《有理数》综合测试卷及答案(新人教版)

合集下载

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。

第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

第一章 有理数  单元测试卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。

【人教版】七年级上册数学第一章有理数综合检测卷(含答案)

【人教版】七年级上册数学第一章有理数综合检测卷(含答案)

最新人教版七年级数学上册精编单元试卷第一章有理数检测卷一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作()A. +100 元B. +50 元C. - 50 元D. - 100 元2.某种大米包装袋上的质量标识为"25±O.5kg”,现从超市随机检测到四袋大米中不合格的是()A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg3.若a的相反数为1,则22。

19是()A. 2019B. -2019C. 1D. - 14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示()A. 0.321xl0i0元B. 3.21x108 元C. 3.21x10"元D. 3.21x1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过()A. 1小时B. 2小时C. 3小时D. 4小时6.下列各组数中:①-2?与*②(-3A与3?;③1-21与-1-21;④(-3)3与-33;⑤-3与-(+3),其中相等的共有()A. 4对B. 3对C. 2对D. 1对7.在-(-8), -1-71, 0, (-2)2, -32这五个数中,负数共有()A. 4个B. 3个C. 2个D. 1个8.计算12 - 7x( - 4)+8^( - 2)的结果是()A. 36B. -20C. 6D. -249.若。

与。

互为倒数,则〃广7的值是()A. aB. 一。

C. bD. —b10.点A、B在数轴上的位置如图所示,其对应的数分别是a和b,则以下结论:B AI 1 । 5 0 5①人一。

>0:®-b>a:③一同>一。

|:④2>0,正确的是(A.①②B.②③C.②④D.@@11.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号:③互为相反数的两数相乘,积一定为负:④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子I5+X I=I5I+I X I成立的数x是( )A.任意一个非正数B.任意一个正数C.任意一个非负数D.任意一个负数二.填空题(共6小题)13.若“、b互为倒数,则2ab - 6=.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a的相反数就是它本身,乙说一个数b的倒数也等于本身, 请你猜一猜la - bl=.15.如果A表示最小的正整数,B表示最大的负整数,C表示绝对值最小的有理数,那么计算(A - B)xC=.16.已知⑸=1, lbl=2,且abVO.则a-b的值为.17.下列说法正确的是_______ (填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数:⑵如果两个数的差是正数,那么这两个数都是正数:(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负:(4)数轴上到原点的距离为3的点表示的数是3或-3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x的值为-3时,则输出的数值为.输入x t=> (』|1------------- > | X(-2) |--- - >| 7 ]] 输出 |三.解答题(共8小题)19.计算(1)5.6+( - 0.9)+4.4+(-8.1)+(-0.1)3⑵ 5+=) -负数集合 整数集合21.列式计算:4 1 4(1)-11—减去6-与一9一的和,所得的差是多少?9 3 9⑵求42与32的相反数的商. 2 222.已知 a= - 31,b=-6.25, c= - 2. 5,求Ibl - (a - c)的值. 2 23.今抽查10袋盐,每袋盐 标准质量是100克,超出部分记为正,统计成表:盐的袋数 2 3 3 1 1 每袋超出标准的克数+1-0.5 0 +2.5 -2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24 .检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为 弹位:千米):+8、-9、+4、-7、-2、-10、+11、- 12.14 2(3)( — - )x(- 14 17 T )x(+7i3 13 (4)-32X (--)2+(--- + -)X (-24)3 4 o o (5)8 - 23H - 4)3+18(6)( - 1 严招+( - 5)x[( - 2声々]-(-4)2丑-i )2320.将有理数o, 20, -L25, 1 -, -1-121, -(-5)放入恰当4 集合中.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?⑵若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.己知不相等的两数a, b互为相反数,c, d互为倒数,x的绝对值和倒数都是它本身,求: 2016a+2018cd - 2017x+2016b - 2017 的结果.26,某仓库本周运进货物件数和运出货物件数如下表:⑴如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;⑵若经过一周的时间,仓庠货物总量相比上周末库存量减少了5件,求a的值;⑶若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少),而本周运出62货物总件数比上周多二,这两周内,该仓库货物共增加了3件,求a、b的值.3答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作()A. +100 元B. +50 元C. - 50 元D. - 100 元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作-100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为"25±O.5kg”,现从超市随机检测到四袋大米中不合格的是()A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出而粉的合格重量的范闱,再据此对四个选项逐一判断.【详解】解:质量标识为”25±0.5依”表示25上下0.5,即24.5到25.5之间为合格:分析答案可得26.1依不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则22。

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)

