16.3(3)分母有理化

合集下载

《分母有理化》 讲义

《分母有理化》 讲义

《分母有理化》讲义一、什么是分母有理化在数学中,分母有理化是一种重要的运算技巧。

当我们面对一个分式,其中分母是含有根式的表达式时,通过一定的方法将分母中的根式去掉,把分母化为有理数,这个过程就叫做分母有理化。

比如说,对于分式\(\frac{1}{\sqrt{2}}\),它的分母\(\sqrt{2}\)是一个无理数。

经过分母有理化后,我们可以将其化为\(\frac{\sqrt{2}}{2}\),此时分母\(2\)就是一个有理数。

分母有理化的目的主要是为了简化计算和表达式,使得数学运算更加方便和清晰。

二、为什么要进行分母有理化分母有理化在数学中具有重要的意义和作用,主要体现在以下几个方面:1、简化运算当分式的分母中含有根式时,进行计算往往比较复杂。

通过分母有理化,可以将分母化为有理数,从而简化运算过程,提高计算的准确性和效率。

2、统一形式在数学问题中,为了便于比较和分析不同的表达式,常常需要将它们化为相同的形式。

分母有理化可以帮助我们将分式化为具有统一分母的形式,便于进行后续的运算和处理。

3、便于理解和分析有理化后的分母更容易被理解和直观地把握,有助于我们更深入地研究和分析数学问题。

三、分母有理化的基本方法分母有理化的方法主要有以下几种:1、乘法有理化对于形如\(\frac{A}{\sqrt{B}}\)的分式,我们可以将分子分母同时乘以\(\sqrt{B}\),得到\(\frac{A\sqrt{B}}{B}\)。

例如,对于\(\frac{1}{\sqrt{3}}\),分子分母同时乘以\(\sqrt{3}\),得到\(\frac{\sqrt{3}}{3}\)。

2、平方差公式有理化当分母是形如\(a +\sqrt{b}\)或\(a \sqrt{b}\)的式子时,我们可以利用平方差公式\((a + b)(a b) = a^2 b^2\)来进行有理化。

例如,对于\(\frac{1}{2 +\sqrt{3}}\),分子分母同时乘以\(2 \sqrt{3}\),得到:\\begin{align}\frac{1}{2 +\sqrt{3}}&=\frac{2 \sqrt{3}}{(2 +\sqrt{3})(2 \sqrt{3})}\\&=\frac{2 \sqrt{3}}{2^2 (\sqrt{3})^2}\\&=\frac{2 \sqrt{3}}{4 3}\\&=2 \sqrt{3}\end{align}\四、分母有理化的实例下面通过一些具体的例子来进一步理解分母有理化的过程和方法。

分母有理化的方法

分母有理化的方法

分母有理化的方法在数学中,我们经常会遇到分母有理化的问题,也就是将分母中的无理数化为有理数的过程。

这在很多数学题目中都是一个常见的步骤,因此掌握好分母有理化的方法对于解题非常重要。

下面我们就来详细介绍一些分母有理化的方法。

一、有理化的基本原则。

在进行分母有理化的过程中,我们需要遵循一些基本原则。

首先,我们需要利用根式的性质进行变形,将分母中的无理数化为有理数。

其次,我们需要注意到有理化的方法不唯一,可以根据具体的题目情况选择不同的方法。

最后,我们需要在有理化的过程中保持等式的等价性,确保等式两边的值不变。

二、分母有理化的常见方法。

1. 有理化因式分解法。

有理化因式分解法是分母有理化的常见方法之一。

当分母中含有二次根式时,我们可以利用因式分解的方法将分母有理化。

例如,对于分母含有平方根的情况,我们可以将其乘以其共轭形式,得到一个有理数作为分母。

2. 有理化有理化因式分解法。

有理化有理化因式分解法是另一种常见的分母有理化方法。

当分母中含有三次根式或更高次的根式时,我们可以利用有理化因式分解法进行分母有理化。

这种方法需要我们将分母中的根式进行适当的变形,将其化为有理数。

3. 有理化有理化有理化因式分解法。

有理化有理化有理化因式分解法是针对更复杂的分母情况的一种分母有理化方法。

当分母中含有多个根式时,我们可以利用多次有理化因式分解的方法,逐步将分母化为有理数。

这种方法需要我们耐心地进行变形和化简,确保分母最终化为有理数。

三、分母有理化的实际应用。

分母有理化不仅仅是数学中的一个概念,它在实际问题中也有着重要的应用。

例如,在物理学中,当我们需要对某些物理量进行计算时,常常会遇到含有无理数的分母,这时我们就需要利用分母有理化的方法,将其化为有理数,从而方便我们进行计算和分析。

此外,在工程领域中,分母有理化的方法也经常被用到。

例如,在电路设计中,当我们需要对电路进行分析和计算时,会遇到一些复杂的分母,这时我们就需要运用分母有理化的方法,将其化为有理数,以便进行后续的工程设计和优化。

(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。

16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

同类项合并就是字母不变,系数相加减。
新课学习
二次根式的加减
7.5dm
现有一块长7.5dm、宽5dm的木板,
能否采用如图的方式,在这块木板
5dm
上截出两个分别是8dm2和18dm2的
dm
dm
正方形木板?
( + )dm
问题转化为比较7.5dm与( + )dm的大小。
新课学习
( + )
复习导入
2、把下列各根式化简
(1) 12
2
3
1
(5)
2
2
2
(2) 48
4
3
(6) 32
4
2
(3) 18
3
2
(4) 50
5
2
1
(7) 45 (8) 1
3
3
5
2
3
3
导入新课
计算下列各式:
(1)2x+3x
5x
(2)2x5-5x5+5x5
2x5
(3)3x+2x+3y
5x+3y
(4)3a2-2a2+a3
a2+a3
先化为最简二次根式
把同类二次根式合并。
二次根式的加减与整式的加减根据都是分配律,它们的
运算实质也基本相同。
拓展提升
1.解下列方程和不等式.
(1)

x+


=2x+1
+
(2) (x-1)>3(x+1)
分析:(1)先将分母有理化,再解方程即可解答本题;
(2)根据解不等式的步骤进行解答即可,注意不等号的方向。

16.3(4)二次根式的分母有理化

16.3(4)二次根式的分母有理化

16.3(4)二次根式的分母有理化一、学习目标:1、理解有理化因式的概念,明白如何寻找有理化因式。

2、会对二次根式进行分母有理化3、初步掌握二次根式的加减乘除混合运算。

二、重、难点:重点:二次根式的混合运算。

难点:有理化因式的确定及分母有理化。

三、学习过程:1、引入 化简:______31= 探索:______231=- 分析:23)(可以化为有理数3,______231=-,此式中3、2两项均需平方,23)(、22)(才能去掉根号。

2、探索 平方差公式和完全平方公式都可以出现3、2的平方,是否都正确?学生可实验,找两个同学板书(仅板书两个整式公式)23)(23(+-,2)23(-)3、小结,正确的应该是平方差因式。

