5.6洛伦兹力与现代科技

5.6洛伦兹力与现代科技
5.6洛伦兹力与现代科技

课时计划

高二物理沪科版选修3-1 5.6洛伦兹力与现代科技 教案

5.6洛伦兹力与现代科技 教材分析 本节是本章知识的重要应用之一,是力学知识和电磁学知识的综合。通过对本节知识的学习,学生能够把洛伦兹力和动力学知识有机地结合起来,加深对力、磁场知识的理解,有利于培养学生用物理规律解决实际问题的能力。 教学目标 1.知识与技能 (1)理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。 (2)会分析利用磁场控制带电粒子运动问题。 (3)知道质谱仪的工作原理。知道回旋加速器的基本构造、工作原理及用途。 2.过程与方法 通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题,培养学生的分析推理能力。 3.情感、态度与价值观 通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。 教学重点难点 重点:带电粒子在匀强磁场中做匀速圆周运动问题。 难点:带电粒子在匀强磁场中的受力分析及运动径迹。 教学方法 讲述法、分析推理法。 教学过程

一.带电粒子在磁场中的圆周运动 (1)运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功。 【注意】 带电粒子做圆周运动的向心力由洛伦兹力提供。 通过“思考与讨论”,使学生理解带电粒子在匀强磁场中做匀速圆周运动的轨道半径r 和周期T 与粒子所带电荷量、质量、粒子的速度、磁感应强度有什么关系。 [出示投影] 一带电量为q ,质量为m ,速度为v 的带电粒子垂直进入磁感应强度为B 的匀强磁场中,其半径r 和周期T 为多大? [问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力] [问题2]向心力的计算公式是什么?[F =mv 2/r ] [教师推导]粒子做匀速圆周运动所需的向心力F =m v 2r 是由粒子所受的洛伦兹力提供的,所以qvB =mv 2/r ,由此得出r =mv qB ,T =2πr v =2πm qB ,可得T =2πm qB 。 (2)轨道半径和周期 带电粒子在匀强磁场中做匀速圆周运动的轨道半径及周期公式。 ①轨道半径r =mv qB ②周期T =2πm /qB 【说明】 (1)轨道半径和粒子的运动速率成正比。 (2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。 例1.如图所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电

高中物理 洛伦兹力与现代技术

第6节 洛伦兹力与现代技术 位于法国和瑞士边界的欧洲核子研究中心 知识梳理 一、带电粒子在磁场中的运动 1.运动轨迹 (1)匀速直线运动:带电粒子的速度方向与磁场方向平行(相同或相反),此时带电粒子所受洛伦兹力为0,粒子将以速度v 做匀速直线运动. (2)匀速圆周运动:带电粒子垂直射入匀强磁场,由于洛伦兹力始终和运动方向垂直,因此,带电粒子速度大小不变,但是速度方向不断在变化,所以带电粒子做匀速圆周运动,洛伦兹力提供向心力. 2.轨迹半径和周期 由F 向=f 得q v B =m v 2R ,所以有R = m v qB ,T = 2πm qB . 二、质谱仪 1.构造 如图3-6-2所示,主要由以下几部分组成:

图3-6-2 ①带电粒子注入器 ②加速电场(U) ③速度选择器(B1、E) ④偏转磁场(B2) ⑤照相底片 2.原理 利用磁场对带电粒子的偏转,由带电粒子的电荷量、轨道半径确定其质量,粒子由加速电场 加速后进入速度选择器,匀速运动,电场力和洛伦兹力平衡qE=q v B1,v=E B1粒子匀速直线 通过进入偏转磁场B2,偏转半径r=m v qB2,可得比荷q m= E B1B2r. 【特别提醒】①速度选择器两极板间距离极小,粒子稍有偏转,即打到极板上.②速度选择器对正负电荷均适用.③速度选择器中的E、B1的方向具有确定的关系,仅改变其中一个方向,就不能对速度做出选择. 三、回旋加速器 1.结构:回旋加速器主要由圆柱形磁极、两个D形金属盒、高频交变电源、粒子源和粒子引出装置等组成. 2.原理 回旋加速器的工作原理如图3-6-3所示.放在A0处的粒子源发出一个带正电的粒子,它以某一速率v0垂直进入匀强磁场中,在磁场中做匀速圆周运动.经过半个周期,当它沿着半圆A0A1时,我们在A1A1′处设置一个向上的电场,使这个带电粒子在A1A1′处受到一次电场的加速,速率由v0增加到v1,然后粒子以速率v1在磁场中做匀速圆周运动. 我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着增大了的圆周运动.又经过半个周期,当它沿着半圆弧A1′A2′到达A2′时,我们在A2′A2处设置一个向下的电场,使粒子又一次受到电场的加速,速率增加到v2,如此继续下去.每当粒子运动到A1A1′、A3A3′等处时都使它受到一个向上电场力加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到一个向下电场力加速,那么,粒子将沿着图示的螺旋线回旋下去,速率将一步一步地增大.

