(含答案)2020-2021学年全国初中数学竞赛历年竞赛试题:二
2020-2021初中数学实数知识点总复习含答案解析(2)
![2020-2021初中数学实数知识点总复习含答案解析(2)](https://img.taocdn.com/s3/m/02e1458052d380eb63946d18.png)
2020-2021初中数学实数知识点总复习含答案解析(2)一、选择题1.在实数范围内,下列判断正确的是( )A .若2t ,则m=nB .若22a b >,则a >bC 2=,则a=bD =a=b 【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r=a﹣bq=2×4=8,∴q+r=4+8=4.故选:A.【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2的整数部分.3.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.4.若a、b分别是2a-b的值是()A.B.C D.【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a为2,b为2a-b=4-(故选C.5.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )A .1dmB C D .3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】设正方体的棱长为xdm .根据题意得:2618(0)x x =>,解得:x.故选:B .【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.6.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±16=±4,错误; ⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确. 错误的一共有3个,故选D .8.下列各数中比3大比4小的无理数是( )A .10B .17C .3.1D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】∵四个选项中是无理数的只有10和17,而17>4,3<10<4 ∴选项中比3大比4小的无理数只有10.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,=.故选D .考点:1.非负数的性质;2.勾股定理.10.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.15.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是() A.①②B.②③C.③④D.②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B.【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.16.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a<﹣3,B错误;a<﹣d,C错误;11,D错误,c故选A.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.17.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.18.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,表示8的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,<<∴2.53的点在数轴上表示时,所在C和D两个字母之间.故选:A.【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.20.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.。
2020-2021学年全国初中数学竞赛试题(多份)及答案
![2020-2021学年全国初中数学竞赛试题(多份)及答案](https://img.taocdn.com/s3/m/f5c554112b160b4e767fcff2.png)
保证原创精品 已受版权保护2020年全国初中数学竞赛试题(多份)及答案一、选择题1.设a <b <0,a 2+b 2=4ab ,则b a ba 的值为【 】A 、3B 、6C 、2D 、32.已知a =2020x +2020,b =2020x +2020,c =2020x +2020,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于【 】A 、65B 、54C 、43D 、32ABC DEF G保证原创精品 已受版权保护4.设a 、b 、c 为实数,x =a 2-2b +3,y =b 2-2c +3,z =c 2-2a +3,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于05.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72<a <52 B 、a >52 C 、a <72 D 、112<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】A 、22b a B 、22b ab a C 、b a 21D 、a +b二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则bc c a 的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
【全国校级联考】湖北省鄂州市五校2020-2021学年八年级数学第二学期期末达标检测试题含解析
![【全国校级联考】湖北省鄂州市五校2020-2021学年八年级数学第二学期期末达标检测试题含解析](https://img.taocdn.com/s3/m/b13410cd6edb6f1aff001fe0.png)
【全国校级联考】湖北省鄂州市五校2020-2021学年八年级数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若12AD DB =,DE =3,则BC 的长度是( )A .6B .8C .9D .102.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是( )A .842x +B .816810+C .88410x +D .816810x + 3.如图,ABC ∆为等边三角形,AE CD =,AD 、BE 相交于点P ,BQ AD ⊥于点Q ,且4PQ =,1PE =,则AD 的长为( )A .7B .8C .9D .104.如果35a +有意义,那么( )A .a≥53B .a≤53C .a≥﹣53D .a 53≤-5.下列命题中不正确的是( )A .平行四边形是中心对称图形B .斜边及一锐角分别相等的两直角三角形全等C .两个锐角分别相等的两直角三角形全等D .一直角边及斜边分别相等的两直角三角形全等6.在矩形ABCD 中,4AB m BC H ==,,是BC 的中点,DE AH ⊥,垂足为E ,则用m 的代数式表示DE 的长为()A .255mB .244m m +C .5mD .522m 7.如图,平行四边形ABCD 中,AB=8cm ,AD=12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有( )A .4次B .3次C .2次D .1次8.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( )A .3±B .3C .3-D .无法确定9.在直角坐标系中,线段A B ''是由线段AB 平移得到的,已知()()()2,3,3,1,3,4,A B A '--则B '的坐标为( )A .()1,1B .()2,2C .()3,3D .()4,41023a +a 的取值范围是( )A .a≥32-B .a≤32-C .a>32-D .a<32- 11.如图,已知在平行四边形ABCD 中,,E F 是对角线BD 上的两点,则以下条件不能判断四边形AECF 是平行四边形的是( )A .AF CE =B .BAE DCF ∠=∠C .,AF CF CE AE ⊥⊥D .BE DF =12.下列图形中,是轴对称图形,不是中心对称图形的是( )A .B .C .D .二、填空题(每题4分,共24分)13.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB=90°,直角边AO 在x 轴上,且AO=1.将Rt△AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O=2AO ,再将Rt△A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O=2A 1O…,依此规律,得到等腰直角三角形A 2OB 2.则点B 2的坐标_______14.若实数a 、b 满足a 2—7a+2=0和b 2—7b+2=0,则式子b a a b+的值是____. 15.在△ABC 中,∠C=90°,BC=60cm ,CA=80cm ,一只蜗牛从C 点出发,以每分20cm 的速度沿CA ﹣AB ﹣BC 的路径再回到C 点,需要____分的时间.16.如图,在矩形ABCD 中,点E 为CD 的中点,点P 为AD 上一点,沿BP 折叠ABP ∆,点A 恰好与点E 重合,则AB AD的值为______.17.如图,在矩形ABCD 内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点E ,F 分别在边AD ,BC 上,小长方形的长与宽的比值为4,则AD AB的值为_____.18.如图,在Rt ABC ∆中,90ABC ∠=︒,4BC cm =,3AB cm =,D 为AC 的中点,则BD =______cm .三、解答题(共78分)19.(8分)如图,在▱ABCD 中,AC 、BD 交于点O ,BD ⊥AD 于点D ,将△ABD 沿BD 翻折得到△EBD ,连接EC 、EB .(1)求证:四边形DBCE 是矩形;(2)若BD=4,AD=3,求点O 到AB 的距离.20.(8分)一个三角形三边的长分别为a ,b ,c ,设p=12(a+b+c ),根据海伦公式S=()()()p p a p b p c ---可以求出这个三角形的面积.若a=4,b=5,c=6,求:(1)三角形的面积S ;(2)长为c 的边上的高h . 21.(8分)先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 是5的整数部分. 22.(10分)关于x 的方程()220a b x cx a b ++-+=,其中, , a b c 分别是ABC △的三边长. (1)若方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(2)若ABC △为等边三角形,试求出这个方程的解.23.(10分)在矩形ABCD 中,4=AD ,3AB =,将Rt ABC ∆沿着对角线AC 对折得到AMC ∆.(1)如图,CM 交AD 于点E ,EF AC ⊥于点F ,求EF 的长.(2)如图,再将Rt ADC ∆沿着对角线AC 对折得到ANC ∆,顺次连接B 、M 、D 、N ,求:四边形BMDN 的面积.24.(10分)如图,在平面直角坐标系xOy 中,直线l 的表达式为26y x =-,点A ,B 的坐标分别为(1,0),(0,2),直线AB 与直线l 相交于点P .(1)求直线AB 的表达式;(2)求点P 的坐标;(3)若直线l 上存在一点C ,使得△APC 的面积是△APO 的面积的2倍,直接写出点C 的坐标.25.(12分)(1)已知31x =+,求21x x -+的值; (2)解方程:()2235x x -+=.26.请用无刻度尺的直尺分别按下列要求作图(保留作图痕迹).(1)图1中,点F G 、是ABC ∆的所在边上的中点,作出ABC ∆的AB 边上中线.(2)如图,ABCD 中,//AB CD ,且2AB CD =,BD 是它的对角线,在图2中找出AB 的中点E ; (3)图3是在图2的基础上已找出AB 的中点E ,请作出ABD ∆的AD 边上的中线.参考答案一、选择题(每题4分,共48分) 1、C【解析】根据平行线分线段成比例的性质,由12AD DB =,可得1=3AD AB ,根据相似三角形的判定与性质,由DE ∥BC 可知△ADE ∽△ABC ,可得DE AD BC AB=,由DE=3,求得BC=9. 故选:C.2、D【解析】先求这10个人的总成绩8x+2×84=8x+168,再除以10可求得平均值为:816810x +. 故选D.3、C【解析】【分析】 分析:由已知条件,先证明△ABE≌△CAD 得∠BPQ=60°,可得BP =2PQ =8,AD =BE .则易求.【详解】解:∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠ACD=60°;又∵AE=CD ,在△ABE 和△CAD 中,AB CA BAE ACD AE CD ⎪∠⎪⎩∠⎧⎨===∴△ABE≌△CAD(SAS );∴BE=AD ,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=10°,则∠PBQ=10°−60°=30°∵PQ=3,∴在Rt△BPQ 中,BP =2PQ =8;又∵PE=1,∴AD=BE =BP +PE =1.故选:C .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE ≌△ACD .4、C【解析】【分析】被开方数为非负数,列不等式求解即可.根据题意得:350a +≥,解得53a ≥-.故选:C .【点睛】本题考查二次根式有意义的条件,二次根式的被开方数是非负数.5、C【解析】解:A .平行四边形是中心对称图形,说法正确;B .斜边及一锐角分别相等的两直角三角形全等,说法正确;C .两个锐角分别相等的两直角三角形全等,说法错误;D .一直角边及斜边分别相等的两直角三角形全等,说法正确.故选C .6、B【解析】【分析】 如图连接DH ,根据面积和相等列方程求解.【详解】解:如图所示连接DH ,AB=m,BC=4,BH=2,则矩形面积24m +则矩形ABCD=三角形ABH+三角形AHD+三角形DHC ,则4m=m+12DE 24m ++m, 解得244m m +【点睛】本题考查勾股定理和矩形性质,能够做出辅助线是解题关键.7、B【解析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=31-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-31,解得t=9.1.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质8、C【解析】【分析】根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±2,因为k-2≠0,所以k≠2,即k=-2.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.9、B【分析】根据点A和点A′的坐标判断出平移方式,根据平移方式可得点B'的坐标.【详解】解:∵点A的坐标为(−2,3),A′的坐标为(3,4),∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,∵点B的坐标为(−3,1),∴点B′的坐标为(2,2),故选:B.【点睛】此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10、A【解析】【分析】直接利用二次根式有意义则2a+3≥0,进而得出答案.【详解】在实数范围内有意义,则2a+3≥0,解得:3a2≥-.故选:A.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.11、A【解析】【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,在▱ABCD 中,OA=OC ,OB=OD ,要使四边形AECF 为平行四边形,只需证明得到OE=OF 即可;A 、AF=EF 无法证明得到OE=OF ,故本选项正确.B 、∠BAE=∠DCF 能够利用“角角边”证明△ABE 和△CDF 全等,从而得到DF=BE ,则OB-BE=OD-DF ,即OE=OF ,故本选项错误;C 、若AF ⊥CF ,CE ⊥AE ,由直角三角形的性质可得OE=12AC=OF ,故本选项错误; D 、若BE=DF ,则OB-BE=OD-DF ,即OE=OF ,故本选项错误;故选:A .【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.12、B【解析】【分析】根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】A 选项是轴对称图形,也是中心对称图形,故本选项不符合题意;B 选项是轴对称图形,不是中心对称图形,故本选项符合题意;C 选项是轴对称图形,也是中心对称图形,故本选项不符合题意;D 选项是轴对称图形,也是中心对称图形,故本选项不符合题意.故选B .【点睛】此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.二、填空题(每题4分,共24分)13、(2017201722 ,)【解析】【分析】根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.【详解】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),∵2÷4=503…1,∴点B2与B1同在一个象限内,∵-4=-22,8=23,16=24,∴点B2(22,-22).故答案为:(22,-22).【点睛】此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.14、45 2.【解析】【分析】由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.【详解】解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,∴可把a,b看成是方程x2-7x+2=0的两个根,∴a+b=7,ab=2,∴b aa b+=22b aab+=2()2a b abab+-=4944522-=.故答案为:452.【点睛】本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab 是解题的关键.15、1【解析】【分析】运用勾股定理可求出斜边AB的长,然后可求出直角三角形的周长即蜗牛所走的总路程,再除以蜗牛的行走速度即可求出所需的时间.【详解】100cm,∴AB=100cm;∴CA+AB+BC=60+80+100=240cm,∴240÷20=1(分).故答案为1.【点睛】本题考查了速度、时间、路程之间的关系式及勾股定理的应用,考查了利用勾股定理解直角三角形的能力.16【解析】【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到AB BExAD BC===.【详解】设AB=x,在矩形ABCD中, AB=CD=x,BC=AD;因为,E为CD的中点,所以,CE=12x,由对折可知BE=AB=x.在直角三角形BCE中2x==,所以,AB BExAD BC===.故答案为图(略),23x 【点睛】本题考核知识点:矩形性质,轴对称. 解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE 和BC 的关系.17、94【解析】 【分析】连结EF ,作MN HN ⊥于N ,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD 与宽AB 的比即可.【详解】解:连结EF ,作MN HN ⊥于N ,在矩形ABCD 内放入四个小正方形和两个小长方形后成中心对称图形,MNH FME ∴∆∆∽,MNH HKE ESP ∆≅∆≅∆,12MN FM NH EM ∴==, ∴长AD 与宽AB 的比为()()4212:2119:4+++++=,即94AD AB =, 故答案为:94. 【点睛】此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是2:1.18、52【解析】【分析】根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.【详解】∵∠ABC=90°,BC=4cm,AB=3cm,∴由勾股定理可知:AC=5cm,∵点D为AC的中点,∴BD=12AC=52cm,故答案为:5 2【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.三、解答题(共78分)19、(1)见解析;(2)点O到AB的距离为65.【解析】【分析】(1)先利用折叠的性质和平行四边形的性质得出DE∥BC,DE=BC,则四边形DBCE是平行四边形,再利用BE=CD 即可证明四边形DBCE是矩形;(2)过点O作OF⊥AB,垂足为F,先利用勾股定理求出AB的长度,然后利用AOB面积即可求出OF的长度,则答案可求.【详解】(1)由折叠性质可得:AD=DE,BA=BE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BA=CD,∴DE∥BC,DE=BC,∴四边形DBCE是平行四边形,又∵BE=CD,∴四边形DBCE是矩形.(2)过点O作OF⊥AB,垂足为F,∵BD ⊥AD ,∴∠ADB=90°,在Rt △ADB 中,BD=4,AD=3,由勾股定理得:22435,又∵四边形ABCD 是平行四边形,∴OB=OD=122BD =, 1122ABO S AB OF OB AD ∴=⋅=⋅ ∴23655OB AD OF AB ⋅⨯=== 答:点O 到AB 的距离为65. 【点睛】本题主要考查平行四边形的性质,矩形的判定,勾股定理,掌握平行四边形的性质,矩形的判定,勾股定理并能够利用三角形面积进行转化是解题的关键.20、(1157;(257 【解析】【分析】(1)先根据a 、b 、c 的值求出p ,再代入公式计算可得;(2)由题意得出12ch=1574,解之可得. 