等式的性质ppt课件

合集下载

等式的性质ppt课件

等式的性质ppt课件

3×3+1 = 5×2;
6×6=36;
(3×3+1)×6_=__5×2×6;
6×6
×
3 2
_=__
36
×
3 2

(3×3+1) ÷6 _=__5×2 ÷6;
6×6 ÷ 3
2
_=__ 36 ÷
3;
2
(3×3+1)×
(-1)
_=__5×2
×
(-1)

6×6
×
3 2
__=_
36
×
3 2

(3×3+1)
根据等式的性质填空,并说明依据: (3)如果 x = -4,那么___-7__ ∙ x = 28; 根据等式的性质2,等式两边乘 -7,结果仍相等. (4)如果 3m = 4n,那么 3 m =___2__∙n
2
根据等式的性质2,等式两边除以2,结果仍相等.
利用等式的性质解下列方程:
(1) x + 7 = 26;
(1) x 1 2;(2) x 3 ;(3) 5 x 4 ; 3
(4) 5( y 1) 10 ;(5) a 3 5 .
2
解:(1)方程两边同时减 1,得 x 11 2 1,所以 x 1. (2)方程两边同时乘 -3,得 x (3) 3 (3) ,所以 x 9 .
3 (3)方程两边同时加 4,得 5 4 x 4 4 ,所以 x 9 .
6×6=36;
6×6
+
3 2
_=__
36
+
3;
2
6×6
-
3 2
_=__
36
-
3;
2
6×6 +
3 2

等式的基本性质ppt课件

等式的基本性质ppt课件
即:如果a=b,那么a±c=b±c. 2.等式的性质2:
等式的两边都乘或都除以同一个数或式(除数不能 为0),所得结果仍是等式.
即:如果a=b,那么 ac=bc,或-ac =-cb (c≠0)
小结
3.解方程的基本思路
(1)先利用等式性质1把方程变形为左边只含 有未知数,右边只含有常数的形式. (2)再利用等式性质2把方程变形为x =?的形式.
5.2 等式的基本性质
• 义务教育课程标准实验教科书 • 浙教版《数学》七年级上册
知识目标
1.理解等式的意义,并能举出有关等式的例子. 2.掌握等式的基本性质,并能用语言叙述. 3.会用等式的基本性质将等式变形,并能说明 理由 .
通过等式的基本性质的教学,培养学生由等式 走向新等式的解题思路,为以后方程的求解打 下基础.
即:如果a=b,那么a±c=b±c.
新课讲解
你发现了什么规律?
bb
aa
b
a
bb
aa
×4
÷4
等式的性质2:
等式的两边都乘或都除以同一个数或式(除数不能为 0),所得结果仍是等式.
即:如果a=b,那么 ac=bc,或 -ac =-cb (c≠0)
做一做
1.下列变形符合等式性质的( D ) A.如果2x-3=7,那么2x=7-3 B.如果3x-2=1,那么3x=1-2 C.如果-2x=5,那么x=5+2 D.如果--13 x=1,那么x=-3
再见!
情感目标 等式的基本性质体现了教学的对称美.
知识回顾
1.什么是等式?
(1)x 2 4 (2)1 2 3 (3)m n n m
像这样用等号“=”表示相等关系的式子叫等式.
2.下列式子中是等式的有( C ).

3.1.2 等式的性质课件(共28张PPT)

3.1.2 等式的性质课件(共28张PPT)
c c
作业: (1)基础作业:教科书习题3.1第4、9、10题. (2)拓展作业:如果a=b =c,那么等式的性质还成 立吗?
随堂练习
用等式的性质解下列方程并检验: (1)x-5=6; (2)0.3x=45; 1 (3)5x+4=0; (4)2 x 3 . 4 解: (1)两边加5,得 x-5+5=6+5. 于是 x=11. 检验: 当x=11时,左边=11-5=6=右边, 所以x=11是原方程的解. 于是 x=150. 检验:当x=150时,左边=0.3×150=45=右边, 所以x=150是原方程的解.
观察思考
下列四个式子有什么相同点?
m+n=n+m, 3× 3+ 1 = 5× 2, x+ 2x= 3x, 3x+ 1= 5y
用等号表示相等关系的式子,叫做等式. 通常可以用a=b表示一般的等式.
探索新知
a
等式的左边
b
等式的右边
等号
把一个等式看作一个天平, 等号两边的式子 看作天平两边的物体,则等式成立可以看作是天 平两边保持平衡.
随堂练习
用等式的性质解下列方程并检验: (1)x-5=6; (2)0.3x=45; 1 (3)5x+4=0; (4)2 x 3 . 4
能力提升
在学习了等式的性质后,小红发现运用等式的性质可以 使复杂的等式变得简洁,这使她异常兴奋,于是她随手写了 一个等式:3a+b-2=7a+b-2,并开始运用等式的性质对这 个等式进行变形,其过程如下:
谁最厉害
以下说法是否正确?如果不对,怎样改正?
如果a b, 那么a b .
2 2
谁最厉害
以下说法是否正确?如果不对,怎样改正?
如果a b , 那么a b.
2 2

