椭圆的标准方程与几何性质
椭圆的标准方程及性质
椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。
本文将介绍椭圆的标准方程以及其相应的性质。
一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。
设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。
二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。
2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。
焦点是椭圆的重要特点,用于定义椭圆的几何性质。
3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。
长轴是椭圆的最长直径,短轴是椭圆的最短直径。
4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。
离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。
5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。
6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。
7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。
8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。
三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。
以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。
2. 光学器件:抛物面镜、椭圆面镜等。
3. 固定时间下的最短路径问题。
4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。
4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。
5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。
总结:本文介绍了椭圆的标准方程及其性质。
椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。
椭圆的几何性质(解析版)
第52讲椭圆的几何性质一、课程标准1、掌握椭圆的性质,能够正确求出椭圆的性质2、掌握求椭圆的离心率的值以及离心率的范围3、掌握直线与椭圆的位置关系二、基础知识回顾1、椭圆的标准方程和几何性质2、焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|.(1)x2a2+y2b2=1(a>b>0),r1=a+ex0,r2=a-ex0;(2)y2a2+x2b2=1(a>b>0),r1=a+ey0,r2=a-ey0;(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).3、焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆x2a2+y2b2=1(a>b>0)中(1)当P为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ).4、.AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|;(2)直线AB 的斜率k AB =-b 2x 0a 2y 0.5、直线与椭圆的关系将直线方程与椭圆方程联立,消去一个变量得到关于x(或y)的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0).再求一元二次方程的判别式Δ,当: ①Δ>0⇔直线与椭圆相交; ②Δ=0⇔直线与椭圆相切; ③Δ<0⇔直线与椭圆相离.6、设直线l 与椭圆的交点坐标为A(x 1,y 1),B(x 2,y 2),k 为直线l 斜率,则AB =(1+k 2)|x 1-x 2|.三、自主热身、归纳总结1、直线y =kx -k +1(k 为实数)与椭圆x 29+y 24=1的位置关系为( )A . 相交B . 相切C . 相离D . 相交、相切、相离都有可能 【答案】A【解析】 直线y =kx -k +1=k(x -1)+1恒过定点(1,1).∵点(1,1)在椭圆内部,∴直线与椭圆相交.故选A .第2题图2、如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a>b>0)的右、下、上顶点,F是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是____. 【答案】5-12【解析】 ∵kB 2F ·kAB 1=-1,-b c ·b a =-1,b 2=ac ,即a 2-c 2=ac ,∴e =ca =5-12.3、中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是____________. 【答案】:x 225+y 275=1【解析】:由题设知c =52,设椭圆方程为x 2a 2-50+y 2a2=1,联立方程⎩⎨⎧x 2a 2-50+y 2a2=1,y =3x -2,消去y ,整理得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,由根与系数的关系得x 1+x 2=12(a 2-50)10a 2-450=1,解得a 2=75,所以椭圆方程为x 225+y 275=1. 4、已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( )A.223B.423C. 2 D .2【答案】B【解析】由条件知c =1,e =c a =22,所以a =2,b =1,椭圆方程为x 22+y 2=1,联立直线方程与椭圆方程可得交点坐标为(0,1),⎝⎛⎭⎫43,-13,所以|AB |=423. 5、(一题两空)已知点F 1,F 2分别是椭圆x 225+y 29=1的左、右焦点,点P 在此椭圆上,则椭圆离心率为________,△PF 1F 2的周长为________. 【答案】4518【解析】由椭圆方程知a =5,b =3,c =4,所以其离心率e =c a =45.△PF 1F 2的周长为2a +2c =10+8=18.四、例题选讲考点一 椭圆的离心率的值例1 (1)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左焦点为F ,第(1)题图上顶点为B ,若∠BAO +∠BFO =90°,则椭圆的离心率是____.