实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

合集下载

声光调Q技术

声光调Q技术

声光调Q技术一、实验目的:1、掌握固体激光器的工作原理;2、掌握声光调Q和倍频的原理;3、掌握GPF-NG-Ⅰ型声光调Q激光器的调节技术。

二、实验仪器:GPF-NG-Ⅰ型声光调Q激光器、激光冷水机,GTDC1220电流源,QSD-2750声光调Q驱动器。

三、实验原理:本实验采用的是掺钕钇铝石榴石晶体(Nd3+:Y AG)固体激光器,工作物质是由钇铝石榴石(YAG)单晶掺入适量的三价稀土离子Nd3+构成的掺钕钇铝石榴石晶体(Nd3+:YAG)。

采用半导体激光器激励方式将处于基态的粒子抽运到激发态,以形成粒子数反转状态,输出波长分别为532nm、1064nm两种激光。

谐振腔采用全外腔形式。

调Q方式为声光调Q,冷却方式为水冷。

下面将依次介绍。

1、激光器的基本结构一般激光器都是由三个基本的组成部分,即工作物质、激励源和光学谐振腔,如(图1)所示。

工作物质用来产生受激辐射,它是激光器的核心。

激励源用来激励工作物质建立粒子数反转,产生受激辐射。

光学谐振腔是用来维持受激辐射的持续振荡,以获得进一步的增益,从而得到高强度的激光输出。

全反射镜聚光器半反射镜激光工作物质灯电源图1 固体激光器结构示意图1、工作物质在激光器中,工作物质是决定激光器性能的关键部件。

固体激光工作物质被称为固体激光器的心脏。

的激活离子。

2、光泵光源固体激光材料具有比较宽的吸收带,这就为用光照来激励激活粒子创造了条件。

由于固体激光器的工作物质是靠外界光照使粒子激发到高能态的。

所以又称这种激发作用为光泵。

由阈值条件可计算出最低需要多少能量(或功率)才能使激光器振荡,也可以通过实验测得阈值泵浦能量。

因为计算得到的是理想的情况,所以一般都是通过实验来测量。

3、聚光器泵灯发光的空间特性是四面八方发射光辐射。

当泵光激励工作物质时,希望把各个方向的发射光都有效的集中到工作物质上,为此一般都是灯和棒外面加一个罩,罩的形状要适应灯和棒的匹配要求,这种装置称为聚光器,又叫聚光腔。

全固态调Q激光器的实验设计

全固态调Q激光器的实验设计

全固态调Q激光器的实验设计1激光器实验设计为了使毫无激光调节经验的学生能够尽快上手,实验采用简单的平凹谐振腔结构,研究激光谐振腔与可饱和吸收体对被动调Q激光输出特性的影响.实验装置如图1所示.泵浦源采用光纤耦合输出的激光二极管(Co-herent,FAPSystem),光学系统压缩比为1.8∶1.输入镜M1是有一定曲率半径的凹面镜,一面镀有808nm的增透膜,另一面镀808nm的增透膜和1064nm的高反膜;输出镜M2是平面反射镜.激光工作物质为Nd:LuVO4晶体,尺寸为3×3×5mm3,Nd3+的掺杂浓度为0.5at.%.激光晶体两个3×3m m2的端面均镀有808nm和1064nm增透膜用以减少谐振腔的损耗.装置中,晶体用铟箔包裹并置于铜块中,铜块通过水循环和温控半导体致冷片进行致冷,晶体温度控制在20℃左右.激光晶体应尽量靠近输入镜M1放置以减小空间烧孔效应.调制元件为直径2cm左右的GaAs薄片,在1064nm处的小信号透过率T0分别为95.7%,92.6%和93.9%,靠近输出镜放置.实验激光的输出特性由功率计和示波器测量,选用带宽为500MHz的数字示波器(Tek-tronixInc.,USA)测量和记录波形情况,用MAX500AD激光功率计测量平均输出功率(Coherent,USA).实验中先对学生讲解全固态激光器的优点以及具体用途,使学生充分认识到研究固体激光器的重要意义.然后讲解脉冲激光器的原理与分类,重点介绍实验中用到的调Q脉冲产生的原理.由于学生对于激光器的内部结构缺少直观认识,于是讲解从激光器的基本结构出发,介绍实验所需要的仪器以及具体的组建调节方法,让学生掌握探测设备(数字示波器和激光功率计)的基本原理和操作方法.2激光器参数对输出特性影响的实验设计2.1激光谐振腔稳定输出验证实验使用的是平凹腔结构.该腔型容易形成稳定的输出模,同时具有高的光光转换效率,有利于学生观察实验现象,但是腔型设计时必须考虑模式匹配和稳定输出问题.如图1所示,输入镜M1的曲率半径为R,输出镜M2的曲率半径为R',腔长为L,则平凹腔中的g参数为。

LD泵浦全国固态调Q激光特性理论与实验研究的开题报告

LD泵浦全国固态调Q激光特性理论与实验研究的开题报告

LD泵浦全国固态调Q激光特性理论与实验研究的开题报告一、研究背景及意义全固态激光器是利用固态材料中嵌入稀土离子而形成放射性能量的激光器,具有低噪声、高功率、长寿命、紧凑型等优势,是目前激光技术发展的重要方向之一。

