...第七章钢筋混凝土偏心受力构件承载力计算
第七章 钢筋混凝土受拉构件承载力计算
![第七章 钢筋混凝土受拉构件承载力计算](https://img.taocdn.com/s3/m/98b0044f33687e21ae45a90d.png)
As s
Nt
l
As
h l b A
Nt
As/A3%时, A=bh
t
Nt
3.混凝土开裂荷载
t0
N t cr Es As Ec A(1 ) t 0 Ec A
ft
t
As s
t=ft
t=Ect
o t0
Ec A(1 E ) t 0 f t A(1 E )
一、工程实例
一、大小偏心受拉构件
和偏压不同
1.小偏心受拉
e’ e0 e Ntu
开裂前:N位于As和As’之间时,混凝土全截面
受拉或(部分混凝土受拉,部分混凝土受压); 开裂后:随着N的增大,混凝土全截面受拉
fy’As’ h0
as
fyAs
开裂后,拉力由钢筋承担
最终钢筋屈服,截面达最大承载力
2.大偏心受拉
钢筋屈服
混凝土开裂
100 Nt 915 152 50 152 平均应变 0.001 0.002 0.003 0.004
Nt
0
2. 破坏形态
Nt
Nt
Ntcr
Ntcr
Nt
Nt
3. 试验结论
Nt Nt
•三个工作阶段:开裂前,线弹性;开裂至钢筋屈服,裂缝不断 发展;钢筋屈服后,Nt基本不增加
•首根裂缝出现后还会继续出现裂缝,但裂缝增至一定数量后便不在增
l
Es 20510 N / mm , 纵向受力钢筋用量 As 284mm
3 2
l
2
构件的截面形状为正方形,边长为152mm,长为915mm. 试求:
Nt
(1)当构件伸长0.06mm时,构件承受的拉力是多少?此时钢筋和混凝 土的应力各为多少? (2)构件的开裂荷载 (3)构件的极限承载力
钢筋混凝土偏心受力构件承载力计算.pptx
![钢筋混凝土偏心受力构件承载力计算.pptx](https://img.taocdn.com/s3/m/3dc341710166f5335a8102d276a20029bd646328.png)
Nu A(N0,0)
B(Nb,Mb)
⑸如截面尺寸和材料强度保持
不变,Nu-Mu相关曲线随配 筋率的增加而向外侧增大。
C(0,M0) Mu
第16页/共43页
混凝土结构设计原理
第 7章
§7.4 偏心受压构件的破坏特征
N M=N e0
e0 N
As
As? = As
As?
压弯构件
偏心受压构
件 偏心距e0=0时,轴心受压构件
…7-2
ei e0 ea
…7-3
第4页/共43页
混凝土结构设计原理
第 7章
3 偏心距增大系数
二阶效应——轴力在结构变形和位移时产生的附加内力。
无侧移
有侧移
第5页/共43页
混凝土结构设计原理
第 7章
y px y f ?sin le
f
ei N
le
xN ei
◆ 由于侧向挠曲变形,轴向力将 N ei 产生二阶效应,引起附加弯矩。
h / 2)
f
' y
As
(h0'
as )
…7-23
As
Ne'
1 fcbh(h0 0.5h)
f
' y
(h0'
as
)
式中:
e' h / 2 as' ei
ei e0 ea
此时不考虑,ei中扣除ea。
…7-24
第29页/共43页
混凝土结构设计原理
第 7章
❖矩形截面 对称 配筋偏心受压构件正截面承载力
N
◆在未达到截面承载力极限状态 之前,侧向挠度 f 已呈不稳定
N0
发展 即柱的轴向荷载最大值发生在
第七章偏心受压构件的正截面承载力计算
![第七章偏心受压构件的正截面承载力计算](https://img.taocdn.com/s3/m/9cafa570f242336c1eb95e8e.png)
b
f sd 1 cu E s
三、偏心受压构的相关曲线 1)当 (M N ) 落在曲线 abd 上或曲线以外,
则截面发生破坏。
2) e M N tg , 愈大,
e 愈大。
3)
三个特征点 (a、b、c)
4)M-N曲线特征 ab段 (受 拉 破 坏 段):轴压力的增加 会使其抗弯能力增加
第七章
偏心受压构件的正截面承载力计算
本章主要内容:
偏压构件正截面的受力特点和两种破坏形态, 大小偏压的分界和判别条件; 熟习偏心受压构件的二阶效应及计算; 矩形截面偏心受压构件的正截面承载力计算方法, 包括计算公式、公式的适用条件、对称配筋和非 对称配筋的截面设计和截面复核; I形、T形截面偏心受压构件的正截面承载力 计算方法; 圆形截面偏心受压构件的截面设计和截面复核; 偏心受压构件配筋的构造要求和合理布臵。
h es e0 as 2
偏心力
h es e0 as 2
对公式的使用要求及有关说明如下:
(1)钢筋 As 的应力 s 取值:
当 当
x / h0 b
时,大偏心受压,取 s f sd 时,小偏心受压,
x / h0 b
si cu Es (
因此以下仅介绍对称配筋的工字形截面的计算方对称配筋截面指的是截面对称且钢筋配臵对称对于对称配筋的工字形和箱形截面有1截面设计对于对称配筋截面可由式738并且取中和轴位于肋板中则可将x代入中和轴位于肋板中重新求x计算受压区高度x时采用与相应的基本公式联立求解在设计时也可以近似采用下式求截面受压区相对高度系数截面复核方法与矩形截面对称配筋截面复核方法相似唯计算公式不同
偏心受压: (压弯构件) 二. 工程应用
偏心受压构件承载力.
![偏心受压构件承载力.](https://img.taocdn.com/s3/m/0ecc602fa21614791611282a.png)
N
N
As 太
多
ssAs
f'yA's
ssAs
f'yA's
7.2 偏心受压构件的破坏形态
第七章 偏心受压构件承载力
2、受压破坏compressive failure
N
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
ssAs
f'yA's
◆ 纵向钢筋的保护层厚度要求见表8-3,且不小于钢筋直径d。 ◆ 当柱为竖向浇筑混凝土时,纵筋的净距不小于50mm; ◆ 对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。 ◆ 截面各边纵筋的中距不应大于350mm。当h≥600mm时,在柱
侧面应设置直径10~16mm的纵向构造钢筋,并相应设置复合 箍筋或拉筋。
◆ 对于长细比较大的构件,二阶 N ei 效应引起附加弯矩不能忽略。
◆ 图示典型偏心受压柱,跨中侧 向挠度为 f 。
N ( ei+ f ) ◆ 对跨中截面,轴力N的偏心距 为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 ◆ 在截面和初始偏心距相同的情 况下,柱的长细比l0/h不同,侧 向挠度 f 的大小不同,影响程度 会有很大差别,将产生不同的破 坏类型。
◆ 当柱中全部纵筋的配筋率超过3%,箍筋直径不宜小于8mm, 且箍筋末端应应作成135°的弯钩,弯钩末端平直段长度不 应小于10箍筋直径,或焊成封闭式;箍筋间距不应大于10倍 纵筋最小直径,也不应大于200mm。
◆ 当柱截面短边大于400mm,且各边纵筋配置根数超过多于3 根时,或当柱截面短边不大于400mm,但各边纵筋配置根 数超过多于4根时,应设置复合箍筋。
7.偏心受压构件的截面承载力计算20191120精品文档
![7.偏心受压构件的截面承载力计算20191120精品文档](https://img.taocdn.com/s3/m/c3a2beb7b14e852458fb57d6.png)
梁。
s As
f y'As'
◆受压破坏特征:破坏是由于混凝土被压碎而引起的,破坏时
靠近纵向力一侧钢筋达到屈服强度,远侧钢筋可能受拉也可
能受压,受拉时未屈服,受压时可能屈服也可能未屈服。
◆ 承载力主要取决于压区混凝土和受压侧钢筋,破坏具有脆性 性质。
ÊÜ À Æ »µ ÊÜ Ñ¹ Æ »µ
偏心受压构件的破坏形态展开图
ns11219ei /7h0×(lhc)2近似取 ns11310ei /0h0×(lhc)2
ei e0ea M N2 ea
n
s1130(M N 021ea)/h0
×(lc)2 h
对于“受压破坏”的小偏心受压构件上式显然不适用
在计算破坏曲率时,需引进一个修正系数c,对截面曲率进行修
P—Δ效应
最大一阶和二阶弯矩在柱端且符号相同。 当二阶弯矩不可忽略时,应考虑结构侧移的影响。