七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)时间:90分钟,满分:120分一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7B.1C.7D.-12.(本题3分)一个两位小数精确到十分位是5.0,这个数最小是()A.4.99B.5.1C.4.94D.4.953.(本题3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是04.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1035.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1036.(本题3分)下列各对数中,互为相反数的是()A.﹣(+4)与+(﹣4)B.﹣(﹣4)与|﹣4|C.﹣22与(﹣2)2D.﹣23与(﹣2)37.(本题3分)如图,在数轴上有A、B、C、D四个点,分别表示不同的四个数,使得其余三点表示的数中有两个负数和一个正数,则这个点是()A.点A B.点B C.点C D.点D8.(本题3分)实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是()a bA .1-B .0C .1D .29.(本题3分)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a b >B .a b -<C .a b >-D .a b >10.(本题3分)在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作____m 12.(本题3分)已知|a |=6,|b |=4,且ab <0,则a +b 的值为 ___.13.(本题3分)数轴上到表示数-413点距离为312的点所表示的数为_________ 14.(本题3分)绝对值小于2021的所有的整数的和是___.15.(本题3分)计算:()()291223⎛⎫-⨯-+-÷= ⎪⎝⎭__________. 16.(本题3分)如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是___.17.(本题3分)母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.18.(本题3分)如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M的值为________.19.(本题3分)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______km.20.(本题3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是_______;当输入数据是n时,输出的数据是_____三、解答题(本大题共8小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题12分)计算:(1)185(0.25)4⎛⎫+----⎪⎝⎭(2)554(10)845⎛⎫⎛⎫-⨯-+-⨯⎪ ⎪⎝⎭⎝⎭(3)2313369412⎛⎫-⨯-+⎪⎝⎭(4)1|3 4.5|9342-+-+--22.(本题4分)在数轴上点A表示的数为﹣1,点B和点A的距离为3,点B、C表示的两数和为0,求点C在数轴上表示的数.23.(本题8分)如图,(1)写出各点表示的数:A________,B________,C________,D________,E________;(2)用“<”将A.B、C、D、E表示的数连接起来.24.(本题10分)把下列各数填在相应的括号内:-16,26,-12,-0.92,35,0,314,0.100 8,-4.9正数集合:{ ⋯};负数集合:{ ⋯};整数集合:{ ⋯};正分数集合:{ ⋯};负分数集合:{ ⋯};25.(本题9分)国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.26.(本题9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(本题8分)阅读下列材料:计算:1111 243412⎛⎫÷-+⎪⎝⎭解法一:原式= 111111111113412 243244241224242424÷-÷+÷=⨯-⨯+⨯=解法二:原式= 111112116 2434122412244⎛⎫÷-+=÷=⨯=⎪⎝⎭解法三:原式的倒数=1111111111242424244 34122434123412⎛⎫⎛⎫-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭所以,原式= 14.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:113224261437⎛⎫⎛⎫-÷--+⎪ ⎪⎝⎭⎝⎭参考答案1.A【解析】解:根据题意得:-3-4=-7,此时终点所表示的数是-7,故选:A .2.D【解析】解:一个两位小数精确到十分位是5.0,这个数最小是4.95.故选:D .3.B【解析】解:A 、0既不是正数,也不是负数,正确,不符合题意;B 、1是绝对值最小的正数,错误,符合题意;C 、一个有理数不是整数就是分数,正确,不符合题意;D 、0的绝对值是0,正确,不符合题意.故选:B .4.B【解析】解析:353000=3.53×105.故选:B5.B【解析】解析:353000=3.53×105.故选:B6.C【解析】解:A 、﹣(+4)=﹣4,+(﹣4)=﹣4,故A 选项不符合题意;B 、﹣(﹣4)=4,|﹣4|=4,故B 选项不符合题意;C 、﹣22=﹣4,(﹣2)2=4,故C 选项符合题意;D 、﹣23=﹣8,(﹣2)3=﹣8,故D 选项不符合题意,故选:C .7.C【解析】解:A .当A 为原点,则剩余三个点表示的数均是正数,故A 不合题意. B .当B 为原点,则A 表示负数,C 与D 表示正数,故B 不符合题意.C .当C 为原点,则A 与B 表示负数,D 表示正数,故C 符合题意.D .当D 为原点,A 、B 与C 表示负数,故D 不符合题意.故选:C .8.D【解析】解:⋯0a b +>,21a -<<-,⋯0b >,而且1b a >>,⋯1>->,b a符合条件是D,b=2.