调Q激光技术是全固态激光器发展的一个重要分支,在激光加工、医学、军事等领域有着广泛的应用。

调Q激光器具有超短脉冲、高峰值功率、高重复频率等特点,可以用于二次谐波生成、时间分辨光谱、微加工等领域。

LD泵浦全国固态调Q激光特性理论与实验研究的目的在于深入了解全固态调Q激光器的工作原理、特性以及对其进行实验研究,为调Q激光技术的进一步发展提供理论和实验基础。

二、研究内容1. 调Q激光技术的基本原理与发展历程的概述2. 如何利用激光二极管(LD)泵浦全固态调Q激光器:波长选择、荧光寿命匹配等原理和参数的优化3. 实验室制备全固态调Q激光器的关键技术:固态激光器材料的选择、样品制备等4. 调Q腔设计原理及其对激光特性的影响的模拟和实验验证5. 荧光补偿技术、温控技术等对激光器性能影响的讨论6. 利用全固态调Q激光进行微加工及二次谐波生成的实验研究三、预期成果1. 掌握全固态调Q激光的工作原理和特性2. 理论模拟和实验研究调Q激光的调Q腔设计对激光特性影响的关键技术3. 利用调Q激光进行二次谐波生成和微加工的实验研究4. 为全固态调Q激光技术的发展提供理论和实验基础。

四、研究方案1. 文献调研及理论分析:深入了解调Q激光技术的原理和发展过程,探讨LD泵浦全固态调Q激光器的关键技术及其应用领域。

2. 全固态调Q激光器实验制备与测试:根据理论分析,制备全固态调Q激光器样品,并对样品进行性能测试,研究调Q激光器的特性。

3. 模拟与实验验证:对全固态调Q激光的调Q腔设计原理进行理论分析和数值模拟,通过实验验证获得调Q腔的优化方案。

4. 实验研究调Q激光进行微加工及二次谐波生成的应用:利用全固态调Q激光的超短脉冲和高峰值功率进行二次谐波生成以及微加工应用的实验验证。

声光调Q实验报告

声光调Q实验报告

YAG激光器声光调Q及其参数测量电子科学与技术101班唐衣可俊 20100310391、实验原理声光调Q是利用光的衍射效应实现调Q的。

利用光的衍射现象,使光束偏离,达到声光调Q的目的。

一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。

在激光器的光学谐振腔中,放入一个声光调制器,当有超声场作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。

当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q作用。

图4-1 布拉格衍射在激光器中采用声光调Q技术,主要是利用布拉格衍射型。

因为当超声波的功率足够时,这种衍射可使入射光全部转移到+1或-1级上,且有较高的转换效率。

布拉格衍射现象见图4-1。

在采取布拉格衍射时,入射角称为布拉格角,其满足下式:(4-2)式中:为光在介质中的波长,为声波波长,声波波数,为入射光波波数。

声光调Q中的调制元件是一个由布拉格衍射型的声光调制器,图4-2是调制盒的结构示意图。

调制盒共有四部分组成,第一部分是高频驱动源;第二部分是超声波换能器,在这里将电信号变为超声波;第三部分是声光介质,声场与光场在这里发生相互作用;第四部分是吸声器。

图4-2 声光调Q盒结构示意图超声波的产生有多种方法,如机械振动、气流振动、液体高逆流动以及电振动等。

而激光器用的超声波发生器大都采用高频电信号发生器,也很容易人工控制、产生或消失,而且具有很短的滞后时间,这是调Q所必须的。

图4-4 声光调Q装置图图4-4是声光调Q装置图。

在连续YAG激光器的光学谐振腔内放有声光调制盒和光阑,光阑的通光孔径为2~3mm可调,其作用是限制多模,且使光束全部通过声光作用区。

光学谐振腔一端为全反镜,另一端是透过率T为5%的左右的输出镜。

低透过率是为了使激光器有低的阈值。

激光晶体选用为5×70mm的YAG 晶体。

要求激光晶体有低的阈值,高的转换效率,晶体棒的两端要修磨成几个负光圈,减少热效应引起的输出功率下降。

固体激光倍频、调Q实验

固体激光倍频、调Q实验

声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。

在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。

【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理;(2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。

【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1)声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。

超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。

如图1所示。

光栅公式如下式(1)式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。

当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。

利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。

当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。

在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。

当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。

由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。

声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。

(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。

半导体激光器特性及调制特性实验

半导体激光器特性及调制特性实验

实验三半导体激光器特性及调制特性实验一、实验目的1.掌握半导体泵浦固体激光器的工作原理,测量泵浦LD经快轴压缩后的阈值电流和输出特性曲线;2.用辅助激光器法,构造固体激光器谐振腔,并使其发光;3.选用不同透过率腔镜,测试不同LD电流下的激光输出功率,结合LD的功率-电流关系,计算两种耦合输出下的激光斜效率和光光转换效率。

