在, 这样网络跳出局部极小点的可能性存在,而且向全 局最小点收敛的概率最大。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
20世纪80年代,Ackley,Hinton 和Sejnowski等人 以模拟退火思想为基础,对Hopfield网络引入了 随机机制,推出Boltzmann机。 Boltzmann机是第一个受统计力学启发的多层学 习机,它是典型的随机神经网络。其命名来源于 Boltzmann机在统计力学中的早期工作和网络本 身的动态分布行为(其平衡状态服从Boltzmann 分布),其运行机制服从模拟退火算法。
教材其余课件及动画素材请查阅在线教务辅导网 在线教务辅导网:
QQ:349134187 或者直接输入下面地址:
*合肥工业大学 计算机与信息学院 图像信息处理研究室
第6章 随机神经网络及模拟退火算法
*合肥工业大学 计算机与信息学院 图像信息处理研究室
随机神经网络与其他网络的比较:
名称 BP网络 Hopfield 网络 网络类型 网络结构 学习算法
含输入层、隐层、 网络按误差减 多层前向网 输出层。层内神 少的最大梯度 经元无连接 方向调整权值 络 单层神经网络, 网络按照其用 反馈神经网 层内神经元全互 途来设计或训 连 练网络权值 络 含输入部、输出 网络向误差减 随机神经网 部和中间部。神 小的方向运行 经元互连 概率大,但也 络 可能向误差增 大方向运行
*合肥工业大学 计算机与信息学院 图像信息处理研究室
网络陷入局部最小点的原因主要有两点: ( 1)网络结构上存在着输入到输出之间的非线 性函数关系,从而使网络误差或能量函数所构 成的空间是一个含有多极点的非线性空间。 ( 2)在算法上,网络的误差或能量函数只能单 方向减小,不能有一点上升。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
i
u / T i
vi取0的概率:P ( v 0 ) 1 P ( v 1 ) e P ( v 1 ) i i i
由此可见, vi取1的概率受两个因素的影响: (1) ui越大vi则取1的概率越大,而取0的概 率越小。 (2) 参数T称为“温度”,在不同的温度下vi 取1的概率P随ui的变化如图所示。
*合肥工业大学 计算机与信息学院 图像信息处理研究室
6.1 Boltzmann机
6.1.1 6.1.2 6.1.3 6.1.4
Boltzmann机的网络结构 Boltzmann机的工作原理 Boltzmann机的运行步骤 Boltzmann机的学习规则
*合肥工业大学 计算机与信息学院 图像信息处理研究室
*合肥工业大学 计算机与信息学院 图像信息处理研究室
•Boltzmann机中单个神经元的运行特性
v1 v2
vj
wi1 wi 2 wij win
ui bi i Pi
vi
vn
*合肥工业大学 计算机与信息学院 图像信息处理研究室
Boltzmann机中每个神经元的兴奋或抑制具 有随机性,其概率取决于神经元的输入。 神经元i的全部输入信号的总和为ui为:
*合肥工业大学 计算机与信息学院 图像信息处理研究室
Boltzmann 机
BP网络是一种“贪心”算法,容易陷入局部最 小点。 Hopfield网络很难避免出现伪状态,网络是严格 按照能量减小的方向运行的,容易陷入局部极小 点,而无法跳出。 所以,在用BP网络和Hopfield网络进行最优化 的计算时,由于限定条件的不足,往往会使网络 稳定在误差或能量函数的局部最小点,而不是全 局最小点,即所得的解不是最优解。
ui wijv j bi
j n
式中bi是该神经元的阈值。 可以将bi归并到总的加权和中去,即得:
ui wij v j
j
n
*合肥工业大学 计算机与信息学院 图像信息处理研究室
神经元的输出vi依概率取1或0: u T i/ vi取1的概率: P ( v 1 ) 1 /( 1 e )