故选:D.9.D【解析】解:如图所示,⋯数a在原点的左边,数b在原点的右边,⋯a<-1,1>b>0,且|a|>1,|b|<1,>,a<b,⋯a b⋯A不符合题意;⋯D符合题意;⋯|a|>1,⋯-a>1,⋯-a>b,⋯B不符合题意;⋯1>b>0,⋯-1<b<0,⋯a<-b,⋯C不符合题意;故选D.10.C--=,是正数;【解析】()44-=,是正数;224-=-,是负数;11()239-=,是正数;()328-=-,是负数;⋯正数又3个;故选C.11.3-【解析】解:根据题意可得,高于正常水位记作“+”,则低于正常水位记作“-”,-m,则低于正常水位3m时,应记作3-故答案为:312.2-或2【解析】解:⋯64a b ==,⋯6,4a b =±=±又⋯0ab <⋯64a b =⎧⎨=-⎩或64a b =-⎧⎨=⎩ ⋯2a b +=或2a b +=-故答案为2-或213.−476或−56 【解析】解:距离点数−413为312个单位长度的点有两个,它们分别是−413+312=−56,−413−312=−476, 故答案为−476或−56. 14.0 【解析】绝对值小于2021是所有正数为0,1,22020±±⋯±,, ∴()()202010120200-+⋯+-+++⋯+= 故答案为:015.0 【解析】解:()()291223⎛⎫-⨯-+-÷ ⎪⎝⎭=66-=0.故答案为:0.16.-1、0、1、2【解析】解:由数轴可知:被污染的部分的数为-1.3<x <2.9的整数,⋯被污染的整数为:-1、0、1、2,故答案为:-1、0、1、2.17.1,4,6(答案不唯一)【解析】⋯12×1+5×4+3×6=50,⋯可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)18.143【解析】解:⋯1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,⋯右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),⋯M =m (n +1),⋯M =11×(12+1)=143.故答案为:143.19.36【解析】解:如果第二天和第三天选择低强度,则距离为6+6=12(km ),如果第三天选择高强度,则第二天休息,则距离为15km ,⋯12<15,⋯第二天休息,第三天选择高强度,如果第四天和第五天选择低强度,则距离为5+4=9(km ),如果第五天选择高强度,则第四天休息,则距离为8km ,⋯9>8,⋯第四天和第五天选择低强度,为保持最远距离,则第一天为高强度,⋯最远距离为12+0+15+5+4=36(km )故答案为36.20.256 ()2n -【解析】解:设输入数据为a ,输出数据为b ,则由题意可得:()2a b =-,所以:当输入数据是8时,输出的数据是()82256-=;当输入数据是n时,输出的数据是 ()2n-. 故答案为256;()2n -. 21.(1)3;(2)154;(3)19;(4)0;(5)18-;(6)-198 【解析】解:(1)原式()3750.254=---()320.254=-- 3=;(2)原式2554=445⎛⎫+-⨯ ⎪⎝⎭ ()2514=+- 154=; (3)原式8271336363612⎛⎫=-⨯-+⎪⎝⎭ 1913363612-⎛⎫=-⨯+ ⎪⎝⎭ 1933363636-⎛⎫=-⨯+ ⎪⎝⎭ 1633636-=-⨯ ()316=--19;(4)原式=1.5-9+7.5=0;22.4或-2【解析】解:⋯点A在数轴上表示的数为﹣1,且点B和点A的距离为3,⋯点B在数轴上表示的数为-4或2,又点B、C表示的两数和为0⋯点C在数轴上表示的数为4或-223.(1)5,﹣2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5【解析】解:(1)点A.B、C、D、E表示的数分别为5,-2.5,1,2.5,﹣4;故答案为5,-2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5.24.正数集合:{ 26,35,134,0.1008};负数集合:{-16,-12,-0.92,-4.9};整数集合:{-16,26,-12,0};正分数集合:{35,134,0.1008};负分数集合:{-0.92,-4.9}.【解析】解:根据有理数分为:正数、0、负数;有理数也可以分为:整数和分数.⋯正数有:26,35,134,0.1008;负数有:-16,-12,-0.92,-4.9;整数有:-16,26,-12,0;正分数有:3 5,134,0.1008;负分数有:-0.92,-4.9.⋯正数集合:{26,35,134,0.1008⋯};负数集合:{-16,-12,-0.92,-4.9⋯};整数集合:{-16,26,-12,0⋯};正分数集合:{35,134,0.1008⋯};负分数集合:{-0.92,-4.9 ⋯};25.(1)见解析;(2)8(千米);(3)1.6(升)【解析】解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.26.(1)西12km;(2)4L;(3)108元【解析】(1)491010512+-+---, 410512910=----++,3119=-+,12=-,答:小李在西12km 处.(2)491010512-+++-+++-+-, 491010512=+++++,50=,500.084)L ⨯=(,答:共耗油4L .(3)第一次车费:()1043 1.511.5+-⨯=(元), 第二次车费:()1093 1.519+-⨯=(元), 第三次车费:()10103 1.520.5+-⨯=(元), 第四次车费:()10103 1.520.5+-⨯=(元), 第五次车费:()1053 1.513+-⨯=(元), 第六次车费:()10123 1.523.5+-⨯=(元), 11.51920.520.51323.5108+++++=, 答:小李这天上午共得车费108元. 27.(1)一;(2)118【解析】解:(1)⋯除法无分配律⋯解法一是错误的故答案为:一;(2)方法一:原式1143442661414⎛⎫⎛⎫=-÷--+ ⎪ ⎪⎝⎭⎝⎭ 11142214⎛⎫⎛⎫=-÷-+ ⎪ ⎪⎝⎭⎝⎭ 13427⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 118= 方法二:原式的倒数= 132216143742⎛⎫⎛⎫=--+÷- ⎪ ⎪⎝⎭⎝⎭ ()132********⎛⎫=--+⨯- ⎪⎝⎭()()()()13224242424261437=⨯--⨯--⨯-+⨯- 792812=-++-18=⋯原式=118。