【详解】解:(1)p=12(4+5+6)=152.p-a=152-4=72,p-b=152-5=52,p-c=152-6=32.4; (2)∵S=12ch ,∴h=2s c =2×4÷6=4. 【点睛】本题主要考查二次根式的应用,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.21、1x x +,23【解析】【分析】 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x 的值代入计算即可求出值.【详解】解:原式=222111(1)(1)1x x x x x x x x x x x -÷==--+-+∵x x =2.当x =2时,221213x x ==++ . 【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题关键.22、(1)ABC △是直角三角形;理由见解析;(2)1201x x ==,-,.【解析】【分析】(1)根据根的判别式为0,计算出, , a b c 的关系,即可判定;(2)根据题意,将方程进行转化形式,即可得解.【详解】(1)直角三角形根据题意,得()()2440c a b a b =++-=△即222a c b +=所以ABC △是直角三角形(2)根据题意,可得2220ax ax +=20x x +=解出1201x x ==,-【点睛】此题主要考查一元二次方程和三角形的综合应用,熟练运用,即可解题.23、(1)158EF =;(2)BMDN 的面积是16825. 【解析】【分析】(1)由矩形的性质可得AB =CD =3,AD =BC =4,∠B =∠D =90°,AD ∥BC ,由勾股定理可求AC =5,由折叠的性质和平行线的性质可得AE =CE ,由勾股定理可求AE 的长,由三角形面积公式可求EF 的长;(2)由折叠的性质可得AB =AM =3,CD =CN =3,∠BAC =∠CAM ,∠ACD =∠ACN ,AC ⊥DN ,DF =FN ,由“SAS”可证△BAM ≌△DCN ,△AMD ≌△CNB 可得MD =BN ,BM =DN ,可得四边形MDNB 是平行四边形,通过证明四边形MDNB 是矩形,可得∠BND =90°,由三角形面积公式可求DF 的长,由勾股定理可求BN 的长,即可求四边形BMDN 的面积.【详解】解:(1)∵四边形ABCD 是矩形∴AB =CD =3,AD =BC =4,∠B =∠D =90°,AD ∥BC∴AC 5,∵将Rt △ABC 沿着对角线AC 对折得到△AMC .∴∠BCA =∠ACE ,∵AD ∥BC∴∠DAC =∠BCA∴∠EAC =∠ECA∴AE =EC∵EC 2=ED 2+CD 2,∴AE 2=(4−AE )2+9,∴AE=258,∵S△AEC=12×AE×DC=12×AC×EF,∴258×3=5×EF,∴EF=158;(2)如图所示:∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,∵AB∥CD∴∠BAC=∠ACD∴∠BAC=∠ACD=∠CAM=∠ACN∴∠BAM=∠DCN,且BA=AM=CD=CN∴△BAM≌△DCN(SAS)∴BM=DN∵∠BAM=∠DCN∴∠BAM−90°=∠DCN−90°∴∠MAD=∠BCN,且AD=BC,AM=CN∴△AMD≌△CNB(SAS)∴MD=BN,且BM=DN∴四边形MDNB是平行四边形连接BD,由(1)可知:∠EAC=∠ECA,∵∠AMC=∠ADC=90°∴点A,点C,点D,点M四点共圆,∴∠ADM=∠ACM,∴∠ADM=∠CAD∴AC∥MD,且AC⊥DN∴MD⊥DN,∴四边形BNDM是矩形∴∠BND=90°∵S△ADC=12×AD×CD=12×AC×DF∴DF=12 5∴DN=24 5∵四边形ABCD是矩形∴AC=BD=5,∴BN=227 5BD BN∴四边形BMDN的面积=BN×DN=75×245=16825.【点睛】本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM 是矩形是本题的关键.24、 (1)y=-1x+1 ;(1) P的坐标为(1,-1);(3)(3,0),(1,-4).【解析】【分析】(1)用待定系数法求函数的解析式;(1)由两个解析式构成方程组,解方程组可得交点的坐标;(3)点P 可能在P的上方或下方,结合图形进行分析计算.【详解】解:(1)设直线AB的表达式为y=kx+b.由点A,B的坐标分别为(1,0),(0,1),可知0,2. k bb+=⎧⎨=⎩解得2,2. kb=-⎧⎨=⎩所以直线AB 的表达式为y =-1x +1.(1)由题意,得22,2 6.y x y x =-+⎧⎨=-⎩ 解得2,2.x y =⎧⎨=-⎩所以点P 的坐标为(1,-1).(3)(3,0),(1,-4).【点睛】本题考核知识点:一次函数的解析式,交点. 解题关键点:理解一次函数的性质.25、(1)4;(2)11x =,22x =.【解析】【分析】(1)1x =代入21x x -+即可进行求解;(2)根据因式分解法即可求解一元二次方程.【详解】(1)1x =代入21x x -+得:))221111x x -+=-+411=++4=+(2)解:22965x x x -++=,()()120x x --=,11x =,22x =.【点睛】此题主要考查代数式求值与解一元二次方程,解题的关键是熟知整式的运算及方程的解法.26、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据三角形的三条中线交于一点即可解决问题.(2)延长AD,BC交于点K,连接AC交BD于点O,作直线OK交AB于点E,点E即为所求.(3)连接EC交BD于K,连接AK,DE交于点O,作直线OB交AD于F,线段BF即为所求【详解】(1)图1中,中线CE即为所求.(2)如图2中,AB的中点E即为所求(3)图3中,AD边上中线BF即为所求.【点睛】本题考查作图-复杂作图,三角形的中线等知识,解题的关键是灵活运用所学知识解决问题.。
2020年第十二届全国大学生数学竞赛--初赛《数学类A卷》试题(含参考答案)
![2020年第十二届全国大学生数学竞赛--初赛《数学类A卷》试题(含参考答案)](https://img.taocdn.com/s3/m/213f995276232f60ddccda38376baf1ffc4fe308.png)
(2) 求点 A1, B1,C1 三点的坐标; (3) 给定点A(1, 1, 0), B(1, 1, 0),C(1, 1, 0) ,求四面体 NA1B1C1 的体积. 【参考解答】:(1) 由直线的两点式方程,直接可得过 N, A 两点的直线方程为
(2) 直线 NA 的参数方程为
x y z 1
.
a1 a2 1
1 k
趋于
0,故
lim
n
yn
1
yn
0.
所以
bn an yn yn1 0, n
从而可知 an , bn 的极限相等,从而 yn 收敛. 最后,由 的连续性可得 xn 收
敛.
六、(20
分)对于有界区间
a,
b
的划分
P : a x0 x1 xn1 b
其范数定义为||
P
||
max xk1
1
0
2021
1
代入极限式得I
.
2021
【思路二】 由 Stolz 公式,得
lim 1 12020 22020 n2020
n n 2021
lim
n 2020
1
n n2021 (n 1)2021 2021
12020 22020 n 2020
1
故 ln
有界. 故I .
n 2021
x a1t, y a2t, z 1 t
将其代入球面方程,得
2
a1t
2
a2t
(1 t)2
1
2
解得参数值为t
a12
a22
或t 1
0.
从容可得 A1 的坐标为
A1
a12
2a1 a22
第十五届江苏省初中数学初一年级竞赛试题含答案(第二试)
![第十五届江苏省初中数学初一年级竞赛试题含答案(第二试)](https://img.taocdn.com/s3/m/4ff8423ef12d2af90242e632.png)
第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )(A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
(A)41 (B)4 (C)41- (D)-4 3.某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长( )。
(A)2% (B)8% (C)40.5% (D)62%4.已知0<x<1,则x x 1,x ,2的大小关系是( )。
(A)2x x x 1<< (B)x x x12<< (C)x x 1x 2<< (D)x x1x 2<< 5.已知a ≠0,下面给出4个结论: (1);01a 2>+ (2)1-a ;02< (3)1+;1a 12> (4)1-.1a 12< 其中,一定正确的有( )。
(A)1个 (B)2个 (C)3个 (D)4个6.能整除任意三个连续整数之和的最大整数是( )。
(A)1 (B)2 (C)3 (D)67.a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中( )。
(A)只有(1)正确 (B)只有(2)正确(C)(1),(2)都正确 (D)(1),(2)都不正确8.在甲组图形的四个图中,每个图是由四种图形A ,B ,C ,D(不同的线段或圆)中的某两个图形组成的,例如由A ,B 组成的图形记为A*B ,在乙组图形的(a),(b),(c),(d)四个图形中,表示“A*D”和“A*C”的是( )。
2020-2021学年度第二学期语数英竞赛数学试卷(含参考答案)
![2020-2021学年度第二学期语数英竞赛数学试卷(含参考答案)](https://img.taocdn.com/s3/m/479f302c4693daef5ff73d10.png)
2020-2021学年度第二学期语数英竞赛数学试卷一、填空题。
(每空2分,共20分)1.某公司账册上1月份经营记录为+35万元,2月份经营记录为-25万元,3月份经营记录为+27万元,该公司第一季度的经营记录可记作( )万元。
2.右图是一张长方形纸折叠起来后的图形,已知∠1 =40° ,则∠2=( )。
3.右图是甲、乙、丙三个人单独完成某项工程所需天数统计图。
请看图填空。
(1)甲、乙合做这项工程( )天可以完成。
(2)先由甲做3天,剩下的工程由丙做,还需要( )天完成。
4.一个由小立方体搭成的立体图形,从上面看到的图形是图1,从左面看到的图形是图2,摆这样的立体图形,最少需要( )个小立方体。
5.某书店对外出租图书的收费方法:每本书在出租后的前三天共收1元,以后每天收0.2元,那么一本图书出租到第n天(n是大于3的自然数) ,应收租金( )元。
6.甲、乙、丙三个数的平均数是70,甲:乙=2 :3,乙:丙=4 :5,乙数是( )。
7.把-根长2米、底面直径是2分米的圆柱形木料沿截面平均锯成4段后,表面积增加了()平方分米,每段木料的表面积是( )平方分米。
8.一次数学测验只有两道题,结果全班有10人全对,第一道有25人做对,第二道有18人做错,那么两道题都做错的有( ) 人。
二、选择题。
(把正确答案的序号填在括号里) 1.一种商品先提价30%后,再打七折出售,现价与原价相比,( ) 。
A.现价高B.现价低C.相同D.无法比较2.一个修路队铺- -段铁路,原计划每天铺3.2千米,15天铺完。
实际每天比原计划多铺0.8千米,实际多少天就铺完了这段铁路?正确列式为( )。
A.3.2 x15 +0.8B.3.2x15 +(3.2 -0.8)C.3.2x15 +(3.2 +0.8)D.3.2 x15 +3.23.如图所示,小明将--张正方形纸对折两次,并在中心处打孔再将它展开,展开后的图形是( )。
2021-2022学年浙江八年级数学上册第2章《特殊的三角形》竞赛题(附答案解析)
![2021-2022学年浙江八年级数学上册第2章《特殊的三角形》竞赛题(附答案解析)](https://img.taocdn.com/s3/m/e2b97a1e6fdb6f1aff00bed5b9f3f90f76c64dc6.png)
2021-2022学年浙江八年级数学上册第2章《特殊的三角形》竞赛题一.填空题(共6小题)1.(2018•武昌区校级自主招生)已知等腰三角形的两边长分别为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为.2.(2013•天心区校级自主招生)如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC=°.3.(2020•西安自主招生)如图:已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE.则∠B=.4.(2020•浙江自主招生)在等腰直角△ABC中,AB=BC=5,P是△ABC内一点,且PA=,PC=5,则PB=.5.(2017春•武昌区期末)如图,四边形ABCD中,已知AB=,BC=5﹣,CD=6,∠ABC=135°和∠BCD=120°,那么AD的长为.5.(2001•安徽自主招生)已知:如图,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,则斜边AB的长为.二.选择题(共8小题)1.(2012•郫县校级自主招生)如图,在等腰直角△ABC中,CA=CB=3,D是BC上一点,且=,点M 是斜边AB上一动点,则△CMD的周长的最小值是()A.1+B.1+C.1+2D.1+2.(2011•瓯海区校级自主招生)代数式最小值为()A.4 B.5 C.D.3.(2017•涪城区校级自主招生)等腰三角形一腰上的高与另一腰的夹角是36°,则此等腰三角形的两个相等底角的度数大小是()A.54°B.63°C.27°D.27°或63°4.(2020•浙江自主招生)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条5.(2012•桃源县校级自主招生)如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用X、Y表示直角三角形的两直角边(X>Y),请观察图案,指出以下关系式中不正确的是()A.X2+Y2=49 B.X﹣Y=2 C.2XY+4=49 D.X+Y=136.(2019•顺庆区校级自主招生)在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.107.(2014•涪城区校级自主招生)如图,在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m2B.m2+1 C.2m2D.(m+1)28.(2007•温州校级自主招生)已知直角三角形有一条直角边的长是质数n,另外两条边长是两个连续自然数,那么它的周长是()A.n2+1 B.n2﹣1 C.n2+n D.n2﹣n三.解答题(共4小题)1.如果,已知:D为△ABC边AB上一点,且AC=,AD=2,DB=1,∠ADC=60°,求∠BCD的度数.2.(2020•浙江自主招生)若直角三角形三边长为正整数,且周长与面积数值相等,则称此三角形为“完美直角三角形”,求“完美直角三角形”的三边长.3.(2014•市南区校级自主招生)发现问题:如图(1),在△ABC中,∠A=2∠B,且∠A=60°.我们可以进行以下计算:由题意可知:∠B=30°,∠C=90°,可得到:c=2b,a=b,所以a2﹣b2=(b)2﹣b2=2b2=b•c.即a2﹣b2=bc.提出猜想:对于任意的△ABC,当∠A=2∠B时,关系式a2﹣b2=bc都成立.验证猜想:(1)(验证特殊三角形)如图(2),请你参照上述研究方法,对等腰直角三角形进行验证,判断猜想是否正确,并写出验证过程;已知:△ABC中,∠A=2∠B,∠A=90°求证:a2﹣b2=bc.(2)(验证一般三角形)如图(3),已知:△ABC中,∠A=2∠B,求证:a2﹣b2=bc.结论应用:若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.4.(2004•鼓楼区校级自主招生)记三角形三边长为a、b、c,对应边上的高为h a、h b、h c,请解答:(1)已知h a:h b:h c=2:3:4,且这三角形周长为26cm,求a、b、c.(2)若三角形的三条高分别为2、x、6,求x的取值范围.(3)若三条高分别为2、x、6的三角形是直角三角形,求x.(4)若三条高分别为2、x、6的三角形是等腰三角形,求x.参考答案与试题解析一.填空题(共6小题)1.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得:,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7.故答案为7或8.2.【解答】解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵DC=CA,∴∠ADC=∠CAD=2x,在△ABC中,x+x+2x+x=180°,解得x=36°.∴∠BAC=108°.故答案为:108.3.【解答】解:延长BA到F,使AF=AC,连接EF,如图所示:∵AB+AC=BE,∴AB+AF=BE,即BF=BE,∴∠F=∠BEF=,∵∠BAD=∠DAC=9°,AD⊥AE,即∠DAE=90°,∴∠FAE=180°﹣(∠BAD+∠DAE)=180°﹣(9°+90°)=81°,∠CAE=∠DAE﹣∠DAC=90°﹣9°=81°,∴∠FAE=∠CAE,在△AFE和△ACE中,∵,∴△AFE≌△ACE(SAS),∴∠F=∠ACE,又∵∠ACE为△ABC的外角,∴∠ACE=∠B+∠BAC=∠B+18°,∴∠F=∠B+18°,∴∠B+18°=,则∠B=48°.故答案为:48°4.【解答】解:如图所示,过点B作BE⊥AC,过点P作PD,PF分别垂直AC,BE 在△APD中,PA2=PD2+AD2=5,在△PCD中,PC2=PD2+CD2,且AD+CD=5,解得AD=,CD=,PD=,在Rt△ABC中,BE=AE=,所以在Rt△BPF中,PB2=PF2+BF2==10,所以PB=.5.【解答】解:作AE⊥BC,DF⊥BC,AG⊥DF,则四边形AEFG四个内角均为直角,∴四边形AEFG为矩形,AE=FG.EF=AG∠ABE=180°﹣135°=45°,∠DCF=180°﹣120°=60°,∴AE=EB=×=,CF=×CD=3,FD=CF=3 ,∴AG=EF=8,DG=DF﹣AE=2 ,∴AD==.故答案为.6.【解答】解:作EM⊥BC,DN⊥BC.∵∠C=90°,∴∠BME=∠BND=90°,设AB=3x,则BE=DE=AD=x设BC=3y,则BM=MN=NC=y,2ME=ND,在Rt△CME中,ME2+MC2=EC2.(1)在Rt△CND中,ND2+NC2=CD2.(2)(1)+(2)得:5ME2+5y2=1,ME2+y2=,在Rt△BME中:BE2=BM2+ME2,即:x2=y2+ME2=,∴AB=3BE=.故答案为:.二.选择题(共8小题)1.【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=45°,∵CA=CB=3,D是BC上一点,且=,∴AD=2,CD=1,作点D关于直线AB的对称点D′,连接CD′,∵点D于点D′关于直线AB对称,∴AD=AD′=2,∠DAD′=2∠BAC=90°,在Rt△ACD′中,CD′===,∴△CMD的周长的最小值=CD′+CD=+1.故选:D.2.【解答】解:如图:原式可化为+,则代数式的最小值是AC的长,AC==5,故选B.3.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.4.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.5.【解答】解:A中,根据勾股定理以及正方形的面积公式即可得到,正确;B中,根据小正方形的边长是2即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A,C联立结合完全平方公式可以求得x+y=,错误.故选:D.6.【解答】解:如图:∴最多画9条,故选:C.7.【解答】解:作AD⊥BC交BC于D,AB2=BD2+AD2①AP2=PD2+AD2②①﹣②得:AB2﹣AP2=BD2﹣PD2,∴AB2﹣AP2=(BD+PD)(BD﹣PD),∵AB=AC,∴D是BC中点,∴BD+PD=PC,BD﹣PD=PB,∴AB2﹣AP2=PB•PC.∴PA2+PB•PC=AB2=m2.故选:A.8.【解答】解:设另外两个数是x、y(x>y)则x2﹣y2=n2,即(x+y)(x﹣y)=n2,∵x﹣y=1,∴x+y=n2,∴三角形的周长是x+y+n=n2+n.故选:C.三.解答题(共4小题)1.【解答】解:过C作CE⊥AB于E,设DE=x,则AE=2﹣x,在Rt△DCE中,∠ADC=60°,∴CE=x,在Rt△AEC中,根据勾股定理得:AE2+CE2=AC2,∴(2﹣x)2+(x)2=()2,解得:,∴BE=CE=,又∵∠BEC=90°,∴∠BCE=45°,又∵∠DCE=90°﹣∠ADC=90°﹣60°=30°,∴∠BCD=∠BCE﹣∠DCE=15°.2.【解答】解:设三边长为a,b,c,其中c是斜边,则有(2)代入(1)得即因为ab≠0所以ab﹣4a﹣4b+8=0所以(a,b为正整数)所以b﹣4=1,2,4,8,所以b=5,6,8,12;a=12,8,6,5;c=13,10,10,13,所以,三边长为6,8,10或5,12,13.3.【解答】解:(1)由题意,得∠A=90°,c=b,a=b,∴a2﹣b2=(b)2﹣b2=b2=bc;(2)小明的猜想是正确的.理由如下:如图,延长BA至点D,使AD=AC=b,连接CD,则△ACD为等腰三角形,∴∠BAC=2∠ACD,又∠BAC=2∠B,∴∠B=∠ACD=∠D,∴△CBD为等腰三角形,即CD=CB=a,又∠D=∠D,∴△ACD∽△CBD,∴,即,∴a2=b2+bc,∴a2﹣b2=bc;结论应用:由于三边长为三个连续整数,设三个连续的偶数是2n﹣2,2n,2n+2,则(2n+2)2﹣(2n﹣2)2=2n(2n﹣2),解得:n=5,则三个数分别是:8,10,12.可知:a=12,b=8,c=10.4.【解答】解:(1)设h a=2k,h b=3k,h c=4k,则ah a=bh b=ch c,即a×2k=b×3k=c•4k,∴2a=3b=4c,∴a:b:c=6:4:3,又∵a+b+c=26cm,∴a=12cm,b=8cm,c=6cm;(2)设三角形的面积为s,则s=ah a=a,s=bh b=bx,s=ch c=3c,∴a=s,b=,c=,又a﹣c<b<a+c,即s﹣<<s+,∴<<,∴<x<3;(3)设三角形的面积为s,由(2)知a=s,b=,c=.显然a>c,分两种情况:①如果a为斜边,那么a2=b2+c2,即s2=+,解得x=;②如果b为斜边,那么b2=a2+c2,即=s2+,解得x=.故所求x的值为=或;(4)设三角形的面积为s,由(2)知a=s,b=,c=.显然a>c,分两种情况:①如果a=b,那么s=,解得x=2;②如果b=c,那么b+c<a,不满足三角形三边关系定理,故舍去.故所求x=2.。