N F
N
M0max Mmax
Mmax =Mmax +M0max
7.2.2 矩形截面偏心受压构 件承载力计算公式
一、 区分大小偏心受压破坏的 界限破坏
≤b属于大偏心破坏形态 > b属于小偏心破坏形态
N ( ei+ f )
图示典型偏心受压柱,跨中侧
向挠度为f。因此,对跨中截面, 轴力N的偏心距为ei + f ,即跨 中截面的弯矩为M =N ( ei + f )。
xN ei
(一) P-δ效应
y y f × sin px
le f
ei N
le
在截面和初始偏心距相同的情
N ei
况下,柱的长细比l0/h不同,侧
7.2偏心受压构件正截面承载力计算
偏心受力构件承载力的计算
![偏心受力构件承载力的计算](https://img.taocdn.com/s3/m/be137504ff00bed5b9f31de3.png)
第七章 偏心受力构件承载力的计算西安交通大学土木工程系 杨 政第七章 偏心受力构件承载力的计算结构构件的截面受到轴力N和弯矩M共同作用,只在截 面上产生正应力,可以等效为一个偏心(偏心距 e0=M/N ) 作用的轴力N。
因此,截面上受到轴力和弯矩共同作用的结 构构件称为偏心受力构件。
N NM N(a )N N M(b )N(c )(d )(e )(f)第七章 偏心受力构件承载力的计算显然,轴心受力( e0=0 )和受弯( e0=∞)构件为其特 例。
当轴向力为压力时,称为偏心受压;当轴向力为拉力 时,称为偏心受拉。
偏心受压构件多采用矩形截面,工业建筑中尺寸较大的 预制柱也采用工字形和箱形截面,桥墩、桩及公共建筑中的 柱等多采用圆形截面;而偏心受拉构件多采用矩形截面。
e0=0 轴心受拉 偏心受拉 大偏心 e0=∞ 纯弯 偏心受压 小偏心 e0=0 轴心受压小偏心大偏心第七章 偏心受力构件承载力的计算7.1 偏心受压构件正截面承载力计算7.1.1 偏心受压构件的破坏形态偏心受压构件是工程中使用量最大 的结构构件,其受力性能随偏心距、配 筋率和长细比( l0/h )等主要因素而变 化。
与轴心受压构件类似,根据构件的 长细比,偏心受压柱也有长柱和短柱之 分。
此外,其他一些重要因素,例如混 凝土和钢筋材料的种类和强度等级、构 件的截面形状、钢筋的构造、荷载的施 加途径等,都对构件的受力性能和破坏 形态产生影响。
第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 偏心受压构件破坏类型 受拉(大偏心受压)破坏7.1 偏心受压构件正截面承载力计算第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 受压应力较大一侧的应变首先达到混凝土的极限压应变 而破坏,同侧的纵向钢筋也受压屈服;而另一侧纵向钢筋可 能受压也可能受拉,如果受压可能达到受压屈服,但如果受 拉,则不可能达到受拉屈服。
构件的承载力主要取决于受压混凝土和受压纵向钢筋。
第七章偏心受压构件的正承载力计算-PPT
![第七章偏心受压构件的正承载力计算-PPT](https://img.taocdn.com/s3/m/02e96e5015791711cc7931b765ce050877327510.png)
基本计算公式
受压区混凝土都能达到极限压应变; As’达到抗压强度设计值fsd’ ;
As受拉,也可能受压,大小ss。
es e0 h 2 as
es' e0 h 2 as'
es 、 es' —分别为偏心应力 0 Nd 至钢筋 As 合力点和钢筋 As' 合力作用点的距离;
1 2
ei
N
f
s
t
c
h0
偏心距增大系数
1 f
ei
f
1 1717
l0 2 h0
1 2
1
1 1717ei
l0 2 h0
1
2
h 1.1h0
1 1
1400 ei
l0 h
2
1
2
h0
ei
N
f
s
t
c
h0
根据偏心压杆得极限曲率理论分析,《公路桥规》规定
1 1 1400
e0
(
l0 h
)2
1
2
h0
1
0.2 2.7
as 、 as' —分别为钢筋 As 合力点和钢筋 As' 合力作用点至截面边缘的距离。
基本计算公式
纵轴方向得合力为零