引出定义:两个含有二次根式的非零代数 式相乘,如果它们的积不含有二次根式,我们就说这两个含有二次根式的非零代数式互为有理化因式。

4、学生举例:5、既然知道有理化的因式,那么怎样进行分母有理化呢? 教师板书231-的化简过程6、学生练习 例题9、把下列各式分母有理化:(1)133+ (2)23341+小结:寻找合适的有理数因式,中间不要跳步,刚开始学习需步骤充分。

(多媒体投影)7、含字母的二次根式的分母有理化(3))(n m n m nm ≠+- 学生板书 一个分母有理化,一个因式分解的约分 n m ≠条件的含义8、小结分母有理化分母的类型(1)一个二次根式,单项式的形式------有理化因式为本身(2)二次根式的和差,多项式的形式------有理化因式为平方差因式9、写出下列式子的有理化因式b a b a --+-,,7523,23,310、二次根式的混合运算运算顺序,运算法则,运算律 例题:154510-- 2)(b a a b + 一生叙述,教师板书 11、学生练习: 132231--+ 小结:注意有理化因式,括号和符号12、代入求值:已知121-=x ,求222+-x x常规思路,通法:x ,及代数式各自化简,然后带入求值。

16.3.分母有理化(2)

16.3.分母有理化(2)

(7)2 3 8 11
3 4 11 (默2)
(8)a x a ( x a)
a x a
2 2
(默2)

将下列各式分母有理化因式
(默3)
3 1 m -n ( 1 ) () 2 () 3 (m ¹ n) 3+ 1 4 3+ 3 2 m+ n
3- 3 3 3 ?( 3 - 1) = (1) = 3 + 1 ( 3 + 1)( 3 - 1) 解: 2 1 4 3- 3 2 4 3- 3 2 () 2 = = 2 2 4 3+ 3 2 (4 3) - (3 2) 30
平方差公式
2 2
( a-
2 2( a + b ) 2( a + b ) = = a- b a - b ( a - b )( a + b )
( a-
b ) ( ? a
2 2 b ) =( a ) -( b ) = a- b
两个含有二次根式的非零代数式相乘,如果它们的积 不含有二次根式,我们就说这两个二次根式互为有理 化因式 (默1)
a b 2、a b的有理化因式为 _____________ ;
3、a n b的有理化因式为 _____________ ; an b
a b 4、 a b的有理化因式为 _____________ ;
3 3
5、m a n b的有理化因式为 _____________ m a n b ;
b a b a (3) a b a b .
4.
我们把上面的过程叫做分母有理化,如果分母是 一个正实数的算术根只要分子,分母同时乘上这 个二次根式即可,如果是一个二项式只要乘上一 个二项式使分母变成平方差即可。

分母有理化

分母有理化

龙文教育个性化辅导授课案教师: 学生 时间:2014年 月 日 段课 题考点分析重点难点授课内容: 分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。

2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a ⋅=来确定,如:a a 与,a b a b ++与,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如a b +与a b -,a b a b +-与,a x b y a x b y +-与分别互为有理化因式。

3.分母有理化的方法与步骤:(1)先将分子、分母化成最简二次根式;(2)将分子、分母都乘以分母的有理化因式,使分母中不含根式;(3)最后结果必须化成最简二次根式或有理式。

4.方法集锦:一. 常规基本法例1. 化简解:原式评注:这是最基本最常用的方法,解法的关键是准确判断分母的有理化因式。

二. 分解约简法例2. 化简解:原式评注:分母提取“公因式”后可直接约分,避免分母有理化,从而简化运算。

例3. 化简解:原式评注:由于的有理化因式可能为零,所以不能将分子分母同乘以;若分两种情况讨论又比较繁琐。

注意到本题的结构特征,故改用“分解因式”约简的方法,达到分母有理化而又避免讨论。

例4. 化简解:评注:注意到7可分拆为4+3,与可配成,从而与分母约分而获得巧解,避繁就简。

例5. 化简.解:原式评注:把1转化为,再用平方差公式“因式分解”即能约分。

三. 巧用通分法例6. 化简解:原式评注:注意到本题两“项”互为倒数,且分母互为有理化因式的结构特征,故采用直接通分,同时又达到了分母有理化的效果,使化简更为简捷。

四. 裂项约简法例7. 化简解:原式评注:裂项是本题的关键,做题时要善于观察、分析,找到解题最佳途径。

例8. 化简解:将原式分子、分母颠倒后就转化为例6。

分母有理化知识点总结

分母有理化知识点总结

分母有理化知识点总结首先,我们来介绍一下有理化学的基本概念。

有理化学是一种通过变换和化简来消除不合适数形式的化学运算法则。

在化学中,我们常常会遇到一些不方便进行计算的式子,比如分母中含有开根号的式子、含有复数的式子等等。

有理化学就是通过一些变换和化简的方法,将这些不方便计算的式子化为符合我们计算需要的形式,从而更方便进行计算和分析。

接下来,我们来总结一下分母有理化的知识点。

分母有理化主要包括以下几个方面的内容:1. 分母有理化的基本理论:分母有理化主要是通过变换和化简的方法,将不合适的数形式化为合适的数形式。

要实现分母有理化,首先要了解和掌握有理函数的概念和特点,理解和掌握有理函数的基本性质,掌握分式的乘除、加减的基本运算法则以及有理函数的相加减思想等基础知识。

2. 分母有理化的基本方法:分母有理化主要包括几种基本的方法,比如分子除法法、最小公倍数法、分解因式法等。

要实现分母有理化,首先要根据式子的形式和特点选择合适的有理化方法,然后通过具体的变换和化简步骤进行分母有理化。

3. 分母有理化的具体案例:分母有理化主要包括一些具体的案例,比如分母含有平方根的式子、含有复数的式子、含有多项式的式子等等。

要实现分母有理化,首先要根据具体的案例选择合适的有理化方法,然后通过具体的变换和化简步骤进行分母有理化。

接下来,我们来提供一些学习分母有理化的方法和技巧。

1. 理清概念,掌握基础:要学习分母有理化,首先要理清分母有理化的基本概念,了解有理函数的概念和特点,熟练掌握有理函数的基本性质,熟练掌握分式的乘除、加减的基本运算法则以及有理函数的相加减思想等基础知识。

2. 理解方法,掌握技巧:要学习分母有理化,需要理解和掌握分母有理化的基本方法,比如分子除法法、最小公倍数法、分解因式法等。

要根据式子的形式和特点选择合适的有理化方法,然后通过具体的变换和化简步骤进行分母有理化。

3. 多练习,善总结:学习分母有理化,需要多进行一些分母有理化的练习,通过练习可以加深对分母有理化的理解和掌握,并且可以总结一些分母有理化的常见规律和技巧,从而更好地应用和运用这些规律和技巧。

