信号与系统第1章总结
信号与系统重点概念公式总结
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统知识点
| T0 2
−T0 2
x(t) |2
dt
=
∞ n=−∞
Cn
2
A → A2
B
sin
(ω0t )
→
B2 2
C
cos
(ω0t
)
→
C2 2
6、 连续非周期信号表达为 e jωt (−∞ < t < ∞) 的线性组合
∫ x(t) = 1 ∞ X ( jω)e jωtdω 2π −∞
x(t) ⇔ X ( jω)
∫ X ( jω) = ∞ x(t)e− jωtdt −∞
7、常用连续非周期信号的频谱
δ (t ),u (t ),sgn (t ), e−αtu (t ),sin (ω0t ), cos (ω0t ), e± jω0t , Sa (ω0t ),δT0 (t) ,矩形波、三
角波等
8、傅里叶变换的性质(用会)
第 3 章 系统的时域分析
1、系统的时域描述
连续 LTI 系统:线性常系数微分方程
y (t )与x (t ) 之间的约束关系
离散 LTI 系统:线性常系数差分方程
y[k]与x[k ]之间的约束关系
2、 系统响应的经典求解(一般了解) 衬托后面方法的优越
纯数学方法
全解=通解+特解
y (t ) = yh (t ) + yp (t )
项)(一般了解)
h[k ] :等效初始条件法(一般了解)
4、 ※卷积计算及其性质
∫ y(t) = x(t) ∗ h(t) = ∞ x(τ )h(t −τ )dτ −∞ ∞
y [k ] = x[k]∗ h[k] = ∑ x[n]h[k − n] n=−∞
信号与系统第一章(重点)
-1
图 1.2-1 连续时间信号
离散时间信号:亦称序列, 其自变量n是离散的, 通常为整数。 若是时间信号 (可为非时间信号), 它只在某些不连续的、 规定的瞬时给出确定的函数值, 其它 时间没有定义, 其幅值可以是连续的也可以是离散的, 如图1.2-2所示。
x1(n) 2
1
只能取-1,0,1,2
0
t
-1
6. 单位冲激偶函数δ′(t)
单位冲激函数的导数。
(t)
1 lim
0
u(t
)
2
u(t
2)
(t)
d(t)
dt
1 lim
0
(t
)
2
(t
2)
(1.3-30) (1.3-31)
式(1.3-31)取极限后是两个强度为无限大的冲激函数,
0
t
-k
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt 复指数信号可分解为实部与虚部。 实部为振幅随时间变化的余弦函数, 虚部为振幅随时间变化的正弦函数。
第1章 信号与系统
1.1 信号与系统概述 1.2 信号及其分类 1.3 典型信号 1.4 连续信号的运算 1.5 连续信号的分解 1.6 系统及其响应 1.7 系统的分类 1.8 LTI系统分析方法
1.1 信号与系统概述
人们每天都与载有信息的信号密切接触:
听广播、看电视是接收带有信息的消息; 发短信、打电话是传送带有信息的消息。
信号与系统总复习要点
《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。
《信号与系统》第一章知识要点+典型例题
y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
信号与系统第一章重点
是线性系统,否则是非线性系统 否则是非线性系统。 则系统 H[•] 是线性系统 否则是非线性系统。 注意:外加激励与系统非零状态单独处理。 注意:外加激励与系统非零状态单独处理。
判断下述微分方程所对应的系统是否为线性系统? 判断下述微分方程所对应的系统是否为线性系统
dr(t) +10r(t) + 5 = e(t) t > 0 dt
∞
(2)奇偶性 δ (−t) = δ (t)
δ ′(t)dt = δ (t) −∞
∞
(3)比例性 −∞ 1 δ (at) = δ (t ) f (t)δ ′(t) = f (0)δ ′(t) − f ′(0)δ (t) a (6)卷积性质 (4)微积分性质 du(t) t f (t) ∗δ (t ) = f (t ) δ (t) = ∫−∞δ(τ )dτ = u(t) dt
不同) ( 与 f (t)δ (t) = f (0)δ (t) 不同 )
X
1 δ (at) = δ (t) a
冲激偶的标度变换
1 1 δ ′(at ) = ⋅ δ ′(t ) a a
1 1 (k ) δ (at ) = ⋅ k δ (t ) a a
(k )
定义看: 从δ (t) 定义看:
p(t ) 1
δ (t) f (t)dt = f (0) −∞
δ (−t) f (t)dt = −∞
+∞
t =−τ
+∞
故 , δ (t) =δ(−t)