二、实验仪器半导体激光器、耦合系统、Nd:YAG晶体、输出镜、功率计、探测器三、实验内容1、LD安装及系统准直将LD电源接通。

通过上转换片观察LD出射光近场和远场的光斑。

测量LD经快轴压缩后的阈值电流和输出特性曲线。

2、半导体泵浦固体激光器实验用大功率的808nmLD泵浦Nd:YAG晶体,通过不同输出镜并调节腔镜产生1064nm的红外光。

测试不同LD电流下的激光输出功率;根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。

四、实验结果(1)数据结果:电流(A)0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8功率(mw)0 0 0 0 0 0.019 0.048 0.077 电流(A)0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6功率(mw)0.113 0.150 0.202 0.267 0.330 0.373 0.406 0.432 电流(A) 1.7 1.8 1.9 2 2.1功率(mw)0.461 0.485 0.506 0.525 0.555(2)激光输出功率-泵浦功率曲线:(3)根据数据和图像可知:故,转换效率:%04.38=η五、实验总结通过本次实验,掌握了半导体泵浦固体激光器的工作原理,学会了测量泵浦LD 经快轴压缩后的阈值电流和绘制了输出特性曲线,实现了用辅助激光器法,构造固体激光器谐振腔,并使其发光,选用了不同透过率腔镜,测试了不同LD 电流下的激光输出功率,结合LD 的功率-电流关系,计算出来两种耦合输出下的激光斜效率和光光转换效率。

光信息专业实验报告:半导体泵浦激光原理实验 (3)

光信息专业实验报告:半导体泵浦激光原理实验 (3)

hvE21 (a)21(b)2E1(c)图1 光与物质作用的受激吸收过程光信息专业实验报告:半导体泵浦激光原理实验【实验目的】1.了解与掌握半导体泵浦激光的原理及调节光路的方法2.掌握腔内倍频技术,并了解倍频技术的意义3.掌握测量阈值、相位匹配等基本参数的方法【实验仪器】1.808nm半导体激光器P≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO4晶体3×3×1mm4.KTP倍频晶体2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪2μW~200mW 6挡【实验原理】一、光与物质的相互作用光与物质的相互作用可以归结为光子与物质原子的相互作用,有三种过程:受激吸收、自发辐射和受激辐射。

1.受激吸收如果一个原子,开始时处于基态,在没有外来光子的情况下,它将保持不变。

如果一个能量为hv21的光子接近,则它吸收这个光子,跃迁上激发态E2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能被吸收。

2.自发辐射处于激发态的原子寿命很短(一般为10-8~10-9秒),在不受外界影响时,它们会自发地返回到基态,并释放出光子,辐射光子能量为hv=E2-E1。

自发辐射过程与外界作用无关,是一个随机过程,各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。

3.受激辐射处于激发态的原子,在外界光场的作用下,会吸收能量为E 2-E 1的光子,从而由高能态向低能态跃迁,并向外辐射出两个光子。

只有当外来光子的能量正好等于激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

二、激光器的组成激光器主要由工作物质、泵浦源、谐振腔三部分组成,如果要实现激光倍频,还需要在谐振腔内部加入倍频晶体。

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性和声光调Q实验实验目的1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计算;2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则;3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解激光器在连续和调Q脉冲工作状态下的激光功率输出特性,4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。

实验原理1. 固体Nd:YAG激光器工作原理固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。

激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。

目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。

由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。

本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。

Nd3+:YAG产生受激辐射的能级如图4-1所示。

激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。

当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。

基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

图4-1 四能级系统结构示意图在集居数反转状态的物质称为激活介质。

半导体泵浦固体激光器实验报告

半导体泵浦固体激光器实验报告

半导体泵浦固体激光器实验报告实验名称:半导体泵浦固体激光器实验实验目的:1. 了解半导体泵浦固体激光器的工作原理和基本结构;2. 学习激光器的调谐方法和测量激光器的光学特性;3. 熟悉激光器的使用,掌握激光器实验中的各种技能。

实验原理:半导体泵浦固体激光器是利用半导体激光二极管激发固体激光材料来产生激光的一种激光器。

其基本结构如图所示:![image](其中,激光二极管的电流经过施加,产生激光并通过聚焦透镜进行集中,通过反射镜反射,激活激光材料的原子和分子的电子从基态跃迁到激发态,形成放电状态,当放电状态达到一定密度时,形成激光束发射出去。

半导体泵浦固体激光器的调谐方法有很多种,如通过调整输出反射镜的位置和倾角,调整背面反射镜的位置和倾角等,从而达到调谐的目的。

同时,对激光器的光学特性有很多种测量方法,包括激光器产生激光的波长、光功率等参数,以及激光束的透过合大度、束径、谐波烽度谱等。

实验步骤:1. 搭建半导体泵浦固体激光器实验装置,并对各个部件进行检查和调整。

2. 通过调整输出反射镜和背面反射镜的位置和倾角,调谐激光器的输出波长,并测量激光的光功率。

3. 测量激光束的透过合大度、束径、谐波烽度谱等光学特性。

4. 尝试改变激光二极管的电流和输出反射镜的位置和倾角,观察激光器的输出特性的变化。

实验结果:通过调整输出反射镜和背面反射镜的位置和倾角,成功调谐了激光器的输出波长,同时测量得到了激光的光功率和各种光学特性参数。

实验结论:半导体泵浦固体激光器是一种常见的激光器,其工作原理和基本结构比较简单,可以通过调谐输出镜和背面反射镜的位置和倾角来实现对激光的调谐。

同时,激光器的光学特性也可以通过多种方法进行测量和分析,可以应用于各种实际应用场景中。

专业实验 实验二 半导体泵浦固体激光器综合实验

专业实验 实验二 半导体泵浦固体激光器综合实验

半导体泵浦固体激光器综合实验实验讲义大恒新纪元科技股份有限公司版权所有不得翻印半导体泵浦固体激光器综合实验一、前言半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。