分母有理化

分母有理化

分母有理化
分母有理化是数学中的一个概念,指的是将一个分数的分母化成有理数的过程。

这个过程通常用于简化分式,方便运算。

一般来说,分母有理化有两种方法:通分法和借助特殊公式法。

通分法是指将两个分式的分母通分,然后通过合并同类项,将分母化为有理数。

比如,将 $\frac{1}{\sqrt{2}}$ 和
$\frac{1}{\sqrt{3}}$ 的分母有理化,可以将两个分式的分母都乘以相应的有理数,如下所示:
$$\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{ \sqrt{2}}{2}$$
$$\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{ \sqrt{3}}{3}$$
此时,两个分式的分母都变成了有理数,不再含有无理数。

借助特殊公式法是指利用已知的数学公式,将分式化为等价的形式,从而得到有理分母。

比如,将 $\frac{1}{a\sqrt{b}}$ 分母有理化,可以将分母乘以分式的共轭形式,即
$\frac{1}{a\sqrt{b}}\cdot\frac{a\sqrt{b}}{a\sqrt{b}}=\frac{\s qrt{b}}{ab}$。

此时,原分式的分母已经化为了有理数。

总之,分母有理化是数学中的一个重要概念,它可以帮助我们简化分式,方便数学计算。

分母有理化的方法

分母有理化的方法

分母有理化的方法在数学中,我们经常会遇到分母有理化的问题,即将分母中含有根号或者分式的形式化简为整数或者含有整数的形式。

下面我们将介绍几种常见的分母有理化的方法。

一、有理化分母的基本原则。

有理化分母的基本原则是利用分子有理化的方法,将分母中的根号等形式化简为整数或者含有整数的形式。

这样可以方便进行运算,简化问题的复杂程度。

二、分母有理化的方法。

1. 有理化分母的一般方法。

当分母是含有根号的形式时,我们可以采用有理化的方法,即乘以分子分母的共轭形式,将根号部分消去,从而得到一个有理化的分母。

例如,对于分母为√a-b的分式,我们可以将其乘以√a+b,得到分母为a-b。

2. 分母有理化的特殊情况。

当分母中含有二次根式时,可以利用分子分母有理化的方法,将根号部分的平方项相消,得到一个有理化的分母。

例如,对于分母为1/√a+√b的分式,我们可以将其乘以√a-√b,得到分母为a-b。

3. 分母有理化的实际应用。

在实际问题中,分母有理化的方法常常用于化简复杂的分式,使得问题更易于处理。

例如,在代数运算中,我们可以利用分母有理化的方法,将复杂的分式化简为简单的形式,从而方便进行加减乘除等运算。

三、总结。

分母有理化的方法是数学中常见的问题处理方法,通过有理化分母,我们可以将复杂的分式化简为简单的形式,从而方便进行进一步的运算。

在实际问题中,有理化分母的方法也具有重要的应用价值,能够帮助我们更好地解决实际问题。

通过以上介绍,相信大家对分母有理化的方法有了更深入的了解。

希望大家在学习数学的过程中,能够灵活运用分母有理化的方法,解决各种复杂的问题,提高数学解决问题的能力。

《分母有理化》 讲义

《分母有理化》 讲义

《分母有理化》讲义一、什么是分母有理化在数学中,分母有理化是一种重要的运算技巧。

当我们面对一个分数,其分母是一个无理数(比如含有根式)时,通过一定的方法将分母转化为有理数,这个过程就叫做分母有理化。

举个简单的例子,比如分数 1 /√2 ,其中√2 是无理数,这个分数的分母就不是有理数。

我们对其进行分母有理化,将其转化为一个分母为有理数的分数。

分母有理化的目的在于方便后续的计算和分析,使得分数的形式更加简洁、清晰,也更便于在数学运算中进行处理。

二、分母有理化的基本原理分母有理化的基本原理是利用平方差公式:(a + b)(a b) = a²b²。

例如,对于分数 1 /(√2 1) ,我们要将其分母有理化。

可以乘以(√2 + 1) /(√2 + 1) ,这是因为(√2 1)(√2 + 1) =(√2)² 1² =2 1 = 1 。

通过这样的操作,我们就可以将分母中的无理数消除,从而实现分母有理化。

三、常见的分母有理化方法1、形如 1 /√a 类型的分母有理化对于形如 1 /√a 的式子,我们可以将分子分母同时乘以√a ,得到√a / a 。

例如,1 /√3 ,分子分母同时乘以√3 ,得到√3 / 3 。

2、形如 1 /(√a +√b) 类型的分母有理化对于这种类型,我们需要乘以它的有理化因式(√a √b) ,得到:\\begin{align}\frac{1}{(√a +√b)}×\frac{(√a √b)}{(√a √b)}&=\frac{(√a √b)}{(√a)^2 (√b)^2}\\&=\frac{(√a √b)}{a b}\end{align}\例如,1 /(√5 +√3) ,乘以(√5 √3) /(√5 √3) ,得到(√5 √3) / 2 。

3、形如 1 /(√a √b) 类型的分母有理化这种情况与上面类似,乘以(√a +√b) ,得到:\\frac{1}{(√a √b)}×\frac{(√a +√b)}{(√a +√b)}&=\frac{(√a +√b)}{(√a)^2 (√b)^2}\\&=\frac{(√a +√b)}{a b}\end{align}\例如,1 /(√7 √5),乘以(√7 +√5) /(√7 +√5) ,得到(√7 +√5) / 2 。

数学分母有理化的知识点

数学分母有理化的知识点

数学分母有理化的知识点
分母有理化有两种方法,一个是分母是单项式,另一个是分母是多项式。

分母有理化
I.分母是单项式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多项式
可以利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
根式中分母不能含有根号,且要变为最简的才行。

整式的运算
1、幂的运算法则(m,n是整数):
(1)a×a=a;
(2)a÷a=a;(a≠0)
(3)(a)=a
(4)(ab)=ab
2、整式的运算(略)
3、乘法公式:
(a+b)(a-b)=a^2-b^2
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
(a+b)( a^2-ab+b^2) =a^3+b^3
(a-b)( a^2+ab+b^2) =a^3-b^3
(三)多项式的因式分解
把一个多项式化成几个整式的积的`形式叫做因式分解
1、提公因式法;
2、公式法:
a^2-b^2=(a+b)(a-b)
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
3、十字相乘法或求根法分解二次三项式:ax+bx+c=a(x-x1)(x-x2)
代数的学习离不开分母有理化知识的应用。