【精选】人教版七年级上册数学 有理数综合测试卷(word含答案)

【精选】人教版七年级上册数学 有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。

(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。

2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.4.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.5.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

初中数学人教版七年级上册第一单元《有理数》综合测试卷

初中数学人教版七年级上册第一单元《有理数》综合测试卷

初中数学人教版七年级上册第一单元《有理数》综合测试卷一、选择题1.下列各对数中,互为相反数的是()A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.−12的相反数是()A.12B.−12C.-2D.2 3.(2024七上·渠县期末)−2024的绝对值是()A.2024B.−2024C.12024D.−1 20244.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,−a,−b的大小顺序是()A.b<−a<a<−b B.−a<a<−b<bC.−a<b<a<−b D.−b<a<−a<b5.(2015七上·大石桥竞赛)把数轴上表示数2的点移动3个单位后,表示的数为()A.5B.1C.5或-1D.5或16.(2023七上·肇庆月考)下列各组数中互为相反数的是()A.−12与−2B.−1与−(+1)C.−(−3)与−3D.2与|−2|7.(2024·赤峰)如图,数轴上点A,M,B 分别表示数a,a+b,b,若AM>BM,则下列运算结果一定是正数的是()A.a+b B.a−b C.a b D.|a|−b8.(2022七上·京山期中)下列结论中正确的是()A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数9.(2022七上·鸡西期中)如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数10.(2023七上·应城期中)已知有理数a ,b ,c 满足abc <0,则a |a|+|b|b +c |c|−|abc|abc 的值是( )A .±1B .0或2C .±2D .±1或±2二、填空题11.(2017七上·黄冈期中)-2的绝对值是 12.(2020七上·兴庆期末)12的相反数是 .13.(2020七上·龙泉驿期中)在数轴上,与原点距离为6的点所表示的数是 . 14.已知|a −b |=b −a ,且|a |=6,|b |=3,则a +b 的值为 .15.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3克表示 .三、计算题16.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,求m +cd +a+bm.四、综合题17.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,+6,−4,+2,−1.(1)总计超过或不足多少千克?(2)5筐蔬菜的总重量是多少千克?18.某共享单车厂一周计划生产700辆自行车,平均每天生产100辆,由于各种原因,实际每天生产量与计划量相比有出入,表格是某周的生产情况.(超产为正、减产为负)(1)根据记录,求产量最多的一天比产量最少的一天多生产几辆自行车?(2)该厂实行每周计件工资制,每生产一辆车可得50元加工费,若超额完成任务,则超过部分每辆另奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?19.(2018七上·顺德月考)邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?20.(2021七上·高安期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,b﹣a 0,c﹣a 0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.21.如图1,在数轴上点A表示数a,点B表示数b,O为原点,且a,b满足|a+5|+(b+2a)2= 0.(1)a=_____,b=______;(2)点P是数轴上一个动点,其表示的数是x,当AP=3BP时,求x;(3)如图2,E,F为线段OB上两点,且满足BF=2EF,OE=4,动点M从点A,动点N从点F同时出发,分别以2个单位/秒,1个单位/秒的速度沿直线AB向右运动,是否存在某个时刻,点M和点N相距一个单位?若存在,求此时点M表示的数;若不存在,请说明理由.。

《有理数》综合测试卷及答案(新人教版)

《有理数》综合测试卷及答案(新人教版)

第一章《有理数》综合测试卷(100分钟120分)一、填空题:(每题2分,共20分)1、绝对值等于4的数有 个,它们是 .2、绝对值等于-3的数有 个.3、绝对值等于本身的数有 个,它们是4、已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 。

