文科数学学霸笔记26 基本不等式

合集下载

基本不等式全部公式

基本不等式全部公式

基本不等式全部公式1.三角不等式:对于任意实数a和b,有,a+b,≤,a,+,b2. Cauchy-Schwarz 不等式:对于任意实数 a1, a2,...,an 和 b1, b2,...,bn,有(a1b1 + a2b2 + ... + anbn)² ≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)3. 二次平均不等式:对于任意非负实数 x1, x2,...,xn,有√((x₁² + x₂² + ... + xn²)/n) ≥ ((x₁ + x₂ + ... + xn)/n)4. 广义平均不等式:对于任意非负实数 x1, x2,...,xn 和实数 p ≠ 0,有(x₁ᵖ + x₂ᵖ + ... + xnᵖ)/n ≥ ((x₁ + x₂ + ... + xn)/n)ᵖ5. AM-GM 不等式:对于任意非负实数 x₁, x₂,...,xn,有(x₁x₂...xn)^(1/n) ≤ (x₁ + x₂ + ... + xn)/n6. Jensen 不等式:设 f 是凸函数,则对于非负实数 x₁, x₂, (x)和非负实数权重 w₁, w₂,...,wn,有f(w₁x₁ + w₂x₂ + ... + wnxn) ≥ w₁f(x₁) + w₂f(x₂) + ... +wnfn(xn)7. Hessemberg 不等式:对于非负实数 x₁, x₂,...,xn,有(x₁ + t)ⁿ ≤ x₁ⁿ + nx₁ⁿ⁻¹t + n(n-1)x₁ⁿ⁻²t²/2 + ... + tⁿ8. Bernoulli 不等式:对于实数x ≥ -1 和正整数 n,有(1+x)ⁿ ≥ 1 + nx9. Muirhead 不等式:对于非负实数 a₁, a₂,...,an 和 b₁,b₂,...,bn 满足 a₁ + a₂ + ... + an = b₁ + b₂ + ... + bn,有a₁ᵖ₁a₂ᵖ₂...anᵖₙ + permutations ≥ b₁ᵖ₁b₂ᵖ₂...bnᵖₙ + permutations10. 反柯西不等式:对于任意非负实数 a₁, a₂,...,an,有(a₁/a₂ + a₂/a₃ + ... + an-₁/an + an/a₁) ≥ n以上是一些常见的基本不等式公式。

基本不等式笔记整理

基本不等式笔记整理

基本不等式笔记整理基本不等式是用于解决一元二次不等式的基本方法之一。

整理基本不等式的笔记可以帮助我们更好地理解和应用这一方法。

下面是整理的基本不等式笔记:1. 两边同加(减)同一个数不等号方向不变。

即如果a > b,那么a + c > b + c,如果a < b,那么a + c < b + c。

例如:3 > 2,则3 + 1 > 2 + 1,3 - 1 > 2 - 1。

2. 两边同乘(除)同一个正数不等号方向不变。

即如果a > b,并且c是一个正数,那么ac > bc,如果a < b,并且c是一个正数,那么ac < bc。

例如:3 > 2,则3 × 2 > 2 × 2,3 ÷ 2 > 2÷ 2。

3. 两边同乘(除)同一个负数不等号方向改变。

即如果a > b,并且c是一个负数,那么ac < bc,如果a < b,并且c是一个负数,那么ac > bc。

例如:3 > 2,则3 × (-2) < 2 × (-2),3 ÷ (-2) < 2 ÷ (-2)。

4. 平方不等式:如果a > b,那么a² > b²。

例如:3 > 2,则3² > 2²。

基本不等式可以帮助我们解决一元二次不等式,尤其是当不等式中的项是平方时。

通过应用基本不等式的规则,我们可以将复杂的不等式转化为简单的不等式,并且保持不等式的方向不变。

这样可以更方便地进行计算和推导,最终解出不等式的解集。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

高中数学:基本不等式知识点总结

高中数学:基本不等式知识点总结

高中数学:基本不等式知识点总结一命题趋势基本不等式是解决函数值域、最值、不等式证明、参数范围问题的有效工具,在高考中经常考查,有时也会对其单独考查.题日难度为中等偏上.应用时,要注意“拆、拼、凑”等技巧,特别要注意应用条件,只有具备公式应用的三个条件时,才可应用,否则可能会导致结果错误.二知识网络基本不等式:基本不等式成立的条件6T>0,b>0等号成立的条件当且仅当时取等号.几个市唾的不等式b242* (cu/?=/?)•以15、等式等号成立的条件均为a=h.:+|司号)・a b屈M[“:心](sa2 ^b2(a+b\22J35算术平坷数与凡何平均数没“A O.b AO,则a,h的算术T均数为乏,儿何平均数为J无,厝本不等式可叙述为两个正数的算术平均数不小尸住们的几何十均数.利用基木不等式求最值同题如果积xy是定值所.那么当且仅当*一、时,x+y H xw小值2j7^・(简积也和最小〉如果人+y是龙仞〃,那么士FI.仅^j x-.v 时・xyTf取人佰(筒记,和定税最大)4三数学思想在不等式问题中的体现1、分类讨论思想例1.已知不等式*-2)“+6,(1)求该不等式中x的集合:(2)若1不是不等式的解,0是不等式的解,求k的取值范围。