∫
−∞
+∞
δ (τ ) f (−τ )d(−τ )
= ∫ δ (τ ) f (−τ )dτ = f (0)
−∞
+∞
为 t 又因 δ (t)只在 = 0有 值
【信号与系统】复习总结笔记
【信号与系统】复习总结笔记学习笔记(信号与系统)来源:⽹络第⼀章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来⾃外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进⾏加⼯、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。
2、系统(system):是指若⼲相互关联的事物组合⽽成具有特定功能的整体。
3、信号的描述——数学描述,波形描述。
信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号 ——可以⽤确定时间函数表⽰的信号;随机信号——若信号不能⽤确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。
2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在⼀些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。
3)周期信号和⾮周期信号周期信号——是指⼀个每隔⼀定时间T,按相同规律重复变化的信号;⾮周期信号——不具有周期性的信号称为⾮周期信号。
4)能量信号与功率信号能量信号——信号总能量为有限值⽽信号平均功率为零;功率信号——平均功率为有限值⽽信号总能量为⽆限⼤。
5)⼀维信号与多维信号信号可以表⽰为⼀个或多个变量的函数,称为⼀维或多维函数。
6)因果信号若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;⾮因果信号指的是在时间零点之前有⾮零值。
4、信号的基本运算:信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同⼀时刻两信号之值对应相加减乘。
平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。
信号与线性系统分析总结
•两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其 和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
总结
➢ 能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
-2 -1 0 1 2 3 ki
总结
例2 f1(k) ={0, 2 , 1 , 5,0} ↑k=1
f2(k) ={0, 3 , 4,0,6,0} ↑k=0
解:
3 , 4, 0, 6
×—————2 ,——1 ,—5 15 ,20, 0, 30
3 , 4, 0, 6 6 ,8, 0, 12 + ———————————— 6 ,11,19,32,6,30
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积: f1 (t) * f2 (t) f1 ( ) f2 (t )d
图解法一般比较繁琐,但若只求某一时刻卷积 值时还是比较方便的。确定积分的上下限是关
f1(-τ)
键。
f 1( τt )
2
f1(2-τ)
f1(t)、 f2(t)如图所示,已知f(t) = f2(t)* f1(t),求f(2) =?
*
d
n f 2 (t dtn
)
t
t
t
[
f1
(
)
*
f 2 ( )]d
[
f1 ( ) d ] *
f 2 (t)
f1 (t) *[
信号与系统(郑君里)复习要点
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类 ①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号 2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k )f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0)4、系统的分类与性质?d )()4sin(91=-⎰-t t t δπ)0()()(f k k f k =∑∞-∞=δ4.1连续系统和离散系统4.2 动态系统与即时系统4.3 线性系统与非线性系统①线性性质T[a f (·)] = a T[ f (·)](齐次性)T[ f1(·)+ f2(·)] = T[ f1(·)]+T[ f2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:y(·) = y f(·) + y x(·) = T[{ f(·) }, {0}]+ T[ {0},{x(0)}] (可分解性)T[{a f(·) }, {0}] = a T[{ f(·) }, {0}]T[{f1(t) + f2(t) }, {0}] = T[{ f1(·) }, {0}] + T[{ f2(·) }, {0}](零状态线性) T[{0},{a x1(0) +b x2(0)} ]= aT[{0},{x1(0)}] +bT[{0},{x2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t -t d)] = y f(t -t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
第一章 信号与系统汇总
• 解:两个周期信号x(t),y(t)的周期分别为T1和T2,若 其是周周期期之 信比 号T,1/其T2周为期有为理T数1和,T则2的其最和小信公号倍x(数t)+。y(t)仍然
• (1)sin2t是周期信号,其角频率和周期分别为
2. 连续信号和离散信号
根据信号定义域的特点可分为连续时间信号和离散 时间信号。
• 在连续的时间范围内(-∞<t<∞)有定义的信号称 为连续时间信号,简称连续信号。
• 这里的“连续”指函数的定义域—时间是连续的, 但可含间断点,至于值域可连续也可不连续。
• 时间和幅值都为连续的信号称为模拟信号。
离散时间信号
第一章 信号与系统 第二章 连续系统的时域分析 第三章 离散系统的时域分析 第四章 连续系统的频域分析 第五章 连续系统的s域分析 第六章 离散系统的z域分析 第七章 系统函数 第八章 系统的状态变量分析
第一章 信号与系统
本章主要内容
• 1.1 绪言 • 一、信号的概念 • 二、系统的概念 • 1.2 信号的描述与分类 • 一、信号的描述 • 二、信号的分类 • 1.3 信号的基本运算 • 一、加法和乘法 • 二、时间变换
区分。
•3. 信号
• 信号是信息的载体。通过信号传递信息。 • 信号我们并不陌生,如铃声—声信号,表
示该上课了; • 十字路口的红绿灯—光信号,指挥交通;
• 电视机天线接受的电视信息—电信号; • 广告牌上的文字、图象信号等等。 • 为了有效地传播和利用信息,常常需要将
信息转换成便于传输和处理的信号。
• ω1= 2 rad/s , T1= 2π/ ω1= πs • cos3t是周期信号,其角频率和周期分别为
信号与系统第一章总结
信号与系统第一章总结1、信号的分类(1)周期信号和非周期信号两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
(2)连续信号和离散信号连续时间信号:信号存在的时间范围内,任意时刻都有定义。
用t 表示连续时间变量。
离散时间信号:在时间上是离散的,只在某些不连续的规定瞬时给出函数值, 用n 表示。
(3)模拟信号,抽样信号,数字信号 模拟信号:时间和幅值均为连续的信号。
抽样信号:时间离散,幅值连续的信号。
数字信号:时间和幅值均为离散的信号。
(4)按照信号能量特点分类:能量受限信号:若信号f (t)的能量有界,即E<∞ ,则称其为能量有限信号,简称能量信号,此时P = 0。
功率受限信号:若信号f(t)的功率有界,即P<∞ ,则称为功率有限信号,简称功率信号,此时E = ∞。
PS :时限信号为能量信号;周期信号属于功率信号。
2、典型的确定性信号(1)指数信号: , α=0 直流(常数);α<0 指数衰减;α>0指数增长。
通常把称为指数信号的时间常数,记作τ ,代表信号衰减速度,具有时间的量纲。
对时间的微分和积分仍然是指数形式(2)正弦信号:,振幅K ,周期T=ωπ2 ,初相衰减正弦信号:对时间的微分和积分仍然是同频率的正弦信号 (3)复指数信号:α1θdt t f E 2)(⎰∞∞-∆=⎰-∞→=222|)(|1lim T T T dt t f T P t K t f αe )(=)sin()(θω+=t K t f ()0sin e )(>⎩⎨⎧<≥=-αωαt t t K t f t()()t K t K t K t f t t stωωσσsin e j cos e )( e )(+=∞<<-∞=为复数,称为复频率j ωσ+=s rad/s的量纲为 ,/s 1 的量纲为 ωσ振荡衰减增幅等幅⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠<≠>≠= 0 ,0 0 ,0 0 ,0ωσωσωσ⎪⎩⎪⎨⎧=<=>==衰减指数信号升指数信号直流 0 ,0 0 ,0 0 ,0ωσωσωσ(4)抽样信号(重点): 性质:1. 