0 Nd
Nu
fcdbx
f
' sd
As'
s s As
对钢筋As合力点得力矩之与等于零
0 Nd es
Mu
fcd
bx(h0
x 2
)
f
' sd
As'
(h0
as'
)
1
2
偏心受拉构件正截面承载力计算
![偏心受拉构件正截面承载力计算](https://img.taocdn.com/s3/m/99f6a730a88271fe910ef12d2af90242a995ab04.png)
在此情况下,离轴力较远一侧的钢筋 As必然不屈服,
设计时取
As As
Ne f y (h0 a)
② 截面校核:按式(2)进行。
(4)偏心受拉构件的斜截面承载力计算
轴拉力的存在使斜裂缝贯通全截面,从而不存在剪 压区,降低了斜截面承载力。因此,受拉构件的斜截面 承载力公式是在受弯构件相应公式的基础上减去轴拉力 所降低的抗剪强度部分,即0.2N。
(1) (2)
②截面设计:已知构件尺寸、材料强度等级和内力, 求配筋。在此情况下基本公式中有二个未知数,可直 接求解。
③截面校核:一般已知构件尺寸、配筋、材料强度, 偏心距e0,由式(1)和式(2)都可直接求出N,并 取其较大者。
2)对称配筋
①截面设计:已知构件尺寸、材料强度等级和内力, 求配筋。
f y——纵向钢筋抗拉强度设计值;
N ——轴心受拉承载力设计值。
7.2 偏心受拉构件正截面承载力计算
(1)偏心受拉构件的破坏特征
1)大偏心受拉破坏 当轴力处于纵向钢筋之外时发生此种破坏。破坏时
距纵向拉力近的一侧混凝土开裂,混凝土开裂后不会形 成贯通整个截面的裂缝,最后,与大偏心受压情况类似, 钢筋屈服,而离轴力较远一侧的混凝土被压碎 。
受剪承载力的降低与轴向拉力N近乎成正比。 《规范》对矩形截面偏心受拉构件受剪承载力:
V
1.75
1.0
ftbh0
f yv
Asv s
h0
0.2N
当右边计算值小于
f yv
Asv s
h0 时,即斜裂缝
贯通全截面,剪力全部由箍筋承担,受剪承载
力应取
f yv
Asv s
h0 。
为防止斜拉破坏,此时的
0.36ftbh0。
钢筋混凝土偏心受力构件承载力计算
![钢筋混凝土偏心受力构件承载力计算](https://img.taocdn.com/s3/m/6c7de252854769eae009581b6bd97f192379bf5c.png)
由式(7-19)得:
As
As'
Ne 1 fcbx(h0 0.5x)
f
' y
(h0
as' )
Ne 1 fcbh2 (1 0.5 )
f
' y
(h0
as' )
…7-34
主页 目录 上一章 下一章 帮助
混凝土构造设计原理
第7章
❖Ⅰ形截面对称配筋偏心受压构件正截面承载力 概述:
主页
大偏压 ( b ) 小偏压 ( b )
f
' y
(h0
as' )
式中:e ei h / 2 as
…7-26
主页 目录 上一章 下一章 帮助
混凝土构造设计原理
第7章
小偏压:
1.鉴别式 : > b 或 ei<0.3h0
或 ei >0.3h0 但 N > fc b bh0
2.计算式
:
s
1 b 1
fy
由式(7-18)有:
N
1 fcbh0
0.5x) 1 fc (bf'
fy (h0 as' )
b)hf'
(h0
0.5hf'
)
…7-38
主页 目录 上一章 下一章 帮助
混凝土构造设计原理
第7章
2.若x bh0,为小偏压。此时: 若 bh0 x h h f ,则
As
As'
Ne 1
fc (bf'
b)hf'
(h0 0.5hf' ) 1
x
2a
' s
2as' x hf'
钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算
![钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算](https://img.taocdn.com/s3/m/27aba9c3bdeb19e8b8f67c1cfad6195f312be892.png)
这时本题转化为已知As´求As的问题。
(3)求As
= −
+ ′ ′ ( − ′ )
得
× × = . × . × − .