二、实验目的a)掌握半导体泵浦固体激光器的工作原理和调试方法;b)掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量;c)了解固体激光器倍频的基本原理。

三、实验原理与装置d)半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

e)直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

f)间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。

常见的方法有:g)组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。

h)自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

固体激光器的装调及静态特性

固体激光器的装调及静态特性
(5)用光电探测器接收激光,从示波器上观察激光尖峰振荡波形,改变光泵输入能量,观察尖峰振荡波形的变化。
五、实验方法提示
(1)激光器的调整方法
用He-Ne激光器光束调整固体激光器的谐振腔反射镜,首先使它们轴向与红宝石棒对中,并使它们对He-Ne激光的反射光斑重合,达到严格平行。
(2)激光波形的观察
为了避免光强过强引起光电探测器饱和失真,需要用若干毛玻璃或纸片将激光衰减,衰减程度应以观察到不失真的激光波形为准。
红宝石中铬离子产生受激辐射的能级如图4—1所示。当光泵的光照射红宝石时,则处于基态能级4A2的铬离子就吸收光泵的能量跃迁到能级4F2和4F1上。再经过非辐射跃迁的形式跃迁到2E上。2E是亚稳态,具有较长的能级寿命,平均寿命约为3毫秒。激发离子可在2E上积聚起来,从而实现粒子数反转,每当光通过处于粒子数反转状态的红宝石棒时,由于受激辐射,光得到放大。因为能级2E分离成为2 和 两个能级,从2 至4A2和 至4A2的跃迁分别发射692.9nm和694.3nm的光。不过,由于能级 的平均寿命比能级2 的平均寿命稍长,以及 处于较低能级位置上等原因,所以通常红宝石激光器输出的是 至4A2跃迁的694.3nm。
实验四 固体激光器的装调及静态特性
一、实验目的
(1)掌握固体激光器的工作原理;
(2)学习固体激光器的装调;
(3)掌握常用固体激光器的调整和检测仪器的使用方法;
(4)测量固体激光器的静态特性。
二、实验原理
(1)固体激光器的工作原理
固体激光器主要由激光工作物质、激励泵源、聚光腔和光学谐振腔组成。常用的固体激光工作物质有红宝石晶体、掺钕钇铝石榴石晶体(Nd:YAG)、掺钕玻璃等。本实验中激光工作物质为红宝石晶体,它的激活离子是红宝石中的三价铬离子,激光输出的波长为694.3nm。

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理半导体泵浦固体连续激光器(semiconductor-pumped solid-state continuous wave laser)是一种基于半导体激光器泵浦固体激光材料的连续激光器。

它结合了半导体激光器和固体激光器的优点,广泛应用于科研、医疗、材料加工等领域。

本文将深入探讨半导体泵浦固体连续激光器的实验原理。

1. 深度评估半导体泵浦固体连续激光器的优势和应用范围半导体泵浦固体连续激光器相比传统固体连续激光器具有许多优势。

由于半导体激光器的泵浦方式,它具有更高的转换效率和更小的体积。

由于半导体激光器的泵浦光束质量好,它可以实现更高的光束质量和更小的光斑尺寸。

这些优势使得半导体泵浦固体连续激光器在科研实验、高精密医疗和材料加工等领域得到广泛应用。

2. 从简到繁,由浅入深探索半导体泵浦固体连续激光器的原理半导体泵浦固体连续激光器的原理可以从三个方面来展开讨论:泵浦过程、激射过程和输出特性。

2.1 泵浦过程半导体泵浦固体连续激光器的泵浦过程是指通过半导体激光器将波长较短的激光能量传递给固体激光材料的过程。

在泵浦过程中,半导体激光器产生的激光通过波长转换器将其转换为固体激光材料吸收峰附近的波长。

这样可以实现最大程度的能量传递,并提高效率。

2.2 激射过程半导体泵浦固体连续激光器的激射过程是指在泵浦过程后,固体激光材料吸收能量并通过受激辐射释放激光的过程。

激射过程中,激光在反射镜和谐振腔内来回传播,通过受激辐射放大并形成连续激光输出。

谐振腔的设计和镜面的选择对于获得稳定和高效的连续激光输出非常重要。

2.3 输出特性半导体泵浦固体连续激光器的输出特性受到许多因素的影响,包括波长、功率、稳定性等。

通过调整输入功率和选择合适的激光谐振腔结构,可以实现连续激光输出的稳定性和高功率。

3. 总结和回顾,深入理解半导体泵浦固体连续激光器的应用前景半导体泵浦固体连续激光器作为一种新型激光器技术,具有广阔的应用前景。

808nmLD泵浦固体激光器及调Q实验研究

808nmLD泵浦固体激光器及调Q实验研究

532019年/第4期/2月(上)808nmLD 泵浦固体激光器及调Q 实验研究梅映雪赵洪霞王敬蕊丁志群程培红(宁波工程学院电子与信息工程学院浙江·宁波315016)摘要调Q 技术可使激光输出峰值功率达到Mw 量级以上,半峰值带宽压缩到皮秒量级,在工业生产、军事和医学领域应用广泛。