偶函数2. 3. 4.5. 6.(5)钟形信号(高斯函数):3、信号的平移,反褶,展缩(1)平移:左加右减(注意符号)(2)反褶:关于y 轴对称(3)展缩:f(t)到f(at),图形变换(1/a)倍变换方法: 1. 先展缩:a>1,压缩a 倍; a<1,扩展1/a 倍 2. 后平移:+,左移b/a 单位;-,右移b/a 单位 3. 加上倒置:4、阶跃信号和冲激信号(1)单位阶跃信号(通常以u (t )表示)门函数:符号函数:ttt sin )Sa(=)Sa(lim ,即1)Sa(,00===→t t t t 3,2,1π,0)Sa(=±==n n t t ,⎰⎰∞∞-∞==πd sin ,2πd sin 0t t t t t t 0)Sa(lim=±∞→t t ()()t t t ππsin )sinc(=2e )(⎪⎭⎫ ⎝⎛-=τt E tf ()()()[]()0 >±=±→a a b t a f b at f t f 设()()[]a b t a f b at f -=±-()[(/)]f t f a t b a →±()()f t f at →210 0100)(点无定义或⎩⎨⎧><=t t t u ()⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=22ττt u t u t f ⎩⎨⎧<->=0101)sgn(t t t(2)单位冲激信号:①定义:狄拉克函数 只在t=0时,函数值不为0;积分面积为1;t =0 时,为无界函数。
信号与系统-公式总结
4复频域微分
5复频域积分
※6时域卷积
※4. 拉普拉斯反变换 ⑴部分分式展开法
复频域,
⑵留数法 留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留 数的运算,即
其中 (为一阶极点) 或 (为阶极点)
第四章 Z变换
1. Z变换定义
正变换: 双边:
单边:
2. Z变换收敛域ROC:满足的所有z值
★ ROC内不包含任何极点(以极点为边界); ★ 右边序列的ROC为 的圆外; ★ 左边序列的ROC为 的圆内; ★ 双边序列的ROC为 的圆环。 ★ 有限长序列的ROC为整个 z 平面 (可能除去z = 0 和z = );
冲激 脉冲
※※
直流 函数 ※ 冲激 序列
第三章 拉普拉斯变换
1 定义 双边拉普拉斯变换 单边拉普拉斯变换 单边变换收敛条件:
拉普拉斯反变换 称为收敛域。
2 常见函数的拉普拉斯变换
公式序号
原函数,
※1
※2
※※3
像函数
频谱图
※※4 ※5 ※6
3 拉普拉斯的基本性质
性质
时域
※※1时间平 移
※2频率频移
※3时域微分
1 差分方程的一般形式
前向差分: 后向差分: 2 卷积法 (1)零输入响应 :激励时初始状态引起的响应 Step1 特征方程,特征根; Step2 解形式或 ;
Step3 初始条件代入,确定系统; (12)零状态响应 :初始状态为零时外加激励引起的响应 方法1:时域分析法 方法2:变换域分析法
Step1: 差分方程两边Z变换(注意初始状态为零); 左移位性质
第六章 第七章 第八章 连续系统时域、频域和复频 域分析
1 线性和非线性、时变和非时变系统判别 (1)线性和非线性 先线性运算,再经系统=先经系统,再线性运算
信号与系统 总结
解: (1) yzs(t) = 2 f (t) +1, yzi(t) = 3 x(0) + 1
显然, y (t) ≠ yzs(t) + yzi(t) 不满足可分解性,故为非线性
(2) yzs(t) = | f (t)|, yzi(t) = 2 x(0)
y (t) = yzs(t) + yzi(t) 满足可分解性;
两个周期信号x(t),y(t)的周期分别为T1和T2,若其 周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周 期信号,其周期为T1和T2的最小公倍数。
例: 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin (3πk/4) + cos (0.5πk) (2)f2(k) = sin (2k)
δ(5t)(t 2)2 dt ? 4
5
f(5-2t)
f(t) (4)
例: 已知信号f (5 2t)的波形,
(2)
请画出f (t)的波形。
t 0 123
-1 0 1 2 3
第 11 页
1.5 系统的特性与分类
连续系统与离散系统:分别用微分方程与差分方程来描述 动态系统与即时系统:动态系统也称为记忆系统 线性系统与非线性系统:齐次性和可加性
求导
(2) -1
f '(t)
1t 0 (-2)
第8 页