(2)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左焦点,A ,B 分别为椭圆C 的左、右顶点.P为椭圆C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为____. 【答案】(1) 5-12 (2)13【解析】 (1)由∠BAO +∠BFO =90°,∠BAO +∠ABO =90°,得∠BFO =∠ABO.又∠AOB =∠AOB ,∴△ABO ∽△BFO ,∴OB OF =AO BO ,即b c =a b,得ac =b 2=a 2-c 2,变形得e 2+e -1=0,解得e =5-12或-5-12(舍),∴椭圆的离心率为5-12. (2)设M(-c ,m),则E(0,am a -c ),OE 的中点为D ,则D(0,am 2(a -c )),又B ,D ,M 三点共线,∴m2(a -c )=m a +c,解得a =3c ,∴e =13.变式1、(1)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12 C.13 D.14【答案】 D变式2、(四川省乐山一中2019届质检)设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点,P 是椭圆C 上的点,圆x 2+y 2=a 29与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为( ) A.33B.53C.104D.175 【答案】D【解析】如图,取线段PF 的中点H ,连接OH ,OA .设椭圆另一个焦点为E ,连接PE .∵A ,B 三等分线段PF ,∴H 也是线段AB 的中点,即OH ⊥AB .设|OH |=d ,则|PE |=2d ,|PF |=2a -2d ,|AH |=a -d3.在Rt △OHA 中,|OA |2=|OH |2+|AH |2,解得a =5d . 在Rt △OHF 中,|FH |=45a ,|OH |=a5,|OF |=c . 由|OF |2=|OH |2+|FH |2, 化简得17a 2=25c 2,c a =175. 即椭圆C 的离心率为175.故选D.变式3、焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14B.13C.12D.23 【答案】C【解析】由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ×b =12(2a +2c )×b3,得a =2c ,即e =c a =12,故选C.变式4、(2017苏北四市一模) 如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a>b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.【答案】5-12【解析】因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F →=(c ,-b ),B 1A →=(a ,b ).因为FB 2⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).方法总结:求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
椭圆的简单几何性质(最全)
42 52
41
25 9
尝试遇到困难怎么办? 作出直线 l 及椭圆,
几何画板显示图形
观察图形,数形结合思考.
36
直线与椭圆的位置关系 :
直线和椭圆方程分别为
y
: Ax By C
y
0
,x a
2 2
y2 b2
1
y
F1 o
F2 x F1 o
F2 x F1 o
F2 x
Ax By C 0
则由 x2 y2
x2 y2 1
4 16
x2 y2 综上所述,椭圆的标准方程是 1
或
x2 y2 1
41
4 16
15:01:32
26
练习2:
已知椭圆 x2 y2 1 的离心率 e 1
k 8 9
2
x 解:当椭圆的焦点在 轴上时,
k ,求 的值
a2 k 8 b2 9
y 由
e
1 2
,得:
k
4
当椭圆的焦点在 轴上时,
3、若椭圆的 的两个焦点把长轴分成三等分,则其离心率
为
1。
3
4、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3
则其离心率e=______5____
回顾
[1]椭圆标准方程
x2 a2
y2 b2
1(a b 0)
所表示的椭圆的存在范围是什么?
[2]上述方程表示的椭圆有几几个顶点?顶点是谁与谁的交点?
3)c=0(即两个焦点重合)e =0,则 b= a,
椭圆方程变为x2+ y2=a2(圆)
即离心率是反映椭圆扁平程度的一个量。
结论:离心率e越大,椭圆越扁; 离心率e越小,椭圆越圆
椭圆总结(全)
椭圆总结一、椭圆的定义:(隐含条件)平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
二、 方程1、标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=2、 一般方程:)0,0(122>>=+B A By Ax Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
要求能熟练的把一般方程转化成标准方程,并找出a,b,c.三、性质:对于焦点在x 轴上,中心在原点:12222=+b y a x (a >b >0)有以下性质:1、范围:|x|≤a ,|y|≤b ;[][]22121212,*,0PF a c a c PF PF b a F PF F BF ∈-+⎡⎤∈⎣⎦∈角,2、对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);3、顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);4、通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,通径最短=ab 225、离心率:e=ca==(焦距与长轴长之比)()1,0∈;e 越大越扁,0=e 是圆。
3.2.2 椭圆的简单几何性质
椭圆的离心率 e= .
范围: 0<e<1
e越接近1,c越接近a, = 2 − 2 越小,因
此椭圆越扁平;
e越接近0,c越接近0, = 2 − 2 越大,因
此椭圆越接近于圆;
当且仅当a=b时,c=0,这时两个焦点重合,
图形变为圆,方程为 2 + 2 = 2 .
典型例题
典型例题
例2 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=
4
比是常数 ,求动点M的轨迹.