解:(1)(k-l)Q2k+6当k>l时,解集为x>2k+61当k=l时,解集为©当成1时,解集为2k+6k-1(2)-k<U6-2k>6所以-7弘<-3小结:当一次项系数为0时,不等式成为两个常数比较大小的形式,与x取值无关。

因此,不等式的解集为R (不等式成立时)或(不等式不成立时)o2、转化与化归思想(111壮——+—例2.已知a.b,c为正整数,且a J4b2+c2H.48<4a+6b+12c F求la b c;的值。

解:因为不等式两边均为正整数.所以不等式与不等式a3+b2+c2+48+1<4aH.6b+12c等价,这个等价不等式乂可转化为a2-4a+b2 -6b+c2-12c+49<0c.I(a-2)2+(b-3)24(c-6)2<0a-2=0,b-3=0w c-6=0BPa=2,b=3,c=6fl1”"[a b cj小结:将等式与不等式对应等价转化,是转化数学问题的常用且非常有效的手段。

《基本不等式》 知识清单

《基本不等式》 知识清单

《基本不等式》知识清单一、基本不等式的形式基本不等式是高中数学中的一个重要知识点,它有两种常见形式:1、对于任意两个正实数 a 和 b,有\(a + b \geq 2\sqrt{ab}\),当且仅当\(a = b\)时,等号成立。

2、如果\(a\gt 0\),\(b\gt 0\),则\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当\(a = b\)时,等号成立。

这两个形式本质上是等价的,它们都反映了两个正数的算术平均数不小于几何平均数的重要关系。

二、基本不等式的证明我们先来证明第一个形式\(a + b \geq 2\sqrt{ab}\)。

因为\((\sqrt{a} \sqrt{b})^2 \geq 0\),展开得到:\\begin{align}a 2\sqrt{ab} +b &\geq 0\\a +b &\geq 2\sqrt{ab}\end{align}\当且仅当\(\sqrt{a} \sqrt{b} = 0\),即\(a = b\)时,等号成立。

对于第二个形式\(\sqrt{ab} \leq \frac{a + b}{2}\),证明如下:因为\((a b)^2 \geq 0\),所以\(a^2 2ab + b^2 \geq 0\),移项得到\(a^2 + 2ab + b^2 \geq 4ab\),即\((a + b)^2 \geq 4ab\)。

因为\(a\gt 0\),\(b\gt 0\),所以\(a + b \gt 0\),两边同时除以 4 得到:\\begin{align}\frac{(a + b)^2}{4} &\geq ab\\\frac{a + b}{2} &\geq \sqrt{ab}\end{align}\当且仅当\(a = b\)时,等号成立。

三、基本不等式的应用1、求最值基本不等式在求最值问题中有着广泛的应用。

例如,求函数\(y = x +\frac{1}{x}\)(\(x\gt 0\))的最小值。

基本不等式笔记

基本不等式笔记

1 / 1
基本不等式笔记
基本不等式笔记如下:
基本不等式是数学中的一个重要概念,用于描述某些情况下不等式两边可以相等的情况。

其现代形式如下:如果a 和b 都是正实数,那么ab b a 2≥+,
当且仅当a =b 时等号成立。

这个不等式可以用来证明许多其他的不等式,也是许多重要数学结论的基础。

在学习基本不等式时,需要牢记其适用条件和结论,并注意一些常见的陷阱。

1. 适用条件:a 和b 都是正实数。

如果a 或b 有一个是负数,或者是0,这个
不等式就不成立。

2. 等号成立的条件:当且仅当a =b 时,等号成立。

如果a 和b 不等,那么等号
不成立。

3. 结论的形式:基本不等式的结论是“ab b a 2≥+”。

注意“≥”表示“大于或等于”,也就是说,等号成立时a 和b 相等,而如果不等,那么就是严格的大于。

4. 使用时的注意事项:使用基本不等式时一定要注意其适用条件。

此外,还需
要注意简化表达式,例如如果你想证明一个更复杂的不等式,应尽可能先使用基本不等式简化表达式的结构。

5. 常见的应用场景:基本不等式在许多数学领域都有应用,例如在分析、代数、
几何和概率论中都有用到。

在经济学中,特别是在处理平均值和集中趋势的时候,基本不等式也经常被用到。

基本不等式笔记

基本不等式笔记

基本不等式笔记【实用版】目录1.基本不等式的定义和性质2.基本不等式的推导过程3.基本不等式的应用举例正文一、基本不等式的定义和性质基本不等式,又称柯西 - 施瓦茨(Cauchy-Schwarz)不等式,是一种在向量空间中的内积不等式。