【数学分母有理化的知识点】。

16.3(3)二次根式的乘除法

16.3(3)二次根式的乘除法

1 x-2
解:由题意得,
x 0 x 2 0 x 0且 x 4
1 x-2
解:由题意得,
x 2 0 x2 0 x2 0 x2
?
解:由题意得, | x | 3 0 1 4x 1 4 x 0
2 x 1 9x 6 2x ; 2 3 4 x 3 2x x . 3 3 2
1 例题3 已知 x , 3 2 2
x 6 x 2 求 值. x3 先将 x 分母
2
有理化. 例题4 解不等式:
2x 3 3x.
复习 计算
1 1 1 5 12 9 48; 3 2
1
3
5 3 3
;
2
4
x ; ax
ab . 2 2 ab a b
ab ; 2 2 a b
例题1 把下列各式分母有理化:
1
3 ; 3 1
1 ; 2 4 3 3 2
分子和分母 都乘以分母的有 理化因式.
3
mn m n ; m n
例题2 计算:
(2) 3y 2x y
5 2 (1) 4 3
(3) 4x 27 x 3 y
2
5 + 10 (4) 10
3a (1) 75a
x y (2) x y
2
2
填空:
1。
a a的有理化因式是
——
2。化简:
x x 1 1) x 1 x 1 —————
x
1 2 2) 5 10 5 ———— 3) ( 3 6 )( 3 6)
( a b )( a b ) a a b b
(a b)( a b )

16.3 分母有理化(第3课时)(教学课件)-2024-2025学年八年级数学上册同步精品课堂(沪教

16.3 分母有理化(第3课时)(教学课件)-2024-2025学年八年级数学上册同步精品课堂(沪教

(a b)(a b)

2 a b)

2(a b)
a b a b

二次根式性质3
2 ab
2( a b )

a b 2
4

2 2

2 a b)
2


a b
2
2
除法法则
3. 分母有理化应用
例题7:
如图,在面积为2a的正方形ABCD中,截得直角三角形ABE的面积为
2
4.
2
a2 b2
(2)
a b
a2 b2
(2)
a b
(a b)( a b)

a b
(a b)(a b) a b

a b a b
(a b)( a b) a b

a b
(a b) a b
2: 解不等式: 3 2 6 x 2 2
法二
解: 2a 3b
解: 2a 3b


2a
3b
2a 3b
2
(3b)
6ab

3b

使用除法法则
6ab
3b
化简
最简二次根式

2a
3b

2a 3b
3b 3b
2a 3b

2
( 3b)

6ab
3b
分子分母同乘以 3b
把分母中的根号
化去
2. 分母有理化计算
例6:计算 (1) 2
解:(1) 2 12
2a
2a
2a 3b
6ab
6ab

16_3二次根式的加减【2021-2022人教八下数学新课寒假预习精讲精练(自学自练)】(解析版)

16_3二次根式的加减【2021-2022人教八下数学新课寒假预习精讲精练(自学自练)】(解析版)