目前,808nm LD 泵浦固体激光器及调Q 实验已经成为光电相关专业的首选实验。

本文针对具体实验过程中,静态激光输出难度大,功率相对较低和难于实现调Q 等关键问题,提出了简单易行,可操作性强的步骤方法,并取得了较好的实验效果。

关键词静态激光LD 泵浦固体激光器激光输出调Q中图分类号:TN248.1文献标识码:ADOI:10.16400/ki.kjdks.2019.02.020Experimental Study on 808nm LD Pump Solid Laser and Q-modulationMEI Yingxue,ZHAO Hongxia,WANG Jingrui,DING Zhiqun,CHENG Peihong(Electronic and Information Engineering College,Ningbo University of Technology,Ningbo Zhejiang 315016)AbstractQ-modulation technology can enable laser output peak power to reach Mw magnitude and pulse width with pico-second magnitude,which is widely used in industrial production,military and medical fields.The 808nm LD pump solid laser and Q-modulation experiment have become the first choice experiments for optoelectronic related majors.Aiming at the dif-ficulty of static laser output,low power and other key problems such as Q adjustment,this paper puts forward a simple and feasible method,and obtains a good experimental result.Keywords Static laser;LD pump;solid lasers;Laser output;Q-modulation 0引言全固态808nm 半导体激光器泵浦调Q 激光器由于具有体积小、易于集成和装调方便等优点,被广泛用于科研、农业、工业生产等领域。

激光原理及应用实验讲义-4个实验要点

激光原理及应用实验讲义-4个实验要点

实验一C02激光器及激光扫描实验一、实验目的1、了解C02激光器的工作原理及典型结构;2、掌握C02激光器的输出特性;3、掌握C02激光器的使用方法;4、掌握激光扫描及F-Theta镜的工作原理。

二、实验器材C02激光管1支,激光电源1台,功率计1台,水冷系统1套,扫描系统1套,控制器1套,计算机1台三、实验原理1、C02激光器工作原理C02激光器的工作气体是CO2、N2和He的混合气体。

波长9-11um间,处于大气传输窗口(吸收小,2-2.5um;3-5um;8-14um )。

利用同一电子态的不同振动态(对称、弯曲和反对称振动)的转动能级间的跃迁。

进水图1 C02激光器典型结构C02激光器由工作气体、放电管、谐振腔和电源等组成。

放电管大多采用硬质玻璃(如GG仃)制成,放电管的内径和长度变化范围很大。

为了防止内部气压和气压比的变化而影响器件寿命,放电管外加有贮气管。

为了防止发热而降低输出功率,加有水冷装置。

激光器的输出功率随着放电管长度加长而增大。

C02激光器中与激光跃迁有关的能级是由C02分子和N2分子的电子基态的低振动能级构成的。

C02振动模型如图1所示。

激光跃迁主要发生在00°1—;10°0和oo°1—;02°0两个过程,分别输出10.6um和9.6um。

激光低能级100和020都可以首先通过白发辐射到达010,再次通过自发辐射到达基态000, 但由于自发辐射的几率不大,远不如碰撞驰豫过程快,其主要的驰豫过程如图2。

氧 碳 氧co 3第模型c^o-oco 戈分子对称振动co ?分子形变振动ooo 4 ► V » V ►CO 2分子反对称振动图1 CO2分子振动模型 能里碰撞转移图2 CO 2分子能级跃迁过程其中前两个过程进行得很快, 而后两个过程进行得很慢, 成瓶颈效应,而使粒子数反转减小, 特别是温度升高时,由热激发而使010能级上分子增加,造成粒子数反转的严重下降,甚至停振,最后一个式子中的M 代表辅助气体。

半导体泵浦固体激光器综合实验实验报告

半导体泵浦固体激光器综合实验实验报告

佛山科学技术学院实验报告课程名称光电信息与技术实验实验项目半导体泵浦固体激光器综合实验专业班级姓名学号指导教师成绩日期2016年4月11日电流1.7A,微调输出镜、激光晶体、耦合系统的旋钮,使输出激光功率最大;(2)安装KTP晶体(或LBO),在准直器前准直后放入谐振腔内,倍频晶体尽量靠近激光晶体。

调节调整架,使得输出绿光功率最亮;然后旋转KTP晶体(或LBO),观察旋转过程中绿光输出有何变化;五、实验数据和数据处理电流(mA)泵浦功率(mW) 激光功率(mW)0 0.03 -0.080.2 0.1 -0.080.4 0.56 -0.080.6 105 0.730.8 232 1.711.0 353 3.401.2 469 8.101.4 585 22.21.6 702 36.71.8 811 51.22.0 920 68.21.电流——泵浦功率T1=泵浦功率/电流=4602.电流——激光输出功率3.泵浦——激光功率六、实验结果实验数据及其分析见上图,在无任何透镜的情况下,泵浦的输出功率与电流成正比关系。

在电流达到0.4mA时,泵浦被激发,功率成线性增长。

在加装了透镜组成激光发射仪后,功率发生了明显的下降,而且不再呈现线性变化。

七、分析讨论1. 半导体激光器(LD)对环境有较高要求,因此本实验系统需放置于洁净实验室内。

实验完成后,应及时盖上仪器罩,以免LD沾染灰尘。

2. LD对静电非常敏感。

所以严禁随意拆装LD和用手直接触摸LD外壳。

如果确实需要拆装,请带上静电环操作,并将拆下的LD两个电极立即短接。

实验报告内容:一实验目的二实验仪器(仪器名称、型号、参数、编号)三实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题。