+ × × ( − )
偏心受拉构件正截面受拉承载力计算
− =
×
属于大偏心受拉构件。
(2) 计算As´
= − + = −
+ =
由式(5-6)可得
′
− ² ( − . )
=
′ ( − ′ )
As=1963mm2
,
(1-1)、(1-2)式可得
′
=
=
− ( −. ) ²
′ ( −′ )
+′ ′ +
(5-6)
(5-7)
当采用对称配筋时,求得x为负值,取 = 2′ ,并对As´合力点取矩,计算As 。
偏心受拉构件正截面受拉承载力计算
315×103 ×125−1.0×14.3×1000×1752 ×0.55×(1−0.5×0.55)
=
<0
300×(175−25)
偏心受拉构件正截面受拉承载力计算
取
′ = ′ = . × × = ²
取2
16,
选2
16,A's=402mm2
偏心受拉构件的正截面受力原理及承载能力计算
判别条件:
M h
e
as
N 2
M h
e
as
N 2
钢筋混凝土偏心受力构件承载力计算习题课
![钢筋混凝土偏心受力构件承载力计算习题课](https://img.taocdn.com/s3/m/31a29215a8114431b90dd8b8.png)
一、填空题
1、小偏心受压构件的破坏都是由于 混凝土被压碎 而造成的。 2、大偏心受压破坏属于 延性 ,小偏心破坏属 于 脆性 。 3、偏心受压构件在纵向弯曲影响下,其破坏特 征有两种类型,对长细比较小的短柱属于 材料 破坏,对长细比较大的细长柱,属于 失稳 破坏。
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
判断题
第7章钢筋混凝土偏心受力构件承载力计算习题课
三、计算题
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力力计算习题课
7、偏心受压构件 轴向压力N
是对抗剪有利。
填空题
第7章钢筋混凝土偏心受力构件承载力计算习题课
二、判断题
不大于 0.2%bh 。 1、在偏心受压构件中,As (× ) 2、小偏心受压构件偏心距一定很小。( ×)
3、在偏心受力构件中,大偏压比小偏压材料受 力更合理。( √ )
填空题
第7章钢筋混凝土偏心受力构件承载力计算习题课
4、《混凝土结构设计规范》(GB50010-2010) 将柱端的附加弯矩计算,用 偏心距调节系数 和 弯矩增大系数 来表示。
b 5、大小偏心受压的分界限是 。
6、对于对称配筋的偏心受压构件,在进行截面 设计时, b 和 b 作为判别偏心受压类 型的唯一依据。
第七章偏心受力构件
![第七章偏心受力构件](https://img.taocdn.com/s3/m/ae3e2478b8f67c1cfbd6b860.png)
§7.1 概 述
7.1.1 定义 偏心受力构件是指轴向力偏离截面形心或构件
同时受到弯矩和轴向力的共同作用。
N
NM
N
(a)
N
(b)
NM
(c)
N
图7-1
(d)
(e)
(f)
偏心受拉(拉弯构件) 偏心受压(压弯构件)
单向偏心受力构件 双向偏心受力构件
7.1.2. 工程应用
hf 100mm
d 80mm
第
混凝土
七 章
7.2.3 配筋形式
• 纵筋布置于弯矩作用方向两侧面 d12mm 纵筋间距>50mm 中距 350mm
构造给筋212
构造给筋416
h<600 (a)
600h1000 (b)
1000<h1500 (c)
600h1000 (d)
(g)
600h1000 (e)
N2 N2ei
短柱(材料破坏)
B
中长柱(材料破坏)
N1af1 C
细长柱(失稳破坏)
N2af2
E
图7-8 0
D
M
N
f
M = N(ei+f)
侧向挠曲将引起附加弯矩,
M增大较N更快,不成正比。
二阶矩效应
ei+ f = ei(1+ f / ei) = ei
=1 +f / ei
…7-6
––– 偏心距增大系数
构件破坏,As s。
)
(
受 压 破 坏
小 偏 心 受 压 破 坏
第
混凝土
七 章
7.3.2 界限破坏及大小偏心的界限