它指出,对于任意两个实数向量 x 和 y,都有它们的内积平方和等于它们模的平方和,即:(x·y)^2 ≤ (x^2 + y^2)(y·x)^2 ≤ (x^2 + y^2)其中,x·y 表示向量 x 和向量 y 的内积,x^2 和 y^2 分别表示向量 x 和向量 y 的模的平方。

基本不等式的性质包括:1.平等性:当且仅当 x 与 y 共线时,等号成立。

2.齐次性:对于任意实数 k,都有 k(x·y) ≤ k(x^2 + y^2)。

3.可积性:对于任意实数 x 和 y,都有 (x·y)^2 ≤ (x^2 +y^2)(y·x)^2。

二、基本不等式的推导过程基本不等式的推导过程相对简单。

假设有两个实数向量 x 和 y,它们的内积为 x·y,模分别为||x||和||y||。

根据内积的定义,我们有:x·y = ||x|| * ||y|| * cosθ其中,θ表示向量 x 和向量 y 之间的夹角。

由于 0 ≤ cosθ≤ 1,所以:(x·y)^2 ≤ (||x|| * ||y||)^2 * cos^2θ≤ (||x||^2 + ||y||^2) 进一步推导,我们得到:(x·y)^2 ≤ (x^2 + y^2)(y·x)^2 ≤ (x^2 + y^2)这就是基本不等式的表达式。

三、基本不等式的应用举例基本不等式在数学中有广泛的应用,例如在求解最值问题、证明不等式、研究函数性质等方面。

下面举一个简单的应用例子:假设有一个函数 f(x) = x^2 + 2ax + 1,我们要求该函数的最小值。

基本不等式知识点

基本不等式知识点

基本不等式知识点1、不等式的基本性质①对称性a b b a >⇔>②传递性,a b b c a c >>⇒>③可加性a b a c b c >⇔+>+同向可加性d b c a d c b a +>+⇒>>,异向可减性d b c a d c b a ->-⇒<>,④可积性bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤同向正数可乘性0,0a b c d ac bd >>>>⇒> 异向正数可除性0,0a b a b c d c d >><<⇒>⑥平方法则0(,1)n n a b a b n N n >>⇒>∈>且⑦开方法则0,1)a b n N n >>⇒∈>且 ⑧倒数法则b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,当且仅当a b =时取""=号. 变形公式:22.2a b ab +≤②基本不等式2a b +≥ ()a b R +∈,,当且仅当a b =时取到等号.变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时积定和最小,和定积最大,要注意满足三个条件“一正、二定、三相等”.③三个正数的算术—几何平均不等式3a b c ++≥()a b c R +∈、、当且仅当a b c ==时取到等号.④()222a b c ab bc ca a b R ++≥++∈,当且仅当a b c ==时取到等号.⑤3333(0,0,0)a b c abc a b c ++≥>>> 当且仅当a b c ==时取到等号. ⑥0,2b a ab a b >+≥若则当仅当a=b 时取等号0,2b a ab a b <+≤-若则当仅当a=b 时取等号 ⑦b a n b n a ma mb a b <++<<++<1,其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈,当且仅当a b =时取""=号.即调和平均≤几何平均≤算术平均≤平方平均.变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式: 设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式排序原理:设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++反序和≤乱序和≤顺序和,当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:特例:凸函数、凹函数若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称fx 为凸或凹函数.4、不等式证明的几种常用方法常用方法有:比较法作差,作商法、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大缩小,如211,(1)k k k <- 211,(1)k kk >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿奇穿偶切,结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ <≤“或”时同理规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个或两个以上绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数或恒成立的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数或恒成立的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

基本不等式6个公式

基本不等式6个公式

基本不等式6个公式
基本不等式是初中数学中常见的一类不等式,包括以下6个公式:
1. 两个非负实数的平均数大于等于它们的几何平均数:(a+b)/2≥√ab
这个公式表明,对于两个非负实数a和b,它们的平均数不会小于它们的几何平均数。

2. 两个非负实数的平方和大于等于它们的算术平均数的平方:a²+b²≥(a+b)²/4
这个公式表明,对于两个非负实数a和b,它们的平方和不会小于它们的算术平均数的平方。

3. 两个正实数的积大于等于它们的几何平均数的平方:ab≥(a+b)²/4
这个公式表明,对于两个正实数a和b,它们的积不会小于它们的几何平均数的平方。

4. 两个正实数的积大于等于它们的调和平均数的平方:ab≥4/(1/a+1/b)²
这个公式表明,对于两个正实数a和b,它们的积不会小于它们的调和平均数的
平方。

5. n个正实数的算术平均数大于等于它们的几何平均数:(a1+a2+...+an)/n≥√(a1a2...an)
这个公式表明,对于n个正实数a1、a2、...、an,它们的算术平均数不会小于它们的几何平均数。

6. n个正实数的调和平均数大于等于它们的算术平均数:n/(1/a1+1/a2+...+1/an)≥(a1+a2+...+an)/n
这个公式表明,对于n个正实数a1、a2、...、an,它们的调和平均数不会小于它们的算术平均数。