5、若 a 、b 互为相反数,c 、d 互为倒数,则(a +b )20 -(c d )20 = 。

6、若 | a|<2 ,且a 是整数,那么a = 。

7、已知|x |=3,()412=+y , 且xy <0 ,则x -y 的值是 . 8、比-8大3的数是 ,比a 大-5的数是9、 相反数等于它本身的数是 ,绝对值等于它本身的数是 ,倒数等于它本身的数是10、如果2-=-x ,则x =______二、思考题:(1、2题每小题2分,3、4题各5分,共20分)1、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2 ,1+3+5+7+9=25=5 2 ,……猜想:(1) 1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n-1)= _____________ .(结果用含n 的式子表示,其中n =1,2,3,……)。

2、如图21所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8(1)点B 表示的有理数是表示原点的是点 (2)图21中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 。

(3)若将原点取在点D ,则点C 表示的有理数是 ,此时点B 与点 表示的有理数互为相反数。

3、甲、乙、丙、丁四个有理数讨论大小问题.甲说:我是正整数中最小的.•乙说:我是绝对值最小的.丙说:我与甲的一半相反.丁说:我是丙的倒数.你能写出它们分别是多少吗?然后按从小到大的顺序排列.4、已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,•那么所有满足条件的点B 对应的数有哪些?三、选择题:(每题2分,共44分)1、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是( ).A 、+B 、-C 、×D 、÷2、两个有理数a ,b 在数轴上的位置如图,下列四个式子中运算结果为正数的式子是( ).A 、a+bB 、a -bC 、abD 、b a 3、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ).A 、-1B 、1C 、-5D 、104、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动,开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙、丙之间,则x 值可能是下列数中的( ).A 、11B 、14C 、17D 、205、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的 一个算式: .6、已知m 、n 为有理数时,关于2m +n 值的判断正确的是( )A 、2m +n ≥0B 、2m +n ≤0C 、2m +n >0D 、2m +n >17、已知m 为有理数时,1122++m m =( ) A 、1 B 、-1 C 、1± D 、不能确定 8、已知有理数a 、b 满足(),0212=-+-b a 另有两个不等于零的有理数nm ,使得1-=++-=-mn mn n n m m n m n m 且,试比较bn am 与的大小。

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

21.计算: (1)﹣20+(﹣14)﹣(﹣18)﹣|13|; (2) (1 1 3) (48) ;
68 (3)﹣32+(﹣ 1 )2×(﹣3)3÷(﹣1)25
3
1 22.已知数 3.3,-2,0, ,-3.5.
8 (1) 比较这些数的大小,并用“<”号连接起来; (2) 比较这些数的绝对值的大小,并将这些数的绝对值用“>”号连接起来; (3) 比较这些数的相反数的大小,并将这些数的相反数用“<”号连接起来.
法表示为( )
A.1.7×104
B.1.7×105
C.1.7×106
D.0.17×106
8.若 a b 0 ,则 a 和 b 的关系为( )
A.相等
B.互为倒数
9. 1 2 的倒数的绝对值是( ) 5
A.1 2 5
B.1 5 2
6. 1 2022 1 2023 的值是( )
C.互为相反数
a A.
b
B.b﹣a
C.a+b
D.ab
6.用四舍五入按要求对 0.04018 分别取近似数,其中正确的是( ).
A.0.4(精确到 0.1)
B.0.040(精确到百分位)
C.0.040(精确到 0.001)
D.0.0402(精确千分位)
7.据北京市通信管理局披露,截至 3 月 30 日,北京市已建设了 5G 基站数量超过 17000 个.将 17000 用科学记数
则此时蜗牛离地面的距离为 米.
15.气象部门测定,高度每增加 1 千米,气温大约下降 5℃,现在地面气温是 18℃,那么 4 千米高空的气温
,若开始输入 x 2 ,则最后输出的结果是 .
17.据统计,2021 年国庆小长假期间,我市累计接待游客 197.9 万人次,实现旅游总收入 969000000 元.数据 969000000

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷

初中数学人教版七年级上册第二单元《有理数的运算》综合测试卷一、选择题1.(2024·天津)计算3−(−3)的结果是()A.6B.3C.0D.-62.(2023七上·合肥期中)根据教育部统计,2023届高校毕业生的规模将达到1158万人,数据1158万用科学记数法表示为()A.1.158×104B.1.158×107C.1.158×108D.0.1158×1083.下面算法正确的是()A.(−5)+9=−(9−5)B.7−(−10)=7−10C.(−5)×0=−5D.(−8)÷(−4)=8÷4.4.(2022七上·上杭期中)用四舍五入法,把2.345精确到百分位的近似数是()A.2.3B.2.34C.2.35D.2.305.(2024七上·播州期末)一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是()A.26元B.44元C.56元D.80元6.下列两个数互为相反数的是()A.3和13B.−(−3)和|−3|C.(−3)2和−32D.(−3)3和−337.(2024七上·黔西南期末)若(m﹣2)2+|n+3|=0,则﹣(2m+n)2024的值是()A.﹣1B.1C.2024D.﹣20248.(2024七上·南宁期末)如图,数轴上点A和点B分别表示数a和b,则下列式子正确的是()A.a>0B.ab>0C.a-b>0D.a+b<0 9.(2024七上·雅安期末)若a2=4,|b|=5,且ab<0,则a+b的值是()A.3B.−3C.3或−3D.−3或−7 10.(2024七上·通道期末)王华写出下列四个计算式子中,你认为错误的是()A.(−1)2n=1(n是正整数)B.(−96)−(−2)=−94C.(−2)(−3)(−4)=−24D.(−3)÷13=−1二、填空题11.(2024·浙江模拟)计算:−22−(−2)2=.12.太阳的半径约为696 000千米,用科学记数法表示数696 000为.13.(2024七下·肇源开学考)绝对值小于4的所有整数的和是.14.如果a、b互为倒数,c、d互为相反数,且m=−1,则代数式2ab−(c+d)+m2=.15.如图所示的程序图,当输入﹣1时,输出的结果是.三、解答题16.(2024七上·盘州期末)计算:(1)−20+|−8|+9+(−4);(2)−22×(−2+14)−8÷(−4).17.(2023七上·桦甸期中)一辆新能源电动出租车一天上午以商场A为出发地,在一条东西走向的通路上载客行驶,规定向东为正,向西为负,出租车载客的行驶里程如下(单位,千米):+8,−7,−3,−8,+6,+8.(1)将最后一名乘客送到目的地时,求出租车距商场A多远.(2)已知这辆新能源电动出租车每千米耗电成本为0.2元,求它这天上午载客行驶里程的总耗电成本.18.(2024七上·防城期末)为了增强体质,小明给自己设定:以每天跑步a千米为基准,超过的部分记为正,不足的部分记为负,手机应用程序统计小明一周跑步情况,记录如下:小明周六和周日共跑了21.6千米.(1)求a的值.(2)小明本周共跑了多少千米?19.(2024七上·高州期末)一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,用A,B,C分别表示小明家,小彬家,小颖家,在如图数轴上表示出A,B,C的位置.(2)小明家距小彬家千米.(3)货车一共行驶了多少其纳米?20.(2024七上·绍兴期末)目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.(1)若该市某户12月用电量为200度,该户应交电费元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?21.如图.在数轴上原点О表示的数是o,A点丧示的数是m ,B点表示的数是n,且(m+4)2+[n-8|=0.(1)m=,n=(2)①在数轴上表示出点A、B;②已知点C是线段AB的中点,则点C表示的数是▲ ,线段CO的长是▲ ,在数轴上表示出点C:(3)若点M是线段OA 的中点.点N是线段OB上的一点.且BN=2ON.试求线段.MN的长.。