第7章 钢筋混凝土偏心受力构件承载力计算
![第7章 钢筋混凝土偏心受力构件承载力计算](https://img.taocdn.com/s3/m/14d935553b3567ec102d8a98.png)
该方法从属于承载能力极限状态,故在考虑二阶 效应的弹性分析法中,对结构构件应取用与该极限状 态相对应的刚度,即将初始弹性抗弯刚度EcI乘以根据 不同类型构件在承载能力极限状态下的不同刚度折减 水平而确定的折减系数。如梁取0.4,柱取0.6,对剪 力墙及核心筒壁取0.6。
刚度折减系数的确定原则是,使结构在不同的荷 载组合方式下用折减刚度的弹性分析求得的各层间位 移及其沿高度的分布规律与按非线性有限元分析所得 结果相当,因而求得的各构件内力也应接近。 用考虑二阶效应的弹性分析算得的各杆件控制截 面最不利内力可直接用于截面设计,而不需要通过偏 心距增大系数η ei来增大相应截面的初始偏心距ei,但 仍应考虑附加偏心距ea。
ei a f ei
1
af ei
(7-2)
引用偏心距增大系数η的作用是将短柱(η=1)承载力计 算公式中的ei代换为ηei来进行长柱的承载力计算。 根据大量的理论分析及试验研究,《规范》给出偏心 距增大系数η 的计算公式为
(7-3) (7-4)
(7-5)
式中 l0 ——构件的计算长度,见§7.5中的有关规定。对无侧 移结构的偏心受压构可取两端不动支点之间的轴线长度; h——截面高度,对环形截面取外直径d;对圆形截面 取直径d; h0——截面有效高度,对环形截面,取h0=r2+rs 对圆形截面,取h0=r+rs; ;
如图6-9所示,在初始偏心距ei;相同的情况下,随柱 长细比的增大,其承载力依次降低,Ne<Nc<Nb。
实际结构中最常见的是长柱,其最终破坏属于材料破 坏,但在计算中应考虑由于构件的侧向挠度而引起的二阶 弯矩的影响。设考虑侧向挠度后的偏心距(af+ei)与初始偏 心距ei比值为η ,称为偏心距增大系数
7-4偏心受拉构件计、构造规定
![7-4偏心受拉构件计、构造规定](https://img.taocdn.com/s3/m/6553214ce45c3b3567ec8b46.png)
⑵大偏心受压 大偏心受拉时,可能有下述几种情况发生:
情况1:As’和As均为未知
为节约钢筋,充分发挥受压混凝土的作用。令x=ξbh0。将x代入(7102)式即可求得受压钢筋As’如果As’≥ρ
minbh,说明取 x=ε bh0成立。即 进一步将 x=ξ bh0及As’代人式(7-101)求得As。如果As’<ρ minbh或为负值则 说明取x=ξ bh0不能成立,此时应根据构造要求选用钢筋As’的直径及根 数。然后按As’为已知的情况2考虑。
N A s f y A s f y 1 f c bx
' '
(7-101)
x ' ' ' Ne 1 f c bx h0 f y A s h0 a s 2
(7-102)
若x<2as’或为负值,则表明受压钢筋位于混凝土受压区合力作用点的
内侧,破坏时将达不到其屈服强度,即As’的应力为一未知量,此时,
Huaihai Institute of Technology
(3)若x<2as’,可利用截面上的内外力对As’合力作用点取矩的 平衡条件求得Nu;Nu源自A s f y h0 a s
'
e
'
以上求得的Nu与N比较,即可
判别截面的承载力是否足够。
s
淮海工学院土木工程系 (/jiangong/index.htm)
Huaihai Institute of Technology
2.截面配筋计算 (1)小偏心受拉
当截面尺寸、材料强度、及截面的作用效应M及N为已知时,可直 接由下式求出两侧的受拉钢筋。
N As f y As f y
习题7 偏心受力构件承载力计算
![习题7 偏心受力构件承载力计算](https://img.taocdn.com/s3/m/1abd6de2f8c75fbfc77db2a8.png)
第七章 偏心受力构件承载力计算(一)选择题1.钢筋混凝土大偏压构件的破坏特征是[ ]。