1.4 阶跃函数和冲激函数
冲激函数的性质(习题1.10)
取样性
δ(t) f (t) f (0) δ(t)
δ(t) f (t) d t f (0)
f (t) δ(t t 0) f (t0 ) δ(t t 0)
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
信号与系统总结
第一章 信号与系统分析导论一.信号的描述及分类信号是消息的表现形式与传送载体,消息则是信号的具体内容。
1. 信号的分类:(1)从信号的确定性划分:确定信号 与 随机信号(2)从信号在时间轴上取值是否连续划分:连续信号 与 离散信号 (3)从信号的周期性划分:周期信号 与 非周期信号 (4)从信号的可积性划分:能量信号 与 功率信号 重点讨论:确定信号 特别注意:离散信号 的自变量 要求取整数 2. 能量信号定义: 0 < W < ∞,P = 0。
功率信号定义: W → ∞,0 < P < ∞。
直流信号与周期信号都是功率信号。
二.系统的描述及其分类 1. 描述:(1)数学模型输入输出描述:N 阶微分方程或N 阶差分方程状态空间描述:N 个一阶微分方程组或N 个一阶差分方程组 (2)方框图表示 2. 分类:(一)连续时间系统 与 离散时间系统 (二)线性系统 与 非线性系统 无初始状态:线性:均匀特性 与 叠加特性 见教案例1-3 若: 有:其中 α 、β 为任意常数-------线性系统线性系统的数学模型是线性微分方程式或线性差分方程式 含有初始状态:见教案例1-4完全响应、零输入响应、零状态响应定义从三方面判别:1、具有可分解性: 2、零输入线性3、零状态线性(三)时不变系统 与 时变系统 见教案例1-5 时不变特性:[]k f k )()(),()(2211t y t f t y t f −→−−→−)()()()(2121t y t y t f t f ⋅+⋅−→−⋅+⋅βαβα)()()(t y t y t y f x +=)()(t y t f f −→−)()(00t t y t t f f -−→−-线性时不变系统数学模型:定常系数的线性微分方程式或差分方程式 线性时不变性的判别见教案总结 (四)因果系统 与 非因果系统 -----为因果系统----------非因果系统 (五)稳定系统 与 不稳定系统 本课程重点讨论线性时不变系统 三:信号与系统分析概述1. 信号分析:核心是信号分解2. 系统分析:主要任务是建立系统的数学模型,求线性时不变系统的输出响应学习要求:1. 掌握信号的定义及分类;2. 掌握系统的描述、分类及特性;3. 重点掌握确定信号及线性时不变系统的特性。
信号与系统第一章和第七章主要知识点
1:连续时间信号,离散时间信号和数字信号的关系连续时间信号(时间和幅度都是连续)通过抽样保持后,变为离散时间信号(时间离散、幅度连续),再经量化编码后,变成数字信号(时间和幅度都离散)。
2:典型信号和奇异信号典型信号主要掌握Sa(t)抽样信号的定义形式及其性质,能利用傅里叶变换的性质计算:奇异信号:阶越信号()u t 与阶越序列()u n 的区别:对于()u t ,其在0t =时,无定义或定义为12;对于()u n ,在0n =时,其定义为1; 单位冲击信号()t δ与单位样值信号()n δ的区别:()t δ在0t =时不为0(冲击的幅度无穷大,但是其强度(面积)为1),在其它时刻为0;而在0n =时,()1n δ=,在其它时刻为0;3:信号的运算(重点)熟练掌握信号的移位、反褶与尺度变换对于连续时间信号:()(,0)f at b a b -±>,建议先反褶,再尺度变换,最后移位,但是也要掌握其它的如先移位,再反褶,最后尺度变换。
也要掌握对于给定()(,0)f at b a b -±>的波形,能画出()f t 的波形。
对于离散时间信号:()(,0)f an b a b -±>,要特别注意在尺度变换时,当信号进行压缩时(1)a >,要删除一些点;当信号进行扩展时(01)a <<,要补0; 4:系统方框图(重点)(1)要熟练掌握给定微分方程(对于连续时间系统)和差分方程(对于离散时间系统),能利用1)加法器、乘法器、积分器画连续时间系统的方框图;2)加法器、乘法器和延时单元画离散时间系统的方框图(2)给定系统的方框图,能列系统的微分方程或差分方程;5:线性时不变系统的判断(重点)(1)线性系统的判断:先经系统再线性运算是否等于先线性运算再经系统,如满足,则为线性系统,否则为非线性系统。
可用公式表示为:11221122[()][()][()()]T x t T x t T x t x t αααα+=+(2)时不变系统的判断:先时延再经系统是否等于先经系统再时延,如满足,则为时不变系统,否则为时变系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:信号与系统的基本概念
