变压器色谱在线监测系统及其关键技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器色谱在线监测系统及其关键技术

1 引言

变压器是电力系统的主要设备之一,保证变压器的安全可靠运行,对提高电力系统的供电可靠性具有十分重要的意义。变压器油中溶解气体色谱分析的在线监测方法是基于油中溶解气体分析理论,它直接在现场实现油色谱的定时在线智能化监测与故障诊断,不仅可以及时掌握变压器的运行状况,发现和跟踪存在的潜伏性故障,并且可以及时根据专家系统对运行工况自动进行诊断。

从变压器安全可靠运行的重要性与变压器油色谱在线监测装置的性价比来看,采用在线监测装置在技术和经济上有显著的优势,既提高了变电站运行的管理水平,又可为状态检修体系奠定基础。因此,变压器油中溶解气体在线监测及故障诊断装置的应用具有重要的现实意义和实用价值。本文中介绍了现有的几种在线监测方法,并以宁波某公司生产的MGA2000-6 型变压器油色谱在线监测系统为例,说明变压器色谱在线监测系统的原理及结构方式。

2 变压器在线监测方法

从检测机理上讲,现有油中气体检测产品大都采用以下三种方法。

(1)气相色谱法。

色谱气体检测原理是通过色谱柱中的固定相对不同气体组分的亲和力不同,在载气推动下,经过充分的交换,不同组分得到了分离,经分离后的气体通过检测转换成电信号,经A/D 采集后获得气体组分的色谱出峰图。根据组分峰高或面积进行浓度定量分析。大部分变压器产品的在线监测都采用气相色谱法,但这种方法具有需要消耗载气、对环境温度很敏感以及色谱柱进样周期较长的缺点。

(2)阵列式气敏传感器法。

采用由多个气敏传感器组成的阵列,由于不同传感器对不同气体的敏感度不同,而气体传感器的交叉敏感是极其复杂的非线性关系,采用神经网络结构进行反复的离线训练可以建立各气体组分浓度与传感器阵列响应的对应关系,消除交叉敏感的影响,从而不需要对混合气体进行分离,就能实现对各种气体浓度的在线监测。其主要缺点是传感器漂移的累积误差对测量结果有很大的影响;训练过程(即标定过程)复杂,一般需要几十到一百多个样本。

(3)红外光谱法。

红外光谱气体检测原理是基于气体分子吸收红外光的吸光度定律(比耳定律,Beer’s Law),吸光度与气体浓度以及光程具有线性关系。由光谱扫描获得吸光度并通过吸光度定律计算可得到气体的浓度。这种方法具有扫描速度快、测量精度高的特点,但其有价格昂贵。精密光学器件维护量大、检测所需气样较多(至少要100mL)以及对油蒸汽和湿度敏感等缺点。

(4)光声光谱法。

光声光谱检测技术是基于光声效应,光声效应是由于气体分子吸收电磁辐射(如红外线)而造成。气体吸收特定波长的红外线后温度升高,但随即以释放热能的方式退激,释放出的热能使气体产生成比例的压力波。压力波的频率与光源的截波频率一致,并可通过高灵敏微音器检测其强度,压力波的强度与气体的浓度成比例关系。由敏感元件(微音器或压电元件)检测,配合锁相放大等技术,就得到反映物质内部结构及成分含量的光声光谱。光声光谱方法的检测精度主要取决于气体分子特征吸收光谱的选择、窄带滤光片的性能和电容型驻极微音器的灵敏度;分析所需样品量小(仅需2mL~3mL),不需载气。其主要缺

点是检测精度不够高、高透过率的滤光片难以制造以及对油蒸汽污染敏感,环境适应能力较差。

不同原理的在线监测系统各有特色,有的系统仅仅处在试用阶段,难以大面积推广。近年来,应用较成熟的在线监测系统仍是基于气相色谱原理的系统。

3 色谱在线监测系统的组成

3.1 变压器色谱在线监测系统结构

气相色谱法是目前应用较广的分析方法之一,它在石油、轻工、食物及环保等领域有着广泛的应用,长期的运行实践证明了利用气相色谱法分析变压器内部故障的有效性。随着自动化技术、选择性检测器的应用、新型色谱柱的研制,气相色谱分析方法正在朝更高灵敏度、更高选择性、更方便快捷的方向发展。然而,大多应用场合仍需要人工干预,已实现在线色谱检测的领域非常有限,这与气体自动萃取、仪器所使用的恶劣环境影响检测精度等问题有很大的关系。以变压器色谱在线监测系统为例,为了完全替代常规的人工检测方法,在线监测系统按图1 所示的方式构成。

由图1 可以看出,以往需由人工从变压器取油样,并在试验室进行脱气处理的过程需要利用色谱数据采集器中的油气分离装置完成。色谱数据的处理过程本来是由人工确定基线,现也由数据处理服务器自动完成。因此,实现变压器色谱在线监测的难点和重点主要有以下几个方面。

(1)高效、准确的油气分离,以真实的反映油中溶解气体的含量和变化速度。

(2)自动、智能的色谱数据处理方法,以获取准确的气体浓度信息。

(3)稳定的环境适应能力,以适应室外不同气象条件下的在线监测。

3.2 变压器色谱在线监测系统工作流程

变压器色谱在线监测系统的工作流程图如图2所示,系统在微处理器控制下进行热油冷却、油中溶解气体萃取、流路切换与清洗、柱箱与检测器温度控制、样气的定量与进样、基线的自动调节、数据采集与处理、定量分析与故障诊断等分析流程。变压器油在内置一体式油泵作用下进入油气分离装置,分离出变压器油中的溶解气体,经过油气分离后的变压器油流回变压器油箱,萃取出来的气体在内置微型气泵的作用下进入电磁六通阀的定量管中。定量管中的气体在载气作用下进入色谱柱,然后检测器按气体流出色谱柱的顺序分别将六组分气体(H2、CO、CH4、C2H4、C2H2和C2H6)变换成电压信号。色谱数据采集器将采集到的气体浓度电压量通过通讯总线上传给安装在主控室的数据处理服务器,数据处理服务器根据仪器的标定数据进行定量分析,计算出各组分和总烃的含量以及各自的增长率。油中溶解水分由单独的传感器检测,将数据传至数据处理服务器。最后由故障诊断专家系统对变压器进行故障分析,从而实现变压器故障的在线监测。

3.3 变压器色谱在线监测系统的功能及技术指标

变压器色谱在线监测系统主要具备以下功能。

(1)可同时自动定量分析变压器油中溶解的H2、CO、CO2、CH4、C2H4、C2H6、C2H2和H2O 以及各自的增长率。

(2)可以选择数据报表、趋势图及直方图等多种显示方式。

(3)具有设备故障诊断功能。

(4)具有故障发展趋势分析功能。

(5)具有设备故障报警功能。

相关文档
最新文档