高考文科不等式知识点

高考文科不等式知识点

高考文科不等式知识点高考是每个学生都需要面对的重要考试,而作为文科生来说,数学是其中一个必考科目。

在数学中,不等式是一个关键的知识点,而且在高考中也占据了相当大的比重。

本文将与大家分享一些高考文科中常见的不等式知识点,帮助大家更好地应对数学考试。

一. 基本不等式基本不等式是学习不等式的基础,理解了基本不等式才能更好地应用到其他相关知识点中。

基本不等式有两个核心概念:大小关系和符号规律。

1. 大小关系:在不等式中,对于两个不等式,若其中一个式子的每一项都小于另一个式子,那么可以断定这个式子的大小关系。

例如,若a>b,x<y,则可以确定ax<by。

2. 符号规律:不等式中的符号规律是一个重要的概念,在解不等式的过程中需要特别注意。

例如,若a>b,x<y,则可以确定a-x>b-y。

二. 基本不等式的运算法则在解不等式的过程中,运算法则是不可忽视的。

这些法则是基于数学运算的性质来得出的,但在使用中需要注意它们的适用范围。

1. 加减法原则:在不等式中,若两个不等式都同加(减)一个数,则这两个不等式的大小关系不变。

例如,若a>b,则a+c>b+c。

2. 乘法原则:在不等式中,若一个不等式两边同乘(除)一个正数,则不等号不变;若两边同乘(除)一个负数,则不等号反向。

例如,若a>b,则2a>2b,当c>0时,ca>cb;当c<0时,ca<cb。

三. 不等式的解集解不等式是高考中常见的题型,对于解不等式有以下几个常见的解集形式:1. 区间表示法:在不等式的解集中,如果使用区间表示法,可以清晰地展示解集的范围。

例如,对于不等式1<x<4,可以使用区间表示为(1,4)。

2. 简化形式:有时候,解集可以通过简化不等式的形式得出。

例如,对于不等式x+3≤7,可以得出解集为x≤4。

四. 基本不等式的应用1. 一元一次不等式:在高考中,一元一次不等式是非常常见的题型。

数学基本不等式知识点提纲

数学基本不等式知识点提纲

数学基本不等式知识点提纲一、平均不等式1. 算术平均数不等式:对于任意正实数 a1、a2、...、an,有 (a1+a2+...+an)/n >= √(a1·a2·...·an)2. 几何平均数不等式:对于任意正实数 a1、a2、...、an,有 (a1·a2·...·an)^(1/n) >= (a1+a2+...+an)/n二、平方不等式1. 平方差不等式:对于任意实数 a 和 b,有 (a-b)^2 >= 0,即 a^2 + b^2 >= 2ab2. 平方均值不等式:对于任意非负实数 a1、a2、...、an,有(a1^2+a2^2+...+an^2)/n >= (a1+a2+...+an)^2/n^2三、柯西-施瓦茨不等式对于任意实数 a1、a2、...、an 和 b1、b2、...、bn,有(a1*b1+a2*b2+...+an*bn)^2 <= (a1^2+a2^2+...+an^2)·(b1^2+b2^2+...+bn^2)四、三角不等式1. 绝对值不等式:对于任意实数 a 和 b,有 |a+b| <= |a| + |b|2. 三角形不等式:对于任意实数 a、b 和 c,有 |a+b| <= |a| + |b|; |a-b| <= |a| + |b|; |a-b| <= |a| - |b|五、其他不等式1. 极值不等式:若函数 f(x) 在 [a,b] 上连续,且在 (a,b) 内可导,且在 a 和 b 处均有极值,那么在 [a,b] 上 f(x) 的最大值不超过其极值,最小值不低于其极值。

2. 线性不等式:对于任意实数 a、b、c,若 a > b,那么 ac > bc,若 c > 0,那么 ac > bc。

3. 加权不等式:对于任意正实数 a 和 b,若 p 和 q 是实数且 p+q=1,那么a^p·b^q >= pa + qb这些是数学基本不等式的一些知识点提纲,可以根据具体需要深入研究各个不等式的性质和应用。

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳)