安培力和洛伦兹力测试题

安培力和洛伦兹力 一、选择题 1.如图所示,长为2L 的直导线拆成边长相等、夹角为60°的V 形,并置于与其所在平 面相垂直的匀强磁场中,磁场的磁感应强度为B ,当在该导线中通以大小为I 的电流时, 该V 形通电导线受到的安培力大小为( ) A .0 B .0.5BIL C .BIL D .2BIL 2.某同学画的表示磁场B 、电流I 和安培力F 的相互关系如图所示,其中正确的是( ) 3.对磁感应强度的定义式IL F B 的理解,下列说法正确的是 ( ) A .磁感应强度B 跟磁场力F 成正比,跟电流强度I 和导线长度L 的乘积成反比 B .公式表明,磁感应强度B 的方向与通电导体的受力F 的方向相同 C .磁感应强度B 是由磁场本身决定的,不随F 、I 及L 的变化而变化 D .如果通电导体在磁场中某处受到的磁场力F 等于0,则该处的磁感应强度也等于0 4.如图所示,矩形导线框abcd 与无限长通电直导线MN 在同一平面内,直导线中的电流方由M 到N ,导线框的ab 边与直导线平行。若直导线中的电流增大,导线框中将产生感应电流,导 线框会受到安培力的作用,则以下关于导线框受到的安培力的判断正确的是( ) A .导线框有两条边所受安培力的方向相同 B .导线框有两条边所受安培力的大小相同 C .导线框所受的安培力的合力向左 D .导线框所受的安培力的合力向右 5.如图所示,在绝缘的水平面上等间距固定着三根相互平行的通电直导线a 、b 和c ,各导线中的电流大小相同,其中a 、c 导线中的电流方向垂直纸面向外,b 导线电流方向垂直纸面向内。每根导线都受到另外两根导线对它的安培力作用。关于每根导线所受安培力的合力,以下说法中正确的是( ) A .导线a 所受安培力的合力方向向右 B .导线c 所受安培力的合力方向向右 C .导线c 所受安培力的合力方向向左 D .导线b 所受安培力的合力方向向左 6.如图所示,有一固定在水平地面上的倾角为θ的光滑斜面,有一根水平放在斜面上的导体棒,长为L ,质量为m ,通有垂直纸面向外的电流I 。空间中存在竖直向下的匀强磁场,磁感应强度为B 。现在释放导体棒,设导体棒受到斜面的支持力为N ,则关于导体棒的受力分析一定正 确的是(重力加速度为g ) ( ) A .mgsinθ=BIL B .mgtanθ=BIL C .mgcosθ=N -BILsinθ D .Nsinθ=BIL 7、 如图所示,两根长通电导线M 、N 中通有同方向等大小的电流,一闭合线框abcd 位于两平行通电导线所在平面上,并可自由运动,线框两侧与导线平行且等距,当 线框中通有图示方向电流时,该线框将( ) A .ab 边向里,cd 边向外转动 B .ab 边向外,cd 边向里转动 C .线框向左平动,靠近导线M D .线框向右平动,靠近导线N

安培力和洛伦兹力的关系

24.(20分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。 (1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e 。该导线通有电流时,假设自由电子定向移动的速率均为v 。 (a )求导线中的电流I ; (b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F 。 (2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。 (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 24.(1)(a )设Δt 时间内通过导体横截面的电量为Δq ,由电流定义,有:neSv t t neSv t q I =??=??= (b )每个自由电子所受的洛仑兹力:F 洛=evB 设导体中共有N 个自由电子:N =n ·Sl 导体内自由电子所受洛仑兹力大小的总和:F =NF 洛=nSl ·evB 由安培力公式,有:F 安=BlI =Bl ·neSv 得:F 安= F (2)一个粒子每与器壁碰撞一次,给器壁的冲量为:ΔI =2mv 如答图3,以器壁上的面积S 为底,以v Δt 为高构成柱体,由题设可知,其内的粒子在Δt 时间内有1/6与器壁S 发生碰撞,碰壁粒子总数为:t nSv N ?=6 1 Δt 时间内粒子给器壁的冲量为:t nSmv l N I ?=?=23 1 面积为S 的器壁受到粒子压力为:t I F ?= 器壁单位面积所受粒子压力为:231nmv S F f == 安培力与洛仑兹力的关系 杨兴国 运动电荷在磁场中受到洛仑兹力,通电导线在磁场中受到安培力,导线中的电流是由大量自由电子的定向移动形成的,安培力与洛仑兹力之间必定存在密切的关系,可以认为安培力是洛仑兹力的宏观表现,洛仑兹力是安培力的微观实质,但不能认为安培力是导线上自由电子所受洛仑兹力的合力,也不能认为安培力是通过自由电子与导线的晶格骨架碰撞产生的. 图中,通电导线置于静止的磁场之中,导线通有电流I ,长为d l 的导线元,所受的安培力为I d l ×B . 从微观的角度看,导线中的自由电子以速度v 向右运动,在洛仑兹力f =-ev ×B 的作用下,以圆周运动的方式向导线下方侧向偏移,使导线下侧出现负电荷的积累;在导线中产生侧向的霍耳电场,霍耳电场对自由电子有作用力,阻碍自由电子作侧向运动.经过一段时间后,自由电子受到的洛仑兹力与霍耳电场力N 平衡,自由电子只沿导线方向作定向运动,此时,-eE +(-ev ×B )=0,霍耳电场的场强 t