专题16.3 二次根式的加减【教学目标】1、同类二次根式2、二次根式的加减运算3、二次根式的混合运算4、分母有理化5、二次根式的应用【教学重难点】1、同类二次根式2、二次根式的加减运算3、二次根式的混合运算4、分母有理化5、二次根式的应用【知识亮解】知识归纳:1、二次根式的加减二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.二次根式的加减步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.2、二次根式的混合运算:(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.①与实数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个单项式,多个不同类的二次根式的和可以看作多项式.(2)二次根式的运算结果要化为最简二次根式或整式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.亮题一:同类二次根式1.(2021·)B C DA【答案】C【分析】化成最简二次根式,判断是否是同类二次根式即可.【详解】===∴故选C.【点睛】本题考查了二次根式的化简,同类二次根式即化为最简二次根式后,被开方数相同的根式,熟练掌握定义是解题的关键.2.(2021·广东·江门市第二中学二模)下列运算正确的是()A B.C.x5•x6=11x D.(x2)5=7x【答案】C【分析】根据同类二次根式的定义,二次根式的乘法法则,同底数幂的乘法法则以及幂的乘方法则逐个判断即可.【详解】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.【点睛】本题考查了同类二次根式的定义,二次根式的乘法法则,同底数幂的乘法法则以及幂的乘方法则,熟练掌握相关定义及运算法则是解决本题的关键.3.(2021·河南息县·八年级期末)已知最简二次根式a+a,b的值分别为()A.a=1,b=2 B.a=﹣1,b=0 C.a=1,b=0 D.a=﹣1,b=2【答案】C【分析】根据最简二次根式和合并同类二次根式的法则得出方程组,求出方程组的解即可.【详解】∵最简二次根式a+∴12 33a ba b++=⎧⎨-=⎩,解得:a=1,b=0,故选:C.【点睛】本题考查最简二次根式和同类二次根式,二元一次方程组的解法,掌握这些知识点是关键.4.(2020·河北·育华中学七年级阶段练习)计算|1|2|++的值为()A.1 B.﹣1 C.1﹣D.﹣1【答案】A【分析】直接利用绝对值的性质分别化简,然后合并同类二次根式即可得出答案.【详解】解:原式121=.故选:A.【点睛】本题主要考查了绝对值的性质,正确去掉绝对值,然后合并同类二次根式是解题关键.5.(2021·河北永年·合并,则a的值不可以是()A.12B.8 C.18 D.28【答案】D【分析】是同类二次根式,是否为同类二次根式即可.【详解】当a=12是同类二次根式,故该项不符合题意;当a=8=当a=18=当a=28故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.6.(2021·全国·)A.1 B.2 C.3 D.4【答案】C【分析】到此方程的正整数解的组数有三组.【详解】解:x,y为正整数,====∴113 27x y =⎧⎨=⎩,224812xy=⎧⎨=⎩,331473xy=⎧⎨=⎩,共有三组正整数解.故选:C.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.7.(2021·全国·八年级专题练习)那么下列各数中,n可以取的数为().A.4 B.6 C.8 D.12【答案】C【分析】是同类二次根式.【详解】解:A2=BC是同类二次根式,正确;D故选:C.【点睛】本题考查了同类二次根式的定义.要化简为最简二次根式后再判断.8.(2019·同类二次根式的个数为()A.1个B.2个C.3个D.4个【答案】B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数相同,故是同类二次根式;2个,故选:B.【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.9.(2020·全国·x≥0是同类二次根式的个数是().A.1 B.2 C.3 D.4【答案】B【分析】各式化简后,利用同类二次根式定义判断即可.【详解】x≥0)中,(x≥0)共2个,故选B【点睛】本题考查同类二次根式,熟练掌握二次根式的基本性质是解题关键.10.(2020·全国·八年级课时练习)那么a的值是()A.﹣2 B.﹣1 C.1 D.2【答案】D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.亮题二:二次根式的加减运算11.(2021·湖南·衡阳市实验中学九年级期中)下列计算正确的是( )A B .3=C 3-D 2= 【答案】D【分析】根据二次根式的加减法对A 、B 进行判断,根据二次根式的性质对C 进行判断,根据二次根式的除法法则对D 进行判断.【详解】解:A A 选项不符合题意;B .=B 选项不符合题意;C 3,所以C 选项不符合题意;D 2==,所以D 选项符合题意; 故选:D .【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的除法法则是解决问题的关键.12.(2021·上海市罗南中学八年级阶段练习)若0a <,0b <,化简 )A .(23-b aB .(23--b aC .(23-+b aD .(23+b a 【答案】C 【分析】a 化简 ,注意0a <,0b <,最后加减运算即可. 【详解】解:223,ab a ab =- 0a <,0b <,(2223332ab a abb a ∴-=-=-+ 故选:C .【点睛】a是解题关键.13.(2021·江西·南昌市心远中学八年级期末)己知0a ≥,那么下列等式中一定不成立的是( )A.0= B.0=C D=【答案】A【分析】根据二次根式有意义的条件、二次根式的性质判断即可.【详解】A.==0a =时0=式子成立,而0a ≠,所以本选项一定不成立;B. 0=,对于任意a 的值都成立;C.20a -≥,解得0a =,此时本选项成立;D.,只有当0a =时成立;故选A .【点睛】本题考查的是二次根式的性质,掌握二次根式有意义的条件、二次根式的性质是解题的关键. 14.(2021·全国·10=,则x 的值等于( ) A .4B .2±C .2D .4±【答案】C【分析】先化简、合并等号左边的二次根式,再将系数化为,继而两边平方,进一步求解可得.【详解】解:原方程化为10=,合并,得2=,即24=x ,∴2x =.故选:C【点睛】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.15.(2021·河北沧县·12)2+的结果是( )A .1B 1C .1D .3【答案】B【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】解:原式1412⨯-21-1. 故选:B .【点睛】此题主要考查了二次根式的加减、绝对值的应用,正确化简各数是解题关键.16.(2021·河北沧县·八年级期中)如图为小明的答卷,他的得分应是( )A.40 B.60 C.80 D.100【答案】B【分析】根据二次根式的基本性质及二次根式的运算法则逐个计算即可得答案.【详解】解:1、255=,故该题正确;2、2(2)2-=,故该题正确;3、623÷=,故该题错误;4、233266⨯=,故该题正确;5、92535834a a a a a a+=+=≠,故该题错误,故小明答对3题,答错2题,他的得分是3×20=60(分),故选:B.【点睛】本题考查了二次根式的化简及加减乘除运算,熟练掌握二次根式的运算法则是解决本题的关键.17.(2021·湖北十堰·八年级期末)如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为点C,设点C表示的数为x,则|x﹣2|+2x=()A2B.2C.2D.2【答案】C【分析】根据题意A点表示的数是B,C两点表示的数的平均数,可求出x的值为22计算,即可得出结论.【详解】解:∵点B 关于点A 的对称点为点C ,∴AB =AC .∴1﹣x 1,解得,x =2∴点C 表示的数x 为2∵|x =﹣2,2x=2,∴2+2,故选:C .【点睛】本题考查了绝对值的化简、二次根式的化简等知识点.利用对称的性质求出x 的值是解决本题的关键. 18.(2021·河南开封·一模)下列运算正确的是( )A .824x x x ÷=B =C .()32628a a -=-D .101(1)32-⎛⎫--=- ⎪⎝⎭ 【答案】C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A 、826x x x ÷=原计算错误,不符合题意;B 、 235=+=≠C 、()32628a a -=-正确,符合题意;D 、101(1)1212-⎛⎫--=-=- ⎪⎝⎭原计算错误,不符合题意; 故选:C .【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.(2021·北京·九年级专题练习)下列计算正确的是( )A .=B 6=C .-=D 5=【答案】D【分析】根据二次根式的运算法则和性质进行计算,然后判断即可.【详解】 解:33-=A 错误,不符合题意;选项B B 错误,不符合题意;233-=C 错误,不符合题意;5,故选项D 正确,符合题意;故选:D .【点睛】本题考查了二次根式的运算和性质,解题关键是熟练运用二次根式运算法则准确计算.20.(2021·全国·八年级专题练习)下列运算正确的有( )个.①6-=7==2=④⑤=5=A .1B .2C .3D .4【答案】A【分析】 根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.1122===②错误.=22=-2=,故③错误.④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确. ∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.亮题三:二次根式的混合运算21.(2021·重庆一中八年级期中)估计 ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间 【答案】A【分析】根据乘法分配律先化简,然后估算即可. 【详解】解:原式1, ∵459,∴23<<,∴112<,故选:A.【点睛】本题考查了二次根式的计算,无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.22.