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告一、实验目的本次实验的主要目的是深入了解半导体泵浦激光器的工作原理、结构特点以及性能参数,并通过实际操作和测量,掌握其调试和应用方法。

二、实验原理半导体泵浦激光器(Diode Pumped Solid State Laser,简称 DPSSL)是一种以半导体激光器作为泵浦源的固体激光器。

其工作原理基于光的受激辐射。

半导体激光器发出的泵浦光被聚焦到激光晶体上,使得激光晶体中的粒子数反转分布。

当处于高能级的粒子数多于低能级时,在一定的条件下,受激辐射会超过受激吸收,从而产生激光。

在半导体泵浦激光器中,常用的激光晶体有 Nd:YAG(掺钕钇铝石榴石)、Nd:YVO₄(掺钕钒酸钇)等。

这些晶体具有良好的光学性能和较高的增益系数。

三、实验设备与材料1、半导体泵浦激光器系统,包括半导体泵浦源、激光晶体、谐振腔等部件。

2、光学平台及调整架,用于安装和调整实验装置。

3、激光功率计,用于测量激光输出功率。

4、光谱仪,用于测量激光的波长和光谱特性。

5、示波器,用于观测激光的脉冲特性。

四、实验步骤1、搭建实验装置将半导体泵浦源、激光晶体和谐振腔等部件安装在光学平台上,并使用调整架进行初步调整,使光路大致准直。

2、泵浦源调试开启半导体泵浦源,调节其工作电流和温度,使其输出稳定的泵浦光。

3、谐振腔调整通过微调谐振腔的反射镜,观察激光输出功率的变化,找到最佳的谐振状态。

4、功率测量使用激光功率计测量激光的输出功率,并记录不同泵浦电流下的功率值。

5、光谱测量利用光谱仪测量激光的波长和光谱宽度。

将激光输出接入示波器,观察激光的脉冲形状和重复频率。

五、实验数据与结果1、功率特性随着泵浦电流的增加,激光输出功率逐渐增大,但并非呈线性关系。

在达到一定电流值后,功率增长趋于平缓,甚至可能出现饱和现象。

2、光谱特性测量得到的激光波长与所选激光晶体的特性相符,光谱宽度较窄,表明激光具有较好的单色性。

3、脉冲特性观察到的激光脉冲形状较为规整,重复频率稳定。

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告一、实验目的半导体泵浦激光器在现代光学领域有着相当重要的地位呢。

咱们做这个实验呀,就是为了深入了解半导体泵浦激光器的工作原理,还有它的一些基本特性,像输出功率呀,波长范围之类的。

通过这个实验,希望大家能够亲手操作相关设备,提高自己的实验技能,并且学会对实验数据进行分析处理。

二、实验设备1. 半导体泵浦激光器。

这可是实验的主角呢,就像舞台上的明星,它的性能直接决定了实验的结果。

这个激光器呀,有着独特的结构,内部的半导体材料是关键,它能够产生泵浦光,为激光的产生提供能量。

2. 功率计。

这就像是一个小裁判,专门用来测量激光器输出的功率。

它很灵敏,能够精确地告诉我们激光器到底有多“大力气”,能输出多少功率。

3. 波长计。

它的任务呢,是测量激光器输出光的波长。

就好比给光做个身份鉴定,确定它的波长到底是多少,是属于哪个波段的。

三、实验步骤1. 首先把半导体泵浦激光器连接好电源。

这一步可不能马虎,就像给汽车加油一样,要确保电源连接稳固,不然激光器可没法好好工作。

然后打开激光器的开关,这时候呀,激光器就开始工作了,就像一个小引擎启动了。

2. 接着,用功率计来测量激光器的输出功率。

把功率计的探头对准激光器的输出端口,就像眼睛盯着目标一样,然后读取功率计上显示的数值。

这个数值可能会因为各种因素而有波动,比如环境温度呀,激光器的工作状态呀。

3. 再用波长计测量输出光的波长。

把波长计调整到合适的测量模式,然后让激光器的光进入波长计,就像送客人进门一样。

波长计就会告诉我们光的波长是多少,这可是很重要的一个参数呢。

四、实验数据记录与分析1. 在实验过程中,要认真记录每次测量得到的数据。

比如说,不同的工作电流下,激光器的输出功率是多少,对应的波长又是多少。

这些数据就像是宝藏一样,是我们分析实验结果的依据。

2. 对数据进行分析的时候呀,可以画一些图表。

比如,以工作电流为横坐标,输出功率为纵坐标,画一个功率 - 电流曲线。

半导体泵浦固体激光器倍频与调Q 实验

半导体泵浦固体激光器倍频与调Q 实验

半导体泵浦固体激光器倍频与调Q实验一、前言半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。

二、实验目的1、掌握半导体泵浦固体激光器的工作原理和调试方法;2、掌握固体激光器被动调的工作Q原理,进行调Q脉冲的测量;3、了解固体激光器倍频的基本原理。

三、实验原理与装置1. 半导体激光泵浦固体激光器工作原理:上世纪80年代起,半导体激光器(LD)生长技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

a) 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

b) 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。

常见的方法有:1) 组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。

2) 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

固体激光倍频、调q实验

固体激光倍频、调q实验

固体激光倍频、调q实验声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。

在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。

【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理; (2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法; (4)学习倍频激光器的调整方法。