高中物理——安培力与洛伦兹力及物理规律

安培力与洛伦兹力在作用效果上有什么不同为什么有时候安培力做功而洛伦兹力不做功 安培力时洛仑兹力的宏观表现。洛仑兹力f=qvB,电流的微观表达式I=nqSv(n 为单位体积自由电子个数,q 为每个电子的电荷量,S 为导线横截面积,v 为自由电子定向移动速率)。一长为L 横截面积为S 的导线,所含自由电子个数为N=SLn ,安培力F=BIL=BnqSvL=(SLn)qvB=(SL,n)即f 安培力为导线中每个电子所受力的洛仑兹力的总和。 洛仑兹力对电荷不做功,但是安培力对导线可以做功,而且安培力又是洛仑兹力的宏观表现,那么为什么呢(这个问题本来就很绞的,很多人读完高中都没搞清楚,所以好好领悟)洛仑兹力对电荷不做功,但是并不代表洛仑兹力的分力对运动电荷不做功。一段导线,假设在磁场中受安培力而水平移动。注意,电子也在沿导线运动。所以根据运动的合成与分解,电子的运动轨迹是斜着的。洛仑兹力是垂直于电子运动轨迹的,所以洛仑兹力一定是斜着的。那么我们就可以将洛仑兹力分解为垂直于导线方向和沿导线方向(既然都预习到这里了,应该知道力的分解吧)。垂直于导线方向的洛仑兹力分力做正功,沿导线方向的分力做负功,这样实现了电能与界械能的转化。正功使导线机械能增加(就是我们看到的安培力做的功),负功阻碍电子运动(即阻碍电流,消耗电能,这部分功体现在电能

的减小上)。并且正功大小一定等于负功大小,这样洛仑兹力的总功才为0。所以我们平时就看到到安培力对导线做功,而洛仑兹力不做功。 还有一点,安培力做正功时,我们可以看到是电能与机械能的转化而不是磁场的能与机械能转化。同时,电流在洛仑兹力的分力作用下受到阻碍,这就是电动机为什么不能使用U=IR 公式的原因,除了电阻对电流的阻碍,这里又多了一个力,因此U=IR不再成立。 一、静电学 二、 1.两种电荷、电荷守恒定律、元电荷:(e=×10-19C);带电体电 荷量等于元电荷的整数倍 三、 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力 (N),k:静电力常量k=× 109N?m/C22,Q1、Q2:两点电荷的电 量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用 力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 四、 3.电场强度:E=F/q(定义式、计算式){ E:电场强度(N/C),是 矢量(电场的叠加原理) ,q:检验电荷的电量(C)} 五、 4.真空点(源)电荷形成的电场E=kQ/r2 {r :源电荷到该位置的 距离( m),Q:源电荷的电量} 六、 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)}

高中物理 3.6洛伦兹力与现代技术 第2课时学案(含解析)粤教版选修

高中物理 3.6洛伦兹力与现代技术第2课时学案(含解析)粤教版选修 3、6 洛伦兹力与现代技术 第2课时 1、带电粒子在匀强磁场中的运动特点:(1)当带电粒子(不计重力)的速度方向与磁场方向平行时,带电粒子所受洛伦兹力F=0,粒子做匀速直线运动、(2)当带电粒子(不计重力)的速度方向与磁场方向垂直时,带电粒子所受洛伦兹力f=qvB,粒子在匀强磁场中做匀速圆周运动,半径为r=,周期为T=、 2、分析带电粒子在匀强磁场中做匀速圆周运动问题的关键是确定圆心和半径、(1)圆心的确定:①入、出方向垂线的交点;②入或出方向垂线与弦的中垂线的交点、(2)图1半径的确定:利用几何知识解直角三角形、做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形、注意圆心角α等于粒子速度转过的偏向角φ,且等于弦切角θ的2倍,如图1所示,即φ=α=2θ、 3、带电粒子在匀强电场中的运动特点: (1)带电粒子沿与电场线平行的方向进入匀强电场时,粒子做匀变速直线运动、(2)带电粒子沿垂直于电场方向进入匀强电场时,粒子做类平抛运动、