(2021·江西婺源·八年级阶段练习)计算:(3-)2020(3+)2021的结果是()A.3-B.3+C.1 D.2021【答案】B【分析】先根据积的乘方得到原式=(3-2020×(3+)2020×(3+)=[(3-(3+2020×(3+,然后利用平方差公式计算.【详解】解, 原式=(3-)2020×(3+)2020×(3+=[(3-(3+2020×(3+=(9-8) 2020×(3+=3+故答案为:B【点睛】本题考查了积的乘方,平方差公式,二次根式的混合运算的应用,主要考查学生的计算能力.23.(2021·河北·石家庄市第四十二中学八年级期中)下列运算中正确的是()A B.C D.)1)=3【答案】C【分析】根据二次根式的运算法则注意判断即可.【详解】解:A不是同类二次根式,不能合并,此选项错误;B.C .6÷2=3,此选项正确;D .(2+1)(2﹣1)=2﹣1=1,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.24.(2021·河南·郑州外国语学校经开校区八年级阶段练习)如图,数轴上与1,3对应的点分别为A ,B ,点B 与点C 的到点A 的距离相等,设点C 表示的数为x ,则|x ﹣33|+x 2等于( )A 3B .3C .3D .5【答案】D【分析】根据题意,以及数轴上的点的位置,求得点C 表示的数,进而求得代数式的值.【详解】数轴上与13A ,B ,点B 与点C 的到点A 的距离相等,设点C 表示的数为x ,311x =-, 解得23x =∴|x ﹣3x 222333(23)=32433=+- 5=.故选D .【点睛】本题考查了实数与数轴,实数的混合运算,求得点C 表示的数是解题的关键.25.(2021·福建莆田·八年级期末)下列计算中,正确的是( )A 358B .22=2C .232D 6÷23【答案】D【分析】根据二次根式的加减法对A、B、C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:AB、2C、与-3不能合并,所以选项不符合题意;D2故选:D.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的除法法则是解题关键.26.(2021·湖南龙山·八年级期末)下列计算中正确的是()A=B.3=C.已知a<0<b,则|a bD.当a=2,b=﹣8,c=5=【答案】D【分析】先利用二次根式的加减,计算A、B,利用二次根式、绝对值的性质化简C,利用二次根式的混合运算计算D.最后得结论.【详解】=,故选项A错误;≠,故选项B错误;3当a<0<b时,||a=﹣a+b﹣a=b﹣2a≠﹣b,故选项C错误;当a=2,b=﹣8,c=5D正确.故选:D.【点睛】本题考查了二次根式及绝对值,掌握二次根式的性质和二次根式的运算法则是解决本题的关键.27.(2021·浙江浙江·八年级期末)若使算式○表示的运算符号是()A.+ B.-C.×D.÷【答案】C【分析】分别把四个选项中的符号代入计算,再比较结果,选取结果最大的运算符号即可.【详解】解:因为12,45<<<,所以57;=<;=,89<<;<;1∵>>>“×”的运算结果最大,∴故选:C.【点睛】本题主要考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.28.(2021·广东·中考真题)设6a,小数部分为b,则(2a b的值是()A.6 B.C.12 D.【答案】A【分析】首先根据10的整数部分可确定a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值. 【详解】 ∵3104<<,∴26103<-<,∴610-的整数部分2a =,∴小数部分6102410b =--=-,∴()()()()()210221041041041016106a b +=⨯+-=+-=-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定610-的整数部分a 与小数部分b 的值是解题关键.29.(2021·内蒙古·中考真题)若21x =+,则代数式222x x -+的值为( )A .7B .4C .3D .322- 【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:()()22222=1121113x x x -+-+=+-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.30.(2021·陕西·西北工业大学附属中学模拟预测)如图,在ABC 中,4,45,30,AC B C AD AB =∠=︒∠=︒⊥交BC 于点,D DE 平分ADB ∠交AB 于点E ,则AE 的长为( )A .2B .22C .42D .422-【答案】D【分析】 分别过点A 、E 作AF ⊥BC ,EG ⊥BC ,分别交BC 于点F ,G ,由题意易得AF =2,则有22AB =,设EG =BG =AE =x ,进而可得2EB x =,然后可得222x x +=,最后问题可求解.【详解】解:分别过点A 、E 作AF ⊥BC ,EG ⊥BC ,分别交BC 于点F ,G ,如图所示:∵45,B AD AB ∠=︒⊥,∴△AFB 、△BEG 、△BAD 都为等腰直角三角形,∴EG =BG ,AF =BF =DF ,2,2AB AF BE EG ==,∵4,30AC C =∠=︒,∴122BF AF AC ===, ∴222AB AF ==∵DE 平分ADB ∠,∴EG =AE ,设EG =BG =AE =x ,则有2EB x =,∵AE BE AB +=,222x x +=422x =-∴422AE =-故选D .【点睛】本题主要考查等腰直角三角形及含30°直角三角形的性质、角平分线的性质定理及二次根式的运算,熟练掌握等腰直角三角形及含30°直角三角形的性质、角平分线的性质定理及二次根式的运算是解题的关键.亮题四:分母有理化b则a与b的关系是()31.(2021·江苏·常熟市第一中学八年级阶段练习)已知:aA.a-b=0 B.a+b=0 C.ab=1 D.a2=b2【答案】C【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a-b、a2、b2各个式子的值,即可得出选项.【详解】解:分母有理化,可得a b∴a-b=(-(A选项错误,不符合题意;a+b=(+(=4,故B选项错误,不符合题意;ab=(×(=4-3=1,故C选项正确,符合题意;∵a2=(2b2=(2∴a2≠b2,故D选项错误,不符合题意;故选:C.【点睛】本题考查了分母有理化的应用,能求出每个式子的值是解此题的关键.32.(2021·全国·八年级专题练习)下列二次根式的运算:==,2-;其中运算正确的有().A.1个B.2个C.3个D.4个【答案】C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=①正确;==②正确;22555=,故③正确;()222-=,故④错误;∴正确的3个;故选:C.【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.33.(2021·全国·八年级专题练习)已知,在ABC中,D是BC边上一点,30,45ABC ADC∠=∠=.若D 是BC边的中点,则ACB∠的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】过A作AE⊥BC于E,在AE上取点F,连接CF,使得∠CFE=30°,设DE=x,即可得出CE=DE-CD=()23x,进而得到AE=(23CE,再根据3,CF=2CE,得到AF=AE-EF=2CE=CF,即可得到∠ACE的度数,从而得到结果.【详解】解:如图所示,过A作AE⊥BC于E,在AE上取点F,连接CF,使得∠CFE=30°,设DE=x,∵∠ABE=30°,∠ADE=45°,∴AE=x,3,BD=CD=)31x,∴CE=x-)31x=(23x,∴AECE=23AE=(23CE,又∵Rt△CEF中,3,CF=2CE,∴AF=AE-EF=2CE=CF ,∴∠FAC=∠FCA=12∠CFE=15°,∴∠ACE=∠ACF+∠ECF=15°+60°=75°,∴∠ACB=105°,故选C .【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.34.(2020·广东·深圳市宝安中学(集团)九年级期中)已知三个数224如果再添加一个数,使这四个数成比例,则添加的数是( ). A .22B .222 C .24282.22或42【答案】D【分析】运用比例的基本性质,将所添的数当作比例式a :b =c :d 中的任何一项,进行计算即可,【详解】设添加的这个数是x 当224:x =时,242x =2x = 当2:42x =时,242x =2x = 当2:42x =422x =2x = 当22:4x =28x =, 解得42x =故选D .【点睛】本题考查比例的基本性质,注意写比例式的时候,一定要按照顺序写,顺序不同,结果不同.35.(2021·全国·八年级课时练习)已知a =b ,则a 与b 的大小关系是( ). A .a b >B .a b <C .a b =D .无法确定 【答案】B【分析】 将a =b =进行分母有理化,再比较即可. 【详解】 解:451451515151a , 462462626262b ,1<1< ∴a b <.故选B .【点睛】 本题考查了分母有理化,不等式的性质,实数比较大小等知识点,熟悉相关性质是解题的关键.36.(2021·全国·八年级课时练习)已知1a =,b =a 与b 的关系为( ) A .a b =B .1ab =C .=-a bD .1ab =-【答案】A 【分析】根据分母有理化的知识,即可得解.【详解】解:1a =,b =1,a b ∴=,故选A .【点睛】本题考查了分母有理化的法则,正确找出有理化因式是解题的关键.37.(2020·河北·八年级期末)若a ,2b =a b 的值为( ) A .12B .14CD 【答案】B【分析】将a 乘以可化简为关于b 的式子, 从而得到a 和b 的关系, 继而能得出a b 的值 【详解】解:4b a === 14a b ∴= 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.38.(2020·全国·八年级课时练习)下列结论正确的是( )ABC 1=D .不等式(21x >的解集是(2x >- 【答案】A【分析】根据二次根式的性质、最简二次根式的概念和不等式的解法逐项判断即可.【详解】解:A.B.C.11==,故本选项错误;D. 不等式(21x >的解集(2x -<,故本选项错误故选A【点睛】本题考查了二次根式,熟练掌握二次根式的性质和运算法则是关键.39.