5.2.2课件等式的性质(26张PPT)

5.2.2课件等式的性质(26张PPT)

提升练习
1. 填空:如图所示,两个天平平衡,则与两个球的质
量相等的正方体个数为( 4 )。
2个球的质量=4个圆柱的质量 2个正方体的质量=2个圆柱的质量 4个正方体的质量=4个圆柱的质量
2个球的质量=4个正方体的质量
2. 假设“ 、 、 ”分别表示三种不同的物体,如 (1)(2)所示,天平保持平衡。要使(3)中的天平也保持
平衡,则右盘中应该放“ ”的个数为( 5 )。
(1)
(2)
(3)

(1) =
=
=
(2) =
(等式的性质1)
=
(2) =
=
课堂小结
这节课你有什么收获?
等式的性质1 等式两边加上或减去同一个数,左右 两边仍然相等。 等式的性质2 等式两边乘同一个数,或除以同一个 不为0的数,左右两边仍然相等。
课后作业
两边都拿掉1个花瓶, 天平还保持平衡吗?
平衡的天平两边 减去同样的物品, 天平也保持平衡。
交流小结:你发现了什么?
平衡的天平两边 平衡的天平两边 加上同样的物品, 减去同样的物品, 天平保持平衡。 天平也保持平衡。 等式就像平衡的天平,也具有同样的性质。
等式的性质 1
等式两边加上或减去同一个数,左右两边仍然相等。
a=2b
(教材第64页)
①加1个茶杯
a=2b Leabharlann ba = 2b +b两边同时各放上1个同样的茶杯, 天平会发生什么变化?
a=2b ①加1个茶杯 a +b =2b+b ②加2个茶杯 a+2b = 2b+2b
如果两边同时各放上2个同样的茶杯,天平还 保持平衡吗?同时放1个同样的茶壶呢?

(2024秋新版本)北师大版七年级数学上册 《 等式的基本性质 》PPT课件

(2024秋新版本)北师大版七年级数学上册 《 等式的基本性质 》PPT课件
等式的两边都加 (或减) 同一个代数式,所得结果 仍是等式.
如果a=b,那么a±c=b±c.
用式子的形 式怎样表示?
探究新知
练一练 在下面的括号内填上适当的数或者式子: (1)因为:2x-6= 4 所以: 2x-6+6= 4+( 6 ) (2)因为:3x=2x-8 所以: 3x+( -2x )= 2x-8-2x (3)因为:10x-9=8-6x 所以: 10x+( 6x )-9+9= 8-6x+6x +( 9 )
北师大版 数学 七年级 上册
5.2.1 等式的基本性质
素养目标
3. 能用等式的性质解简单的一元一次方程. 2. 借助直观对象理解等式的基本性质. 1. 能用文字和数学式子表达等式的两个性质.
导入新知
观察上图,如果在平衡的天平的两边都加(或减) 同样的量,天平还保持平衡吗?
探究新知 知识点 1 等式的性质1
天平与等式
把一个等式看作一个天平,把等号两边的式子看作天 平两边的砝码,则等式成立就可看作是天平保持两边平衡
b
等式的 左边
等号
a
等式的 右边
探究新知

你能发现什么规律?
a

探究新知
你能发现什么规律?
a


探究新知
你能发现什么规律?
b a


探究新知
你能发现什么规律?
b a


探究新知
你能发现什么规律?
素养目标
2. 会用移项、合并同类项解ax+b=cx+d型的方 程.
1. 进一步认识解方程的基本变形——移项, 感悟解方程过程中的转化思想.