一、带电粒子在有界磁场中的运动解决带电粒子在有界磁场 中运动问题的方法先画出运动轨迹草图,找到粒子在磁场中做匀 速圆周运动的圆心位置、半径大小以及与半径相关的几何关系是 解题的关键、解决此类问题时应注意下列结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示、图2(2) 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如 图(d)所示、 (3)当以一定的速率垂直射入磁场时,它的运动弧长越长,圆心角越大,则带电粒子在有界磁场中运动时间越长、例1 在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强 度大小为 B、方向垂直于纸面向里的匀强磁场,如图3所示、一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出、图3(1)请判断该粒子带何种电荷,并求出其比荷;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于 入射方向改变了60角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析(1)由粒子的运动轨迹(如图),利用左手定则可知,该粒子带负电荷、粒子由A点射入,由C点 飞出,其速度方向改变了90,则粒子轨迹半径R=r,又qvB=m,则粒子的比荷=、(2)设粒子从D点飞出磁场,速度方向改变了60

高中物理 3.6 洛伦兹力与现代技术学案1 粤教版选修3-1

3.6 洛伦兹力与现代技术 学案1(粤教版选修3-1) 一、带电粒子在磁场中的运动 1.无磁场时,电子束的径迹为______,电子束垂直射入匀强磁场时,径迹为________. 2.质量为m ,电荷量为q 的带电粒子在匀强磁场B 中做匀速圆周运动的轨道半径r =______,周期T =________. 二、质谱仪和回旋加速器 图1 1.质谱仪 (1)结构如图1所示 (2)S 1和S 2间存在着________,P 1和P 2之间的区域存在着相互正交的________和________.只有满足v =________的带电粒子才能做匀速直线运动通过S 0上的狭缝.S 0下方空间只存在 ________.带电粒子在该区域做________运动,运动半径为r =______,消去v 可得带电粒 子的荷质比为q m =____________. 2.回旋加速器 图2 (1)结构如图2所示 (2)回旋加速器的核心部件是两个________,其间留有空隙,并加以________,________处于中心O 附近,______垂直穿过D 形盒表面,由于盒内无电场,离子将在盒内空间做______运动,只有经过两盒的间隙时才受电场作用而被________,随着速度的增加,离子做圆周运动的半径也将增大. 一、带电粒子在磁场中的运动 [问题情境] 图3 当“太阳风”的带电粒子被地磁场拉向两极时,带电粒子的轨迹为什么呈螺旋形?

1.什么条件下,电子在匀强磁场中径迹为直线和圆? 2.试推导带电粒子在匀强磁场中做匀速圆周运动的半径r和周期T的公式. [要点提炼] 1.沿着与磁场________的方向射入磁场的带电粒子在匀强磁场中做匀速圆周运动. 2.带电粒子在匀强磁场中做匀速圆周运动的半径r=__________,周期T=__________. 二、质谱仪 [问题情境] 1.质谱仪有什么用途? 2.结合课本叙述质谱仪的构造和各部分的作用? 3.简述质谱仪的工作原理? 二、回旋加速器 [问题情境] 1.回旋加速器主要由哪几部分组成? 2.回旋加速器的原理是怎样的? 3.带电粒子经回旋加速器获得的速度与哪些物理量有关? [问题延伸] 1.粒子在D形盒中运动的轨道半径,每次都不相同,但周期均________. 2.两D形盒间所加交流电压的周期与带电粒子做匀速圆周运动的周期是________的. 图4 例1 两个带异种电荷的粒子以同一速度从同一位置垂直磁场边界进入匀强磁场,如图4所示,在磁场中它们的轨迹均为半个圆周,粒子A的轨迹半径为r1,粒子B的轨迹半径为r2,

高中物理选修磁场安培力洛伦兹力定稿版

高中物理选修磁场安培 力洛伦兹力 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

选修3-1 磁场练习 姓名:___________分数:___________ 一、选择题(题型注释) 1.空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截 面.一质量为m、电荷量为q(q>0)的粒子以速率v 沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A. B. C. D. 2.如图,长为2l的直导线拆成边长相等,夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为() 3.在以下几幅图中,洛伦兹力的方向判断正确的是: 4.对确定磁场某一点的磁感应强度,根据关系式B=F/IL得出的下列结论中,说法正确的是() A.B随I的减小而增大; B.B随L的减小而增大; C.B随F的增大而增大; D.B与I、L、F的变化无关 5.如图所示,两根水平放置且相互平行的长直导线分别通有方向相反的电流I 1与I 2 .与 两导线垂直的一平面内有a、b、c、d四点,a、b、c在两导线的水平连线上且间距相等,b是两导线连线中点,b、d连线与两导线连线垂直.则

(A )I 2受到的磁场力水平向左 (B )I 1与I 2产生的磁场有可能相同 (C )b 、d 两点磁感应强度的方向必定竖直向下 (D )a 点和 c 点位置的磁感应强度不可能都为零 6.带电为+q 的粒子在匀强磁场中运动,下面说法中正确的是 A .只要速度大小相同,所受洛仑兹力就相同 B .如果把+q 改为-q ,且速度反向大小不变,则洛仑兹力的大小、方向均不变 C .洛仑兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子只受到洛仑兹力作用,其运动的动能可能增大 7.边长为a 的正方形,处于有界磁场如图所示,一束电子以水平速度射入磁场后,分别从A 处和C 处射出,则v A :v C =__________;所经历的时间之比t A :t C =___________ 8.一电子以垂直于匀强磁场的速度v A ,从A 处进入长为d 宽为h 的匀强磁场区域,如图所示,发生偏移而从B 处离开磁场,若电量为e ,磁感应强度为B ,弧AB 的长为L ,则 A .电子在磁场中运动的平均速度是v A B .电子在磁场中运动的时间为A L t v = C .洛仑兹力对电子做功是A Bev h ?