(2020·全国·八年级课时练习)已知1a =,b =则a 与b 的关系是( ) A .1ab = B .0a b += C .1ab =- D .a b =【答案】D【分析】先化简b 再找关系即可.【详解】b =4∵1a =,∴a b =,故选D. 【点睛】此题考查分母有理化,解题关键在于掌握运算法则.40.(2020·辽宁营口·八年级期中)已知a 2b =则a 与b 的关系是()A .a b =B .1ab =C .=-a bD .1ab =-【答案】C 【分析】将a 分母有理化,然后求出a+b 即可得出结论.【详解】解:2a ====∴()220a b +=-+=∴=-a b故选C .【点睛】此题考查的是二次根式的化简,掌握分母有理化是解决此题的关键.亮题五:二次根式的应用41.(2021·湖北利川·八年级期末)如图,从一个大正方形中裁去面积为218cm和232cm的两个小正方形,则剩余部分(阴影部分)的面积等于()A.260cm C.298cm B.238cm48cm D.2【答案】C【分析】如图,由题意知S正方形BCDM=BC2=32(cm2),S正方形HMFG=HG2=18(cm2),得BC=32=42(cm),HG=18=32(cm),进而求得S阴影部分=S矩形ABMH+S矩形MDEF.【详解】解:如图.由题意知:S正方形BCDM=BC2=32(cm2),S正方形HMFG=HG2=18(cm2).∴BC32=42cm),HG18=32cm).∵四边形BCDM是正方形,四边形HMFG是正方形,∴BC=BM=MD2,HM=HG=MF2cm.∴S阴影部分=S矩形ABMH+S矩形MDEF=BM•HM+MD•MF222×2=48(cm 2).故选:C .【点睛】本题主要考查二次根式,熟练掌握二次根式的化简以及运算是解决本题的关键.42.(2021·福建·厦门市集美区乐安中学八年级阶段练习)若实数x ,y 2440y y -+=,则y x 的值是( )A .3-B .19C .9D .3【答案】C【分析】直接利用非负数的性质得出x ,y 的值,进而得出答案.【详解】解:2440y y -+=,2(2)0y -=,30x ∴+=,20y -=,解得:3x =-,2y =,则2(3)9y x =-=.故选:C .【点睛】本题主要考查了非负数的性质,正确得出x ,y 的值是解题的关键.43.(2021·陕西·西安市铁一中学模拟预测)秦九是我国南宋著名的数学家,他与李冶、杨辉、朱世杰并称宋元数学四大家,在他所著的《数书九章》中记录了三斜求积术,即三角形的面积S =a ,b ,c 用公式计算出它的面积为( )A .132BCD .2【答案】B【分析】直接把已知数据代入进而化简二次根式得出答案.【详解】∴它的面积是:S =∴S∴S =∴S == 故选:B .【点睛】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.44.(2021·河北沧县·八年级期中)我们把形如b (a ,b型无理数,如12是( )AB C D【答案】D【分析】先利用完全平方公式计算,再化简得到原式8=+【详解】解:2358=+=+所以2故选:D .【点睛】本题考查了完全平方公式在二次根式中的计算,也考查了无理数,熟练掌握完全平方公式及二次根式的运算法则是解决本题的关键.45.(2021·四川江油·八年级期末)已知1a a -=1a a +的值是( )A .23B .23±C .23-D .6±【答案】B【分析】 根据21a a ⎛⎫+ ⎪⎝⎭211=+4a a a a ⎛⎫-⋅⋅ ⎪⎝⎭,求21a a ⎛⎫+ ⎪⎝⎭的值,即可求得1a a +的值 【详解】解:21a a ⎛⎫+ ⎪⎝⎭ 211=+4a a a a ⎛⎫-⋅⋅ ⎪⎝⎭ ()2224=+=12所以,123a a +=±. 故选B .【点睛】本题考查完全平方公式和二次根式的的运用,解题的关键是21a a ⎛⎫+ ⎪⎝⎭与21a a ⎛⎫- ⎪⎝⎭的关系. 46.(2021·辽宁朝阳·八年级期中)《九章算术》中的“方田章”论述了三角形面积的求法:“圭田术曰,半广以乘正广”,就是说:“三角形的面积=底×高÷2”,我国著名的数学家秦九韶在《数书九章》中也提出了“三斜求积术”,即可以利用三角形的三条边长来求取三角形面积,用现代式子可表示为:S =2222221()42a b c a b ⎡⎤+--⎢⎥⎣⎦(其中a 、b 、c 为三角形的三条边长,S 为三角形的面积).如图,在平行四边形ABCD 中,已知AB =6,AD =3,对角线BD =5,则平行四边形ABCD 的面积为( )A .11B .14C .142D .72【答案】B【分析】 根据已知条件的公式计算即可;【详解】根据题意可知:a =6,b =3,c =5,∴S =2222221()42a b c a b ⎡⎤+--⎢⎥⎣⎦, =216+3563()42-⎡⎤⨯-⎢⎥⎣⎦, ()11844=-, 72=, 142=, ∴△142ABD S =, ∴平行四边形△=214ABCD ABD S S =;故答案选B .【点睛】 本题主要考查了二次根式的应用,准确分析计算是解题的关键.47.(2021·河北宽城·八年级期末)如图.从一个大正方形中裁去面积为8m 2和18cm 2的两个小正方形,则留下的阴影部分的面积为( )A .22B .12cm 2C .8cm 2D .24cm 2【答案】D【分析】直接利用正方形的性质得出两个小正方形的边长,进而得出大正方形的边长,即可得出答案.【详解】解:∵两个小正方形面积为8cm 2和18cm 2,∴=∴大正方形面积为(2=50,∴留下的阴影部分面积和为:50-8-18=24(cm 2)故选:D .【点睛】此题主要考查了二次根式的应用,正确得出大正方形的边长是解题关键.48.(2021·江苏·九年级专题练习)已知实数x y ,满足50x -=,则x y ,的值为两边长的等腰三角形的周长是( )A .21或18B .21C .18D .以上均不对.【答案】A【分析】根据非负数的意义列出关于x 、y 的方程并求出x 、y 的值,再根据x 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得 5080x y -=⎧⎨-=⎩ 解得58x y =⎧⎨=⎩1()若5是腰长,则三角形的三边长为:5、5、8,能组成三角形,周长为55818++=;2()若5是底边长,则三角形的三边长为:5、8、8,能组成三角形,周长58821++=; 即等腰三角形的周长是21或18.故选:A .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断,根据题意列出方程是正确解答本题的关键.49.(2021·湖南岳阳·八年级期末)如图,在长方形ABCD 中无重叠放入面积分别为216cm 和212cm 的两张正方形纸片,则图中空白部分的面积为( )2cmA .1683-B .1283-+C .843-D .423-【答案】B【分析】 先根据正方形的面积公式求出两张正方形纸片的边长,从而可得长方形ABCD 的长与宽,再利用长方形ABCD 的面积减去两个正方形的面积即可得.【详解】面积为216cm 164()cm ,则4CD cm =,面积为212cm 1223()cm =, 则(423)BC cm =+, 因此,图中空白部分面积为21612168316128312()BC CD cm ⋅--=+-=,故选:B .【点睛】本题考查了二次根式的几何应用,正确求出两个正方形的边长是解题关键.50.(2021·全国·八年级单元测试)设n ,k 为正整数,A 1(3)(1)4n n +-+,A 21(5)4n A ++A 3=2(7)4n A ++…A k 1(21)4k n k A -+++A 100=2005,则n =( )A .1806B .2005C .3612D .4011【答案】A【分析】利用多项式的乘法把各被开方数进行计算,然后求出A 1、A 2、A 3的值,从而找出规律并写出规律表达式,再把k =100代入进行计算即可求解.∵(n+3)(n−1)+4=n2+2n−3+4=n2+2n+1=(n+1)2,∴A1n+1,(n+5)A1+4=(n+5)(n+1)+4=n2+6n+5+4=n2+6n+9=(n+3)2,∴A2n+3,(n+7)A2+4=(n+7)(n+3)+4=n2+10n+21+4=n2+10n+25=(n+5)2,A3n+5,…依此类推A k=n+(2k−1),∴A100=n+(2×100−1)=2005,解得n=1806.故选:A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A1、A2、A3,从而找出规律写出规律的表达式是解题的关键.【亮点训练】1.(2021·)A B.C D【答案】D【分析】先将各选项进行二次根式的化简,再根据同类二次根式的概念求解即可.【详解】解:A==B=-C=D=【点睛】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.2.(2021·吉林德惠·a等于()A.1 B.﹣1 C.5 D.﹣5【答案】A【分析】根据题意,它们的被开方数相同,列出方程解即可.【详解】解:∵∴3a=5-2a,解得,a=1.故选:A.【点睛】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.3.(2021·江苏昆山·八年级期中)下列运算或叙述正确的是()A B.4的平方根是C.面积为12的正方形的边长为D±【答案】C【分析】根据合并同类二次根式,平方根,二次根式的性质,逐项判断即可求解.【详解】解:A:被开方数不同,不能合并二次根式,故本选项不合题意;B:4的平方根是±2,故本选项不合题意;C:面积为12∴符合题意;D故选:C.本题主要考查了二次根式的化简,二次根式的加减,熟练掌握二次根式的性质是解题的关键.4.(2021·河北·=±2;②立方根是本身的数为0,1;x >3;④210.0×104精确到千位,其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】B【分析】根据算术平方根,立方根,二次根式有意义的条件,分母有理化,近似数的定义逐个分析判断即可【详解】解:2=,故①不正确;②立方根是本身的数为0,±1,故②不正确;③有意义,则x ≥3,故③不正确;④2④正确; ⑤10.0×104100000=∴近似数10.0×104精确到千位,故⑤正确故正确的有④⑤,共计2个故选B【点睛】本题考查了算术平方根,立方根,二次根式有意义的条件,分母有理化,近似数的定义,掌握以上知识是解题的关键.5.(2021·浙江嘉兴·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1xB .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-。