【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1) 声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。

超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。

如图1所示。

光栅公式如下式(1) 式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。

当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。

利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。

当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。

在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。

当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。

由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。

声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。

(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四连续半导体泵浦固体激光器静态输出特性和声光调Q实验实验目的1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计算;2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则;3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解激光器在连续和调Q脉冲工作状态下的激光功率输出特性,4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。

实验原理1. 固体Nd:YAG激光器工作原理固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。

激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。

目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。

由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。

本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。

Nd3+:YAG产生受激辐射的能级如图4-1所示。

激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。

当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。

基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

图4-1 四能级系统结构示意图在集居数反转状态的物质称为激活介质。

当光通过此介质时,得到放大。

这种放大作用的大小通常用增益系数G 来描述,它表示光通过单位长度激活介质后光强增长的百分数。

G 是光强的函数,同时也是反转集居数Δn 的函数。

当光在激活介质中传播时,随着光强增强,单位体积内的反转集居数Δn 减少,G 也随之减小,这称为增益饱和效应,当光强很小时,增益系数用G 0来表示,称为小信号增益系数,它与光强无关。

激光器能够产生自激振荡的条件可由下式表达:m I 0s I =(G -α)α≥0 也即G 0≥α (4.1) 式中I m 为腔内光强,仅与放大器本身参数有关:I s 为饱和光强(为描述增益饱和效应引入的参量);α为包括激光介质损耗和谐振腔损耗在内的平均损耗系数。

这里激光介质的损耗有吸收、散射损耗;谐振腔的损耗有反射镜的透射、吸收、衍射损耗及谐振腔失调引起的偏折损耗等。

当光腔内折射率均一时,(4.1)还可表示为:l G 0≥αL 式中l 为工作物质长度,L 为谐振腔长度,若光泵激励足够强,使得l G 0=αL 时,激光器开始振荡,为此时应的输入光泵的能量称为激光器的阈值输入能量E t ,相应反转集居数为阈值反转集居数Δn t 。

当l G 0>αL ,腔内光强增加,且正比于(l G 0≥αL),此时激光输出能量将随之增加,由此可见,激光器的增益特性和损耗特性将直接影响该系统的输入输出特性。

对一台激光器系统,存在一个最佳透过率T m ,当T=T m 时,对于相同的输入能量输出能量最大。

通常的激光器谐振腔的损耗是不变的,一旦光泵浦使反转粒子数达到或略超过阈值时,激光器便开始振荡,于是激光上能级的粒子数因受激辐射而减少,致使上能级不能积累很大的反转粒子数,只能被限制在阈值反转数附近,这是普通激光器峰值功率不能提高的原因。

2. 声光调Q 的原理既然激光上能级最大粒子反转数受到激光器阈值的限制,那么,要使上能级积累大量的粒子,可以设法通过改变激光器的阈值来实现,具体的说,就是当激光器开始泵浦初期,设法将激光器的振荡阈值调得很高,激光器谐振腔的损耗大于增益,Q 值很低,抑制激光振荡的产生,这样激光上能级的反转粒子数便可积累得很多。

当反转粒子数积累到最大时,再突然把阈值调到很低,Q 值很高,此时,积累在上能级的大量粒子便雪崩式的跃迁到低能级,于是在极短的时间内将能量释放出来,就获得峰值功率极高的巨脉冲激光输出。

调Q 技术正是利用了上述原理,通过某种方式使激光谐振腔的Q 值产生突变,使受激辐射在很短的时间建立并达到最大值,获得峰值功率高于兆瓦,脉宽为几十纳秒的激光巨脉冲。

常用调Q 方法有转镜调Q 、电光调Q 、声光调Q 和被动调Q 。

对于连续泵浦的固体激光器通常采用声光调Q 的形式。

声光调Q 激光器是利用声光相互作用原理,采用声光调制器件进行调Q 的激光器。

声波是一种弹性波(纵向应力波),当它在介质中传播时,使介质产生相应的弹性形变,引起介质的密度成疏密相间的交替变化,因此介质的折射率也随着发生周期性的变化,等于在介质中形成一个光学的“相位光栅”,该光栅的光栅常数等于声波的波长。

当光波通过此介质的时候,会产生光的衍射,衍射光的强度、频率、方向都会随着超声场的变化而变化。

声光Q 开关器件的结构由声光介质、电声换能器、吸声材料和驱动电源组成。

其原理示意图如图4-2所示由声光晶体和调Q 驱动电源组成装置。

声光介质主要采用熔融石英、玻璃、钼酸铅等。

换能器常采用石英、铌酸锂等晶体制成。

吸声材料常用铅橡胶或玻璃棉等。

按着声波频率的高低以及声光作用区长度的不同,声光相互作用可以分为Raman-Nath 衍射和Bragg 衍射两种类型。

当光波入射方向与声波阵面夹角为布拉格角sin 2B S Sf n λθυ=时,产生Bragg 衍射。

这时衍射光为0级和1级(或-1级)衍射光。

当调制功率达到一定水平以后,入射光的能量可以被完全转移到1级(或-1级)衍射光中去。

把声光Q开关器件插入谐振腔内,当声光电源产生的高频振荡信号加在声光调Q器件的换能器上时,使声光介质折射率发生变化,形成等效的“相位光栅”,角的偏当光束通过声光介质时,便产生布拉格衍射。