高中物理 3.6 洛伦兹力与现代技术学案1 粤教版选修

高中物理 3.6 洛伦兹力与现代技术学案1 粤教 版选修 3、6 洛伦兹力与现代技术学案1(粤教版选修3-1) 一、带电粒子在磁场中的运动 1、无磁场时,电子束的径迹为______,电子束垂直射入匀强磁场时,径迹为________、 2、质量为m,电荷量为q的带电粒子在匀强磁场B中做匀速圆周运动的轨道半径r=______,周期T=________、 二、质谱仪和回旋加速器图 11、质谱仪(1)结构如图1所示(2)S1和S2间存在着 ________,P1和P2之间的区域存在着相互正交的________和 ________、只有满足v=________的带电粒子才能做匀速直线运动通过S0上的狭缝、S0下方空间只存在________、带电粒子在该区域做________运动,运动半径为r=______,消去v可得带电粒子的荷质比为=____________、2、回旋加速器图2(1)结构如图2所示(2)回旋加速器的核心部件是两个________,其间留有空隙,并加以________,________处于中心O附近,______垂直穿过D形盒表面,由于盒内无电场,离子将在盒内空间做______运动,只有经过两盒的间隙时才受电场作用而被________,随着速度的增加,离子做圆周运动的半径也将增大、

一、带电粒子在磁场中的运动[问题情境]图3 当“太阳风”的带电粒子被地磁场拉向两极时,带电粒子的轨迹为什么呈螺旋形? 1、什么条件下,电子在匀强磁场中径迹为直线和圆? 2、试推导带电粒子在匀强磁场中做匀速圆周运动的半径r和周期T的公式、 [要点提炼] 1、沿着与磁场________的方向射入磁场的带电粒子在匀强磁场中做匀速圆周运动、 2、带电粒子在匀强磁场中做匀速圆周运动的半径r=__________,周期T=__________、 二、质谱仪[问题情境] 1、质谱仪有什么用途? 2、结合课本叙述质谱仪的构造和各部分的作用? 3、简述质谱仪的工作原理? 二、回旋加速器[问题情境] 1、回旋加速器主要由哪几部分组成? 2、回旋加速器的原理是怎样的? 3、带电粒子经回旋加速器获得的速度与哪些物理量有关? [问题延伸] 1、粒子在D形盒中运动的轨道半径,每次都不相同,但周期均________、 2、两D形盒间所加交流电压的周期与带电粒子做匀速圆周运动的周期是________的、图4例1 两个带异种电荷的粒

安培力和洛伦兹力的关系

安培力和洛伦兹力的关 系 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

24.(20分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。 (1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e 。该导线通有电流时,假设自由电子定向移动的速率均为v 。 (a )求导线中的电流I ; (b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F 。 (2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。 (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 24.(1)(a )设Δt 时间内通过导体横截面的电量为Δq ,由电流定义,有: neSv t t neSv t q I =??=??= (b )每个自由电子所受的洛仑兹力:F 洛=evB 设导体中共有N 个自由电子:N =n ·Sl 导体内自由电子所受洛仑兹力大小的总和:F =NF 洛=nSl ·evB 由安培力公式,有:F 安=BlI =Bl ·neSv 得:F 安= F (2)一个粒子每与器壁碰撞一次,给器壁的冲量为:ΔI =2mv 如答图3,以器壁上的面积S 为底,以v Δt 为高构成柱体,由题设可知,其内的粒 子在Δt 时间内有1/6与器壁S 发生碰撞,碰壁粒子总数为:N

第5节洛伦兹力与现代科技

第5节 洛伦兹力与现代科技 考点一 速度选择器 【典例1】如图所示是速度选择器的原理图,已知电场强度为E 、磁感应强度为B ,电场和磁场相互垂直分布,某一带电粒子(重力不计)沿图中虚线水平通过,则该带电粒子( ) A .一定带正电 B .速度大小为E B C .可能沿QP 方向运动 D .若沿PQ 方向运动的速度大于 E B ,将一定向下极板偏转 【训练题组1】 1.(多选)如图为一“速度选择器”装置的示意图。a 、b 为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O 进入a 、b 两板之间。为了选取具有某种特定速率的电子,可在a 、b 间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO ′运动,由O ′射出,不计重力作用。可能达到上述目的的办法是( ) A .使a 板电势高于b 板,磁场方向垂直纸面向里 B .使a 板电势低于b 板,磁场方向垂直纸面向里 C .使a 板电势高于b 板,磁场方向垂直纸面向外 D .使a 板电势低于b 板,磁场方向垂直纸面向外 2.(多选)如图所示,两平行金属板水平放置,开始开关S 合上使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个不计重力的带电粒子恰能以水平向右的速度沿直线通过两板.在以下方法中,能使带电粒子仍沿水平直线通过两板的是( ) A .将两板的距离增大一倍,同时将磁感应强度增大一倍 B .将两板的距离减小一半,同时将磁感应强度增大一倍 C .将开关S 断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度减小一半 D .将开关S 断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度增大一倍 考点二 质谱仪 【典例2】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2 运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42He B .打在P 2点的粒子是21H 和42 He C .O 2P 2的长度是O 2P 1长度的2倍 D .粒子在偏转磁场中运动的时间都相等 【训练题组2】 1.(多选)速度相同的一束带电粒子由左端射入质谱仪后的运动轨迹如图所示,则下列说法中正确的是( ) A .该束带电粒子带负电 B .速度选择器的P 1极板带正电 C .能通过狭缝S 0的带电粒子的速率等于E B 1 D .粒子打在胶片上的位置越靠近狭缝S 0,粒子的比荷越小 班级: 姓名:

安培力和洛伦兹力

安培力与洛伦兹力 1.如图所示,一金属直杆MN 两端接有导线,悬挂于线圈上方,MN 与线圈均处于竖直平面内,为使MN 垂直纸面向外运动,可以( ) A .将a 、c 端接在电源的正极,b 、d 端接在电源的负极 B .将a 、c 端接在电源的负极,b 、d 端接在电源的正极 C .将a 、d 端接在电源的正极,b 、c 端接在电源的负极 D .将a 、c 端接在交流电源的一端,b 、d 端接在交流电源的另一端 2.如图所示两根平行放置的长直导线a 和b 载有大小相等、方向相反的电流。A 受到的磁场力大小为1F 。当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为2F 。则此时b 受到的磁场力大小变为( ) A.2F 1F 2F C.1F +2F 1F 2F 3.如图(a )所示,导线abc 为垂直折线,其中电流为I ,ab=bc=L ,导线所在的平面与匀强磁场垂直,匀强磁场的磁感应强度为B ,求导线abc 所受安培力的大小和方向 4.如图所示,一段导线abcd 位于磁感应强度为B 的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab 、bc 和cd 的长度均为L ,且∠abc=∠bcd=135°。流经导线的电流为I ,方向如图中箭头所示。导线段abcd 所受到的磁场的作用力的合力( )

A.方向沿纸面向上,大小为(2+1)IBL B.方向沿纸面向上,大小为(21-)IBL C.方向沿纸面向下,大小为(2+1)IBL D.方向沿纸面向下,大小为(21-)IBL 5.在光滑的绝缘面上放置一根质量为m 的长直通电导体棒,电流方向垂直纸面向里,如图所示,欲使导体棒静止,在斜面上施加匀强磁场的方向可能为( ) A.竖直向上 B.竖直向下 C.垂直斜面向上 D.水平向右 6.质量为m 的通电细杆置于倾角为θ的导轨上,导轨宽度为d ,杆与导轨间的动摩擦因数为μ,有垂直于纸面向里的电流通过杆,杆恰好静止于导轨上,在如图所示的A 、B 、C 、D 四个图中,杆与导轨间的动摩擦力一定不为零的是( ) A B C D 7.把一通电直导线放在蹄形磁铁的磁极的正上方,导线可以自由移动,当导线通以电流I 时,导线的运动情况从上往下看是( ) A.顺时针方向转动,同时下降 B.顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D.逆时针方向转动,同时上升 8.通有电流的导线1L 和2L 处在同一平面(纸面)内,1L 是固定的,2L 可绕垂直纸面的固

第3章5 洛伦兹力与现代科技—2020-2021 高中物理选修3-1学案

洛伦兹力与现代科技 1.速度选择器 (1)平行板中电场强度E 和磁感应强度B 互相垂直,这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器。 (2)带电粒子能够匀速沿直线通过速度选择器时的速度是v =E B 。(见图) (3)只要带电粒子的速率满足v =E B ,即使电性不同....,电荷不同....,也可沿直线穿出右侧小孔,而其他速率的粒子要么上偏,要么下偏,无法穿出。因此利用这个装置可以用来选择某一速率的带电粒子。 2.磁流体发电机 (1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能。 (2)根据左手定则,如图中的B 板是发电机正极。 (3)磁流体发电机两极板间的距离为d ,等粒子体速度为v ,磁场磁感应强度为B ,则两极板间能达到的最大电势差U =Bd v 。 案例 如图所示,磁流体发电机的极板相距 d =0.2 m ,极板间有垂直于纸面向 里的匀强磁场,B =1.0 T 。外电路中可变负载电阻R 用导线与极板相连。电离气体以速率v =1 100 m/s 沿极板射入,极板间电离气体等效内阻r =0.1 Ω,试求此发电机的最大输出功率为多大? 解析:S 断开时,由离子受力平衡可得q v B =qE =qU /d ,所以板间电压为U =B v d 此发电机的电动势为 E 源=U =B v d =1.0×1 100×0.2 V =220 V 当可变电阻调到R =r =0.1Ω时,电源的输出功率最大,最大输出功率为