分母有理化的方法

分母有理化的方法

分母有理化的方法分母有理化是指将分母中含有根号的无理数转化为有理数,常用的方法有有理法和变量法。

一、有理法有理法是指通过有理数的乘法和除法,将分母中的无理数进行有理化,使其变为有理数。

1. 有理化分母为整数情况:当分母为形如√a的无理根时(a为正整数),可以通过乘以√a的共轭形式来有理化分母。

所谓共轭形式,即是将分子和分母同时乘以√a的共轭根。

例如,有理化分母为√2的有理数形如:a/b√2,其中a和b为整数。

有理化的方法为:将分子和分母同时乘以√2的共轭根,即√2。

则有:a/b√2 = (a/b√2)(√2/√2) = a√2/b*2 = a√2/2b。

同理,对于形如∛a的立方根,可以通过乘以∛a的共轭形式来有理化分母。

2. 有理化分母为二次根式情况:当分母为形如√a±√b的和或差(a和b为非负实数)时,可以通过乘以√a±√b的共轭形式来有理化分母。

所谓共轭形式,即是将分子和分母同时乘以√a∓√b的形式。

例如,有理化分母为√2+√3的有理数形如:a/(√2+√3),其中a 为整数。

有理化的方法为:将分子和分母同时乘以√2-√3,即可得到有理数形式。

3. Tips:- 在进行有理化分母的计算过程中,常常需要用到一些基本的数学运算规则,如分配律、平方差公式等。

- 有理化分母的方法,需要根据分母的形式进行选择,灵活运用。

二、变量法变量法是指将含有无理根的分母进行有理化时,引入一个适当的变量,通过变量代换的方法将无理根的分母转化为有理根的形式。

1. 变量法实例一:对于分母为√a的无理数形如:a/(√a),可以引入变量x,使x^2=a,并将原式转变为:a/x。

2. 变量法实例二:对于分母为二次根式形如√a±√b的无理数形式,可以引入适当的变量u和v,使u^2=a,v^2=b,并将原式转变为:a/(u±v)。

三、总结分母有理化的方法主要包括有理法和变量法两种。

有理法通过乘以无理数的共轭形式来有理化分母,而变量法则通过引入适当的变量,将无理根的分母转化为有理根的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题1 计算
(1) 2 12 (2)a a b (a b 0) (3) a b 2a 2b
2 2
例题2 面积为2a的正方形ABCD
3 a 中,截得Rt ABE的面积为 3
求EC的长.
A
D
B
E
C
例题3 解下列方程和不等式
(1) 3(1 2 2) x 2 2 (2)3 5 x 6 3 7 5 x
3b 3a 2 3a
3b 3a 6a
b 3a 2a
分母有理化后,别忘了结果要化简!
练习1 把下列各式分母有理化
a 1 (2) a2
a4 (3) a 2
a2 (a 1)
53 2 (4) 53 2
解:原式=
(a 1) a 2 a2 a2 a2
分母有理化时 原式中的分子和分母有时需要添括号!
4)
3 5 7 1 a 已知:a ,求 . 1 a 3 5 7
5)
已知 : x 2 2
2


1
, y 2 3


1
求[a 1 b 1 ]
1 2 2
如何计算
2a 3b
?
方法1 解 由题可知 3b>0 原式=
2a 3b
方法2 解 原式=
2a 3b
2a 3bb
6ab 3b
6ab 3b
把分母中的根号化去,叫做分母有理化.
方法:
把分子与分母乘以适当的代数式,
使分母不含根号.
分母有理化的关键是: 分子和分母同乘以乘以适当的代数式 3b 练习1 把下列各式分母有理化 (1) 12a 解: 3a 3b 3b 3b 3b 2 3a 3a 4 3a 2 3a 12a
(3) 8x 4 3 2 3x
1) 已知:x 1
3 3
2
5 3,

1 y 2

5 3

求x y 的值.
2)化简:
1 6 x 4 x 4 x 1 x 10x 25 x 5 2
2 2
3)
2 1 已知实数 的整数部分 2 1 为a,小数部分为 b,求 ab 的值. a b
相关文档
最新文档