5
25
的距离的
4
轨迹方程
轨迹上任意的点 M 的坐标(x , y)所满足的条件
点M所满足的条件
点M与定点F(4,0)的距离和M到定
25
4
直线l:x= 的距离的比是常数
4
转化
5
两点间距离和点到直线的距离
6 − 91 = 0内切,求动圆圆心的轨迹方程,并说明它是什么曲线?
圆 2 + 2 + 6 + 5 = 0
圆心1 (− 3,0),半径r1=2
椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,
经过旋转椭圆面反射后集中到另一个焦点F2.已知 ⊥ 1 2 , 1 = 2.8cm,
1 2 = 4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程.
椭圆的方程
求a,b
建立关于a,b的方程
典型例题
2
4.12
+
2
3⋅4 2
= 1.
方
程
思
想
典型例题
例1 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲
椭圆标准方程及几何性质
解:设动圆 M 的半径为 r,圆心 M(x,y),两定圆 -3),半径 r1=8,r2=2. 圆心 C1(0,3),C2(0, 则|MC1|=8-r,|MC2|=r+2. ∴|MC1|+|MC2|=(8-r)+(r+2)=10. 又|C1C2|=6,∴动圆圆心 M 的轨迹是椭圆,且焦 点为 C1(0,3),C2(0, -3),且 2a=10, ∴ a=5,c=3, 2 2 2 ∴b =a -c =25-9=16. y2 x2 ∴动圆圆心 M 的轨迹方程是25+16=1.
2.写出适合下列条件的椭圆的标准方程
已知两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到
2 2 x y 两焦点距离的和等于10; + =1 25 9 变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?
y2 x2 + =1 25 9 变式二:将上题改为两个焦点的距离为8,椭圆上一点P到两
知识总结
探究定义 P={ M| |MF1 |+|MF2|=2a(2a>2c)}.
y M
y F2
M x
不 同 点
图
形
F1
O
F2
x
O
F1
标准方程 焦点坐标 相 a、b、c 的关系 同 点 焦点位置的判断
x2 y2 + 2 = 1 a > b > 0 2 a b
F1 -c , 0,F2 c , 0
y
M F 1
o
y
F2
F2 x
F1(-c,0)、F2(c,0)
焦点在y轴:
y 2 x2 + 2 = 1(a b 0) 2 a b
M
o
F1
x
F1(0,-c )、F2(0,c)
椭圆的几何性质(简单性质)
3
则 C 的离心率为 3
.
y
BF 2FD
B
(c, b) 2( x c, y)
x
3 2
c,
y
b 2
.
OF
x
D
(
3 2
c
a2
)2
(
b 2
)2
b2
1,
c2 a2
1 3
,
e
3 3
.
主页
【4】(09·江苏)如图,在平面直角坐标系
xOy中, A1, A2, B1, B2为椭圆
x2 a2
y2 b2
1 (a>b>0)的四
PF1 PF2 ,求离心率的取值范围.
y
P
解:当点 P 在椭圆短轴端点时, F1PF2 最大.
F1
o
F2
x
≥ 45 sin ≥
2 2
c a
sin
≥
2 2
又0e1
2 2
≤
e
1
主页
例 3.已知 P 是椭圆上一点, F1, F2 分别是椭圆的左右焦点,且 PF1 PF2 ,求离心率的取值范围.
(Ⅱ)设 PF1 m, PF2 n , 构造方程、不等式
解解解解:::易:易易易知知知知aaa=a解===2:22,易,2,,b知bb===ba1=1=1,,,12cc,=c,==cb==333,,,1,3,c= 3, 所所所所以以以以FFFF11(1(1-(-(-所-3以33,,3,F0,00)1),(),0-,)FF,F22(23(F(,3233,(,0,)03,00),).).F.02().3,0). 设设设设PPP((x((xx,x,,,yy)y设)y,),,),P(x,y),
第1节 椭圆标准方程和几何性质ppt课件
2.椭圆的标准方程和几何性质
标准方程 焦点位置
x2 a2
y2 b2
1(a
b
0)
焦点在x轴上
y2 a2
x2 b2
1(a
b
0)
焦点在y轴上
图形
标准方程
范围 对称性
顶点 性质 轴长
焦距 离心率 a,b,c的
关系
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
-a≤x≤a -b≤y≤b
a5 两个焦点分别为F1(3, 0)和F2 (3, 0), 四个顶点的坐标分别为A1(5, 0), A2 (5, 0), B1(0, 4)和B2 (0, 4).