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上册第一章有理数综合检测(附答案)

人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。

人教版2024-2025学年七年级上册数学单元检测1(有理数的运算)含答案

人教版2024-2025学年七年级上册数学单元检测1(有理数的运算)含答案

人教版2024-2025学年七年级上册数学单元检测(有理数的运算)一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是,则这个数是( )134-A. B. C. D.413413-134134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为( )A. B. C. D.80.1110⨯101.110⨯91.110⨯81110⨯3.计算结果是( )(32)4(8)-÷⨯-A.1 B. C.64 D.1-64-4.下列各式中结果是负数的为( )A. B. C. D.()5--()25-25-5-5.下列各式运算错误的是( )A. B.()()236-⨯-=()11262⎛⎫-⨯-=- ⎪⎝⎭C. D.()()()52880-⨯-⨯-=-()()()32530-⨯-⨯-=-6.下列说法正确的是( )A.近似数3.6万精确到十分位B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是( )甲.11(14)19(6)1119[(14)(6)]10+-+--=++-+-=乙.71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦A.甲、乙都正确B.甲、乙都不正确A. B. C.4 D.2-4-289.若,,则a 与b 的乘积不可能是( )||a a =||b b -=14.计算的结果是_____________.()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭15.求值:_____.1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+=三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1);()()()()81021++-----(2).()()221310.5233⎡⎤---÷⨯--⎣⎦18.(10分)计算.32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭莉莉的计算过程如下:解:原式.1111(18)9(18)8984=-÷⨯=-⨯⨯=-佳佳的计算过程如下:解:原式.198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:;11111323⎛⎫=⨯- ⎪⨯⎝⎭第2个等式:;111135235⎛⎫=⨯- ⎪⨯⎝⎭第3个等式:;111157257⎛⎫=⨯- ⎪⨯⎝⎭第4个等式.111179279⎛⎫=⨯- ⎪⨯⎝⎭(1)探寻上述等式规律,写出第5个等式:_________;(2)求的值.1111155991320172021++++⨯⨯⨯⨯答案以及解析1.答案:B解析:因为,,所以的倒数是.113344-=-1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭134-413-2.答案:C解析:1100000000用科学记数法表示应为.91.110⨯故选:C.3.答案:C解析.()(32)4(8)=88=64-÷⨯--⨯-故选C.4.答案:C解析:A 、是正数,此项不符题意;(5)5--=B 、是正数,此项不符题意;2(5)25-=C 、是负数,此项符合题意;2525-=-D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、,则此项正确,不符合题意;()()23236-⨯-=⨯=B 、,则此项错误,符合题意;()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭C 、,则此项正确,不符合题意;()()()()52852880-⨯-⨯-=-⨯⨯=-D 、,则此项正确,不符合题意;()()()()32532530-⨯-⨯-=-⨯⨯=-故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:,甲不正确.11(14)19(6)1119[(14)6]30822+-+--=++-+=-=711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,乙正确.16(1)55⎛⎫=-+-=- ⎪⎝⎭8.答案:C解析:输入,则1x =21242420⨯-=-=-<输入,则,2-()22244-⨯-=所以输出y 的值为:4故选:C.9.答案:A解析:因为,,所以,,所以a 与b 的乘积不可能是负数,故a ||a a =||b b -=0a ≥0b ≥与b 的乘积不可能是.5-10.答案:A解析:由题知,,,,,,,,,,122=224=328=4216=8232=6264=72128=82256=⋯所以的末位数字按2,4,6,8循环出现,2n 又余2,20224505÷=所以的末位数字是4.20222,,,,,,,, 133=239=3327=4381=53243=63729=732187=836561=…,所以的末位数字按3,9,7,1循环出现,3n 又余3,20234505÷=所以的末位数字是7.20233的末位数字是3()20232202320202222(3)32=--+-故选:A.11.答案:千解析:,41.51015000⨯= 近似数精确到千位,∴41.510⨯故千.12.答案:8112019-+-解析:写成省略加号的和的形式是.8(11)(20)(19)-+--+-8112019-+-故答案为.8112019-+-13.答案:5解析:由题意可得:已知有理数中的负整数为,1-则,2(1)(4)1432-+-=-=-<-则有2(3)(4)9452-+-=-=>-,则输出的结果为5,故5.14.答案:3解析:()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭212575⎛⎫=-⨯-⨯- ⎪⎝⎭107=-.3=15.答案:1012解析:1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+(12)(34)(56)(78)(20212022)2023=-+-+-+-+⋯+-+2022(1)20232=-⨯+.1012=故1012.16.答案:(1)0.63(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01).0.63≈(2)7.9122(精确到个位).8≈(3)130.96(精确到十分位).131.0≈(4)46021(精确到百位).44.6010≈⨯17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++;1=(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式.111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:(克),()666612+--=+=最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+,15=-则(克).50020159985⨯-=这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)(次),15(9)15924+--=+=故该班参赛代表中最好成绩与最差成绩相差24次;(2)(次),2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=故该班参赛代表队一共跳了1630次;(3)(分),(8121815)2(59)174++++⨯-+⨯=,7470> 该班能得到学校奖励.∴21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)原式.111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭。