P max=E2源/(4r)=2202/(4×0.1)W=121 kW。 答案:121 kW 1.(2019·吉林省四平市实验中学高二上学期期末)在如图所示的匀强电场和匀强磁场共存的区域内(不计重力),电子可能沿水平方向向右做直线运动的是(BC) 解析:如电子水平向右运动,在A图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C图中电场力竖直向上,洛伦兹力竖直向下,电子向右可能做匀速直线运动,故C正确;在D图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B正确。 2.(2019·宁夏银川一中高二上学期期末)如图所示,甲带正电,乙是不带电的绝缘块,甲、乙叠放在一起置于光滑的水平地面上,空间存在着水平方向的匀强磁场,在水平恒力F 的作用下,甲、乙无相对滑动地一起向左加速运动,在加速运动阶段(C) A.甲、乙两物块间的摩擦力不断增大 B.甲、乙两物块间的摩擦力不断减小 C.甲、乙向左运动的加速度不变 D.乙物体对地面的压力不变 解析:甲、乙两物块间没有相对滑动,是静摩擦力,由于乙与地面之间没有摩擦力,根据牛顿第二定律,F=ma,整体的加速度不变,对甲受力分析,静摩擦力作为合力产生加速度,由于整体的加速度不变,所以甲、乙两物块间的摩擦力不变,所以A错误,B错误,C 正确;甲带正电,在向左运动的过程中,受到的洛伦兹力的方向向下,因为运动的速度增大,所以甲对乙的压力变大,故D错误。 3.(2019·北京市朝阳区高二上学期期末)磁流体发电是一种新型发电方式,图甲和图乙是其工作原理示意图。图甲中的A、B是电阻可忽略的导体电极,两个电极间的间距为d,这两个电极与负载电阻相连。假设等离子体(高温下电离的气体,含有大量的正负带电粒子)垂直于磁场进入两极板间的速度均为v0。整个发电装置处于匀强磁场中,磁感应强度大小

安培力和洛伦兹力的区别 有什么联系

安培力和洛伦兹力的区别有什么联系 越来越多的同学对于安培力和洛伦兹力两者之间的关系存在一定的疑惑,他们的区别是什幺,两者又有什幺联系呢,本文小编就为大家整理了相关信息,供大家参考。 1安培力和洛伦兹力有什幺不同两者实际是等同的。可以将安培力想象成 是导线中无数个小电荷在流动时分别受到的洛仑兹力的叠加;譬如,假设现在 的电流是I,那幺说明t时间内,流过某一截面积的电荷数是Q=It 所以流过的电子总数n=Q/e=It/e。这段电子在t时间内流过的长度是l=vt,v 是电子流的宏观平均速度,每个电子都受到洛仑兹力,f=evB,那幺这段l长度 内的电子受到的总的洛仑兹力是f’=nevB=ItevB/e=ItvB=IBl。 现在整段导线在磁场内的长度是大L,而每小段l受到的是f’,所以总的受到 的安培力F=BIL,左手定则是判断受力,右手定则是判断电流反方向,右手定则 还有一个右手螺旋定则是判断磁场方向的.点是电流垂直纸面向外,反之是向里,四指是电流方向,拇指是运动方向。 另外,洛伦兹力是磁场对运动中的带电粒子的作用力,是对单个带电粒子 而言;安培力是磁场对通电导线的作用力,是对整个在磁场中的导线而言。 事实上,为什幺磁场会对通电导线有安培力的作用呢?我们知道,通电导线 中有很多运动的电荷;安培力,正是磁场对所有这些电荷的洛伦兹力的总和。即安培力是洛伦兹力的宏观体现;而洛伦兹力,是安培力的微观原理。区别 就在这里一个宏观,一个微观。 1两者有什幺联系在高三物理选修本中提出安培力是作用在运动电荷上的 力的宏观表现。接着,又利用F=BIL推导了一个电荷受到的洛伦兹力 f=qVB,从推导过程来看,安培力就是所有电荷受到洛伦兹力的合力,这个

高中物理 洛伦兹力与现代技术

第6节 洛伦兹力与现代技术 学 习 目 标 1.知道在洛伦兹力作用下,带电粒子垂直进入磁场做匀速圆周运动. 2.会应用公式F =qvB 推导带电粒子做匀速圆周运动的半径、周期公式,并会应用它们解答有关问题. 3.知道回旋加速器、质谱仪的基本构造,原理以及基本用途. 思 维 启 迪 为了研究物质的微观结构,科学家必须用各种各样的加速器产生出速度很大的高能粒子,欧洲核子研究中心的粒子加速器周长达27 km(如图361所示的大圆).为什么加速器需要那么大的周长呢? 位于法国和瑞士边界的欧洲核子研究中心 知识梳理 一、带电粒子在磁场中的运动 1.运动轨迹 (1)匀速直线运动:带电粒子的速度方向与磁场方向平行(相同或相反),此时带电粒子所受洛伦兹力为0,粒子将以速度v 做匀速直线运动. (2)匀速圆周运动:带电粒子垂直射入匀强磁场,由于洛伦兹力始终和运动方向垂直,因此,带电粒子速度大小不变,但是速度方向不断在变化,所以带电粒子做匀速圆周运动,洛伦兹力提供向心力. 2.轨迹半径和周期 由F 向=f 得qvB =m v 2R ,所以有R = mv qB ,T = 2πm qB . 二、质谱仪 1.构造 如图3-6-2所示,主要由以下几部分组成:

图3-6-2 ①带电粒子注入器 ②加速电场(U ) ③速度选择器(B 1、E ) ④偏转磁场(B 2) ⑤照相底片 2.原理 利用磁场对带电粒子的偏转,由带电粒子的电荷量、轨道半径确定其质量,粒子由加速电场加速后进入速度选择器,匀速运动,电场力和洛伦兹力平衡qE =qvB 1,v =E B 1 粒子匀速直线通过进入偏转磁场B 2,偏转半径r = mv qB 2,可得比荷q m =E B 1B 2r . 【特别提醒】 ①速度选择器两极板间距离极小,粒子稍有偏转,即打到极板上.②速度选 择器对正负电荷均适用.③速度选择器中的E 、B1的方向具有确定的关系,仅改变其中一个方向,就不能对速度做出选择. 三、回旋加速器 1.结构:回旋加速器主要由圆柱形磁极、两个D 形金属盒、高频交变电源、粒子源和粒子引出装置等组成. 2.原理 回旋加速器的工作原理如图3-6-3所示.放在A 0处的粒子源发出一个带正电的粒子,它以某一速率v 0垂直进入匀强磁场中,在磁场中做匀速圆周运动.经过半个周期,当它沿着半圆A 0A 1时,我们在A 1A 1′处设置一个向上的电场,使这个带电粒子在A 1A 1′处受到一次电场的加速,速率由v 0增加到v 1,然后粒子以速率v 1在磁场中做匀速圆周运动. 我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着增大了的圆周运动.又经过半个周期,当它沿着半圆弧A1′A2′到达A2′时,我们在A2′A2处设置一个向下的电场,使粒子又一次受到电场的加速,速率增加到v2,如此继续下去.每当粒子运动到A1A1′、A3A3′等处时都使它受到一个向上电场力加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到一个向下电场力加速,那么,粒子将沿着图示的螺旋线回旋下去,速率将一步一步地增大.

安培力和洛伦兹力的关系

安培力和洛伦兹力的关系 摘要:安培力是磁场对电流的作用力,洛伦兹力是磁场对运动电荷的作用力。安培力可以看作是作用在每个运动电荷上的洛伦兹力的合力。 关键词:安培力 洛伦兹力 关系 1. 安培力是电荷所受的洛伦兹力在某个方向上的分力的合力。 图1 a b 图2 a b v 1 v 2 F 1F 2 如图1所示,水平放置的导体棒ab 中有a →b 的电流,根据左手定则可判断电流所受的安培力方向向右。若导轨光滑,导体棒ab 在安培力的作用下将向右移动。在导体棒ab 向右移动的过程中棒中的自由电子会有两个速度(如图2所示),v 1为自由电子在电源的作用下的定向移动速度,v 2为自由电子随导体棒ab 向右移动的速度。同样,根据左手定则可以判断,自由电子以v 1的速度运动时,所受的洛伦兹力F 1方向向右,与棒ab 移动方向相同,自由电子以v 2的速度运动时,所受的洛伦兹力F 2方向沿棒ab ,由a 指向b 。流过棒ab 的自由电子都要受到洛伦兹力F 1、F 2的作用。我们把流过棒ab 的所有自由电子所受 的洛伦兹力合成为F 1/,F 1/就是我们所说的棒ab 所受的安培力,在F 1/ 的作用下,棒ab 向右移动。自由电子所受的洛伦兹力F 2就是导体棒ab 做切割磁感线运动,产生感应电动势的非静电力。 2.当导体静止时,安培力的实质 如上图所示, 导线静止, 稳定的电流通过一段导线, 载流子电子定向移动速率为v , 每个电子受到的洛伦兹力v 洛= B ev , 这段导线内所有电子受到的洛伦兹力之和为 F = N f 洛=Bev nLS ? = nevS BL ? 式中n 为电子数密度, L 为导线长度, S 为横截面积,电流的微观表达式为I = nevS . 所以推出 F 安= BIL 即导线所受的安培力就是其中每个电子所受洛伦兹力之和。. 上与电子所受洛伦兹力之和相等. 2. 当导线运动时,安培力的实质

《洛伦兹力与现代技术》教案

洛伦兹力与现代技术 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式,并能用来解 决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ?例:一带电粒子的质量为m,电荷量为q,速率为v,它在磁感应强度为B的匀强磁场中做匀速圆周运动,求轨道半径有多大?

相关文档
最新文档