等式的性质课件人教版五年级上册数学(共15张PPT)

等式的性质课件人教版五年级上册数学(共15张PPT)

等式的性质(课件)人教版五年级上册数学(共15张PPT)(共15张PPT)等式的性质【学习目标】1.弄清方程和等式两个概念的关系。

2.通过天平游戏,使学生在探索中发现并掌握等式的性质。

3.在游戏中感受数学与实际生活的密切联系,发展学生数学的应用意识。

【学习重点】引导学生探索等式的性质。

【学习难点】抽象归纳出等式的性质。

知识讲解等式性质1等式两边加上或减去同一个数,左右两边仍然相等。

知识讲解将平衡的天平两边物品的数量都扩大原来的几倍或都缩小到原来的几分之一,天平会发生什么变化?知识讲解x=2y平衡的天平两边的物品扩大到原来相同的倍数,天平仍平衡。

2 x=4yx=2y3 x=6yx=2y4 x=8y发现:等式两边都乘2,3,4······等式仍然成立。

知识讲解2m=6n平衡的天平两边的物品都减少到原来的几分之一,天平仍然平衡。

2m÷2=6n÷2发现:等式两边都除以2,等式仍然成立。

m=3n知识讲解等式性质2等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

等式两边同时除以的数不能是0,因为0作除数没有意义。

练习: 用适当的数或式子填空,使所得的结果仍是等式,并说明根据等式的哪一条性质以及怎样变形的.(1) 如果2x+7=10 , 那么2x=10-;(2) 如果5x=4x+7 , 那么5x -=7;(3) 如果2a=1.5 , 那么6a=;(4) 如果-3x=18 , 那么x=;(5) 如果-5x=5y , 那么x=;(6) 如果a+8=b+8 , 那么a=.等式性质1 : 等式两边加(或减)同一个数(或式子),结果仍相等.等式性质2 : 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.5x-7 = 85x-7 =8+7 +75x15=5x =15÷5 ÷5x=3练习:请你自编一道以x=2为解的方程.例利用等式性质解下列方程:1.下列说法错误的是().C2.下列各式变形正确的是().A3.等式的下列变形,利用等式性质2进行变形的是().D本课你有什么收获?等式的两边同时加上或者减去一个相同的数,等式仍然成立。

等式的性质ppt课件

等式的性质ppt课件

科学实验中的应用
化学反应平衡
在化学实验中,等式性质可用于描述化学反应的平衡状态,确保 实验结果准确可靠。
生物学中的能量平衡
在生物学研究中,等式性质可用于描述生物体内的能量平衡,以了 解生物体的生存和生长状况。
物理学中的力矩平衡
在物理学中,等式性质可用于描述力矩的平衡,以解决与物体运动 相关的问题。
函数图像的对称性
函数图像的对称性
等式在研究函数图像的对称性方面具 有重要作用。通过对等式的分析,我 们可以确定函数的对称轴和对称中心 。
奇偶函数的性质
对称性与周期性的关系
函数的对称性和周期性是密切相关的 ,通过对等式的研究,我们可以深入 了解这种关系。
奇函数和偶函数具有不同的对称性质 ,这些性质可以通过等式进行描述和 证明。
可除性证明
假设a=b且c≠0,那么根据等 式的定义,我们可以得出 a/c=b/c。
02 等式的运算规则
等式的加减法规则
总结词
等式的加减法规则是基本的运算规则,它遵循相同的数学原理。
详细描述
等式的加减法规则是指在进行等式运算时,将等式两边的数值进行加减运算,如 果等式两边同时加上或减去同一个数,等式仍然成立。例如,对于等式 (2 + 3 = 5),如果两边同时加上(2),得到 (4 + 3 = 7),等式仍然成立。
几何图形的等分与对称
几何图形的等分
等式在几何图形中等分方面具有 应用,例如通过等式确定点、线 或面的位置,将图形等分为若干
部分。
图形的对称性
图形的对称性可以通过等式进行 描述和证明,例如平行四边形、
矩形和圆的对称性质。
等分与对称的应用
在几何图形中,等分和对称的应 用非常广泛,例如在建筑设计、 艺术和工程等领域中都有应用。