衍射光相对于0级光有2B离(如当超声频率在20~50MHz范围时,石英对1.06μm的光波的衍射角为0.3~0.5o),这一角度完全可以使光波偏离出腔外,使谐振腔处于高损耗低Q值状态,不能产生振荡,或者说Q开关将激光“关断”。

当高频信号的作用突然停止,则声光介质中的超声场消失,于是谐振腔又突变为高Q值状态,相当于Q开关“打开”。

Q值交替变化一次,就使激光器输出一个调Q脉冲。

图4-2 声光开关处于关断状态时工作原理示意图为了使工作物质所存储的能量在很短的时间内以单一脉冲发射,Q开关必须在短于激光脉冲建立的时间内完成由低Q值到高Q的转变(阶跃式变化)。

对于声光Q开关,断开的时间主要由声波通过光束的渡越时间决定(电子开关时间不是主要的),以熔融石英为例,声波通过1mm的长度需要时间约为200ns(声速为5mm/s),这一时间对于某些高增益的脉冲激光器来说显得太长。

因此,声光Q 开关一般用于增益较低的连续激光器,而且声光Q开关所需要的驱动调制电压很低(小于200V)。

故容易实现对连续激光器调Q以获得高重复频率的脉冲输出,一股重复率可达1~20KHz。

但由于声光Q开关对高能量激光器的开关能力比较差,故不宜用于高增益调Q激光器。

声光Q开关用于连续激光器时,需要用脉冲调制器产生频率为f的矩形脉冲来调制高频振荡器的信号,因此声光介质中超声场出现的频率为脉冲调制信号的频率,于是激光器输出重复率为f的调Q脉冲序列。

为了能使工作物质激光上能级积累足够多的粒子,并且避免过多的自发辐射损耗,以便激光器在保证一定的峰值功率下得到最大的反转粒子数利用率,相邻两个脉冲的时间间隔1/f大致要与激光工作物质的上能级寿命相等,对于Nd:YAG激光器,其上能级寿命约为230μs,因此,选取调Q重复率f在4~5kHz为宜。

在这种情况下,反转粒子数的利用率最高。

重复频率过高或过低都会影响调Q效果。

实验内容1.不加入声光调Q器件测量连续Nd:YAG激光器不同透过率下静态输出特性和阈值电流,得到最佳透过率参数。

2.了解声光调Q的基本原理,观察红光的纳曼-奈斯衍射现象。

加入声光调Q器件测量连续Nd:YAG激光器调Q和连续工作状态下输出特性,计算斜率效率和动静比。

3. 不同泵浦电流和调Q频率下声光调Q输出特性实验。

测量声光不同调Q频率下的激光输出功率的特性并绘出曲线。

实验装置图4-3 不包含调Q器件Nd:YAG激光输出特性实验装置图图4-4 包含调Q器件Nd:YAG激光输出特性实验装置图连续半导体泵浦固体激光器静态输出特性和声光调Q实验采用图4-3和图4-4所示的实验装置,进行连续半导体泵浦固体激光器静态输出特性和声光调Q 实验。

包括:半导体泵浦模块、全反镜、输出镜、声光调Q开关、功率计。

实验步骤连续半导体泵浦固体激光器静态输出特性和声光调Q实验步骤如下:1.开启循环冷却水箱。

2.开启激光电源。

3.采用图4-3实验装置图,按照实验一的步骤1-5调整激光谐振腔,可以观察到激光输出。

4.改变激光泵浦输入电流,分别测量输出功率,得到一组输出功率随输入电流变化曲线。

5.更换输出镜透过率,重复实验步骤3和4,得到另一组输出功率随输入电流变化曲线。

与前一组比较,得到输出镜最佳透过率。

6.降低激光输入电流,直至无激光输出,加入声光调Q开关,采用图4-4实验装置图,按照实验一的步骤1-5调整激光谐振腔,可以观察到激光输出。

7.开启半导体准直激光,打开声光调Q电源,观察纳曼—奈斯衍射现象。

8.关闭声光调Q电源,改变激光泵浦输入电流,分别测量输出功率,得到一组输出功率随输入电流变化的静态曲线。

此时输入电流最大不超过15A。

9.打开声光调Q电源,固定声光调Q频率,改变激光泵浦输入电流,得到一组输出功率随输入电流变化的动态曲线。

10.改变声光调Q频率,重复实验步骤9,得到几组输出功率随输入电流变化的动态曲线。

11. 关闭激光电源。

12. 关闭声光调Q电源。

13. 关闭循环冷却水箱。

实验结果处理:通过实验可以观察到明显的纳曼—奈斯衍射现象,绘制出静态工作和调Q工作状态下,激光输出功率与输入电流关系曲线图,计算斜率效率和动静比。

比较不同调Q频率下激光输出特性曲线,给出实验结论和分析,理解最佳的调Q频率的含义。

实验教学建议:学生可以分成4人一组,两个人负责调整谐振腔和测量激光功率,两个人负责激光器电源、调Q电源和冷却水箱的操作,激光泵浦输入电流和调Q频率的调整,并且进行数据记录工作。

实验学时建议:4学时。

安全注意事项:本设备激光器属于Ⅳ类激光产品,输出的是可见和不可见的激光,眼睛切勿对着激光输出端直视,眼睛和皮肤要避免暴露于激光直射或者漫反射的区域。

相关文档
最新文档