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题(解析版)
![2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题(解析版)](https://img.taocdn.com/s3/m/38ec661ab5daa58da0116c175f0e7cd185251855.png)
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共8小题)1.当x 分别取2020、2018、2016、…、2、0、12、14、…、12016、12018、12020时,计算分式11x x -+的值,再将所得结果相加,其和等于( ) A .1-B .1C .0D .2020【答案】A【分析】 先把互为倒数的两个数代入并求和,得0,再把没有倒数的0代入即可.【详解】解:把2020代入11x x -+,得20192021, 把12020代入11x x -+,得20192021-,相加得零, 设x=a (a≠0)代入11x x -+,得11a a -+, 把x=1a 代入11x x -+,得11a a --+, 故互为倒数的两个数代入分式后,和为0,把0代入11x x -+,得-1, 故选:A .【点睛】本题考查了分式求值运算和数字规律,解题关键是通过计算发现互为倒数的两个数代入分式后,和为0.2.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】 解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由①得:36x x -+>2,-2x ∴->8,-x \<4,由②得:a x +<2,xx \>,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4,13244ay y y -+=---Q , ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B【点睛】本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.3.一支部队排成a 米长队行军,在队尾的战士要与最前面的团长联系,他用t 1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t 2分钟.如果他从最前头跑步回到队尾,那么他需要的时间是( )A .1212t t t t +分钟B .12122t t t t +分钟 C .12122t t t t +分钟 D .12122t t t t +分钟 【答案】C【分析】 根据题意得到队伍的速度为2a t ,队尾战士的速度为12a a t t +,可以得到他从最前头跑步回到队尾,那么他需要的时间是122aa a a t t t ++,化简即可求解 【详解】 解:由题意得:12212122t a a a a t t t t t t =+++分钟. 故选:C【点睛】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键.4.已知113x y -=,则分式5xy 5xy y x y x+---的值为( ) A .8B .72C .53-D .4【答案】A【分析】 由113x y-=,得3y x xy -=,3x y xy -=-.代入所求的式子化简即可. 【详解】 解:由113x y-=,得3y x xy -=, ∴555()15168()32y xy x y x xy xy xy xy y xy x y x xy xy xy xy+--++====-----. 故选:A .【点睛】本题解题关键是用到了整体代入的思想.5.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 【答案】B【分析】 先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得. 【详解】 解:21M N x x ++- =()()()()1221M x N x x x -+++-=()()222M N x M N x x ++-++- ∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.6.如果2220x x +-=,那么代数式214422x x x x x x -+⋅--+的值为( ) A .2-B .1-C .1D .2【答案】A【分析】 由2220x x +-=可得222x x +=,再化简214422x x x x x x -+⋅--+,最后将222x x +=代入求值即可.【详解】解:由2220x x +-=可得222x x +=214422x x x x x x -+⋅--+ =()22122x x x x x -⋅--+ =22x x x x --+ =()()22422x x x x x x --++ =242x x-+=42- =-2故答案为A .【点睛】本题考查了分式的化简求值,正确化简分式以及根据2220x x +-=得到222x x +=都是解答本题的关键.7.当4x =-的值为( ) A .1BC .2D .3【答案】A【分析】 根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式= 将4x =代入得,原式===1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.8.已知13x x +=,则2421x x x ++的值是( ) A .9B .8C .19D .18【答案】D【分析】 根据13x x += 可知21()9x x += 即2217x x += ,把2421x x x ++ 分子、分母同时除以2x 得2217x x += ,把2217x x +=代入即可. 【详解】 由13x x +=得21()9x x+=,即2217x x += 2421x x x ++=22111x x++, 把2217x x +=代入得22111x x ++=11178=+ , 故选D【点睛】本题考查利用恒等变形求分式的值,利用分式的性质,找到可以等量代换的代数式是解题关键.二、填空题(本大题共6小题)9.关于x 的分式方程11211a x x-+=--的解为正数,则a 的取值范围是________ . 【答案】4a <且2a ≠.【分析】去分母,化成整式,计算分母为零时,a 的值,计算方程的解,根据解是正数,转化为不等式,确定a 的范围,最后将分母为零时的a 值除去即可.【详解】 ∵11211a x x-+=--, 去分母,得-1+a-1=2(1-x ),当x=1时,解得a=2;当x≠1时,解得x=42a -, ∵方程的解为正数, ∴42a ->0, ∴a <4,∴a <4且a≠2,故答案为a <4且a≠2.【点睛】本题考查了分式方程的解,探解时,熟练把解转化为相应的不等式,同时,把分母为零对应的值扣除是解题的关键.10.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z ++++的值为______ 【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③. ①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式 222xy yz zx x y z ++++ =()()()()()()222·22?·2x x x x x x x x x -+--+-+-+-=222222 224x x x x x x -+-++=22 6 x x -=1 6 -故答案为:1 6 -【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x的式子表示y,z.本题较难,要学会灵活化简.11.已知三个数,x,y,z满足443,,33xy yz zxx y y z z x=-==-+++,则y的值是______【答案】12 7【分析】将443,,33xy yz zxx y y z z x=-==-+++变形为133,,344x y y z z xxy yz zx+++=-==-,得到111113113,,344y x z y x z+=-+=+=-,利用11113()()2z y x z+-+=,求出1132x y=-,代入1113y x+=-即可求出答案.【详解】∵443,,33 xy yz zxx y y z z x=-==-+++,∴133,,344x y y z z xxy yz zx+++=-==-,∴111113113,,344y x z y x z+=-+=+=-,∴11113 ()()2z y x z+-+=,得1132y x -=, ∴1132x y =-, 将1132x y =-代入1113y x +=-,得276y =, ∴y=127, 故答案为:127. 【点睛】 此题考查分式的性质,分式的变形计算,根据分式的性质得到111113113,,344y x z y x z +=-+=+=-是解题的关键. 12.已知方程11x c x c +=+(c 是常数,0c ≠)的解是c 或1c ,那么方程2131462a a x x a+++=-(a 是常数,且0a ≠)的解是________. 【答案】32a +或312a a + 【分析】 观察方程:11x c x c+=+(c 是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程x +2131462a a x a++=- 变形,使等号左边未知数的系数变得相同,等号右边的代数式可变为31222a a ++.为此,方程的两边同乘2,整理后,即可写成方程11x c x c+=+的形式,从而求出原方程的解. 【详解】 将2131462a a x x a+++=- 整理得 112323x a x a+=++-, 即112323x a x a -+=+-,所以23x a -=或1a , 故答案为:32a x +=或312a a +. 【点睛】 本题考查了阅读理解能力与知识的迁移能力.关键在于将所求方程变形为已知方程的形式.难点是方程左边含未知数的项的系数不相同.13.对于两个不相等的实数,a b ,我们规定符号max{,}a b 表示,a b 中的较大值,如:{}max 2,44=,故{}max 3,5=__________;按照这个规定,方程{}21max ,x x x x--=的解为__________.【答案】5 1-1【分析】 按照规定符号可求得{}max 3,5=5;根据x 与x -的大小关系化简所求方程,求出解即可.【详解】{}max 35=,5;故答案为:5;当x x >-,即0x >时,方程化简得:21x x x -=, 去分母得:221x x =-,整理得:2210x x -+=,即()210x -=解得:1x =,经检验:1x =是分式方程的解;当x x <-,即0x <时,方程化简得:21x x x--=, 去分母得:221x x -=-,整理得:2210x x +-=,解得:1x =-+不合题意,舍去)或1-经检验:1x =-故答案为:1-1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.弄清题中的新定义是解本题的关键. 14.设有三个互不相等的有理数,既可表示为-1,a +b ,a 的形式,又可表示为0,-b a,b 的形式,则20192020-a b 的值为____. 【答案】-1【分析】由题意三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a-、b 的形式,可知这两个三数组分别对应相等.从而判断出a 、b 的值.代入计算出结果. 【详解】 解:三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a -、b 的形式,∴这两个三数组分别对应相等.a b ∴+、a 中有一个是0,由于b a有意义,所以0a ≠, 则0a b +=,所以a 、b 互为相反数. ∴1b a=-, ∴1b a -= ∴1b =-,1a =.∴()2019202011111-=-=--. 故答案是:-1.【点睛】本题考查了有理数的概念,分式有意义的条件,有理数的运算等相关知识,理解题意是关键.三、解答题(本大题共4小题)15.解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩.【答案】10.5x y =⎧⎨=-⎩.【分析】 设1a x=,1b x y =+,把原方程组转化为二元一次方程组,求解后,再解分式方程即可.【详解】 解:设1a x=,1b x y =+, 则原方程组化为:331a b a b +=⎧⎨-=⎩①②, ①+②得:44a =,解得:1a =,把1a =代入①得:13+=b ,解得:2b =, 即1112x x y⎧=⎪⎪⎨⎪=+⎪⎩, 解得:10.5x y =⎧⎨=-⎩, 经检验10.5x y =⎧⎨=-⎩是原方程组的解, 所以原方程组的解是10.5x y =⎧⎨=-⎩. 【点睛】本题考查了换元法解方程组,解题关键是抓住方程组的特征,巧妙换元,熟练的解二元一次方程组和分式方程,注意:分式方程要检验.16.(1)先化简:23111x x x x x x ⎛⎫-÷⎪-+-⎝⎭,再从1-,0,1,2中取一个你喜欢的数代入求值.(2)已知12x x-=,求221x x +,1x x +. 【答案】(1)8;(2)6;±【分析】(1)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.(2)将已知等式两边平方,利用完全平方式展开,即可求出所求式子的值.【详解】解:(1)23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ =(3(1)(1)(1)(1)(1)(1)x x x x x x x x +---+-+)÷2x 1x - =2224-1x x x +21x x- =24x +∵ 21x - ≠0,0x ≠∴x ≠1或x ≠-1,0x ≠当x=2时,原式=4+4=8.(2)12x x -= 21x 4x ⎛⎫= ⎪⎝⎭-41222=+-x x 2216x x +=; 21x x ⎛⎫ ⎪⎝⎭+ =221x 2x ++=8 1xx+=±【点睛】本题考查了分式的化简求值和完全平方式,熟练掌握公式和运算法则是解题的关键. 17.阅读下面材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:11x x -+,21x x -这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:31x +,221x x +这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:86222223333+==+=,类似地,假分式也可以化为“带分式”(即整式与真分式的和的形式)参考上面的方法解决下列问题:()1将分式11x x -+,422311x x x +-+化为带分式. ()2当x 取什么整数值时,分式212x x -+的值也为整数? 【答案】(1)112x +-,22321x x +-+;(2)1x =-,3,3-,7-时,分式的值也为整数.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x 的值.【详解】解:(1)12111222x x x x x --+==+---, 42222222231(1)2(1)332111x x x x x x x x x +-+++-==+-+++; (2)212(2)552222x x x x x -+-==-+++, 当21x +=,即1x =-;当25x +=,即3x =;当21x +=-,即3x =-;当25x +=-,即7x =-,综上,1x =-,3,3-,7-时,分式的值也为整数.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.对于平面直角坐标系xOy 中的点(), P a b ,若点P'的坐标为 ,b a ka b k 骣çè+ç+÷÷ø(其中k 为常数,且0k ≠),则称点P'为点P 的“k 之雅礼点”.例如:()1, 4P 的“2之雅礼点”为4'12142()P +?,,即()'3, 6P . (1)①点()1,3P --的 “3之雅礼点”P'的坐标为___________; ②若点P 的“k 之雅礼点” P'的坐标为()2, 2,请写出一个符合条件的点P 的坐标_________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P'点,且'OPP D 为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的分式方程32233x mx k x x-++=--无解,求m 的值. 【答案】(1)①()2,6--; ②()1, 1;(2)±1;(3)3m =-或53m =-或1m =-. 【分析】(1)①只需把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø即可求出P′的坐标;②由P′(2,2)可求出k=1,从而有a+b=2.任取一个a 就可求出对应的b ,从而得到符合条件的点P 的一个坐标.(2)设点P 坐标为(a ,0),从而有P′(a ,ka ),显然PP′⊥OP ,由条件可得OP=PP′,从而求出k .(3)分1k =和1k =-两种情况,根据方程无解求出m 的值即可.【详解】(1)①∵把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø, 得()2,6--,∴P′的坐标为()2,6--;②令k=1,把k=1代入 ,b a ka b k 骣çè+ç+÷÷ø得到a+b=2,当a=1时,b=1,所以点P 的一个坐标()1, 1;(2)∵点P 在x 轴的正半轴上,∴b=0,a >0∴点P 的坐标为(a ,0),P′(a ,ka ),∴PP′⊥OP ,∵'OPP D 为等腰直角三角形,∴OP=PP′,∴a=ka ,±∵a >0,∴k=1±;(3)当1k =时,去分母整理得:()34m x += ∴原方程无解∴①3m =-②3x =,则53m =- 当1k =-时,去分母整理得: ()12m x +=-原方程无解∴①1m =-②3x =,则53m =- 综上,3m =-或53m =-或1m =-. 【点睛】本题考查了坐标系的新定义问题,读懂题目信息,理解“k 之雅礼点”的定义是解题的关键.。
2020-2021学年全国初中数学竞赛试题(含答案)
![2020-2021学年全国初中数学竞赛试题(含答案)](https://img.taocdn.com/s3/m/32cbb85faeaad1f346933fcf.png)
2020年全国初中数学竞赛试题(含答案)考试时间 2020年4月2日上午 9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A )36 (B )37 (C )55 (D )902.已知21 m ,21 n ,且)763)(147(22 n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )93.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y 上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2(D )h >24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2020 (B )2020 (C )2020 (D )20205.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QA QC的值为( )(A )132 (B )32(C )23 (D )23 二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2020,c -a =2020.若a <b ,则a +b +c 的最大值为 .7.如图,面积为c b a 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则b ca 的值等于 .8.正五边形广场ABCDE 的周长为2020米.甲、乙两人分别从A 、C 两点同时出发,沿A !’B !’C !’D !’E !’A !’…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a <1,且满足183029302301 a a a ,则 a 10的值等于 .( x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分)11.已知a bx,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312 x .试写出一个满足条件的x ;(1)(第7题图)ABCDGFE求所有满足条件的x .(2)12.设a ,b ,c 为互不相等的实数,且满足关系式14162222 a a c b ①542 a a bc ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE·AC=CE·KB .A14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2020年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
2020-2021学年第二学期七年级期末数学试卷及答案
![2020-2021学年第二学期七年级期末数学试卷及答案](https://img.taocdn.com/s3/m/ae46b8ab27284b73f3425043.png)
20.(5 分)先阅读材料,然后解方程组. 材料:善于思考的小军在解方程组
时,采用了如下方法:
解:将②变形,得 4x+10y+y=5
即 2(2x+5y)+y=5③
把①代入③,得 2×3+y=5,解得 y=﹣1.