等式的性质ppt课件

等式的性质ppt课件

代数证明方法
01
02
03
定义法
通过定义等式的性质,利 用已知条件推导出结论。
反证法
假设等式不成立,通过推 导得出矛盾,从而证明等 式成立。
消元法
通过消去等式中的未知数 ,得到一个或多个等式, 再利用已知条件推导出结 论。
几何证明方法
面积法
通过比较两个图形的面积来证明等式 。
勾股定理
在直角三角形中,利用勾股定理证明 等式。
结合律
(a × b) × c = a × (b × c)
分配律
a × (b + c) = a × b + a × c
除法运算性质
除法定义
01
a ÷ b = a × (1/b)
除法的反运算
02
a ÷ b = a × (1/b)
商的运算性质
03
(a ÷ b) ÷ c = a ÷ (b × c)
04
等式的证明方法
通过等式可以证明两条平行线的 性质,例如平行线的交角性质、
平行线的传递性等。
相似三角形性质
通过等式可以证明相似三角形的 性质,例如相似三角形的边长比
例、角度相等等。
圆的性质
通过等式可以证明圆的性质,例 如圆的周长、面积、半径等。
三角问题中的应用实例
三角函数的性质
通过等式可以证明三角函数的性质,例如正弦、余弦、正切函数 的周期性、对称性等。
不等式
表示两个量不相等的等式
条件等式
在某些条件下成立的等式
03
等式的运算性质
加法运算性质
交换律
a+b=b+a
结合律
(a + b) + c = a + (b + c)

等式的性质 课件(共41张PPT) 人教版数学七年级上册

等式的性质  课件(共41张PPT) 人教版数学七年级上册
第五章 一元一次方程 5.1 从算式到方程 5.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程. (难点)
导入新课
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
怎样从等式
a 100
b 100
得到等式
a
=
b?
1 4
.
依据等式的性质2两边同时除以1010 或同乘100.
(5) 从 x = y 能不能得到
x 9
y 9
,为什么?
能,根据等式的性质2,两边同时除以9
(6) 从 3ac=4a 能不能得到 3c=4,为什么? 不能,a可能为0
注意:此类判断等式变形是否正确的题型中,尤其注 意利用等式的性质2等式两边同除某个字母参数,只 有这个字母参数确定不为0时,等式才成立.
用等号表示相等关系的式子,叫等式。
通常用a b表示一般的等式.
试一试
等式的两个基本事实: 等式两边可以交换,如果a=b,那么b=a. 相等关系可以传递,如果a=b,b=c。那么a=c.
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
(2) 0.3x = 45 ;
(3) 5x+4 = 0 ;
(4)2- 1 x=3
解:(1)两边同时加5,得x=11.
4
(2)两边同时除以0.3,得x=150.
(3)两边同时减4,得5x=-4.

等式的性质PPT课件

等式的性质PPT课件

(1)如果x=y,那么
x 2 =y 2 33
(× )
(2)如果x=y,那么 x 5 a y 5 a ( √ )
(3)如果x=y,那么 x y
5a 5a
(4)如果x=y,那么 5x 5 y
(× ) (× )
(5)如果x=y,那么 2x 1 2 y 1 ( √ )
3
3
应用
例1:用适当的数或整式填空,使所得结果 仍是等式,并说明是根据等式的哪一条性 质以及怎样变形(改变式子的形状)的. ①、如果2x = 5 - 3x,那么2x +( )= 5 ②、如果0.2x = 10, 那么x =( )
5 5

x=-4.
通过这节课的学习你有些什么收获呢?
等式性质1: 等式两边加上(或减去)同一个数(或式
子),结果仍相等.
等式性质2: 等式两边乘上同一个数,或除以同一个不
为0的数,结果仍相等.
等式性质1
一元一次方程
等式性质2
x=a
视察:
1+2 = 3 a+b = b+a
S = ab 4+x = 7
这4个式子的共同点是什么?
有“=” 是等式
用等号“=”来表示相等关 系的式子,叫做等式.
判断:
A、1+2+3+4+5
B、2×(3 ×4)=(2 ×3) ×4
C、aห้องสมุดไป่ตู้=ba
D、a2+2ab+b2
E、—1 (a+b)h F、V= —1 sh
解:①2x +(3x )= 5 根据等式性质 1,等式两边都加上 3x.
②x = 50 根据等式性质 2,等式两边都除以 0.2 或 乘以 5.

