中考数学总复习练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

59.如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.

(1)求证:△AOB≌△DCA;

(2)求k的值;

(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.

四、计算题(共2小题)

60.(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.

61.计算:

五、填空题(共19小题)

62.如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为

________cm2.

63.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出_________个这样的停车位.(≈1.4)

64.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是_________(用a、b的代数式表

示).

65.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是_________支.

66.如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.

67.一列数……,其中,则

__________.

68.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)

69.一组数据按从小到大的顺序排列为1,2,3,,4,5,若这组数据的中位数为3,则这组数据的方差是__________.

70.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG-GH-HE-EF表示楼梯,GH,

EF是水平线,NG,HE是铅直线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH。

(1)如图2①,若点H在线段OB上,则的值是________.

(2)如果一级楼梯的高度,点H到线段OB的距离满足条件≤3cm,那么小轮子半径的取值范围是________.

_.

答案

59.考点:全等三角形的判定反比例函数的图像及性质中心对称与中心对称图形

试题解析:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、中心对称的性质和三角形全等的判定与性质;会利用勾股定理进行几何计算.(1)利用“HL”证明△AOB≌△DCA;(2)先利用勾股定理计算出AC=1,再确定C点坐标,然后根据点E为CD的中点可得到点E的坐标为(3,1),则可根据反比例函数图象上点的坐标特征求得k=3;(3)根据中心对称的性质得△BFG≌△DCA,所以FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,则可得到G点坐标为(1,3),然后根据反比例函数图象上点的坐标

特征判断G点是否在函数y=的图象上.(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,

∴Rt△AOB≌Rt△DCA;(2)解:在Rt△ACD中,CD=2,AD=,∴AC==1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),∴k=3×1=3;(3)解:点G是否在反比例函数的图象上.理由如下:∵△BFG和△DCA 关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反

比例函数y=的图象上.

答案:(1)△AOB≌△DCA;(2)k=3;(3)点G是否在反比例函数的图象上;理由略.

60.考点:整式的运算

试题解析:本题考查了整式的混合运算以及解一元一次不等式,是基础知识要熟练掌握.(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并

同类项.解:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,移项、合并同类项得3x>15,系数化为1,得x>5.

答案:(1)2a2;(2)x>5.

61.考点:实数运算锐角三角函数

试题解析:这是一个实数运算的题目,涉及0次幂、二次根式、锐角三角函数、负整数次幂等.解:原式= 1-+3 +=1-++3=6

答案:6

62.考点:平行线的判定及性质垂径定理及推论

试题解析:本题考查了平行线的性质,垂径定理,勾股定理的应用.作△DBF的轴对称图形,得到△AGE,△AGE的面积就是阴影部分的面积.解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,

∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE 中,NE===,∴GE=2NE=2,∴S△A GE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为

6.

答案:6

63.考点:解直角三角形的实际应用

试题解析:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题解决.如图,根据三角函数可求BC,CE,则BE=BC+CE可求,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解:如图,

BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04,

相关文档
最新文档