把 y=﹣1 代入①,得 2x+5×(﹣1)=3,解得 x=4.
∴原方程组的解为
.
这种方法称为“整体代入法”.请用这种方法解方程组:
D.0
A. =±5
B.
=4
C.( )2=4 D.± =2
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
4.(3 分)下列说法正确的是( ) A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查 B.调查黄河某段的水质情况,适合采用抽样调查 C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查 D.为了了解一批袋装食品是否含有防腐剂,选择全面调查
D.
,故本选项不合题意.
故选:C.
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
【分析】根据不等式的性质 1,可判断 A、B;根据不等式的性质 2,可判断 C;根据不 等式的性质 3,可判断 D. 【解答】解:A、不等式的两边都减 3,不等式的方向不变,故 A 正确; B、不等式的两边都减 b,不等号的方向不变,故 B 错误; C、不等式的两边都乘以 ,不等号的方向不变,故 C 错误;
个大长方形的面积为
cm2.
三、解答题(本大题共 7 个小题,共 55 分.解答应写出文字说明,证明过程或演算步骤) 16.(8 分)(1)计算: +| ﹣3|﹣ + ;
2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)
![2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)](https://img.taocdn.com/s3/m/0874a8801ed9ad51f11df22c.png)
绝密★启用前2020-2021学年第二学期期末教学质量检测八年级数学试题(五)满分150考试时间120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.在函数y =1x +中,自变量x 的取值范围是( ) A .x≥-1B .x >-1C .x <-1D .x≤-12.下列计算正确的是 ( ) A .3+9=12B .36=18⨯C .5+20=35D .2814=2÷3.如图,直线y =-x +2与x 轴交于点A ,则点A 的坐标是( )A .(2,0)B .(0,2)C .(1,1)D .(2,2)4.若代数式2k-在实数范围内有意义,则一次函数(2)2y k x k =--+的图象可能是( )A .B .C .D .5.下列运算正确的是( ) A .422xy y x -= B .()2239x x -=- C .()32528a a -=-D .642a a a ÷=6.如图所示,直线y x b =-+与直线2y x =都经过点()1,2--A ,则方程组2y x by x =-+⎧⎨=⎩的解为( )试卷第2页,总6页A .12x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩7.某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,88.已知(,)A m n ,(,)B a b ,且6AB =,若33(,)22C m n ,33(,)22D a b ,则CD 的长为( ) A .4B .9C .272D .839.以下列各组数据中,能构成直角三角形的是( ) A .2)3)4B .3)4)7C .5)12)13D .1)2)310.已知平面上四点A)0)0))B)10)0))C)12)6))D)2)6),直线y=mx)3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( ) A .13B .)1C .2D .1211.若一个四边形的两条对角线相等,则称这个四边形为对角线四边形.下列图形不是对角线四边形的是( ) A .平行四边形B .矩形C .正方形D .等腰梯形12.下列命题中,属于假命题的是( ). A .等角的余角相等B .在同一平面内垂直于同一条直线的两直线平行C .相等的角是对顶角D .有一个角是60°的等腰三角形是等边三角形第II 卷(非选择题)二、填空题13.若一次函数y=)a+3)x+a)3不经过第二象限,则a 的取值范围是________) 14.观察勾股数:3、4、5;8、6、10;15、8、17……则顺次第6组勾股数是_____. 15.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.16.如图,一次函数y kx b =+(0k <)的图象经过点A .当3y <时,x 的取值范围是________.17.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.18.当x_________时,分式23x -有意义.三、解答题19.小亮和爸爸登山,两人距离地面的高度y (米)与小亮登山时间x (分)之间的函数图象分别如图中折线OA AC -和线段DE 所示,根据函数图象进行以下探究:试卷第4页,总6页(1)爸爸开始登山时距离地面___________米,登山的速度是每分钟___________米. (2)求爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式. (3)小亮和爸爸什么时候相遇?求出相遇的时间.(4)若小亮提速后,他登山的速度是爸爸速度的3倍,问小亮登山多长时间时开始提速?20.如图,P 为正方形ABCD 的对称中心,正方形ABCD的边长为10,tan 3ABO ∠=,直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A 、D 、P 的坐标; (2)求)HCR 面积S 与t 的函数关系式; (3)当t 为何值时,)ANO 与)DMR 相似?(4)求以A 、B 、C 、R 为顶点的四边形是梯形时t 的值. 21.已知,如图,AB ∥CD)(1)则图①中的∠1+∠2的度数是180°.(2)则图②中的∠1+∠2+∠3的度数是多少?解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).所以∠1+∠AEF=180°.因为AB∥CD,所以CD∥EF.所以∠FEC+∠3=180°.所以∠1+∠2+∠3=360°.认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?22.如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)23.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B种电器每件70.设购买B种电器x件,购买两种电器所需费用为y元.(1)y与x的函数关系式为:(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.24.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?25.计算或化简:(101)3+-(2)+⎝试卷第6页,总6页参考答案1.B【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x+1≥0且1+x≠0,解得x≥-1且x≠-1自变量x的取值范围是x>-1.故选B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.C【解析】【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【详解】A.3,所以A选项错误;B. 原式=B选项错误;C. 原式D. 原式故选C.【点睛】本题考查二次根式的加、减、乘、除运算,熟练掌握二次根式的加减乘除运算是解决此题的关键.3.A【分析】答案第2页,总17页一次函数y =kx +b (k≠0,且k ,b 为常数)的图象是一条直线.令y=0,即可得到图象与x 轴的交点. 【详解】解:直线2y x =-+中,令0y =.则02x =-+. 解得2x =. ∴(2,0)A . 故选:A . 【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y =kx +b (k≠0,且k ,b 为常数)与x 轴的交点坐标是(−bk,0),与y 轴的交点坐标是(0,b ). 4.C 【分析】根据二次根式有意义的条件和分式有意义的条件得到2k <,则20k -<,20k -+>,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断. 【详解】在实数范围内有意义, ∴20k ->, ∴2k <,∴20k -<,20k -+>,∴一次函数(2)2y k x k =--+的图象经过第一、二、四象限, 故选:C . 【点睛】本题考查了一次函数的图形和性质,解题的关键是熟练掌握一次函数图形与系数之间的关系. 5.D 【分析】根据整式的加减、完全平方公式、积的乘方、同底数幂的除法逐项判断即可. 【详解】A 、4xy 与2y 不是同类项,不可合并,此项错误B 、()22369x x x -=-+,此项错误 C 、()3232362(2)()8a a a -=-⋅=-,此项错误D 、64642a a a a -÷==,此项正确 故选:D . 【点睛】本题考查了整式的加减、完全平方公式、积的乘方、同底数幂的除法,熟记各运算法则是解题关键. 6.B 【分析】 方程组2y x by x =-+⎧⎨=⎩的解即为直线y x b =-+与直线2y x =的交点坐标.根据图象交点坐标直接判断即可. 【详解】解:∵直线y x b =-+与直线2y x =都经过点A (-1,-2),∴方程组2y x b y x =-+⎧⎨=⎩的解为12x y =-⎧⎨=-⎩,故选:B 【点睛】本题考查了一次函数与二元一次方程组的关系,主要考查学生的观察图形的能力和理解能力,题目比较典型,是一道比较容易出错的题目. 7.B 【解析】 【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数. 【详解】解:要求一组数据的中位数,答案第4页,总17页把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50, 即众数是50, 故选:B. 【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 8.B 【解析】 【分析】根据勾股定理求出两点间的距离,进而得22m a)(n b)36-+-=(,然后代入CD=CD. 【详解】解:∵(,)A m n ,(,)B a b ,且6AB =, ∴6=, 则22m a)(n b)36-+-=(, 又∵33(,)22C m n ,33(,)22D a b ,=9, 故选:B. 【点睛】本题考查的是用勾股定理求两点间的距离,求出22m a)(n b)36-+-=(是解题的关键. 9.C【分析】根据勾股定理逆定理逐项计算判断即可.【详解】详解: A. )22+32=13≠42)) 2,3,4不能构成直角三角形;B. )32+42=25≠72)) 3,4,7不能构成直角三角形;C. )52+122=169=132)) 5,12,13能构成直角三角形;D. )12+22=5≠32)) 1,2,3不能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a )b )c 表示三角形的三条边,如果a 2+b 2=c 2,那么这个三角形是直角三角形.10.B【解析】如图,∵A(0,0),B (10,0),C (12,6),D (2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C 、D 的纵坐标相同,∴AB∥CD 且AB=CD ,∴四边形ABCD 是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线y=mx ﹣3m+6将四边形ABCD 分成面积相等的两部分,∴直线y=mx ﹣3m+6经过点P ,∴6m﹣3m+6=3,解得m=﹣1.故选B .【点睛】本题考查了平行四边形的判定以及平行四边形中心对称的性质,也就是过对角线交点的直线把平行四边形分成的两个部分的面积相等.11.A【解析】)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))A)12.C【详解】A 、等角的余角相等,正确;B 、在同一平面内垂直于同一条直线的两直线平行,正确;C 、相等的两个角不一定是对顶角,因此C 选项是假命题,D 、有一个角是60°的等腰三角形是等边三角形,正确,故选C.13.a≤-3【解析】∵一次函数y=(a+3)x+a ﹣3的图象不经过第二象限,)a+3<0,a -3≤0解得a<-3, a≤3)所以a<-3.故答案是:a≤-3)14.48,14,50.【详解】试题分析:观察所给数据的特点可知,每个数都可以用第n 组的组数n 表示,第一个数是()211n +-,第2个数是()21n +,第3个数是()211n ++,按照此规律即可写出第6组勾股数是48,14,50.故答案为48,14,50.考点:数字的规律变化类问题.15.135【解析】【分析】根据勾股定理可得AC 的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+(2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.16.x >2【详解】解:由图象可得,当3y =时,2x =,且y 随x 的增大而减小,则当3y <时,2x >故答案为:2x >.17.1秒或3.5秒【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t−8=6−t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8−3t=6−t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.18.≠3【分析】根据分式有意义,分母不为0解答.【详解】解:∵分式23x-有意义,∴x-3≠0,解得:x≠3,故答案为:≠3.【点睛】本题考查了分式有意义的条件,熟知分式有意义分母不为0是解题关键.19.(1)100,10;(2)y=10x+100;(3)小亮登山6.5分钟时与爸爸相遇;(4)小亮登山1.5分钟时开始提速.【分析】(1)由图象可知爸爸开始登山时距地面100米,用爸爸登山的路程除以登山的时间即可求速度;(2)根据函数图象上两点D (0,100),E (20,300),用待定系数法可求解析式; (3)把B 点纵坐标代入(2)中解析式,求出m 即可;(4)根据提速后的速度是爸爸的3倍,求出速度,再求出开始提速到相遇的时间即可.【详解】解:(1)由图象可知,爸爸开始登山时距离地面100米, 爸爸登山的速度为:3001001020-=(米/分); 故答案为100,10;(2)设DE 的解析式为y=kx+b,把D (0,100),E (20,300)代入得, 10030020b k b=⎧⎨=+⎩, 解得,10010b k =⎧⎨=⎩∴爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式为:y=10x+100; (3)把y=165代入y=10x+100得,165=10m+100,解得,m=6.5,∴小亮登山6.5分钟时与爸爸相遇;(4)∵小亮提速后,他登山的速度是爸爸速度的3倍,∴小亮提速后的速度为30米/分,16515530-=(分), 6.5-5=1.5(分),∴小亮登山1.5分钟时开始提速.【点睛】本题考查一次函数的应用,解题的关键是读懂图象,利用数形结合的数学思想,找出所求问题需要的条件.20.(1)C (4,1),D (3,4),P (2,2);(2)2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩;(3)2t =或3;(4) 4.5t =或134或13 【分析】(1)过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,由tan ∠ABO =3可知3OA OB =,设OA =3x ,则OB =x ,再根据正方形ABCD,利用勾股定理可求出OA 及OB 的长,由全等三角形的判定定理可得出△AOB ≌△BEC ≌△DF A ,故可得出CD 的坐标,利用中点坐标公式即可得出P 点坐标;(2)由RH 速度为1,且∠ROH =45°,可知tan ∠ROH =1,故RH 始终垂直于x 轴,RH =OH =t ,设△HCR 的边RH 的高为h ,4h t =-,再由三角形的面积公式即可得出结论;(3)过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,求出M 、N 两点坐标,再分∠DRM =45°和∠MDR =45°两种情况进行讨论;(4)分情况进行讨论,顶边和底边分别为BC 、AR ,此时BC ∥AR ,结合已知和已证求出R 点的坐标,求出t 即可;顶边、底边分别为CR 、AB ,此时CR ∥AB ,结合已知和已证求出R 点的坐标,求出t 即可.【详解】解:(1)如图,过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,∵tan ∠ABO =3, ∴3OA OB=, ∴设OB =x ,则OA =3x ,∵正方形ABCD,∴△AOB 中222OA OB AB +=,即2229x x +=,解得:1x =,∴OA =3,OB =1,∴A (0,3),∵∠OAB +∠ABO =90°,∠ABO +∠CBE =90°,∠CBE +∠BCE =90°,∴∠OAB =∠CBE ,∠ABO =∠BCE ,在△AOB 与△BEC 中,OAB CBE AB BCABO BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOB ≌△BEC ,同理可得,△AOB ≌△BEC ≌△DF A ,∴BE =DE =3,CE =AF =1,∴C (4,1),D (3,4),∵P 为正方形ABCD 的对称中心,∴P 是AC 的中点,∴点P (0+42,312+),即P (2,2), 故C (4,1),D (3,4),P (2,2);(2)∵RH 速度为1,且∠ROH =45°,∴tan ∠ROH =1,∴RH 始终垂直于x 轴,∴RH =OH =t ,设△HCR 的边RH 的高为h , 则4h t =-, ∴211422HCR S h t t t =⋅⋅=-+⋅,∴2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩; (3)如图,过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,由(1)可得:B (1,0),∴直线AB 的解析式为:33y x =-+;直线OP 的解析式为:y x =,联立33y x y x =-+⎧⎨=⎩, 解得:3434x y ⎧=⎪⎪⎨⎪=⎪⎩, 直线CD 的解析式为:313y x =-+,联立313y x y x=-+⎧⎨=⎩, 解得:134134x y ⎧=⎪⎪⎨⎪=⎪⎩∴M (134,134),∴44ON OM ==∵4DM =,4AN ==, 当∠MDR =45°时,∵∠AON =45°,∴∠MDR =∠AON ,∵AN ∥DM ,∴∠ANO =∠DMP ,∴△ANO ∽△RMD , ∴MR AN DM NO ==,解得:MR =,则OR OM MR =-=,则2t =,同理可得:当∠DRM =45°时,t =3,△ANO 与△DMR 相似,综上可知:t =2或3时当△ANO 与△DMR 相似;(4)以A 、B 、C 、R 为顶点的梯形,有三种可能:①顶边和底边分别为BC 、AR ,此时BC ∥AR .如图3,延长AD ,交OM 于点R ,则AD 的斜率为1tan 3BAO ∠=, ∴则直线AD 为:33x y =+, ∴则R 坐标为(4.5,4.5),∴则此时四边形ABCR 为直角梯形,则t =4.5;②顶边、底边分别为CR 、AB ,此时CR ∥AB ,且R 与M 重合,四边形ABCR 为梯形. 则CD 的斜率=-3,且直线CD 过点C ,∴直线CD 为:y -1=-3•(x -4),即y =-3x +13,∵OM 与CD 交于点M (即R ),∴点M (134,134),∴OM =, ∴134t =, ③当AC ∥BR 时,可求得AC 解析式为:132x y =-+,BR 解析式为:2122x y =-+, 联立:2122x y y x⎧=-+⎪⎨⎪=⎩,可求得R 坐标为(13,13), 此时13t =, 综上所述: 4.5t =或134或13. 【点睛】本题考查相似三角形的判定和性质,涉及到全等三角形的判定和性质、二次不等式,正方形的性质及梯形的判定定理,解答此题时要注意分类讨论,不要漏解.21.540°;(n -1)•180°.【分析】分别过C ,D 作CE)AB ,DF)AB ,则CE)DF)CD ,根据平行线的性质即可得到结论;根据角的个数n 与角的和之间的关系是(n -1)•180°,于是得到)1+)2+)3+)4+…+)n 的度数=(n -1)•180°.【详解】如图),分别过E ,F 作GE)AB ,HF)AB ,则AB)EG)FH)CD ,))A +)AEG =)GEF +)HFE =)C +)CFH =180°,))1+)2+)3+)4=)A +)AEG+)GEF +)HFE+)C +)CFH =540°=3×180°;由(1)(2)可得角的个数n 与角的和之间的关系是(n -1)•180°,))1+)2+)3+)4+…+)n 的度数为(n -1)•180°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键. 22.(1)y =x +1;(2)m 的值为1或﹣3.【分析】(1)根据待定系数法即可求解.(2)根据三角形的面积公式分点P 在点A 的右侧时与点P 在点A 的左侧分别求解即可.【详解】解:(1)设直线L 1的解析式为y =kx +b ,∵直线L 1经过点A (﹣1,0)与点B (2,3),∴023k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩. 所以直线L 1的解析式为y =x +1.(2)当点P 在点A 的右侧时,AP =m ﹣(﹣1)=m +1,有S △APB =12×(m +1)×3=3, 解得:m =1.此时点P 的坐标为(1,0).当点P 在点A 的左侧时,AP =﹣1﹣m ,有S △APB =12×|﹣m ﹣1|×3=3,解得:m =﹣3, 此时,点P 的坐标为(﹣3,0).综上所述,m 的值为1或﹣3.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的应用.23.(1)y=-20x+1890(x 为整数且0≤x ≤21);(2)费用最省的方案为购买A 种电器11件,B种电器10件,此时所需费用为1690元.【分析】(1)设购买B种电器x件,则购买A种电器(21-x)件,根据“总费用=A种电器的单价×购买A种电器数量+B种电器的单价×购买B种电器数量”即可得出y关于x的函数关系式;(2)根据购买B种电器的数量少于A种电器的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【详解】解:(1)设购买B种电器x件,则购买A种电器(21-x)件,由已知得:y=70x+90(21-x)化简得,y=-20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21-x,解得:x<10.5.∵y=-20x+1890中-20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种电器11件,B种电器10件,此时所需费用为1690元.【点睛】本题考查了一次函数的应用、解一元一次不等式以及一次函数的性质,解题的关键是:(1)根据数量关系列出y关于x的函数关系式;(2)根据数量关系列出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(不等式或函数关系式)是关键.24.选择乙.【解析】【分析】由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,【详解】形体、口才、专业水平、创新能力按照4:6:5:5的比确定,则甲的平均成绩为8649069659254655⨯+⨯+⨯+⨯+++=91.2.乙的平均成绩为9248869559354655⨯+⨯+⨯+⨯+++4+6+5+5=91.8.答案第16页,总17页乙的成绩比甲的高,所以应该录取乙.【点睛】本题考查加权平均数,熟练掌握计算方法是解题的关键.25.(1)4;(2)4.5【分析】(1)根据二次根式的乘法运算法则,零指数幂运算法则,绝对值的性质对各项进行化简,最后相加减即可;(2)先化为最简二次根式,最后根据平方差公式进行简便运算.【详解】解:(1)原式1321343=-+=-+=;(2)原式(333 4.52222⎛+=⨯⨯=⎝⎭==.【点睛】本题考查二次根式的混合运算,熟练掌握其运算法则是解题的关键,第(2)可利用平方差公式进行简便计算.。