a 、远离纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎;b 、靠近纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎;c 、靠近纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈;d 、远离纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈。
2.钢筋混凝土偏心受压构件,其大小偏心受压的根本区别是[ ]。
a 、截面破坏时,受拉钢筋是否屈服;b 、截面破坏时,受压钢筋是否屈服;c 、偏心距的大小;d 、受压一侧混凝土是否达到极限压应变值。
3.偏压构件的抗弯承载力[ ]。
a 、随着轴向力的增加而增加;b 、随着轴向力的减少而增加;c 、小偏受压时随着轴向力的增加而增加;d 、大偏受压随着轴向力的增加而增加。
4.一对称配筋的大偏心受压柱,承受的四组内力中,最不利的一组内力为[ ]。
a 、M=500kN ·m N=200KN b 、M=491kN ·m N=304kNc 、M=503kN ·m N=398kNd 、 M=512kN ·m N=506kN5.一小偏心受压柱,可能承受以下四组内力设计值,试确定按哪一组内力计算所得配筋量最大?[ ]a 、M=525 kN ·m N=2050 kNb 、M=525 kN ·m N=3060 kNc 、M=525 kN ·m N=3050 kNd 、 M=525 kN ·m N=3070 kN6.钢筋混凝土矩形截面大偏压构件截面设计当s a 2x '< 时,受拉钢筋的计算截面面积As 的求法是[ ]。
a 、对受压钢筋合力点取矩求得,即按s a 2x '=计算;b 、按s a 2x '=计算,再按s A '=0计算,两者取大值;c 、按0b h x ξ=计算;d 、按最小配筋率及构造要求确定。
2024年电大混凝土结构设计原理考试题库答案
![2024年电大混凝土结构设计原理考试题库答案](https://img.taocdn.com/s3/m/84358462e3bd960590c69ec3d5bbfd0a7856d578.png)
混凝土结构设计原理试题库及其参考答案第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
(错)2.混凝土在三向压力作用下的强度能够提升。
(对)3.一般热轧钢筋受压时的屈服强度与受拉时基本相同。
(对)4.钢筋经冷拉后,强度和塑性均可提升。
(错) 5.冷拉钢筋不宜用作受压钢筋。
(对)6.C20表示f cu =20N/mm 。
(错)7.混凝土受压破坏是因为内部微裂缝扩展的成果。
(对)8.混凝土抗拉强度伴随混凝土强度等级提升而增大。
(对)9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
(错)10.混凝土受拉时的弹性模量与受压时相同。
(对)11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增加与应力不成正比。
(对)12.混凝土强度等级愈高,胶结力也愈大(对)13.混凝土收缩、徐变与时间有关,且相互影响。
(对)第3章 轴心受力构件承载力1.轴心受压构件纵向受压钢筋配备越多越好。
( 错 )2.轴心受压构件中的箍筋应作成封闭式的。
( 对 )3.实际工程中没有真正的轴心受压构件。
( 对 )4.轴心受压构件的长细比越大,稳定系数值越高。
( 错 )5.轴心受压构件计算中,考虑受压时纵筋轻易压曲,因此钢筋的抗压强度设计值最大取为。
( 2/400mm N错 )6.螺旋箍筋柱既能提升轴心受压构件的承载力,又能提升柱的稳定性。
( 错 )第4章 受弯构件正截面承载力1.混凝土保护层厚度越大越好。
( 错 )2.对于的T 形截面梁,因为其正截面受弯承载力相称于宽度为的矩形截面梁,因此其配筋率应按'f h x ≤'f b 来计算。
( 错 )0'h b A f s =ρ3.板中的分布钢筋布置在受力钢筋的下面。