高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。

2)求最值的条件“一正,二定,三取等”。

3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。

应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。

2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。

基本不等式知识点归纳

基本不等式知识点归纳

基本不等式知识点总结向量不等式:【注意】: a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-; a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+; a b 、不共线⇔||||||||||||a b a b a b -<±<+.(这些和实数集中类似)代数不等式:,a b 同号或有0||||||||||||a b a b a b a b ⇔+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ⇔-=+-=+≥.绝对值不等式: 123123a a a a a a ++++≤双向不等式:a b a b a b -±+≤≤(左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.)放缩不等式:①00a b a m >>>>,,则b m b b ma m a a m-+<<-+. 【说明】:b b m a a m+<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a ba nb n a m a m b a b <++<<++<1. ②,,a bc R +∈,b d ac <,则b bd da a c c+<<+; ③n N +∈,1112n n n n n+-<<--; ④,1n N n +∈>,21111111n n n n n-<<-+-. ⑤ln 1x x -≤(0)x >,1xe x +≥()x R ∈.函数()(0)bf x ax a b x=+>、图象及性质(1)函数()0)(>+=b a xbax x f 、图象如图:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,]b a -∞-,[,)b a +∞;单调递减区间:(0,]ba,[,0)b a -. 基本不等式知识点总结重要不等式xab ab2-ab 2ab -oy1、和积不等式:,a b R ∈⇒222a b ab +≥(当且仅当a b =时取到“=”).【变形】:①222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==) 【注意】:(,)2a b ab a b R ++∈≤,2()(,)2a b ab a b R +∈≤ 2、均值不等式:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均≥算术平均≥几何平均≥调和平均”*.若0x >,则12x x +≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)*.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 3、含立方的几个重要不等式(a 、b 、c 为正数):3333a b c abc ++≥(0a b c ++>等式即可成立,时取等或0=++==c b a c b a );*不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时,ab b a 222≥+同时除以ab 得2≥+b a a b 或ba ab -≥-11。

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结第一篇:基本不等式和二元平均数不等式一、基本不等式:基本不等式又称柯西不等式,是数学中重要的基本工具,对于解决不等式问题有重大意义。

基本不等式的形式如下:$$(a_1^2 + a_2^2 + … + a_n^2)(b_1^2 + b_2^2 + … + b_n^2) \geqslant (a_1b_1 + a_2b_2 + … + a_nb_n)^2$$其中$a_1,a_2,…,a_n$ 和$b_1,b_2,…,b_n$ 是任意实数。

基本不等式的证明过程多种多样,这里给出一种简单易懂的证明方法:设$x=a_1b_1+a_2b_2+…+a_nb_n$,则 $x^2$ 可以表示为:$$x^2={(a_1b_1+a_2b_2+…+a_nb_n)}^2$$$$={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^ 2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$又因为:$${a_1}^2+{a_2}^2+…+{a_n}^2\geqslant2a_1a_2+2a_1a_3+…+2a_{n-1}a_n$$$${b_1}^2+{b_2}^2+…+{b_n}^2\geqslant2b_1b_2+2b_1b_3+…+2b_{n-1}b_n$$因此:$${a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^2 \geqslant 2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$故:$$x^2={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_ n}^2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$$$\leqslant({a_1}^2+{a_2}^2+…+{a_n}^2)({b_1}^2+{ b_2}^2+…+{b_n}^2)$$即为所求基本不等式。

高中数学不等式的基本性质知识点归纳

高中数学不等式的基本性质知识点归纳

高中数学不等式的基本性质知识点归纳高中数学不等式的基本性质知识点归纳导语:数学是一切科学的基础,以下是小编为大家精心整理的高中数学不等式的基本性质知识点归纳,欢迎大家参考!1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:① 不等式的`性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1) a>bb(2) a>b, b>ca>c (传递性)(3) a>ba+c>b+c (c∈R)(4) c>0时,a>bac>bcc<0时,a>bac运算性质有:(1) a>b, c>da+c>b+d。