2020年全国初中数学竞赛历年竞赛试题以及参考答案:八
![2020年全国初中数学竞赛历年竞赛试题以及参考答案:八](https://img.taocdn.com/s3/m/3283391abe1e650e52ea99de.png)
2020年全国初中数学竞赛试题八答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a =,则代数式32312612a a a +--的值为( ).(A )24 (B )25 (C )10 (D )12 2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ++,).如果对于任意实数u v ,, 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为( ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( ).(A )1 (B )2 (C )92 (D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 5.设3333111112399S =++++,则4S 的整数部分等于( ). (A )4 (B )5 (C )6 (D )7二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程(第8题)(第10题)20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223yx =于P ,Q 两点. (1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.(第13题)(第12题)。
河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)
![河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)](https://img.taocdn.com/s3/m/5dcce3bcaf1ffc4fff47acc9.png)
2021年河北省衡水中学高考数学第二次联考试卷(理科)(全国Ⅱ)一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5} 2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.14.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.138.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.49.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.101112.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b二、填空题(共4小题).13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为.14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为.16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC =,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.参考答案一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5}解:由题意得∁U B={1,3,5},所以A∩∁U B={5}.故选:A.2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.解:由sinα>0,cosα<0,可得α∈(2kπ+,2kπ+π),k∈Z,对于A,可得sin2α=2sinαcosα<0,错误;对于B,当α∈(2kπ+,2kπ+π),k∈Z时,cosα∈(﹣1,0),此时cos2α=2cos2α﹣1∈(﹣1,1),错误;对于C,因为∈(kπ+,kπ+),k∈Z,可得,正确;对于D,因为∈(kπ+,kπ+),k∈Z,当k为偶数时,可得sin>0,错误;故选:C.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.1解:因为z=a+(a﹣1)i,所以,所以|z|的最小值为,故选:B.4.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或解:过点(0,1)和(2,1),半径为的圆的圆心(1,﹣1)或(1,3).过点(0,1),(2,1)且半径为的圆的方程为(x﹣1)2+(y+1)2=5或(x﹣1)2+(y﹣3)2=5,则圆心到直线y=2x﹣1的距离为或,则弦长=.故选:B.5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.解:设该四棱锥为P﹣ABCD,则由题意可知四棱锥P﹣ABCD满足底面ABCD为矩形,则:平面PDC⊥平面ABCD,且PC=PD=3,AB=4,AD=2.如图,过点P作PE⊥CD,则PE⊥平面ABCD,连接AE,可知∠PAE为直线PA与平面ABCD 所成的角,则,,所以.故选:C.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.解:双曲线的焦点F(c,0)到渐近线bx±ay=0的距离为,解得,所以.又c2=a2+b2,所以b2=3a2.因为点在双曲线上,所以,所以a2=3,b2=9,所以双曲线的方程为.故选:D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.13解:由12∧m=1100∧n=0001,可得n=1101,表示成十进制为13,所以m=13.故选:D.8.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.4解:因为f(2+x)=f(2﹣x),所以f(4+x)=f(﹣x),因为f(x)是奇函数,所以f(﹣x)=﹣f(x),所以f(4+x)=﹣f(x),所以f(8+x)=﹣f(x+4)=f(x),所以8为f(x)的一个周期,故②正确;由f(8+x)=f(x)可得f(8﹣x)=f(﹣x)=﹣f(x),所以f(8﹣x)+f(x)=0,故①正确;为奇函数满足f(x)+f(﹣x)=0,且一条对称轴为直线x=2,故③正确;由f(x)为奇函数且定义域为R知,f(0)=0,又f(x)为周期函数,所以f(x)有无数个零点,故④正确.故选:D.9.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.解:设球O的半径为R,由球的体积为可得,,解得R=2.因为三棱锥P﹣ABC的高h为1,所以球心O在三棱锥外.如图,设点O1为△ABC的外心,则OO1⊥平面ABC.在Rt△AO1O中,由,且OO1=R﹣h=1,得.因为△ABC为等边三角形,所以,所以.故选:C.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.解:抛掷两颗正四面体骰子观察底面上的数字之和为5有4种情况,得点数之和为5的概率为,第n次由甲掷有两种情况:一是第n﹣1由甲掷,第n次由甲掷,概率为,二是第n﹣1次由乙掷,第n次由甲掷,概率为.这两种情况是互斥的,所以,即,所以,即数列是以为首项,为公比的等比数列,所以,所以.故选:A.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.1011解:由题意得a1=﹣1,a2=0,a3=3,a4=﹣2,a5=5,a6=4,a7=5,a8=﹣2,a9=﹣7,a10=0,a11=﹣1,a12=0,…∴数列{a n}为周期数列,且周期为10,因为S10=5,所以S2021=5×202+(﹣1)=1009,故选:C.12.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b解:因为,所以a<b.因为函数f(x)=e x ln|x|在区间(0,+∞)上单调递增,所以b,c,d中b最小.构造函数g(x)=x﹣elnx,则,当x≥e时,g'(x)≥0,所以g(x)在区间[e,+∞)上单调递增,所以g(3)=3﹣eln3>g(e)=0,所以3>eln3.所以e3>3e,所以d>c,所以d>c>b>a.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为[0,4].解:,,设与的夹角为α,则:,∵α∈[0,π],∴0≤8﹣8cosα≤16,∴,∴的取值范围为[0,4].故答案为:[0,4].14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为48.解:按乙到达的名次顺序进行分类:乙第二个到达有A21A22=4种,乙第三个到达有A21A21A22=8种,乙第四个到达有A32A22=12种,乙最后到达有A44=24种,所以不同的情况种数为4+8+12+24=48.故答案为:48.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为3n或(3n2+3n).解:设等差数列{a n}的公差为d,由a2=3,可得a1+d=3,①由a3是a1与a9的等比中项,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),化为da1=d2,②由①②可得a1=d=或a1=3,d=0,当a1=3,d=0时,=a2+a4+…+a2n=3+3+…+3=3n;当a1=d=时,=a2+a4+…+a2n=3+6+…+3n=(3n2+3n).故答案为:3n或(3n2+3n).16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为②③④.解:对于①,当长方体为正方体时,BD1⊥AC,故①错误;对于②,如图,设AD=x,则AA1=2﹣x(0<x<2),所以,当x=1时,BD1的最小值为,即长方体ABCD﹣A1B1C1D1外接球的直径为,所以外接球表面积的最小值为3π,故②正确;对于③,设点E到平面A1B1D的距离为h,如图,由,可得,所以由②可知,,其中,当且仅当x=2﹣x,即x=1时等号成立,,当且仅当x=2﹣x,即x=1时等号成立,所以,当且仅当x=2﹣x,即x=1时,等号成立,故③正确;对于④,该长方体的表面积为S=2x+2x(2﹣x)+2(2﹣x)=4+4x﹣2x2=﹣2(x﹣1)2+6,当x=1时,S的最大值为6,故④正确.故答案为:②③④.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC=,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.解:(1)在△ABC中,,由余弦定理得.因为0<∠ABC<π,所以,所以.(2)由知,BC∥AD,所以△BCE∽△DAE,所以,所以DE=2BE.因为BD=2,所以.所以.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.解:用A i表示第i位同学选择A组合,用B i表示第i位同学选择B组合,用∁i表示第i 位同学选择C组合,i=1,2,3.由题意可知,A i,B i,∁i互相独立,且.(1)三位同学恰好选择不同组合共有种情况,每种情况的概率相同,故三位同学恰好选择不同组合的概率为:.(2)由题意知η的所有可能取值为0,1,2,3,且η~B(3,),所以,,,,所以η的分布列为η0123P所以.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.【解答】(1)证明:如图,取BF的中点Q,连接PQ,AQ.因为P,Q为CF,BF的中点,所以PQ∥BC,且.又因为AD∥BC,BC=2AD,所以PQ∥AD,且PQ=AD,所以四边形ADPQ为平行四边形,所以DP∥AQ.又AQ⊂平面ABFE,DP⊄平面ABFE,所以DP∥平面ABFE.(2)解:因为平面ABCD⊥平面BAEF,平面ABCD∩平面BAEF=AB,FB⊥AB,FB⊂平面BAEF,所以FB⊥平面ABCD.又BC⊂平面ABCD,所以FB⊥BC.又AB⊥FB,AB⊥BC,所以以B为坐标原点,分别以BA,BC,BF所在直线为x,y,z轴建立如图所示的空间直角坐标系.设BC=2,则.设平面DEF的一个法向量为,则,令z=1,得.易知平面BCF的一个法向量为,所以.所以平面DEF与平面BCF所成锐二面角的余弦值为.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.【解答】(1)解:由可知,点(x,y)到点(﹣1,0),(1,0)的距离之和为4,且4>2,根据椭圆的定义可知,曲线C为焦点在x轴上的椭圆.设椭圆的长轴长为2a,焦距为2c,则2a=4,2c=2,所以曲线C的离心率为.(2)证明:设椭圆的短轴长为2b,由(1)可得b2=a2﹣c2=3,所以曲线C的方程为,则F(1,0).由题意可知,动直线l的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),由,得(3+4k2)x2﹣8k2x+4(k2﹣3)=0,所以.设AB的中点为Q(x0,y0),则,.当k≠0时,线段AB的垂直平分线的方程为,令y=0,得,所以,==,所以.当k=0时,l的方程为y=0,此时,.综上,为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.解:(1)由题意知函数f(x)的定义域为(0,+∞),因为f(x)=x+alnx,a∈R,所以,①当a≥0时,f'(x)>0在区间(0,+∞)上恒成立,所以函数f(x)的单调递增区间为(0,+∞),无单调递减区间;②当a<0时,令f'(x)>0,得x>﹣a,令f'(x)<0,得0<x<﹣a,所以函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);综上:当a≥0时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a<0时,函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);(2)方程g(x)=mf(x)有两个实根,即关于x的方程x2e x﹣m(x+2lnx)=0有两个实根,即函数h(x)=x2e x﹣m(x+2lnx)有两个零点,又h(x)=x2e x﹣m(x+2lnx)=e x+2lnx﹣m(x+2lnx),令t=x+2lnx,由(1)得t是关于x的单调递增函数,且t∈R,所以只需函数u(t)=e t﹣mt有两个零点,令u(t)=0,得,令,则,易知当t∈(﹣∞,1)时,φ(t)单调递增,当t∈(1,+∞)时,φ(t)单调递减,所以当t=1时,φ(t)取得最大值,又因为当t<0时,φ(t)<0,当t>0时,φ(t)>0,φ(0)=0,则函数的图象如图所示:所以当,即m∈(e,+∞)时,函数h(x)有两个零点,所以实数m的取值范围为(e,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.解:(1)由(α为参数),消去参数α,得曲线C1的普通方程为(x﹣1)2+(y﹣1)2=4,由,得,令x=ρcosθ,y=ρsinθ,得x﹣y=b,所以曲线C2的直角坐标方程为x﹣y﹣b=0.(2)设P(1+2cosα,1﹣2sinα),因为点P到直线x﹣y﹣b=0的距离为1,所以,化简得①.若关于α的方程①有解,则曲线C1上存在点P到曲线C2的距离为1,所以②,或③由②得,由③得,所以b的取值范围为.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.【解答】(1)解:由题意得f(x)=|2x﹣4|+|x+1|,当x≥2时,原不等式可化为3x﹣3≤9,解得x≤4,故2≤x≤4;(1分)当﹣1≤x<2时,原不等式可化为5﹣x≤9,解得x≥﹣4,故﹣1≤x<2;当x<﹣1时,原不等式可化为﹣3x+3≤9,解得x≥﹣2,故﹣2≤x<﹣1.综上,不等式f(x)≤9的解集为[﹣2,4].(2)证明:因为≥=,且ab>0,高中数学资料群734924357所以,当且仅当或时等号成立,高中数学资料群734924357。
八年级数学竞赛例题专题讲解12:心中有数 含答案
![八年级数学竞赛例题专题讲解12:心中有数 含答案](https://img.taocdn.com/s3/m/a92ada045727a5e9856a61a7.png)
专题12 心中有数阅读与思考现代社会是一个数字化的社会,我们每个人每天都要和各种各样的数字打交道,从国民生产总值、人均消费水平、人口自然增长率、股市综合指数,到家庭的水、电、煤气的月平均数,学生的身高、体重、考试成绩,都与数字有关.“用数据说话”已成为从事许多工作的基本要求,能用数据说话的人必须具备一定的统计知识.对数据进行收集、整理、计算、分析,并在此基础上作出科学的推断,这就是数据分析,是统计学研究的基本范畴和方法,收集数据、量化处理的目的在于运用统计结果进行判断和决策.统计学的基本思想就是用样本对总体进行估计、推理,即用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律,是从局部看整体的思想方法.例题与求解【例l 】 在对某班的一次数学测试成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分).请观察图形,并回答下列问题:(1)该班有________名学生.(2)69.5~79.5这一组的频数是_________,频率是_________.(3)请估算该班这次测验的平均成绩.(黄冈市中考试题)解题思路:从频率直方图中捕捉相关信息.【例2】 某学生通过先求x 与y 的平均值,再求得数与z 的平均值来计算x ,y ,z 三个数的平均数.当z y x <<时,这个学生的最后得数是( )A .正确的B .总小于AC .总大于AD .有时小于A ,有时等于AE .有时大于A ,有时等于A(第二届美国中学生邀请赛试题)解题思路:按不同方法计算平均值,作差比较它们的大小.【例3】 某校九年级学生共有900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少.(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min 跳绳次数的平均值.(安徽省中考试题)解题思路:本题考查了频率、频数的概念和对频数直方图的认识,要理解各组频率之和为1,各组频数之和等于总数,掌握好这些知识点,自然可以解决问题.(每组数据含左端点值不含右端点值)【例4】 编号为1到25的25个弹珠被分放在两个篮子A 和B 中,15号弹珠在篮子A 中,把这个弹珠从篮子A 移至篮子B 中,这时篮子A 中的弹珠号码数的平均数等于原平均数加41,篮子B 中弹珠号码数的平均数也等于原平均数加41.问原来在篮子A 中有多少个弹珠? (第十六届江苏竞赛试题)解题思路:用字母分别表示篮子A ,B 中的弹珠数及相应的平均数,运用方程(组)来求解.【例5】某次数学竞赛共有15道题,下表是对于做对n(n=0,1,2,…,15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了多少人?(全国初中数学联赛试题)解题思路:从统计表中可知做对0~3道题、12~15道题的相应总人数和总题数,结合已知条件,运用方程(组)、不等式(组)等知识方法求解.【例6】一次中考模拟考试中,两班学生数学成绩统计如下:请你根据学过的统计学知识,判断这两个班在这次模拟考试中的数学成绩谁优谁次?并说明理由.解题思路:这是一道开放性试题,看考虑问题是从哪一个侧面入手.本题因未说明从何种角度来考虑,故我们应多想几套方案.能力训练A级1.大连是一个严重缺水的城市,为鼓励市民珍惜每一滴水,某居委会表彰了100个节约用水模范户,5月份这100户节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为(精确到0.01吨)_________吨.(大连市中考试题)2.某班全体学生进行了一次篮球投篮练习,每人投球10个,每投进一球得1分.得分的部分情况如下表所示:已知该班学生中,至少得3分的人的平均得分为6分,得分不到8分的人的平均得分为3分,那么该班学生有___________人.(江苏竞赛试题)3.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7 8 6 8 6 5 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7所以应确定_______去参加射击比赛. 4.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4,若这组数据 的平均数是5,则这组数据的中位数是_________件.(包头市中考试题)5.如果一组数据1x ,2x ,3x ,4x ,5x 的平均数是x ,则另一组数据1x ,12+x ,23+x ,34+x ,45+x 的平均数是( )A .xB .2x +C .52x + D .10x + (天津市中考试题)6.10名工人某天生产同一零件,生产的件数是45,50,75,50,20,30,50,80,20,30.设这些零件数的平均数为a ,众数为b ,中位数为c ,那么( )A . c b a <<B .a c b <<C .b c a <<D .c a b <<(宁夏中考试题)7.为了了解某区九年级7 000名学生,从中抽查了500名学生的体重.就这个问题而言,下列说法正确的 是( )A .7 000名学生是总体B .每个学生是个体C .500名学生是样本D .样本容量为5008.已知1~99中有49个偶数,从这49个偶数中取出48个数,其平均数为12549,则未取的数字是( ) A .20 B .28 C .72 D .78(台湾省中考试题)9.