等式的基本性质课件

等式的基本性质课件
总结词
等式的加法性质是指等式的两边加上同一个数,等式仍然成立。
详细描述
如果有一个等式 a = b,那么在这个等式的两边同时加上一个数c,得到新的等 式 a+c = b+c。
等式的乘法性质
总结词
等式的乘法性质是指等式的两边乘以 同一个非零数,等式仍然成立。
详细描述
如果有一个等式 a = b,那么在这个 等式的两边同时乘以一个非零数c,得 到新的等式 ac = bc。
等式的实际应用
物理中的等式应用
总结词
物理定律的数学表达
详细描述
在物理学中,等式常常被用来表达物理定律。例如,牛顿第二定律 F=ma 就是一个等 式,用来描述力、质量和加速度之间的关系。
化学中的等式应用
总结词
化学反应的平衡表达
VS
详细描述
在化学中,等式常用来描述化学反应的平 衡状态。例如,对于可逆反应,反应物和 生成物的浓度会保持一定的比例关系,这 个比例关系就是通过等式来表达的。
不等式的可加性
如果a>b,则a+c>b+c。
不等式的可乘性
如果a>b且0<c<d,则ac>bd 。
证明方法
比较法、反证法、数学归纳法 等。
等式与不等式的应用实例
生活中的购物问题
如比较商品价格、折扣优惠等。
数学中的几何问题
如比较线段长度、面积大小等。
物理学中的力学问题
如比较力的大小、加速度大小等。
05
经济学中的等式应用
总结词
供需平衡的表达
总结词
货币价值的衡量
详ห้องสมุดไป่ตู้描述
在经济学中,等式常常用来表达供需平衡。例如 ,在商品市场中,供给量和需求量相等时的价格 就是均衡价格,这个均衡价格就是通过等式来表 达的。

等式的性质ppt课件

等式的性质ppt课件

跟踪训练 利用等式的性质解下列方程,并检验:
(1) x-5=6;(2)0.3x=45;
解:(1)方程两边加5,得x-5+5=6+5,于是x=11.
检验:将x=11代入方程x-5=6的左边,得11-5=6.
方程左右两边的值相等,所以x=11是方程的解.
(2)方程两边除以0.3,得x=150.
检验:将x=150代入方程0.3x=45的左边,得0.3×150=45.
4
5
方程左右两边的值相等,所以x=- 是方程的解.
新知探究
知识点2
利用等式的性质解方程
跟踪训练 利用等式的性质解下列方程,并检验:
1
(3)5x+4=0;(4)2- x=3.
4
1
4
解:(4)方程两边减2,得2- x -2=3-2.
1
化简,得- x
4
=1. 两边乘-4,得x=-4.
检验:将x=-4代入方程
方程左右两边的值相等,所以x=150是方程的解.
新知探究
知识点2
利用等式的性质解方程
跟踪训练 利用等式的性质解下列方程,并检验:
1
(3)5x+4=0;(4)2- x=3.
4
解:(3)方程两边减4,得5x+4-4=0-4.
化简,得5x=-4. 两边除以5,得x=-
4
.
5
4
5
4
5
检验:将x=- 代入方程5x+4=0的左边,得5×(- )+4=0.
第五章 一元一次方程
5.1 方程
5.1.2 等式的性质
七上数学 RJ
学习目标
1. 能用文字和数学符号表达等式的性质.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

像这样用等 号“=”来表示 相等关系的式子 叫作等式.
8x 8? 40 8
+
由此你发现了
什么规律?