2024新人教版七年级上册数学《有理数》单元测试卷及答案

2024新人教版七年级上册数学《有理数》单元测试卷及答案

第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。

七年级数学上册第一章《有理数》测试卷-人教版(含答案)

七年级数学上册第一章《有理数》测试卷-人教版(含答案)

七年级数学上册第一章《有理数》测试卷-人教版(含答案)一.选择题(共6小题,满分18分)1.下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数2.下列各数中为负整数的是()A.B.C.2018D.﹣20183.下列说法正确的是()A.1的相反数是﹣1B.1的倒数是﹣1C.1的绝对值是±1D.在数轴上1在原点左边4.如图,O为原点,数轴上A,B,O,C四点,表示的数与点A所表示的数是互为相反数的点是()A.点B B.点O C.点A D.点C5.下列说法正确的有()①|a﹣b|=a﹣b,则a≥b②数轴上到某点距离相等的两个点对应的数相等③abc<0,则④|a+b|=|a﹣b|,则b=0A.1个B.2个C.3个D.4个6.下列分解素因数正确的是()A.2=1×2B.12=3×4C.22=2×11D.42=1×2×3×7二.填空题(共6小题,满分18分)7.(﹣3)+(﹣3)=.8.“一只闹钟一个月内误差不超过±0.3秒”,这句话的含义是.9.数轴上A点表示的数是5,那么同一数轴上与A点相距6个单位长度的点表示的数是.10.若|x﹣4|=4﹣x,则x的取值范围是.11.的倒数是.12.设有理数a,b,c满足a+b+c>0,abc<0,则a,b,c中正数的个数为.三.解答题(共9小题,满分64分)13.计算:0÷(﹣2)﹣2314.计算:(1)12﹣(﹣8)+(﹣6)﹣15;(2)(﹣0.5)﹣(﹣2)+3.75﹣5;(3)﹣53+(﹣5)3﹣0.22÷(﹣0.4);(4)()×(﹣48)﹣(﹣2)3÷;(5)﹣12020﹣|﹣6|××(﹣2)2÷;(6)﹣199×8.15.计算:(1)×(﹣)÷3(2)﹣22﹣(﹣2)2+(﹣)÷1﹣(1﹣23)16.m是6的绝对值的相反数,n比m的绝对值大3,求m,n的值.17.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求:x2﹣(a+b+cd)x+(a+b)2024+(﹣cd)2025的值.18.把下面的直线补充成一条数轴,然后在数轴上标出下列各数:﹣3,,0,﹣,2.(1)上面的数中,绝对值最大的是;的相反数是;(2)从中选取两个不同的数组成乘法算式,积最大的算式是.19.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2021,﹣(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}.20.某同学在计算﹣4﹣N时,误将﹣N看成了+N,从而算得结果是5.请你帮助算出正确结果.21.观察下列等式:,,,将以上三个等式两边分别相加得:.(1)直接写出下列各式的计算结果:=.(2)猜想并写出:=.参考答案一.选择题(共6小题,满分18分)1.解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.2.解:负整数,即:是负数又是整数,因此是﹣2018,故选:D.3.解:A.1的相反数是﹣1,正确;B.1的倒数是1,错误;C.1的绝对值是1,错误;D.在数轴上1在原点右边,错误.故选:A.4.解:由数轴有,点A,B到原点O的距离相等,并且位于原点两侧,故选:A.5.解:根据绝对值的意义,一个非负数的绝对值等于它本身,因此①正确;数轴上到某点距离相等的两个点对应的数不一定相等,也不一定是互为相反数,因此②不正确,∵abc<0,则a、b、c三个数中有1个负数,或3个负数,若只有1个负数,设a<0,则b>0,c>0,于是有:=﹣1,=1,=﹣1,=﹣1,此时,+++=﹣2,若有3个负数,设a<0,则b<0,c<0,于是有:=1,=1,=1,=﹣1,此时,+++=2,因此③正确,当a=0时,|a+b|=|a﹣b|也成立,因此④不正确,故正确的个数有:2个,故选:B.6.解:A、2=1×2,1既不是素数也不是合数,故选项A不合题意;B、12=3×4,因为4不是素因数,故选项B不合题意;C、22=2×11,因为2,11都是素因数,所以正确,故选项C符合题意;D、42=1×2×3×7,因为1不是素因数,故选项D不合题意;故选:C.二.填空题(共6小题,满分18分)7.解:(﹣3)+(﹣3)=﹣(3+3)=﹣6.故答案为﹣6.8.解:在闹钟的预订时间提前0.3秒或延后0.3秒,故答案提前0.3秒或延后0.3秒.9.解:在点A的左边与点A相距6个单位的点所表示的数为5﹣6=﹣1;在点A的右边与点A相距6个单位的点所表示的数为5+6=11,故答案为:﹣1或11.10.解:∵|x﹣4|=4﹣x,∴x﹣4≤0,解得x≤4.故答案为:x≤4.11.解:的倒数是,故答案为:12.解:∵abc<0,∴a,b,c中有一个负数或三个负数,∵a+b+c>0,∴a,b,c中负数只有一个,即正数的个数为2.故答案为:2.三.解答题(共9小题,满分64分)13.解:0÷(﹣2)﹣23=0﹣8=﹣8.14.解:(1)12﹣(﹣8)+(﹣6)﹣15=12+8+(﹣6)+(﹣15)=(12+8)+[(﹣6)+(﹣15)]=20+(﹣21)=﹣1;(2)(﹣0.5)﹣(﹣2)+3.75﹣5=(﹣)+2+3+(﹣5)=[(﹣)+(﹣5)]+(2+3)=(﹣6)+6=0;(3)﹣53+(﹣5)3﹣0.22÷(﹣0.4)=﹣125+(﹣125)﹣×(﹣)=﹣125+(﹣125)+=﹣250+=﹣249;(4)()×(﹣48)﹣(﹣2)3÷=×(﹣48)﹣×(﹣48)﹣×(﹣48)﹣(﹣8)×2=(﹣36)+8+4+16=﹣8;(5)﹣12020﹣|﹣6|××(﹣2)2÷=﹣1﹣6××4×2=﹣1﹣16=﹣17;(6)﹣199×8=(﹣200+)×8=﹣200×8+×8=﹣1600+=﹣1599.15.解:(1)×(﹣)÷3=×(﹣)×=﹣;(2)﹣22﹣(﹣2)2+(﹣)÷1﹣(1﹣23)=﹣4﹣4﹣﹣(1﹣8)=﹣4﹣4﹣+7=﹣1.16.解:6的绝对值的相反数是﹣6,即m=﹣6,n=|m|+3=|﹣6|+3=9,∴m=﹣6,n=9.17.解:由题意得:a+b=0,cd=1,x=2或﹣2,当x=2时,原式=4﹣2﹣1=1;当x=﹣2时,原式=4+2﹣1=5.18.解:画图如下:(1)上面的数中,绝对值最大的是﹣3,的相反数是,故答案为:﹣3;;(2)从中选取两个不同的数组成乘法算式,积最大的算式是:﹣3×()=.故答案为:.19.解:(1)正数集合:{,2021,+1.88,…};(2)负数集合:{﹣4,﹣|﹣|,﹣3.14,﹣(+5),…};(3)整数集合:{﹣4,0,2021,﹣(+5),…};(4)分数集合:{﹣|﹣|,,﹣3.14,+1.88,…}.故答案为:,2021,+1.88;﹣4,﹣|﹣|,﹣3.14,﹣(+5);﹣4,0,2021,﹣(+5);﹣|﹣|,,﹣3.14,+1.88.20.解:由题意,得﹣4+N=5,∴N=5+4=9,∴﹣4﹣N=﹣4﹣9=﹣13.21.解:(1)根据题意得:原式=1﹣+﹣+…+﹣=1﹣=;(2)根据题意得:=(﹣).故答案为:(1);(2)=(﹣)。