(2) a>b>0, c>d>0ac>bd。

(3) a>b>0an>bn (n∈N, n>1)。

(4) a>b>0>(n∈N, n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

② 关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

(整理)基本不等式知识点归纳

(整理)基本不等式知识点归纳

基本不等式知识点归纳1.基本不等式2ba ab +≤(1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义?提示:①当b a =时,ab b a ≥+2取等号,即.2ab ba b a =+⇒= ②仅当b a =时,ab b a ≥+2取等号,即.2b a ab b a =⇒=+ 2.几个重要的不等式).0(2);,(222>≥+∈≥+ab b aa b R b a ab b a),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题 已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,xx y 1+=在2≥x 时的最小值,利用单调性,易知2=x 时.25min =y[自测·牛刀小试]1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81D .243解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.2.若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .4 3.已知,02,0,0,0=+->>>z y x z y x 则2y xz的( ) A .最小值为8 B .最大值为8 C .最小值为18 D .最大值为184.函数xx y 1+=的值域为 ____________________. 5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.利用基本不等式证明不等式[例1] 已知,0,0>>b a ,1=+b a 求证:.9)11)(11(≥++ba保持例题条件不变,证明:a +12+b +12≤2.———————————————————利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.1.已知,0,0,0>>>c b a 求证:.c b a cab b ca a bc ++≥++利用基本不等式求最值[例2] (1)(2012·浙江高考)若,0,0>>y x 满足,53xy y x =+则y x 43+的最小值是( ) A.245 B.285C .5D .6(2)已知,0,0>>b a ,1222=+b a 则21b a +的最大值为________. ———————————————————应用基本不等式求最值的条件利用基本不等式求最值时,要注意其必须满足的三个条件:(1)一正二定三相等.“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.1.(1)函数)1,0(1≠>=-a a ay x的图象过定点,A 若点A 在直线)0,(01>=-+n m ny mx 上,求nm 11+的最小值; (2)若正数b a ,满足,3++=b a ab 求ab 的取值范围.利用基本不等式解决实际问题[例3] 为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用)0(≥t t 万元满足124+-=t kx (k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2014年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2014年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家2014年的年促销费用投入多少万元时,厂家利润最大? ———————————————————解实际应用题时应注意的问题(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需再利用基本不等式求得函数的最值; 3在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围内求. 4有些实际问题中,要求最值的量需要用几个变量表示,同时这几个变量满足某个关系式,这时问题就变成了一个条件最值,可用求条件最值的方法求最值.3.某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入)600(612-x 万元作为技改费用,投入50万元作为固定宣传费用,投入x 51万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.1个技巧——公式的逆用运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如ab b a 222≥+逆用就是),0,0(222>>+≤b a b a ab 逆用就是)0,()2(2>+≤b a b a ab 等,还要注意“添、拆项”技巧和公式等号成立的条件等.2个变形——基本不等式的变形(1)).,,(2)2(222”时取“当且仅当==∈≥+≤+b a R b a ab b a b a (2),0,0(1122222>>+≥≥+≥+b a ba ab b a b a ).”时取“当且仅当==b a 3个关注——利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.创新交汇——基本不等式在其他数学知识中的应用1.考题多以函数、方程、立体几何、解析几何、数列等知识为载体考查基本不等式求最值问题.2.解决此类问题的关键是正确利用条件转换成能利用基本不等式求解的形式,同时要注意基本不等式的使用条件. [典例] (2012·湖南高考)已知两条直线m y l =:1和),0(128:2>+=m m y l 1l 与函数x y 2log =的图象从左至右相交于点A 、B ,2l 与函数x y 2log =的图象从左至右相交于点C 、D ,记线段AC 和BD 在x 轴上的投影长度分别为.,b a 当m 变化时,ab的最小值为( ) A .16 2 B .8 2 C .348 D .344 [名师点评]1.本题具有以下创新点(1)本题是对数函数的图象问题,通过分析、转化为基本不等式求最值问题.(2)本题将指数、对数函数的性质与基本不等式相结合,考查了考生分析问题、解决问题的能力. 2.解决本题的关键有以下几点(1)正确求出A 、B 、C 、D 四点的坐标;(2)正确理解b a ,的几何意义,并能正确用A 、B 、C 、D 的坐标表示; (3)能用拼凑法将)0(128>++m m m 化成利用基本不等式求最值的形式.[变式训练]1.已知,0,0>>y x y b a x ,,,成等差数列y d c x ,,,成等比数列,则cdb a 2)(+的最小值是( )A .0B .1C .2D .42.若直线),0,0(02>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值为( ) A.14 B. 2 C.32+ 2 D.32+2 2 3.若,0,0>>y x 且y x a y x +≤+恒成立,则a 的最小值是________.练习一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012·福建高考)下列不等式一定成立的是( ) A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(212R x x x ∈≥+ D.)(1112R x x ∈>+ 2.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (b a <),其全程的平均时速为,v 则( ) A .ab v a << B .ab v =C.2ba v ab +<< D .2ba v +=3.若,0,0>>b a 且,0)ln(=+b a 则ba 11+的最小值是( ) A.14B .1C .4D .8 4.(2013·淮北模拟)函数)1(122>-+=x x x y 的最小值是( ) A .23+2 B .23-2 C .2 3 D .25.设,0,0>>b a 且不等式011≥+++ba kb a 恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-26.(2013·温州模拟)已知M 是ABC ∆内的一点,且AB ·AC =23,,300=∠BAC 若MCA MBC ∆∆,和MAB ∆的面积分别为,,,21y x 则y x 41+的最小值是( )A .20B .18C .16D .19 二、填空题(本大题共3小题,每小题5分,共15分)7.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.8.若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号).①1≤ab ②2≤+b a ③222≥+b a ④322≥+b a ⑤.211≥+ba 9.(2013·泰州模拟)已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________.三、解答题(本大题共3小题,每小题12分,共36分) 10.已知.0,0,0,0>>>>d c b a 求证:.4≥+++acadbc bd bc ad11.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)1.已知,1log log 22≥+b a 则ba93+的最小值为________.2.设b a ,均为正实数,求证:.221122≥++ab b a3.已知,45<x 求54124)(-+-=x x x f 的最大值.4.