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示:(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.第五次第四次第三次第二次16151413121110第一次次数得分甲:乙:(安徽省中考试题)10.某校要从九年级(1)班和(2)班中各选取10名女同学组成礼仪队,选取的女生身高如下:(单位:厘米)(1)班:168 167 170 165 168 166 171 168 167 170(2)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.(2013宁夏回族自治区中考试题)11.为估计一次性木质筷子的用量,2011年从某县共600家高、中、低档饭店中抽取10家作样本.这些饭店每天消耗的一次性筷子盒数分别为:0.6,3.7,2.2,1.5,2.8,1.7,1.2,2.1,3.2,1.0.(1)通过对样本的计算,估计该县1999年消耗多少盒一次性筷子(每年按350个营业日计算);(2)2013年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店每个饭店平均每天使用一次性筷子2.42盒.求该县2012年、2013年这两年一次性木质筷子用量平均每年增长的百分率(2012年该县饭店数、全年营业天数均与2011年相同);(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.073m ,求该县2013年使用一次性筷子的木材可以生产多少套学生桌椅?计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5g ,所用木材的密度为0.5×1033/m kg ;(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来.12.由9位裁判给参加健美比赛的12名运动员评分.每位裁判对他认为的第1名运动员给1分,第2名运动员给2分,…,第12名运动员给12分,最后评分结果显示:每个运动员所得的9个分数中高、低之差都不大于3.设各运动员的得分总和分别为1c ,2c ,…,12c ,且1221c c c ≤≤,求1c 的最大值.(第十九届江苏省竞赛试题)B 级1.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:A 、测量少体校中180名男子篮球、排球队员的身高;B 、查阅有关外地180名男生身高的统计资料;C 、在本市的市区和郊县各任选一所完全中学、两所初级中学,在这六所学校有关年级的(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.问:(1)为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?答:选________;理由:______________________________________________________________(2)下表中的数据是使用了某种调查方法获得的:初中男生身高情况抽样调查表(注:每组可含最低值,不含最高值)①根据表中的数据填写表中的空格;②根据填写的数据绘制频数分布直方图.193183173163153143(上海市中考试题)2.其中1a ,2a ,3a ,…,8a 是从小到大排列的两位数,且每个两位数与它的反序数(12的反序数是21)之和都为完全平方数,样本的方差是________.(辽宁锦州市竞赛试题)3.五名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米,前两名的平均身高为c ,后三名的平均身高为d ,则2b a +与2d c +比较( ) A .2b a +大 B .2d c +大 C .两者相等 D .无法确定 (“五羊杯”邀请赛试题)4.已知数据1x ,2x ,3x 的平均数为a ,1y ,2y ,3y 的平均数为b ,则数据1132y x +,2232y x +,3332y x +的平均数为( )A .b a 32+B .b a +32 C .b a 96+ D .b a +2 (全国初中数学竞赛试题)5.小林拟将1,2,…,n 这n 个数输入电脑,求平均数.当他认为输入完毕时,电脑显示只输入)1(-n 个数,平均数为7535,假设这)1(-n 个数输入无误,则漏输入的一个数是( )A .10B .53C .56D .67(江苏省竞赛试题)6.如图,△ABC 是一块锐角三角形余料,边BC =120mm ,高AD =80mm ,要把它加工成一个矩形零件,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上.设该矩形的长QM =y mm ,宽MN =x mm .(1)求证:x y 23120-=; (2)当矩形PQMN 的面积最大时,它的长和宽是关于t 的一元二次方程0200102=+-q pt t 的两个根,而p 、q 的值又恰好分别是a ,10,12,13,b 这5个数据的众数与平均数,试求a 与b 的值.(广西壮族自治区中考试题)E NC MD Q BP A7.某班参加一次智力竞赛,共a ,b ,c 三道题,每题或者得满分或者得0分.其中题a 满分20分, b 、c 题满分都为25分,竞赛结果:每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a 的人数与答对题b 的人数之和为29;答对题a 的人数与答对题c 的人数之和为25;答对题b 的人数与答对题c 的人数之和为20,问这个班的平均成绩是多少.(全国初中数学联赛试题)8.元旦联欢会某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小敏测量了部分彩纸链的长度,她得到的数据如下表:(1)把上表中x 、y 想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?(济南市中考试题)9.某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?(山东省中考试题)10.“中国梦”关乎每个人的幸福生活.为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:请根据上表提供的信息,解答下列问题:(1)表中的x的值为________,y的值为_______;(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.(2013年成都市中考试题)。
2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷(北师大版 含答案)
![2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷(北师大版 含答案)](https://img.taocdn.com/s3/m/61d4c208182e453610661ed9ad51f01dc381574c.png)
2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题3分,共24分)1.(3分)下列各数中,是无理数的是()A.B.C.D.2.(3分)某校八年级进行了三次数学测试,甲、乙、丙、丁4名同学三次数学成绩的平均分都是109分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学三次数学成绩最稳定的是()A.甲B.乙C.丙D.丁3.(3分)若点P是平面直角坐标系中第二象限内的点,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)4.(3分)如图,AB⊥AE于点A,AB∥CD,∠CAE=42°,则∠ACD=()A.112°B.122°C.132°D.142°5.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是()日走时误差(秒)0123只数(只)3421 A.0B.0.6C.0.8D.1.16.(3分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.7.(3分)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)8.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.二、填空题(每小题4分,共20分)9.(4分)16的算术平方根是.10.(4分)如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB 的度数为°.11.(4分)祖冲之是我国著名的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.随着科技的不断发展,人们开始使用计算机来计算圆周率的小数位.数学杨老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于.13.(4分)如图,等边△ABC中,AB=BC=AC=5,点M是BC边上的高AD所在直线上的点,以BM为边作等边△BMN,连接DN,则DN的最小值为.三.(本题10分)14.(10分)如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED 的度数.四、(本题10分)15.(10分)从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)五、(本题10分)16.(10分)列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?六、(本题12分)17.(12分)为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛,并随机抽取了50名学生的竞赛成绩(竞赛成绩为百分制,本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含左端点值,不含右端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)第二组的学生人数是人;(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的有多少人?七、(本题14分)18.(14分)在Rt△ABC中,∠ACB=90°,CB=CA=2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题3分,共24分)1.(3分)下列各数中,是无理数的是()A.B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【解答】解:A、=2,2是整数,属于有理数,故此选项不符合题意;B、=2,2是整数,属于有理数,故此选项不符合题意;C、是分数,属于有理数,故此选项不符合题意;D、属于无理数,故此选项符合题意.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.(3分)某校八年级进行了三次数学测试,甲、乙、丙、丁4名同学三次数学成绩的平均分都是109分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学三次数学成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】利用方差的意义求解即可.【解答】解:∵s甲2=3.6,s乙2=46,s丙2=6.3,s丁2=7.3,∴s甲2<s丙2<s丁2<s乙2,∴这4名同学三次数学成绩最稳定的是甲,故选:A.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.(3分)若点P是平面直角坐标系中第二象限内的点,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)【分析】根据第二象限内点的特点及点到坐标轴的距离定义,即可判断出点P的坐标.【解答】解:点P到x轴的距离是2,则点P的纵坐标为±2,点P到y轴的距离是3,则点P的横坐标为±3,由于点P在第二象限,故P坐标为(﹣3,2),故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)如图,AB⊥AE于点A,AB∥CD,∠CAE=42°,则∠ACD=()A.112°B.122°C.132°D.142°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.【解答】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.5.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是()日走时误差(秒)0123只数(只)3421 A.0B.0.6C.0.8D.1.1【分析】利用加权平均数的定义求解即可.【解答】解:这10只手表的平均日走时误差是=1.1(秒),故选:D.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.(3分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是一次函数的交点坐标.7.(3分)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【解答】解:A、因为一次函数y=﹣2x+4中k=﹣2<0,因此函数值随x的增大而减小,故A选项正确;B、因为一次函数y=﹣2x+4中k=﹣2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故B选项正确;C、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故C选项正确;D、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.8.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.【点评】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.二、填空题(每小题4分,共20分)9.(4分)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.10.(4分)如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB 的度数为50°.【分析】根据平行线的性质定理,垂线的定义,三角形的内角和定理即可得到结论.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵CD∥AB,∴∠ACD+∠A=180°,即∠ACB+∠DCB+∠A=180°,∵∠A=40°,∴∠DCB=180°﹣∠ACB﹣∠A=180°﹣90°﹣40°=50°.故答案为:50.【点评】本题考查了三角形的内角和,平行线的性质,垂线的定义,熟练掌握平行线的性质定理,三角形的内角和定理是解题的关键.11.(4分)祖冲之是我国著名的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.随着科技的不断发展,人们开始使用计算机来计算圆周率的小数位.数学杨老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.【分析】直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9.故答案为:9.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于﹣1.【分析】把P(a,b)代入一次函数解析式得到b=3a+2,然后把b=3a+2代入3a﹣b+1后进行整式的加减运算即可.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b+1=3a﹣(3a+2)+1=3a﹣3a﹣2+1=﹣1.故答案为﹣1.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.13.(4分)如图,等边△ABC中,AB=BC=AC=5,点M是BC边上的高AD所在直线上的点,以BM为边作等边△BMN,连接DN,则DN的最小值为.【分析】连接CN,由“SAS”可证△ABM≌△CBN,可得AM=CN,∠BAD=∠BCN=30°,则点N在与BC成30度的射线CN上运动,当DN⊥CN时,DN有最小值,由直角三角形的性质可求解.【解答】解:如图,连接CN,∵△ABC和△BMN是等边三角形,∴AB=BC,BM=BN,∠ABC=∠MBN=60°,∴∠ABM=∠CBN,∵AD⊥BC,∴∠BAD=∠CAD=30°,BD=CD=,在△ABM和△CBN中,,∴△ABM≌△CBN(SAS),∴AM=CN,∠BAD=∠BCN=30°,∴点N在与BC成30度的射线CN上运动,∴当DN⊥CN时,DN有最小值,∵DN⊥CN,∠BCN=30°,∴DN=CD=,故答案为.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质等知识,确定点N的运动轨迹是本题的关键.三.(本题10分)14.(10分)如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED 的度数.【分析】根据平行线的性质得出∠BAE+∠AED=180°,∠BAC+∠C=180°,求出∠BAC,根据角平分线的定义求出∠BAE,再求出答案即可.【解答】解:∵AB∥CD,∴∠BAE+∠AED=180°,∠BAC+∠C=180°,∵∠C=50°,∴∠BAC=130°,∵AE平分∠BAC,∴∠BAE=BAC=65°,∴∠AED=180°﹣∠BAE=115°.【点评】本题考查了平行线的性质和角平分线的定义,注意:两直线平行,同旁内角互补.四、(本题10分)15.(10分)从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)【分析】(1)设v与t之间的函数关系式为v=kt+b,由待定系数法求出其解就可以得出结论;(2)根据(1)的一次函数的解析式的性质就可以求出结论.【解答】解:(1)设v与t之间的函数关系式为v=kt+b,由题意,得,解得:.故v与t之间的函数关系式为v=﹣10t+25.(2)物体达到最高点,说明物体向上的速度为0,则0=﹣10t+25,解得t=2.5.答:经过2.5秒,物体将达到最高点.【点评】本题是一次函数的应用,考查了待定系数法求一次函数的解析式的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.五、(本题10分)16.(10分)列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?【分析】设小颖上坡用了x分钟,下坡用了y分钟,根据“小颖家离学校1880米,且去学校共用了16分钟”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设小颖上坡用了x分钟,下坡用了y分钟,依题意得:,解得:.答:小颖上坡用了11分钟,下坡用了5分钟.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.六、(本题12分)17.(12分)为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛,并随机抽取了50名学生的竞赛成绩(竞赛成绩为百分制,本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含左端点值,不含右端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)第二组的学生人数是10人;(2)第三组竞赛成绩的众数是76分,抽取的50名学生竞赛成绩的中位数是78分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的有多少人?【分析】(1)根据各组数据的和为50可求出第二组的学生数;(2)根据众数、中位数的意义求解即可;(3)样本中成绩不低于80分的占调查人数的,因此估计总体1500人的是成绩不低于80分的人数.【解答】解:(1)50﹣4﹣12﹣20﹣4=10(人),故答案为:10;(2)第三组学生竞赛成绩出现次数最多的是76,因此众数是76,将50名学生的竞赛成绩从小到大排列后,处在中间位置的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),答:该校1500名参赛学生成绩不低于80分的大约有720人.【点评】本题考查频数分布直方图、中位数、众数的意义,掌握中位数、众数的意义是求出答案的前提,理解频数分布直方图的意义是解决问题的关键.七、(本题14分)18.(14分)在Rt△ABC中,∠ACB=90°,CB=CA=2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.【分析】(1)①证明△BCD≌△ACE得∠CAF=∠B,再根据等腰直角三角形的性质便可得结果;②连接DE,证明∠DAE=90°,由勾股定理求得DE,再解Rt△CDE得CD的长度;(2)证明△BCD≌△ACE得∠CAF=∠CBD,再根据等腰直角三角形的性质和勾股定理便可得结果.【解答】解:(1)①∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠B=∠CAE,∵∠ACB=90°,AC=BC,∴∠B=45°,∴∠CAE=45°;②连接DE,如图1,∵∠ACB=90°,AC=BC,CB=CA=2,∴∠B=∠BAC=45°,AB=,∵△BCD≌△ACE,∴∠B=∠CAE=45°,BD=AE=1,∴∠DAE=90°,AD=AB﹣BD=3,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE=;(2)∠CAE=135°,CD=.根据题意作出图形,连接DE,如图2,∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠BCE=∠DCE﹣∠BCE,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠CBD=∠CAE,BD=AE=1,∵∠ACB=90°,CB=CA=2,∴AB=,∠ABC=∠BAC=45°,∴∠CAE=∠CBD=180°﹣∠ABC=135°,AD=AB+BD=4+1=5,∴∠DAE=∠CAE﹣∠CAB=135°﹣45°=90°,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE=.【点评】本题主要考查了等腰直角三角形的性质,全等三角形的性质与判定,勾股定理,关键是证明三角形的全等.。
2020-2021学年沪科新版七年级下册数学第8章《整式乘法与因式分解》竞赛题
![2020-2021学年沪科新版七年级下册数学第8章《整式乘法与因式分解》竞赛题](https://img.taocdn.com/s3/m/f63cadd6bed5b9f3f90f1cf9.png)
=
【点睛】
本题考查了实数的运算以及运用平方差公式因式分解,因式分解后观察发现数字间的规律是解答本题的关键.