等式的性质1:等式两边加(或减) 同一个数(或式子),结果仍相等.
如果a=b,那么a±c=b±c
×?3
÷?3
等式的性质2:等式两边乘同一个数或除以同 一个不为0的数,结果仍相等.
如果a=b,那么ac=bc
分析(1)要把方程0.5x-x=3.4转化为x=a的形式, 必须去掉方程左边的0.5,怎么去?
(2)要把方程-x=2.9转化为x=a的形式,必须 去掉x前面的“-”号,怎么去?
然后给出解答: 解:两边减0.5,得0.5-x-0.5=3.4-0.5 化简,得
-x=-2.9,、 两边同乘-1,得l
x=-2.9
人教新课标版七上第三章一元一次方程
等式的性质
1. 什么是方程? 方程是含有未知数 的等式。
2. 指出下列式子中哪些是方程,哪些不是, 并说明为什么?
(1)3 + x = 5 (2)3x + 2y = 7 (3)2 + 3 = 3 + 2 (4)a + b = b + a (a、b已知) (5)5x + 7 = 3x - 5
• 等式的性质: • 等式的性质1:等式两边加(或减)同
一个数,结果仍相等。
• 等式的性质2:等式两边乘(或除)同 一个数,结果仍相等。
• 什么是系数? • 数与字母相乘时,数称为系数。
3. 上面的式子的共同特点是什么?
都是等式。 我们可以用a = b表示一般的等式
像m+n=n+m,x+2x=3x, 3×3+1=5×2,3x+1=5y
这样的式子,都是等式.我们可 以a用=b 表示一般的等式.
等式有什么样的性质呢?
12 3
abba s ab
4 x7
左边 右边
8x 99? 49 9
如果a=b(c≠0),那么
ab cc
等式性质1 等式两边加(或减)同一个数(或式 子),结果仍相等.
等式性质2 等式两边乘同一个数,或除以同一 个不为0的数, 结果仍相等.
1 0.5 2
等式
1+ 2
3
0.5
+3
1 2

1
0.5
-1
1× 2
6
0.5
×
6
1÷ 2
4
0.5
÷4
3 1 3.5 2
口答练习:
(1) 怎样从等式 5x=4x+3 得到等式 x=3?
(2) 怎样从等式 4x=12 得到等式 x=3?
(3)
怎样从等式 a
100
b 100
得到等式 a=b?
(4) 怎样从等式 2πR=2πr 得到等式R=r?
练习: 用适当的数或式子填空,使所得的结果仍是等 式,并说明根据等式的哪一条性质以及怎样变形的.
(1) 如果 2x+7=10 , 那么 2x=10-
;
(2) 如果 5x=4x+7 , 那么 5x -
=7;
(3) 如果 2a=1.5 , 那么 6a=
;
Байду номын сангаас
(4) 如果 -3x=18 , 那么 x=
;
(5) 如果 -5x=5y , 那么 x=
;
(6) 如果 a+8=b+8 , 那么 a=
.
等式性质1 : 等式两边加(或减)同一个数(或式子),结果
3.等式 2x 1 1 x
3
的下列变形,利用等式
性质2进行变形的是( D ).
( A) 2x 1 x 1 3
(C) 2x 1 x 1 3
(B) 2x 1 1 x 33
(D) 2x 1 3 3x
4.小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔, 剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方 法求解)
仍相等. 等式性质2 : 等式两边乘同一个数,或除以同一个不为0的
数,结果仍相等.
5x-7 = 8
5x-7+7 =8+7
5 =15 5x ÷x 5 =15 ÷5
5 (
x
15 )
55
x =3
例 利用等式性质解下列方程:
(1)0.5x-x=3.4
(2) 1 x 5 4 3
练习:请你自编一道以x=2为解的方程.
1 0.5 等
2
33

1 0.125 8
口答练习:
(1) 从 x = y 能不能得到 x +5 = y + 5 , 为什
么? (2) 从
x
=
y
能不能得到x
y
99
, 为什么?
(3) 从 a+2=b+2 能不能得到 a=b , 为什么?
(4) 从-3a=-3b 能不能得到 a=b , 为什么?
(5) 从 3ac=4a 能不能得到 3c=4 , 为什么?
1.下列说法错误的是( C ).
( A) 若 x y ,则x y aa
(B) 若x2 y2 ,则 4ax2 4ay2 (C) 若 1 x 6,则x 1.5
4 (D) 若1 x,则x 1
2.下列各式变形正确的是( A ).
( A)由3x 1 2x 1 得3x 2x 1 1 (B)由5 1 6得5 6 1 (C)由2( x 1) 2 y 1得x 1 y 1 (D)由2a 3b c 6得2a c 18b
相关文档
最新文档