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=),1(>x x 求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计?[归纳·知识整合]1.合情推理 (1)归纳推理:①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理. (2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:类比推理是由特殊到特殊的推理. [探究] 1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理 (1)模式:三段论①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断. (2)特点:演绎推理是由一般到特殊的推理. [探究] 2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.[自测·牛刀小试]1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④2.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为( )A .3 125B .5 625C .0 625D .8 1253.(教材习题改编)有一段演绎推理是这样的:“直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误归纳推理[例1] (1)(2012·江西高考)观察下列各式:,,11,7,4.3,155443322=+=+=+=+=+b a b a b a b a b a 则=+1010b a ( )A .28B .76C .123D .199 (2)设,331)(+=xx f 先分别求),3()2(),2()1(),1()0(f f f f f f +-+-+然后归纳猜想一般性结论,并给出证明.利用本例(2)的结论计算)2015()1()0()1()2013()2014(f f f f f f ++++-++-+- 的值.归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.1.观察下列等式:1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…13=113+23=913+23+33=3613+23+33+43=10013+23+33+43+53=225…可以推测:13+23+33+…+3n =________(n ∈N *,用含n 的代数式表示).类比推理[例2] (2013·广州模拟)已知数列}{n a 为等差数列,若b a a a n m ==,),,,1(+∈≥-N n m m n 则,mn manb a m n --=+类比等差数列}{n a 的上述结论,对于等比数列}{n b ),,0(+∈>N n b n 若d a c a n m ==,),,,2(+∈≥-N n m m n 则可以得到=+m n b ________. ———————————————————类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.2.在ABC ∆中,,AC AB ⊥BC AD ⊥于D ,求证:.111222AC AB AD +=演 绎 推 理[例3] 已知函数).10()(≠>+-=a a aa ax f x且 (1)证明:函数)(x f y =的图象关于点)21,21(-对称; (2)求)3()2()1()0()1()2(f f f f f f ++++-+-的值.———————————————————演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.3.已知函数,)(bx xax f +=其中),,0(,0,0+∞∈>>x b a 试确定)(x f 的单调区间,并证明在每个单调区间上的增减性.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想); ③检验猜想.实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想); ③检验猜想.观察、比较→联想、类推→猜想新结论 1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.创新交汇——合情推理与证明的交汇创新1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比.题型多为客观题,而2012年福建高考三角恒等式的推理与证明相结合出现在解答题中,是高考命题的一个创新.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·合肥模拟)正弦函数是奇函数,)1sin()(2+=x x f 是正弦函数,因此)1sin()(2+=x x f 是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确2.(2013·银川模拟)当x ∈(0,+∞)时可得到不等式,3)2(224,2122≥++=+≥+xx x x x x x 由此可以推广为,1+≥+n xpx n 取值p 等于( ) A .nn B .2nC .nD .1+n3.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(y x ,)的个数为4,|x |+|y |=2的不同整数解(y x ,)的个数为8,|x |+|y |=3的不同整数解(y x ,)的个数为12,…,则|x |+|y |=20的不同整数解(y x ,)的个数为( )A .76B .80C .86D .925.设ABC ∆的三边长分别为a 、b 、c ,ABC ∆的面积为S ,内切圆半径为r ,则;2cb a Sr ++=类比这个结论可知:四面体ABCD S -的四个面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为R ,四面体ABC S -的体积为V ,则R =( )A.4321S S S S V+++B.43212S S S S V+++C.43213S S S S V+++D.43214S S S S V+++6.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A.(7,5) B.(5,7) C.(2,10) D.(10,1) 二、填空题(本大题共3小题,每小题5分,共15分) 7.(2012·陕西高考)观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为________.8.(2012·湖北高考)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.1.正方形ABCD的边长是a,依次连接正方形ABCD各边中点得到一个新的正方形,再依次连接新正方形各边中点又得到一个新的正方形,依此得到一系列的正方形,如图所示.现有一只小虫从A点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个正方形的边逆时针方向爬行,如此下去,爬行了10条线段.则这10条线段的长度的平方和是( )A.1 0232 0482a B.1 0237682aC.5111 0242a D.2 0474 0962a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 检 验 等 号 是 否 成 立 , 完 成 后 续 问 题 .
例 3 : 已 知 等 差 数 列 {an} 中 , a3 = 7 , a9 = 19 , Sn 为 数 列 {an}
考 点 26 基 本 不 等 式 一、基本不等式
1. 基 本 不 等 式 :
ab
a+b ≤
2
(1) 基 本 不 等 式 成 立 的 条 件 : a ≥ 0 , b ≥ 0. (2) 等 号 成 立 的 条 件 : 当 且 仅 当 a = b 时 取 等 号 .
a+b (3) 其 中
称为正数 a , b 的算术平均数,
ab
称为正数
2
a , b 的几何平均数 . 2. 两 个 重 要 的 不 等 式 (1)a2 + b2 ≥ 2ab(a , b ∈ R) , 当 且 仅 当 a = b 时 取 等 号 .
a+b 2
(2)ab ≤ 2
(a , b ∈ R) , 当 且 仅 当 a = b 时 取 等 号 .
3. 利 用 基 本 不 等 式 求 最 值 已知 x ≥ 0 , y ≥ 0 ,则 (1) 如 果 积 xy 是 定 值 p , 那 么 当 且 仅 当 x = y 时 , x + y 有 最 小 值 是 2 p ( 简 记 : 积 定 和 最 小 ). (2) 如 果 和 x + y 是 定 值 s , 那 么 当 且 仅 当 x = y 时 , xy 有
使积式中的各项之和为定值 . ( 3 )若一次应用基本不等式不能达到要求,需多次应用 基本不等式,但要注意等号成立的条件必须要一致 . 注: 若可用基本不等式,但等号不成立,则一般是利用函数单 调性求解 .
例 1 : 设 0<x< 3 , 则 函 数 y = 4x(3 - 2x) 的 最 大 值 为 ________. 2
2. 根 据 实 际 问 题 抽 象 出 函 数 的 解 析 式 后 , 只 需 利 用 基 本 不
等式求得函数的最值 .
3. 在 求 函 数 的 最 值 时 , 一 定 要 在 定 义 域 ( 使 实 际 问 题 有 意
义的自变量的取值范围 ) 内求解 .
四、基本不等式的综合应用
基本不等式的应用非常广泛,它可以和数学的其他知识交
( 4 )在应用基本不等式求函数最值时,若等号取不到, 可利用函数的单调性求解 . 例 2 : 运 货 卡 车 以 每 小 时 x 千 米 的 速 度 匀 速 行 驶 130 千 米 , 按 交 通 法 规 限 制 50 ≤ x ≤ 100( 单 位 : 千 米 / 时 ). 假 设 汽 油
x2 2+ 的 价 格 是 每 升 2 元 , 而 汽 车 每 小 时 耗 油 360 升 , 司 机 的
当且仅当