13.-1
【分析】
将 利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.
【详解】
解:∵
∴
∵ห้องสมุดไป่ตู้
∴
∴
故答案为:-1.
【点睛】
本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.
解得,a=3或a=1或a=﹣1,
故答案为:3或1或﹣1.
【点睛】
本题属于新定义题型,考查了幂的运算,零指数幂,负整数指数幂,熟练掌握1的任何次幂都等于1、-1的偶数次幂等于1、非零数的零指数幂等于1是解题的关键.
12.
【分析】
先运用平方差公式对各括号内因式分解,然后寻找规律解答即可.
【详解】
解:
=
=
2020-2021学年沪科新版七年级下册数学第8章《整式乘法与因式分解》竞赛题
学校:___________姓名:___________班级:___________考号:___________
一,单项选择题(本大题共8小题)
1.已知 满足 , ,则 的值为()
A.4B.1C.0D.-8
2.算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()
A.8B.6C.4D.2
3.已知a﹣b=b﹣c=2,a2+b2+c2=11,则ab+bc+ac=( )
A.﹣22B.﹣1C.7D.11
4.已知2n+212+1(n<0)是一个有理数的平方,则n的值为( )
2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)
![2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)](https://img.taocdn.com/s3/m/733946d0dd36a32d7275817d.png)
2020-2021学年安徽省九年级(上)月考数学试卷(二)一、选择题(本大题共10小题,共40.0分)1.已知2a=3b,则a−bb的值为()A. 12B. −12C. 13D. −132.若反比例函数y=2−kx的图象分布在第二、四象限,则k的取值范围是()A. k<−2B. k<2C. k>−2D. k>23.如图,点D在△ABC的边AB上,DE//BC,DE交AC于点E,EF//AB交BC于点F,下列比例式不成立的是()A. ADDB =BFFCB. ADAB =BFBCC. DEBC =EFABD. DBAB =CFBC4.把二次函数y=−2x2+4x−1配方成顶点形式y=−2(x+ℎ)2+k,则h,k的值分别为()A. ℎ=−1,k=1B. ℎ=−1,k=−2C. ℎ=1,k=1D. ℎ=1,k=−35.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A. ∠CBA=2∠AB. 点B是DE的中点C. CE⋅CD=CA⋅CBD. CECA =BEAD6.肚脐眼是人上下身的分界点,已知某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,若该人的身高约为1.8米,则他的上身长度约为()(精确到0.1米)A. 0.9米B. 1.0米C. 1.1米D. 1.2米7.如图,在矩形ABCD中,AB=24,AD=10,将矩形ABCD沿某直线折叠,使点A与点C重合,折痕与AB交于点M,与CD交于点N,则线段MN的长是()A. 5B. 12C. 6512D. 6568.已知抛物线y=−x2−4x+5,下列说法正确的是()A. 抛物线与y轴的交点位于y轴的负半轴上B. 当x>−2时,函数值y随x的增大而减小C. 若2≤x≤5,则函数一定有最大值是9D. 抛物线与x轴的交点坐标是(−1,0)和(5,0)9.如图,△ABC中,CA=CB=5cm,AB=8cm,直线l经过点A且垂直于AB,现将直线l以1cm/s的速度向右匀速移动,直至经过点B时停止移动,直线l与边AB交于点M,与边AC(或CB)交于点N.若直线l移动的时间是x(s)、△AMN的面积为y(cm2),则y与x之间函数关系的图象是()A. B.C. D.10.如图,△ABC中,∠ACB=90°,CA=CB=3√2,点D、E分别在边AB,BC上,且∠CDE=45°,下列结论中:①△CAD∽△DBE;②若点D是AB的中点,则点E也是BC的中点;③若点D是AB的三等分点,则BE的长是4√2,其中正确的结3论有()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共4小题,共20.0分)11.已知a=3,b=6,则a,b的比例中项是______.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则a+b+c______0(填“>”或“=”或“<”).13.如图,点A(2,4)在第一象限,点B(b,3)在第二象限,且OA⊥OB,反比例函数y=(k≠0)的图象经过点B,则k的值为______.−kx14.如图,在矩形ABCD中,点E是边CD上一点,连接BE,过点C作CG⊥BE于G,CG的延长线交AD于F,连接DG并延长交BC于H,且点H恰好是BC的中点.(1)若∠CBE=35°,则∠CDH=______°.(2)若CE=6,DE=2,则DF的长是______.三、解答题(本大题共9小题,共90.0分)15.已知a:b:c=2:3:4,求a−3b−c的值.b16.如图,抛物线y=2x2+bx−2过点A(−1,m)和B(5,m).(1)求b和m的值;(2)若抛物线与y轴交于点C,求△ABC的面积.17.如图,小明为了测量大树AB的高度,在离B点21米的N处放了一个平面镜,小明沿BN方向后退1.4米到D点,此时从镜子中恰好看到树顶的A点,已知小明的眼睛(点C)到地面的高度CD是1.6米,求大树AB的高度.18.如图,在10×10网格中,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)画出△ABC以点O为位似中心的位似图形△A1B1C1;(2)△A1B1C1与△ABC的位似比是______.19.已知△ABC的面积为S,点D,E分别在边AB,AC上,且DE//BC.【填空】(1)如图1,若AD:DB=1:1,则四边形DECB的面积a1=______(用含S的式子表示,下同);(2)如图2,若AD:DB=1:2,则四边形DECB的面积a2=______;(3)如图3,若AD:DB=1:3,则四边形DECB的面积a3=______;以此类推,…【猜想】根据上述规律猜想,若AD :DB =1:n ,则四边形DECB 的面积a n =______;【应用】计算a 1⋅a 2⋅a 3…a 10.20. 喷洒酒精能有效杀灭“新型冠状肺炎”病毒.根据实验知道喷洒酒精在教室内空气中的浓度y(单位:mg/m 3)与时间x(单位:ℎ)的函数表达式为y ={2x(0<x <m)−x 2+6x −4(x ≥m).其大致图象如图所示.请根据以上信息解答下列问题: (1)试确定点A 的坐标;(2)根据经验,当教室空气中的药物浓度不低于1mg/m 3时,杀灭“新型冠状肺炎”病毒的效果最佳,请通过计算说明单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为多少小时?(mk≠0)的图象相交于点A(1,6)和点21.已知一次函数y=kx+b与反比例函数y=mxB(n,−2).(1)试确定一次函数与反比例函数的表达式;(2)若点P在x轴上,且△PAB的面积为12,求点P的坐标;(3)结合图象直接写出不等式kx+b>m的解集.x22.如图,在平面直角坐标系xOy中,直线l:y=x−2与x轴、y轴分别交于点A和点B,抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(6,n)(1)求n的值和抛物线的解析式;(2)已知点P是抛物线上位于点B、C之间的一动点(不与点B,C重合),设点P的横坐标为a.当a为何值时,△APC的面积最大,并求出其最大值;(3)在y轴上是否存在点M,使△BMC与△BAO相似?若存在,直接写出点M的坐标(不用说理);若不存在,请说明理由.23.如图,四边形ABCD和四边形AEFG都是正方形,C,E,F三点在一条直线上,连接FA并延长交边CB的延长线于点H.(1)求证:△HCA∽△HFC;(2)求CF的值;BE(3)若HC=6,HB=2,求正方形AEFG的边长.答案和解析1.【答案】A【解析】解:∵2a=3b,∴ab =32,∴a−bb =ab−1=32−1=12;故选:A.根据已知条件得出ab =32,再把要求的式子化成ab−1,再代值计算即可得出答案.此题考查了比例的性质,熟练掌握比例的性质是解题的关键.2.【答案】D【解析】解:∵反比例函数y=2−kx的图象分布在第二、四象限,∴2−k<0,解得k>2,故选:D.根据反比例函数的图象和性质,由2−k<0即可解得答案.本题考查了反比例函数的图象和性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.3.【答案】C【解析】解:∵DE//BC,∴ADBD =AECE,∵EF//AB,∴AECE =BFCF,∴ADBD =BFCF,故A正确,不符合题意;∵DE//BC,∴ADAB =AEAC,∵EF//AB,∴AEAC =BFBC,∴ADAB =BFBC,故B正确,不符合题意;∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,∵EF//AB,∴△CEF∽△CAB,∴EFAB =CEAC,∴C错误,符合题意;∵DE//BC,∴DBAB =CEAC,∵EF//AB,∴CEAC =CFBC,∴DBAB =CFBC,故D正确,不符合题意;故选:C.利用平行线分线段成比例和相似三角形的判定与性质,逐一进行判断即可.本题主要考查了平行线分线段成比例,以及相似三角形的判定与性质,熟记平行线分线段成比例是解题的关键.4.【答案】A【解析】解:∵二次函数y=−2x2+4x−1=−2(x−1)2+1,∴ℎ=−1,k=1,故选:A.将题目中的函数解析式化为顶点式,即可得到h、k的值,本题得以解决.本题考查二次函数的性质、二次函数的三种形式,解答本题的关键是明确题意,利用二次函数的性质解答.5.【答案】D【解析】解:∵CE⊥CD,∴∠EDC=90°,∵∠BCA=90°,∴∠BCE=∠DCA=90°−∠BCD,∵CD是Rt△ABC斜边AB上的中线,∴DC=DB=DA,∴∠DAC=∠A,∴∠BCE=∠DCA=∠A,∵∠CBA=2∠A,∠CBA+∠A=90°,∴∠A=∠BCE=∠DCA=30°,∠CBA=60°,∴∠E=∠CBA−∠BCE=30°,∴∠BCE=∠DCA=∠E=∠A,∴△CEB∽△CAD,∴A不符合题意,∵点B是DE的中点,∴BE=BC,∴∠BCE=∠E,∴∠BCE=∠E=∠DCA=∠A,∴△CEB∽△CAD,∴B不符合题意,∵CE⋅CD=CA⋅CB,∴CECA =CBCD,∵∠BCE=∠DCA,∴△CEB∽△CAD,∴C不符合题意.由CECA =BEAD,由于∠E和∠A不能判断相等,故不能判断△CEB与△CAD相似,∴D符合题意,故选:D.根据相似三角形的判定方法一一判断即可.本题考查相似三角形的判定,直角三角形斜边中线的性质,直角三角形30度角的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.6.【答案】C【解析】解:∵某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,该人的身高约为1.8米,∴他的上身长度约为√5−12×1.8≈0.618×1.8≈1.1(米),故选:C.直接根据黄金分割的定义求解即可.本题主要考查了黄金分割以及近似数.关键是明确黄金分割所涉及的线段的比值.7.【答案】D【解析】解:∵矩形ABCD中,AB=24,AD=BC=10,∠B=90°,∴AC=√AB2+BC2=√242+102=26,由折叠可得,MN垂直平分AC,∴AO=CO=13,又∵CD//AB,∴∠NCO=∠MAO,∠CNO=∠AMO,∴△CON≌△AOM(AAS),∴MO=NO,∵∠AOM=∠B=90°,∠MAO=∠BAC,∴△ABC∽△AOM,∴OMBC =AOAB,即OM10=1324,解得OM=6512,∴MN=2OM=656.故选:D.先判定△CON≌△AOM,即可得到MO=NO,再根据△ABC∽△AOM,即可得到OM=6512,进而得出MN=2OM=656.本题主要考查了折叠问题、相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.8.【答案】B【解析】解:A、由于c=5>0,所以抛物线与y轴的交点位于y轴的正半轴上,故本选项不符合题意.B、由于y=−x2−4x+5=−(x+2)2+9的开口方向向下,对称轴是直线x=−2,所以当x>−2时,函数值y随x的增大而减小,故本选项符合题意.C、由于y=−x2−4x+5=−(x+2)2+9的顶点坐标是(−2,9),且开口方向向下,所以当x=−2时,函数一定有最大值是9,故本选项不符合题意.D、由于y=−x2−4x+5=−(x+5)(x−1),所以抛物线与x轴的交点坐标是(1,0)和(−5,0),故本选项不符合题意.故选:B.根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.此题考查二次函数的性质,抛物线与x轴的交点,正确判定开口方向,求得对称轴与顶点坐标是解决问题的关键.9.【答案】C【解析】解:过点C作CD⊥AB于D,在等腰△ABC中,AC=5,AD=12AB=4,则CD=3,在Rt△ACD中,tanA=CDAD =34=tanB,(1)当0≤x≤4,如图1,∵tan∠A=MNAM =34=MNx,即MN=34x,y=12×AM⋅MN=12x×34x=38x2,该函数为开口向上的抛物线,且对称轴为y轴,位于y轴的右侧抛物线的一部分;(2)当4<x≤8时,同理:y=12x×34(8−x)=−38x2+3x,该函数为开口向下的抛物线的一部分,对称轴为x=4,故选:C.用面积公式,分段求出△AMN的面积即可求解.本题考查的是动点图象问题,涉及到解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.【答案】D【解析】解:∵∠ACB=90°,CA=CB=3√2,∴∠A=∠B=45°.∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=45°,∴∠ACD=∠BDE,∴△CAD∽△DBE,故①正确;∵CA=CB=3√2,∴AB=√CA2+CB2=6,当点D是AB的中点时,BD=AD=12AB=3,由①结论可得:CADB =ADBE,即3√23=3BE,解得:BE=3√22=12BC,故点E为BC的中点,故②正确;若点D是AB的三等分点,则AD=2或4,由①中结论可得:CADB =ADBE,∴3√24=2BE或3√22=4BE,解得:BE=4√23.故③正确.综上,正确的共有3个.故选:D.根据外角定理结合已知条件可得∠CDB=∠A+∠ACD=∠CDE+∠BDE,从而可得∠ACD=∠BDE,又∠A=∠B=45°,故可判定△CAD∽△DBE,则①正确;根据勾股定理可得AB=6,当D为AB中点时,由由①结论可得:CADB =ADBE,可得BE=3√22=12BC,则可判断②正确;若点D是AB的三等分点,则AD=2或4,由①结论可得:CADB =ADBE,进而可得到BE=4√23.故③正确.本题考查了相似三角形的判定与性质、等腰三角形的性质,推出△CAD∽△DBE是解本题的关键.11.【答案】±3√2【解析】解:设c是a,b的比例中项,则c2=ab,∵a=3,b=6,∴c2=18,解得c=±3√2.故答案为:±3√2.首先设c是a,b的比例中项,根据比例中项的定义,即可得c2=ab,又由a=3,b=6,即可求得a,b的比例中项的值.此题考查了比例中项的定义.此题比较简单,解题的关键是熟记比例中项的定义.12.【答案】<【解析】解:∵抛物线对称轴为直线x=−1,抛物线与x轴的一个交点在−2、−3之间,∴另一个交点在0、1之间,∴当x=1时,y<0,则a+b+c<0,故答案为<.根据二次函数的对称性求得抛物线与x轴的另一个交点在0、1之间,即可判断当x=1时,y<0,即a+b+c<0.