【变式1-1】(2019新课标II卷,文)若抛物线y2=2px(p>0)的焦点是
椭圆 x2 y2 1的一个焦点,则p=( ) 3p p
A.2
B.3
C.4
D.8
【答案】 D 【解析】 由题意可得:3 p p ( p )2,解得p 8.故选D.
2
【变式1-2】 (2018新课标Ⅰ卷,文)已知椭圆C:
x2 a2
y2 4
1的一
个焦点为(2,0),则C的离心率为 ( )
A. 1
B. 1
C. 2
D. 2 2
3
2
2
3
【答案】 C 【解析】 根据题意,可知c 2,因为b2 4, 所以a2 b2 c2 8, 即a 2 2,所以椭圆C的离心率为e 2 2 ,故选C.
-b≤x≤b -a≤y≤a
对称轴:x轴、y轴; 对称中心:(0,0)
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
椭圆的标准方程及其几何性质
圆心Q(3,0), ,所以P在定圆内 设动圆圆心为 ,则 为半径 又圆M和圆Q内切,所以 ,
即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以 , ,故动圆圆心M的轨迹方程是:
题7。△ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边AB、AC的斜率的乘积是- ,求顶点A的轨迹方程.
[解析] 的周长为 , =8
2.如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是____________.
解析:椭圆方程化为 + =1.
焦点在y轴上,则 >2,即k<1.
又k>0,∴0<k<1.
答案:0<k<1
3.椭圆 + =1的离心率是____________,准线方程是____________.
所以,以线段 为直径的圆与此椭圆长轴为直径的圆内切
题11。已知椭圆的焦点是 ,P为椭圆上一点,且| |是| |和| |的等差中项.
(1)求椭圆的方程;
(2)若点P在第三象限,且∠ =120°,求 .选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设| |+| |=2| |=4
∴ , 2c=2, ∴b=
∴椭圆的方程为 .
(2)设∠ ,则∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
题12.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆相交于点P和点Q,且OP⊥OQ,|PQ|= ,求椭圆方程.
解:设椭圆方程为mx2+ny2=1(m>0,n>0),
(2)过点(0,3)作直线l与曲线C交于A、B两点,设 = + ,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.
椭圆的标准方程及其性质
a2
c
叫做椭圆相对于焦点F(c,0) , 叫做椭圆相对于焦点
常数e= 叫做椭圆的离心率 准线 常数 a 叫做椭圆的离心率. 的准线.常数 c (0<e<1)叫做椭圆的离心率
基础训练
标准方程 图 形 范 围 长轴长 短轴长
填写下面表格
5x2+16y2=80
4x2+y2=16
顶点坐标 离心率 准线方程
到定点F(c,0)的距离和它到定直线l: x= c , 的距离和它到定直线 的距离和它到定直线l 到定点 的距离的比是常数e= 的距离的比是常数 c (0<e<1)的点的轨迹 的点的轨迹
a
a2
叫做椭圆. 叫做椭圆 其中定点F(c,0)叫做椭圆的焦点, , 叫做椭圆的焦点, 叫做椭圆的焦点 其中定点 定直线l 定直线l: x=
变式训练
1.若椭圆的两个焦点把长轴分成三等分, 1.若椭圆的两个焦点把长轴分成三等分,则其 若椭圆的两个焦点把长轴分成三等分 1 离心率为 ; 3
2. 若椭圆 k + 8 + =1的离心率为 的离心率为 9
x
2
y
2
5 − 或 4 0.5,则k=_____ , 4
变式训练
《五羊高考》 P209 五羊高考》 例题2 例题