x

x
360
即 x = 18 10 时 等 号 成 立 .
故 当 x = 18 10 千 米 / 时 , 这 次 行 车 的 总 费 用 最 低 , 最 低
费 用 的 值 为 26 10 元 .
规律方法:
1. 设 变 量 时 一 般 要 把 求 最 大 值 或 最 小 值 的 变 量 定 义 为 函 数 .
二、利用基本不等式求最值 利用基本不等式求最值的常用技巧: ( 1 )若直接满足基本不等式条件,则直接应用基本不等 式. ( 2 )若不直接满足基本不等式条件,则需要创造条件对 式子进行恒等变形,如构造“ 1 ”的代换等.常见的变形 手段有拆、并、配 . ①拆——裂项拆项 对分子的次数不低于分母次数的分式进行整式分离——分 离成整式与“真分式”的和,再根据分式中分母的情况对 整式进行拆项,为应用基本不等式凑定积创造条件. ②并——分组并项 目的是分组后各组可以单独应用基本不等式,或分组后先 由一组应用基本不等式,再组与组之间应用基本不等式得 出最值. ③配——配式配系数 有时为了挖掘出“积”或“和”为定值,常常需要根据题 设条件采取合理配式、配系数的方法,使配式与待求式相 乘后可以应用基本不等式得出定值,或配以恰当的系数后,
工 资 是 每 小 时 14 元 . (1) 求 这 次 行 车 总 费 用 y 关 于 x 的 表 达 式 ; (2) 当 x 为 何 值 时 , 这 次 行 车 的 总 费 用 最 低 , 并 求 出 最 低 费 用的值 .
解:Βιβλιοθήκη (1)设所用时间为
t
130 =
(h) ,
x
x2
y
130 =
×
2
×
2+ 360
汇考查,解决这类问题的策略是:
1. 先 根 据 所 交 汇 的 知 识 进 行 变 形 , 通 过 换 元 、 配 凑 、 巧 换
“ 1 ”等手段把最值问题转化为用基本不等式求解,这是
难点 .
2. 要 有 利 用 基 本 不 等 式 求 最 值 的 意 识 , 善 于 把 条 件 转 化 为
能利用基本不等式的形式 .
解 析 : y = 4x(3 - 2x) = 2[2x(3 - 2x)]
2x+(3-2x) 2
≤2
2
9 =,
2
当 且 仅 当 2x =
3
- 2x , 即
x
3 =
时,等号成立 .
4
3 ∵
3 0, ∈ 2,∴
函数
y

4x(3
0<x<3
- 2x)
2
9 的最大值为
.
4
2
9 答案:
2
三、基本不等式的实际应用 有关函数最值的实际问题的解题技巧: ( 1 )根据实际问题抽象出函数的解析式,再利用基本不 等式求得函数的最值. ( 2 )设变量时一般要把求最大值或最小值的变量定义为 函数. ( 3 )解应用题时,一定要注意变量的实际意义及其取值 范围.
x

14
130 ×,
x
∈ [50 ,
100].
x
所以,这次行车总费用
y
关于
x
的表达式是
y
130×18


x
2×130 x , x ∈ [50 , 100] 360
(

y
2 340 =
13 +
x , x ∈ [50 , 100]).
x
18
(2)y
130×18 2×130


x
≥ 26
10

x
360
130×18 2×130
s2 最大值是
4
( 简 记 : 和 定 积 最 大 ).
4 .常用结论
b (1)
a +
≥ 2(a , b 同 号 ) , 当 且 仅 当 a = b 时 取 等 号 .
ab
a+b 2
( 2 ) ab ≤ 2
a2+b2

.
2
2 ( 3 )1 1


ab
≤ a+b 2

ab
a2+b2 2
(a>0 , b>0).
相关文档
最新文档