( 错 )4.在截面的受压区配备一定数量的钢筋对于改进梁截面的延性是有作用的。
(对 )5.双筋截面比单筋截面更经济合用。
( 错 )6.截面复核中,假如,阐明梁发生破坏,承载力为0。
(新)第7章:钢筋混凝土偏心受力构件承载力计算
![(新)第7章:钢筋混凝土偏心受力构件承载力计算](https://img.taocdn.com/s3/m/97c5481bcc7931b765ce15c3.png)
b的取值与受弯构件相同 。
近似判别方法 :
ei 0.3h0 ei 0.3h0
2.偏心受压构件正承载力计算
2.2 偏心受压构件正截面承载力计算
矩形截面非对称配筋
大偏压:
X 0,N 1 fcbx f y' As' f y As
由式(7-19)得:
…7-33
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
小偏心受压
无法避免,可增加横 向钢筋约束砼,提高 变形能力。 要避免
产生条件: (1)偏心距很小。
(2)偏心距 (e0 / h) 较大,但离力较远一侧的钢筋过多。 破坏特征:靠近纵向力一侧的混凝土首先达到极限压应变而压碎 ,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋 不论受拉还是受压,一般达不到屈服强度。构件的承 载力取决于受压区混凝土强度和受压钢筋强度。 破坏性质: 脆性破坏。
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
大偏心受压
产生条件: 相对偏心距 (e0 / h ) 较大, 且离力较远一侧的钢筋适当。 破坏特征: 部分受拉、部分受压,受拉钢筋应力先达到屈 服强度,随后,混凝土被压碎,受压钢筋达屈 服强度。 构件的承载力取决于受拉钢筋的强度和数量。 破坏性质: 塑性破坏。
c
0.5 f c A 1.0 N
2.偏心受压构件正承载力计算
小偏心受压时的应力可按下式近似计算:
1 s fy b 1
s 0时,As受拉; s 0时,As受压; f y f y ; s f y时,取 s f y。
钢筋混凝土偏心受力构件承载力计算
![钢筋混凝土偏心受力构件承载力计算](https://img.taocdn.com/s3/m/2a7d443a1611cc7931b765ce05087632311274ff.png)
钢筋混凝土偏心受力构件承载力计算首先是弯矩承载力的计算。
偏心受力构件在受力时会产生弯矩,弯矩的计算公式为M=P*e,其中M为弯矩,P为受力的大小,e为受力点离中和轴的偏心距离。
根据受力构件的几何形状和材料特性,可以计算出弯矩的大小。
然后是弯矩承载力的计算。
在计算弯矩承载力时,需考虑到构件的截面尺寸和混凝土的承载能力。
根据混凝土的强度设计理论,可以计算出构件所能承受的最大弯曲矩阻力Mr。
弯矩承载力的计算公式为M<Mr,即弯矩小于最大弯曲矩阻力时,构件能够承受该组合荷载。
对于轴心受压承载力的计算,主要考虑构件在受力时产生的压力和构件的抗压能力。
压力的计算公式为P=N/A,其中P为压力,N为受力大小,A为构件的截面面积。
抗压能力则取决于混凝土的强度和构件的截面形状。
轴心受压承载力的计算公式为P < Pru,即受力小于抗压能力时,构件能够承受该组合荷载。
当同时考虑弯矩承载力和轴心受压承载力时,需要根据构件的实际受力情况,计算出合理的组合荷载,并选择最不利的受力组合进行计算。
通常情况下,受力构件在一侧会产生弯矩和压力,而在另一侧会产生弯矩和拉力。
在进行承载力计算时,还需要考虑构件的受力性质,如它是梁、柱还是悬臂梁等。
不同构件的受力性质会影响其承载力的计算方法。
除了以上两种承载力的计算之外,还需要考虑构件在受力时的变形和破坏形态。
通过合理的结构设计和选择适当的材料,可以保证构件在设计工作条件下具备足够的承载力和安全性。
综上所述,钢筋混凝土偏心受力构件承载力的计算主要包括弯矩承载力和轴心受压承载力两部分。
通过合理的设计和计算,可以保证构件在受力工况下具备足够的承载能力和安全性。