椭圆的标准方程 与 几何性质
一、椭圆的标准方程与性质: 椭圆的标准方程与性质:
标准方程 图 形
x2 y2 + 2 =1 2 a b x2 y2 + 2 =1 2 b a
范 围 对称性 顶点坐标 焦点坐标 长轴长 短轴长 焦 距 离心率
成轴对称;关于_______ _______成中心对称 关于_____、_____成轴对称;关于_______成中心对称
椭圆标准方程及几何性质
椭圆的离心率
离心率是描述椭圆扁平程度的量,用 $e$表示。
VS
离心率定义为$e = frac{c}{a}$,其中 $c$是焦距,$a$是长轴半径。
03
椭圆的参数方程
参数方程的定义
参数方程
通过引入参数,将椭圆上的点与一组有序数对(参数)关联起来,表示椭圆上 的点的一种方法。
参数方程的一般形式
x=a*cos(t)x = a cos(t)x=a∗cos(t) 和 y=b*sin(t)y = b sin(t)y=b∗sin(t),其中 (a,b) 是椭圆的长短轴长度,t是参数。
通过极坐标方程,可以方便地解决与椭圆相关的几何问题,例如求 交点、判断点是否在椭圆上等。
05
椭圆的焦点三角形
焦点三角形的性质
焦点三角形是等腰三角形
01
由于椭圆上任意一点到两焦点的距离之和为常数,因此焦点三
角形是等腰三角形。
顶角为直角
02
由于椭圆上任意一点到两焦点的距离之差与到另一焦点的距离
之比为常数,因此顶角为直角。
当长短轴长度一定时,顶角越大,焦 点三角形面积越大。
焦点三角形的周长
01
02
03
周长公式
焦点三角形的周长公式为 (P = 2a + 2c),其中 (a) 为长轴长度,(c) 为焦距。
周长与长短轴关系
当长短轴长度一定时,离 心率越大,焦点三角形周 长越大。
周长与离心率关系
当长短轴长度一定时,长 短轴长度越接近,焦点三 角形周长越小。
THANKS
感谢观看
参数方程的应用
简化计算
在解决与椭圆相关的数学问题时,使用参数方程可以简化计算过程,特别是涉及到三角函数的问题。
椭圆方程及几何性质
练习32.设 A(x1,y1),B(x2,y2)是椭圆ay22+xb22
=1(a>b>0)上的两点,已知 m=(xb1,ya1),n =(xb2,ya2),若 m·n=0 且椭圆的离心率 e= 23,短轴长为 2,O 为坐标原点.
(1)求椭圆的方程; (2)若直线AB过椭圆的焦点F(0,c)(c为半 焦距),求直线AB的斜率k的值; (3)试问:△AOB的面积是否为定值?如 果是,请给予证明;如果不是,请说明 理由.
椭圆方程及几何性质
基础知识梳理
1.椭圆的定义 的和(1等)平于面常内数一(大点于P与|F两1F定2|)点的F点1、的F轨2的迹距,离 即 |PF1|+|PF2|=2a>|F1F2| 若常数等于|F1F2|,则轨迹是 线段F1F2 . 若常数小于|F1F2|,则轨迹 不存在 .
注意:一定要注意椭圆定义中限制 条件“大于|F1F2|”是否满足.
xb22+ay22=1
(a>b>0)
顶点
ABB112(((-00,,a-,b0))b,),A2(a,0),AAB121(((-00, ,ba,-0)),a,),B2(b,0)
轴
对称轴: x轴、y轴,长轴长: |A1A2|=2a , 短轴长: |B1B2|=2b
焦点 F1(-c,0),F2(c,0) F1(0,-c),F2(0,c)
解|B:F1由|+椭|B圆F2定|=义2a知,|A所F以1|+|A|AFF1|+2|=|B2Fa1,|+
||ABFF22||+ =4|Ba,F2∴|=|A4aB,|==即44a|×A-5B-(||+F12|2AA=|F+82|.|+F2B|)
4(2010全国卷)已知F是椭圆C的一个焦
高中数学椭圆笔记
高中数学椭圆笔记
椭圆是平面上与两个定点F1和F2的距离之和等于常数2a的点的轨迹。
其中,F1和F2称为椭圆的焦点,a称为椭圆的半长轴。
椭圆的离心率e定义为焦点距离与半长轴的比值。
1. 椭圆的标准方程:
椭圆的标准方程为:(x-h)/a + (y-k)/b = 1
其中,(h,k)为椭圆的中心坐标。
a和b分别为椭圆的半长轴和半短轴。
2. 椭圆的离心率:
椭圆的离心率e的计算公式为:e = c/a
其中,c为焦点距离,a为椭圆的半长轴。
3. 椭圆的几何性质:
- 椭圆的长轴和短轴:长轴的长度为2a,短轴的长度为2b。
- 椭圆的焦距:焦距的长度为2ae。
- 椭圆的对称轴:垂直于长轴且通过中心点的直线称为椭圆的对称轴。
- 椭圆的顶点:椭圆与对称轴的交点称为椭圆的顶点。
4. 椭圆的方程转化:
- 将一般方程转化为标准方程:通过平移和旋转操作,将一般方程转化为标准方程。
- 将标准方程转化为一般方程:通过展开和整理,将标准方程转化为一般方程。
5. 椭圆的判定:
- 判断椭圆的标准方程:如果a>b,则为椭圆。
- 判断椭圆的离心率:如果0<e<1,则为椭圆;如果e=1,则为抛物线;如果e>1,则为双曲线。
以上是关于高中数学中椭圆的一些基本笔记,希望对你的学习有所帮助!。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
椭圆的标准方程及几何性质
椭圆的标准⽅程及⼏何性质椭圆的标准⽅程与⼏何性质⼀、知识梳理1、椭圆定义:平⾯内与两个定点21,F F 的距离之和等于常数(⼤于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
思考:若与两个定点21,F F 的距离之和等于常数(⼩于或等于||21F F )的点的轨迹⼜是如何?2.标准⽅程:(1)焦点在x 轴上,中⼼在坐标原点的椭圆的标准⽅程为12222=+b y a x ;(2)焦点在y 轴上,中⼼在坐标原点的椭圆的标准⽅程为12222=+bx a y .3、重要关系: 222a b c =+。
(注意⼤⼩关系) 4、椭圆的⼏何性质由椭圆⽅程12222=+by a x (0>>b a ) 研究椭圆的性质。
(1)范围:a x a ≤≤-,b y b ≤≤-(椭圆落在b y a x ±=±=,组成的矩形中)(2)对称性:图形关于原点对称.原点叫椭圆的对称中⼼,简称中⼼.x 轴、y 轴叫椭圆的对称轴.长轴与短轴长分别为b a 2,2。
b a ,分别为椭圆的长半轴长和短半轴长。
(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点。
椭圆共有四个顶点: )0,(),0,(21a A a A -,),0(),,0(21b B b B -。
【⼩秘书】(1)求椭圆⽅程的⽅法:除了定义外,常⽤待定系数法;(2)当椭圆的焦点位置不确定时,可设⽅程为221x y m n+=(,0m n >),避免讨论和繁杂的计算。
(3)要重视椭圆定义解题的重要作⽤,要注意归纳提炼,优化解题过程。
【例1】求满⾜下列各条件的椭圆的标准⽅程.:(1)焦点在坐标轴上,且经过两点)31(3)以短轴的⼀个端点和两焦点为顶点的三⾓形为正三⾓形,且焦点到椭圆的最短练兵场:1. 椭圆5x 2+ky 2=5的⼀个焦点是(0,2),那么k 等于() (A)-1 (B)1 (C)5(D) -52、(08上海⽂)设P 椭圆2212516x y +=上的点.若1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于()(A)4 (B)5 (C)8 (D) 103.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .4.椭圆的中⼼在原点,对称轴为坐标轴,椭圆的⼀个顶点B 与两焦点F 1F 组成三⾓形的周长为4+23,且∠F 1BF 2= 23π,求该椭圆⽅程。
2.2_椭圆标准方程及其简单几何性质
x y 练习13.已知F1 , F2是椭圆 1的两个焦点, 100 64 P是椭圆上任意一点, 且F1 PF2 的面积.
高中数学人教A版选修2-1第2章第2节第一课时
及其标准方程
认识椭圆
2.2.1
椭圆及其标准方程
用一个垂直于圆锥的轴的平面截圆锥,得到的 截面是一个圆.如果改变平面与圆锥轴线的夹 角,会得到椭圆、双曲线、抛物线等图形. 通常把椭圆、双曲线、抛物线统称为圆锥曲 线. 本章研究如何建立这些曲线的方程,然后利用 方程研究它们的性质,并运用这些性质解决实 际问题.