1.1 信号的基本概念
一、什么是信号
信号是信息的表现形式。
例如,光信号、声信号和电信号等。
二、信号的分类
1、确定性信号和随机信号
()f t 确定性信号有确定的函数表达式
2、周期信号和非周期信号
f(t)=f(t+kT) k=1,2,3...周期信号
3、连续时间信号和非连续时间信号
时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号
4、有始信号和无始信号
0t t <若,0()0,f t t =为起始点
三、典型的连续时间信号
1、正旋信号
21()cos(),,,2f t A wt T f w f w T πϕπ=+===
AM
FM
PM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号
欧拉公式:
cos 2
sin 2j j e e j j e
e j
θθ
θθθ
θ-+--=⎧⎪⎪⎨⎪⎪⎩=
2、指数信号
为实数αα,)(t ke t f =
3、复指数信号(一种数学模型)
(),st f t ke s jw δ==+
4、抽样信号
sin (),a t
s t t t =-∞<<∞
性质1、偶函数,随着t 的增大,幅值减小
0sin 2()lim 1a x t
t t →==性质:t=0,s
3sin 0,1, 2...t t k k π=⇒==±±性质:过零点
1.2 信号的运算
一、信号的时域变换
1、平移(时移)
000()()
()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移
2、反转
以纵轴为中心,左右反转
()()f t f t =-
)(t f )(t f
t t
3、展缩
{011,()(),a a f t f at <<>=,扩展压缩
二、信号的相加、相乘、微分和积分
1、相加:对应点相加
2、相乘:主要用于信号的截取
3、微分:
)(t f )(t f '
t t 4∞、积分:指(-,0)上积分
t
-(),f d t ττ∞⎰为变量
t<0()0
t 1()t>1()1t t t f d f d t
f d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,
1.3 奇异信号----------------------------------------------------一种数学模型
信号的取值或导数出现了奇异值(极大),趋于无穷
一、单位阶跃信号
{0,01,0()t t t ε<>=
)(t ε
t
因果信号
{0,0(),0()()t f t t f t t ε<>=
二、单位冲击信号----------------也是一种数学模型
作用时间极短,但幅值极大
{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为
性质1:抽样性
0000001.()()(0)()
2.()()(0)()
3.()()(0)()(0)
4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰
性质2:卷积特性
1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰
0005.()()()()()
6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞
-∞+∞
-∞*=-=*-=--=-⎰⎰
注:一个信号与冲激信号的卷积就是信号本身
三、阶跃、冲激信号的关系 {0,01,0()()()
()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩
注:阶跃信号求导即为冲激信号
1.4 信号分解为冲激信号的叠加
1.5系统及分类
一、分类
1.连续时间系统:微分方程
离散时间系统:差分方程
2.线性系统:叠加性、齐次性
f(t)→系统→y(t) kf(t)→系统 →ky(t)
f1(t)+f2(t)→系统→y1(t)+y2(t)
当齐次和叠加只要有一个不满足则是非线性的
3.因果系统:响应不早于激励
非因果系统
4.时变系统
是不变系统:输入输出都做相应的变化,并不随时间变化
二、线性时不变系统(LTI 系统)
性质1:线性、齐次性、叠加性
Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应
性质2:是不变性
性质3:微分、积分性
f(t)→系统→y(t)
()y ()f t t ''→→系统
t -()()t
f t dt y t dt
-∞∞→→⎰⎰系统 性质4:因果性。