本题主要考查二次函数图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.13.【答案】18【解析】解:如图,作BD⊥x轴,AC⊥x轴.∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴ODAC =BDOC,∵A(2,4),B(b,3),∴OC=2,AC=4,OD=−b,BD=3,∴−b4=32,∴b=−6,∴B(−6,3),∵设反比例函数y=−kx(k≠0)的图象经过点B,∴−k=−6×3=−18,∴k=18,故答案为18.作AC⊥x轴,BD⊥x轴.易得△ACO∽△ODB,根据比例式求出OD,可得出点B的坐标,代入y=−kx(k≠0)即可求出k的值.本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.14.【答案】20 4【解析】解:(1)∵CG⊥BE,H是BC的中点,∴HB=HC=HG=12BC,∴∠CBE=∠HGB,∵∠CBE=35°,∴∠HGB=35°,∴∠CHD=∠CBE+∠HGB=70°,在矩形ABCD中,∠BCD=90°,∴∠CDH=90°−∠CHD=20°,故答案为:20;(2)由(1)得∠HBG=∠HGB,∵∠HGB=∠DGE,∴∠HBG=∠DGE,∵∠BCE=90°,∴∠DCG+∠BCG=90°,∵CG⊥BE于G,∴∠HBG+∠BCG=90°,∴∠DCG=∠HBG,∴∠DGE=∠DCG,∵∠D=∠D,∴△DGE∽△DCG,∴DGDC =DEDG,∴DG2=DE⋅DC,∵HC=HG,∴∠HCG=∠HGC,∵AD//BC,∴∠HCG=∠GFD,∵∠HGC=∠DGF,∴∠GFD=∠DGF,∴DG=DF,∴DF2=DE⋅DC=2×(2+6)=2×8=16,∴DF=4,故答案为:4.(1)根据直角三角形斜边上的中线性质得出∠CBE=∠HGB=35°,再根据三角形外角性质得出∠CHD=70°,最后根据直角三角形两锐角互余即可得解;(2)由(1)得∠HBG=∠HGB,再根据直角三角形的两锐角互余可求得∠DGE=∠DCG,即可判定△DGE∽△DCG,可得出DG2=DE⋅DC,再根据矩形的性质及对顶角相等可求得DG=DF,即可得解.此题考查了矩形的性质,根据矩形的性质得出∠CBE=∠HGB及DG=DF是解题的关键.15.【答案】解:由a:b:c=2:3:4可设a=2k,b=3k,c=4k,则原式=2k−9k−4k3k =−113.【解析】根据比例设a=2k,b=3k,c=4k,然后代入比例式进行计算即可得解.本题考查了比例的性质,利用“设k法”表示出a、b、c求解更简便.16.【答案】解:(1)∵点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,∴−b2×2=−1+52,解得,b=−8,∴抛物线解析式为y=2x2−8x−2,把A(−1,m)代入得,m=2+8−2=8;(2)由y=2x2−8x−2可知,抛物线与y轴交点C的坐标为(0,−2),∴OC=2,∵A(−1,8)和B(5,8),∴AB=6,∴S△ABC=12×6×(2+8)=30.【解析】(1)根据点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,可以得到b 的值,即可得到函数解析式,把A(−1,m)代入解析式即可求得m的值;(2)求得C的坐标,然后根据三角形面积公式即可求得.本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】解:∵AB⊥DB,DC⊥DB,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB,∴△CDN∽△ABN.∴CDDN =ABBN,即1.61.4=AB21,∴AB=1.6×21÷1.4=24(m),答:大树AB的高度为24m.【解析】由图不难得出,△CDN∽△ABN,再利用相似三角形对应边成比例,进而可求解线段的长.此题主要考查了相似三角形的应用,根据已知得出△CDN∽△ABN是解题关键.18.【答案】3【解析】解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1与△ABC的位似比=OA1OA=3,故答案为:3.(1)连接OB、OC,分别延长OB、OC到点B1、C1,使OB1OB =OC1OC=OA1OA,再首尾连接即可;(2)由位似比=OA1OA可得答案.本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.19.【答案】34S89S1516S n(n+2)(n+1)2【解析】解:(1)∵AD:DB=1:1,∴ADAB =12,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =14,∴S△ADES =14,∴S△ADE=14S,∴a1=S−S△ADE=34S,故答案为:34S;(2)∵AD:DB=1:2,∴ADAB =13,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =19,∴S△ADES =19,∴S△ADE=19S,∴a2=S−S△ADE=89S,故答案为:89S;(3)∵AD:DB=1:3,∴ADAB =14,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =116,∴S△ADES =116,∴S△ADE=116S,∴a3=S−S△ADE=1516S,故答案为:1516S;【猜想】∵AD:DB=1:n,∴ADAB =1n+1,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =1(n+1)2,∴S△ADES =1(n+1)2,∴S△ADE=1(n+1)2S,∴a n=S−S△ADE=[1−1(n+1)2]S=(n+1)2−1(n+1)2S=n(n+2)(n+1)2S,故答案为:n(n+2)(n+1)2S;【应用】由【猜想】知,a n=n(n+2)(n+1)2S,∴a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112=12×12112=6121.(1)先算出ADAB =12,再判断出△ADE∽△ABC,得出S△ADES△ABC=14,进而得出S△ADE=14S,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论;【猜想】同(1)的方法,即可得出结论;【应用】先得出a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112,即可得出结论.此题是四边形综合题,主要考查了相似三角形的判定和性质,得出a n=n(n+2)(n+1)2S是解本题的关键.20.【答案】解:(1)由题意可得A为函数y=2x与y=−x2+6x−4的交点,所以2x=−x2+6x−4,解得x1=x2=2,代入y=2x得y=4,可得A(2,4).(2)当教室空气中的药物浓度不低于1mg/m3时,杀灭“新型冠状肺炎”病毒的效果最佳,由(1)得m=2,当0<x<2时,令y=1,2x=1,x=12;当x≥2时,令y=1,−x2+6x−4=1整理得x2−6x+5=0解得x1=1(不合题意,舍去),x2=5,所以x=5,所以单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为(5−12)= 4.5小时.【解析】(1)点A是一次函数与二次函数的交点,令函数值相等即可求解;(2)教室空气中的药物浓度不低于1mg/m3,分别令一次函数与二次函数等于1,求得相应的X值,再根据取值范围确定解,进而算出处于最佳状态的时间.本题考查了二次函数的应用:能把实际的问题转化为数学问题,建立函数模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.21.【答案】解:(1)把A(1,6)代入y =mx 得m =1×6=6;∴反比例函数解析式为y =6x ,把B(n,−2)代入y =6x 得−2=6n ,解得n =−3, ∴B(−3,−2),把A(1,6),B(−3,−2)分别代入y =kx +b 得{k +b =6−3k +b =−2, 解得{k =2b =4,∴一次函数解析式为y =2x +4;(2)y =2x +4中,令y =0,则2x +4=0, 解得x =−2,∴一次函数y =2x +4的图象与x 轴的交点C 的坐标为(−2,0). ∵S △PAB =12,∴12PC ×6+12PC ×2=12. ∴PC =3,∴点P 的坐标为(−5,0)、(1,0).(3)由图象可知不等式kx +b >mx 的解集为:−3<x <0或x >1.【解析】(1)把A 点坐标代入y =mx 得m =6,则反比例函数解析式为y =6x ,再利用反比例函数解析式确定B 点坐标;进而利用待定系数法求出一次函数解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的坐标;(3)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.【答案】解:(1)对于y =x −2,令x =0,则y =−2,令y =x −2=0,解得x =2,当x =6时,y =x −2=4=n ,故点A 、B 、C 的坐标分别为(2,0)、(0,−2)、(6,4);将点B 、C 的坐标代入抛物线的表达式得{c =−24=36+6b +c ,解得{b =−5c =−2,故抛物线的表达式为y =x 2−5x −2;(2)如图,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(a,a 2−5a −2),则点H(a,a −2),则△APC 的面积=S △PHA +S △PHC =12×PH ×(x C −x A )=12×(a −2−a 2+5a +2)×(6−2)=−2a 2+12a ,∵−2<0,故△APC 的面积存在最大值,当a =3时,△APC 的面积的最大值为18;(3)存在,理由:由点A 、B 的坐标知,△ABO 为等腰直角三角形,当△BMC 与△BAO 相似时,则△BMC 为等腰直角三角形, ①当∠BM′C 为直角时,则点M′的纵坐标与点C 的纵坐标相同,故点M′(0,4);②当∠BCM为直角时,则点M′是BM的中点,故点M(0,10);故点M的坐标为(0,4)或(0,10).【解析】(1)用待定系数法即可求解;(2)由△APC的面积=S△PHA+S△PHC,即可求解;(3)分∠BM′C为直角、∠BCM为直角两种情况,利用数形几何即可求解.本题是二次函数综合题,主要考查了一次函数的性质、等腰直角三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.23.【答案】(1)证明:∵四边形ABCD和四边形AEFG都是正方形,∴∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,∴△HCA∽△HFC;(2)解:∵四边形ABCD和四边形AEFG都是正方形,∴∠ABC=90°,由勾股定理可得AC=√2AB,同理可得:AF=√2AE,又∠FAE=∠BAC,∴∠FAE+∠EAC=∠BAC+∠EAC,即∠FAC=∠BAE,∴AFAE =ACAB=√2,∴△FAC∽△EAB,∴CFBE =ACAB=√2.(3)解:∵HC=6,HB=2,∴BC=6−2=4.由勾股定理得:AH=√AB2+HB2=2√5,由(1)得△HCA∽△HFC,∴HCHF =HAHC,即6HF =2√56,解得:HF=18√55,∴AF=HF−AH=18√55−2√5=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理有:2x2=(8√55)2,解得:x=4√105.即正方形AEFG的边长为4√105.【解析】(1)由四边形ABCD和四边形AEFG都是正方形,所以∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,所以△HCA∽△HFC;(2)由四边形ABCD和四边形AEFG都是正方形,所以AC=√2AB,AF=√2AE,可证明∠FAC=∠BAE,结合AFAE =ACAB=√2,可判定△FAC∽△EAB,所以CFBE=ACAB=√2;(3)因为BC=6−2=4,由勾股定理可得AH=2√5,由(1)得△HCA∽△HFC,所以HCHF=HA HC ,可得HF=18√55,所以AF=HF−AH=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理得方程2x2=(8√55)2,解出x即可得答案.本题考查了正方形的性质,相似三角形的判定与性质,勾股定理,关键是要学会综合运用这些知识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年全国初中数学竞赛试题
二
一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了英文代号的四个结论,其中有且只有一个结论是正确的. 请将正确结论的代号填入题后的括号里. 不填、多填或错填,得零分)
1.若4x -3y -6z =0,x +2y -7z =0(xyz ≠0),则222222103225z y x z y x 的值等于 ( ).
(A) 21
(B) 219
(C) 15 (D) 13
2.在本埠投寄平信,每封信质量不超过20g 时付邮费0.80元,超过20g 而不超过40g 时付邮费1.60元,依次类推,每增加20g 需增加邮费0.80元(信的质量在100g 以内)。
如果所寄一封信的质量为72.5g ,那么应付邮费 ( ).
(A) 2.4元 (B) 2.8元 (C) 3元 (D) 3.2元
3.如下图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G =( ).
(A)360° (B) 450° (C) 540° (D) 720°
4.四条线段的长分别为9,5,x ,1(其中x 为正实数),用它们拼成两个直角三角形,且AB 与CD 是其中的两条线段(如上图),则x 可取值的个数为( ).
(A)2个 (B)3个 (C)4个 (D) 6个
5.某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵(排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( ).
(A)1种 (B)2种 (C)4种 (D) 0种
二、填空题(共5小题,每小题6分,满分30分)
O
C
D
A
B
A
B
C
D
E
F
G
(第3题图)
(第4题图)
6.已知31 x ,那么
21
41212x x x .
7.若实数x ,y ,z 满足41
y x ,11 z y ,
371 x z ,则xyz 的值为 .
8.观察下列图形:
① ② ③ ④根据图①、②、③的规律,图④中三角形的个数为 .
9.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成45º,∠A =60º CD =4m ,BC =
2264 m ,则电线杆AB 的长为_______m.
10.已知二次函数
c bx ax y 2
(其中a 是正整数)的图象经 过点A (-
1,4)与点B (2,1),并且与x 轴有两个不同的交点,则b +c 的最大值为 .三、解答题(共4题,每小题15分,满分60分)
11.如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P . 问EP 与PD 是否相等?证明你的结论.
解:
A
D
B
C
P
D
O
C
A
E (第9题图)
12.某人租用一辆汽车由A城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示. 若汽车行驶的平均速度
为80千米/小时,而汽车每行驶1千米需要的平均费用为1.2元. 试指出此人从A城出发到B城的最短路线(要有推理过程),并求出所需费用最少为多
少元?
解:918
12 17
6 14
15
7
11
10
13
5
O
B C D
E
A
F
G
H
(第11题图)
(第12题图)。