F(±c,0) F(0,±c)
c2=a2-b2
题型一:椭圆第一定义
x2 1.椭圆 y 2 1上一点P到一个焦点的距离为2. 25 则点P到另一个焦点的距离为( D ) A, 5 B, 6 C , 7
2 2
D, 8
x y 2.椭圆 1上一点M 到左焦点F1的距离为2, 25 9 N 是MF1的中点, 则 ON 等于(B ) A, 2 B, 4 C, 8 3 D, 2
1.填空:
x2 y 2 1 ,则a=_____, (1)已知椭圆的方程为: 5 25 16 (-3,0),(3,0) b=_______,c=_______,焦点坐标为:____________ 4 3 焦距等于______; 6
x y 练习4,已知经过椭圆 1左焦点F1的直线交 16 9 16 椭圆于A, B两点, 则 ABF2的周长为 ________
y
M
F1
x y 2 1a b 0 2 a b
焦点在y轴:
2
2
o
y
F2
F2
x
y x 2 1(a b 0) 2 a b
椭圆及其几何性质
椭圆及其几何性质主干梳理:(一)椭圆定义:a MF MF 2||||21=+()c a >。
注:①||221F F a >轨迹为椭圆;②||221F F a =轨迹为线段21F F ;③||221F F a <轨迹不存在。
(二)椭圆标准方程:(其中222b c a +=) 12222=+by a x (0>>b a )表示椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -, 中心在坐标原点的椭圆方程;12222=+bx a y (0>>b a )表示椭圆的焦点在y 轴上,焦点是),0(),0(21c F c F -, 中心在坐标原点的椭圆方程。
(三)以椭圆12222=+by a x (0>>b a ) 研究椭圆的几何性质 1、范围:a x a ≤≤-,b y b ≤≤-,落在b y a x ±=±=,组成的矩形中;2、对称性:原点叫椭圆的对称中心,简称中心,x 轴、y 轴叫椭圆的对称轴;3、顶点:椭圆和对称轴的交点叫做椭圆的顶点。
椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。
长轴,短轴长分别为b a 2,2,b a ,分别为椭圆的长半轴长和短半轴长。
4、离心率:椭圆焦距与长轴长之比。
定义式:a c e =⇒2)(1ab e -=; 范围: 10<<e ; (四)焦点三角形应注意以下关系:其中),(00y x P 为椭圆上一点,θ=∠==212211,||,||PF F r PF r PF 1、a r r 221=+;2、余弦定理:2212221)2(cos 2c r r r r =-+θ;3、配方法:212222122212)(r r r r r r -+=+4、面积:2tan ||sin 21202121θθb y c r r S F PF ===∆典型例题考点题型1 椭圆的定义问题 例1.下列说法正确的是( )A.已知)0,4(),0,4(21F F -。
椭圆的标准方程及几何性质
椭圆的标准方程及几何性质椭圆是平面上的一种几何图形,它具有许多独特的性质和特点。
在本文中,我们将探讨椭圆的标准方程及其几何性质。
首先,我们来看椭圆的标准方程。
椭圆的标准方程可以表示为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中,a和b分别代表椭圆在x轴和y轴上的半轴长度。
如果椭圆的长轴与x轴平行,那么a代表长轴的长度,b代表短轴的长度;如果椭圆的长轴与y轴平行,则相反。
通过这个标准方程,我们可以轻松地确定椭圆的形状和大小。
接下来,让我们来探讨一下椭圆的几何性质。
椭圆具有许多有趣的性质,其中一些包括焦点、直径、离心率等。
首先是椭圆的焦点。
椭圆有两个焦点,它们分别位于椭圆的长轴两端。
焦点的位置与椭圆的半轴长度有关,可以通过椭圆的标准方程轻松计算得出。
其次是椭圆的直径。
椭圆有两条相互垂直的直径,分别为长直径和短直径。
长直径的长度为2a,短直径的长度为2b。
这些直径是椭圆上许多重要几何元素的基础,如焦点、顶点等。
最后是椭圆的离心率。
椭圆的离心率代表了椭圆的独特形状。
它的计算公式为:\[e = \sqrt{1 \frac{b^2}{a^2}}\]离心率越接近于0,椭圆的形状就越接近于圆;离心率越接近于1,椭圆的形状就越狭长。
离心率是描述椭圆形状的重要参数之一。
除了上述几何性质外,椭圆还具有许多其他有趣的特点,如切线、法线、曲率等。
这些性质使得椭圆成为数学和几何中的重要研究对象,也在实际生活中有许多应用,如天文学中行星轨道的描述、工程学中的椭圆形零件设计等。
总之,椭圆的标准方程及其几何性质是数学和几何中的重要内容,通过本文的介绍,希望读者能对椭圆有更深入的了解,并能在学习和工作中灵活运用。
第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析
第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的标准方程与几何性质
高考频度:★★★★☆ 难易程度:★★★☆☆
典例在线
(1)已知椭圆24x +2
2
y =1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则12PF F △的面积是
A B .2
C .
D
(2)已知F 1,F 2分别是椭圆E :22x a +221y b =(0a b >>)的左、右焦点,点(1)在椭圆
上,且点(1-,0)到直线PF 2P (1-,4-),则椭圆的标准方程为
A .x 2
+2
4
y =1
B .24x +y 2
=1
C .x 2
+2
2
y =1
D .22
x +y 2
=1
(3)已知椭圆22x a +2
2y b
=1(0a b >>)的左、右焦点分别为F 1(c -,0),F 2(c ,0),若椭圆上
存在点P ,使1221
sin sin a c
PF F PF F ∠∠=,则该椭圆离心率的取值范围为
A .(01-)
B .,1)
C .(0)
D .1-,1)
【参考答案】(1)A ;(2)D ;(3)D .
【试题解析】(1)由椭圆的方程可知a =2,c ,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,
所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =|PF 1|2=|PF 2|2+|F 1F 2|2
,即12PF F △为直
角三角形,所以12122||11
12
|2|PF F S F F PF =
=⨯=△.故选A .
(3)根据正弦定理得
2112
21
sin sin PF PF PF F PF F ∠∠=
,又
1221
sin sin a c
PF F PF F ∠∠=可得
21
a c PF PF =,即12
PF c
PF a
=
=e
,
所
以
|PF 1|=e|PF 2|
.
又
|PF 1|+|PF 2|=e|PF 2|+|PF 2|=|PF 2|·(e+1)=2a ,所以|PF 2|=
21
a
e +.因为a -c <|PF 2|<a+c ,所以a -c <21a e +<a+c ,所以1-21c a e <+<1+c a ,所以1-e <21e +<1+e ,即2
(1)(1)2
2(1)01
e e e e +-<⎧⎪<+⎨⎪<<⎩
,
-1<e <1.故选D .
【名师点睛】(1)椭圆定义的集合语言:1212{|||2,2||}P M MF MF a a F F =+=>往往是解决计算问题的关键,椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.
(2)求椭圆的方程有两种方法:①定义法;②待定系数法.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为
221mx ny =+(0,0m n >>且)m n ≠.
(3)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.理解顶点、焦点、长轴、短轴等椭圆的基本量之间的关系,深挖出它们之间的联系,求解自然就不难了.
(4)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两
种方法:①求出a ,c ,代入公式c
e a
=
;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 或2e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 学霸推荐
1.已知椭圆22
221(0)x y a b a b
+=>>上有一点A ,它关于原点的对称点为B ,点F 为椭圆
的右焦点,且满足AF BF ⊥,设ABF α∠=,且ππ
[,]126
α∈,则该椭圆的离心率e 的取值范围为
A .
B .
C .-
D .-
2.已知椭圆C :22x a +221y b =(0a b >>),椭圆短轴的一个端点与两个焦点
构成的三角形的面积为2.直线l :y =kx+m (m ≠0)与椭圆相交于不同的A ,B 两点. (1)求椭圆C 的方程; (2)若线段AB 中点的横坐标为
2
m
,求k 的值.
1.【答案】C 【解析】如图,
因为AF BF ⊥,所以点F 在以AB 为直径的圆上,则OA OB OF c ===.根据图形的对称性知,2AF BF a +=.又ABF α∠=,所以
cos sin AF BF AB AB αα+=⋅+⋅=2(sin cos )c αα+2a =,因此
1sin cos c e a αα=
==+ππ[,]126α∈
,所以e ∈-.故选C .
(2)联立直线l 的方程与椭圆的方程得22
142
x y y kx m ⎧+=⎪⎨⎪=+⎩
,代入消元得(2k 2+1)x 2+4kmx+(2m 2
-4)=0.
设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2421km k -+,x 1x 2=22
24
21
m k -+. 由题意知,x 1+x 2=
2421km k -+=m ,因为m ≠0,所以2
421
k
k -+=1,即2k 2+4k+1=0,
解得1k =--
1-+。