2022年人教版七年级数学上册第1章《有理数》综合测试卷附答案解析

2022年人教版七年级数学上册第1章《有理数》综合测试卷附答案解析

2022年七年级数学上册第1章《有理数》综合测试卷一.选择题(共10小题)1.若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃2.在0,﹣3,|﹣1|,这四个数中,最大的数是()A.0B.﹣3C.|﹣1|D.3.北京时间2022年4月16日09时56分,神舟十三号载人飞船返回舱在东风着陆场成功着陆,神舟十三号载人飞行任务取得圆满成功.神舟十三号乘组共在轨飞行183,约为264000分钟,创造了中国航天员连续在轨飞行时间的最长记录.将264000用科学记数法表示应为()A.264×103B.2.64×106C.2.64×105D.0.264×1064.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.﹣2D.﹣45.早在1700多年前,数学家刘辉就提出了正数和负数的概念,他用红色、黑色算筹(小棍形状的记数工具)分别表示正数和负数.如图1表示的算式是(+1)+(﹣2),根据这种表示方法,可推算出图2所表示的算式是()A.(﹣3)+(﹣4)B.(﹣3)+(+4)C.(+3)+(﹣4)D.(+3)+(+4)6.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④b>0中一定成立的有()A.4个B.3个C.2个D.1个7.如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中值可以等于732的是()A.A1B.B1C.A2D.B38.如图,在一个由6个圆圈组成的三角形里,把﹣25到﹣30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣879.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±210.如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,动点P从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()①B对应的数是2;②点P到达点B时,t=3;③BP=2时,t=2;④在点P的运动过程中,线段MN的长度不变.A.①③④B.②③④C.②③D.②④二.填空题(共5小题)11.﹣的绝对值是.12.若x﹣1与2﹣y互为相反数,则(x﹣y)2022=.13.如图所示是某地2022年4月5日的天气预报图,则这天该地的温差是℃.14.三个相邻偶数之积是一个六位数,这个六位数的首位数字是8,末位数字是2,则这三个偶数是.15.某校七年级举办的趣味“体育节”共设计了五个比赛项目,每个项目都以班级为单位参赛,且每个班级都需要参加全部项目,规定:每项比赛中,只有排在前三名的班级记成绩(没有并列班级),第一名的班级记a分,第二名的班级记b分,第三名的班级记c分(a>b>c,a、b、c均为正整数);各班比赛的总成绩为本班每项比赛的记分之和.该年级共有四个班,若这四个班在本次“体育节”的总成绩分别为21,6,9,4,则a+b+c=,a的值为.三.解答题(共6小题)16.(1)(﹣5.3)+(﹣3.2)﹣(﹣5.3)﹣(+4.8).(2).(3)().(4)|﹣|﹣×(﹣4)2.17.已知a,b互为相反数,c,d互为倒数,|m|=2,求3(a+b﹣1)+(﹣cd)2022﹣2m的值.18.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3,回答下列问题:(1)收工时小王在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?19.观察下列运算过程:22=2×2=4,;,=;…(1)根据以上运算过程和结果,我们发现:22=;()2=;(2)仿照(1)中的规律,判断()3与()﹣3的大小关系;(3)求(﹣)﹣4×()4÷()﹣3的值.20.自行车厂要生产一批相同型号的自行车,计划每天生产220辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过220辆记为正,不足220辆记为负)星期一二三四五六日增减(辆)+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.21.25×11=275,13×11=143,48×11=528,74×11=814.观察上面的算式我们可以发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.请根据上面的速算方法,回答下列问题.(一)填空:①54×11=;②87×11=;③95×(﹣11)=;(二)已知一个两位数,十位上的数字是a,个位上的数字是b,将这个两位数乘11.(1)若a+b<10;①计算结果的百位、十位、个位上的数字分别是、、,这个三位数可表示为.②请通过化简①中所表示的三位数并计算该两位数乘11的结果验证该速算方法的正确性.(2)若a+b≥10,请直接写出计算结果的百位、十位、个位上的数字.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵气温是零上2摄氏度记作+2℃,∴气温是零下3摄氏度记作﹣3℃.故选:A.2.【解答】解:∵|﹣1|=1,∴|﹣1|,∴最大的数是|﹣1|.故选:C.3.【解答】解:264000=2.64×105,故选:C.4.【解答】解:∵数轴的单位长度为1,如果点B表示的数是4,∴点A表示的数是4﹣6=﹣2,故选:C.5.【解答】解:由题意得,图2所表示的算式是(+3)+(﹣4).故选:C.6.【解答】解:∵a<b,∴a﹣b<0,故①符合题意;若b<0,则a+b<0;若﹣1<0<b,|a|>|b|,则a+b<0;综上所述,②符合题意;若a<0,b>0,则ab<0,故③不符合题意;若原点在b的右侧,则b<0,故④不符合题意;故选:C.7.【解答】解:A=2n﹣2+2n﹣4+2n﹣6=732,1整理可得:2n=248,n不为整数;A=2n﹣8+2n﹣10+2n﹣12=732,2整理可得:2n=254,n不为整数;B=2n﹣2+2n﹣8+2n﹣14=732,1整理可得:2n=252,n不为整数;=2n﹣6+2n﹣12+2n﹣18=732,B3整理可得:2n=256,n=8;故选:D.8.【解答】解:如图,∴S=﹣29﹣27﹣28=﹣84,故选:A.9.【解答】解:∵abc≠0,且a+b+c=0,∴a、b与c中可能有1个字母小于0,也可能有2个字母小于0.当a、b与c中有1个字母小于0,如a<0,则b>0,c>0,∴+++=﹣1+1+1﹣1=0.当a、b与c中有2个字母小于0,如a<0,b<0,则c>0,∴+++=﹣1﹣1+1+1=0.综上:+++=0.故选:A.10.【解答】解:∵已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,∴B对应的数为:4﹣6=﹣2;故①是不符合题意的;∵6÷2=3,故②是符合题意的;∵当BP=2时,t=2或t=4,故③是不符合题意的;∵在点P的运动过程中,MN=3,故④是符合题意的;故选:D.二.填空题(共5小题)11.【解答】解:|﹣|=;故答案为:.12.【解答】解:∵x﹣1与2﹣y互为相反数,∴x﹣1+2﹣y=0,∴x﹣y=﹣1,∴原式=(﹣1)2022=1.故答案为:1.13.【解答】解:5﹣(﹣7)=12℃,故答案为:12.14.【解答】解:∵三个相邻偶数之积的末位为2,∴这三个数的末位只能是4×6×8.∵这三个相邻偶数之积是一个六位数,这个六位数的首位数字是8,∴这三个数的积在800000和900000之间.∵90×90×90=729000<800000,100×100×100=100000000>800000,∴这三个数大于90,小于100.∵这三个数为连续偶数,∴这三个数为94,96,98.故答案为:94,96,98.15.【解答】解:设本次“体育节”五个比赛项目的记分总和为m,则m=5(a+b+c),∵四个班在本次“体育节”的总成绩分别为21,6,9,4,∴m=21+6+9+4=40.∴5(a+b+c)=40,∴a+b+c=8.∵a>b>c,a、b、c均为正整数,∴当c=1时,b=2,则a=5;当c=1时,b=3,则a=4,此时,第一名的班级五个比赛项目都是第一,总得分为20<21分,不符合题意舍去;当c=2时,b=3,则a=3,不满足a>b,舍去;当c=3时,b=4,则a=1,不满足a>b,舍去.综上所得:a=5,b=2,c=1.故答案为:a+b+c=8,a=5.三.解答题(共6小题)16.【解答】解:(1)(﹣5.3)+(﹣3.2)﹣(﹣5.3)﹣(+4.8)=(﹣5.3)+(﹣3.2)+5.3+(﹣4.8)=(﹣5.3+5.3)+(﹣3.2﹣4.8)=0+(﹣8)=﹣8;(2)=(10﹣)×(﹣9)=﹣10×9+×9=﹣90+0.5=﹣89.5;(3)()=()×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)|﹣|﹣×(﹣4)2=÷﹣×16=﹣×16==﹣.17.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m=﹣2时,原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.18.【解答】解:(1)8+(﹣9)+7+(﹣2)+5+(﹣10)+7+(﹣3)=3(千米),∴收工时小王在A地的东边,距A地3千米;(2)0.2×(8+|﹣9|+7+|﹣2|+5+|﹣10|+7+|﹣3|)=0.2×51=10.2(升),∴从A地出发到收工时,共耗油10.2升.19.【解答】解:(1)∵22=2×2=4,,∴;∵,=,∴,故答案为:;;(2)()3=()﹣3,理由:∵==,==,∴()3=()﹣3.(3)原式=×÷23=×=16×=2.20.【解答】解:(1)由表格可得,(220+5)+(220﹣2)+(220﹣4)=225+218+216=659(辆),即前三天共生产了659辆,故答案为:659;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了16﹣(﹣10)=16+10=26(辆),故答案为:26;(3)220×7×100+[5+(﹣2)+(﹣4)+13+(﹣10)+16+(﹣9)]×120=154000+9×120=154000+1080=155080(元),答:工人这一周的工资总额是155080元.21.【解答】解:(一)①54×11=594;②87×11=957;③95×(﹣11)=﹣1045;故答案为:594,957,﹣1045;(二)(1)①a;a+b;b;100a+10(a+b)+b;②∵100a+10(a+b)+b=100a+10a+10b+b=110a+11b(10a+b)×11=110a+11b,∴100a+10(a+b)+b=(10a+b)×11,∴该速算方法是正确的;(2)百位、十位、个位上的数字分别为:a+1,a+b﹣10,b。

第2章 有理数的运算 综合检测卷(含答案) 初中数学人教版(2024)七年级上册

第2章  有理数的运算  综合检测卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024年新教材)七年级(上)综合检测卷第2章《有理数的运算》考试时间:100分钟总分值:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算:2+(﹣6)=( )A.4B.﹣4C.8D.﹣82.﹣2024的倒数是( )A.﹣2024B.2024C.D.3.横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃4.据国家统计局发布,2023年全国固定资产投资(不含农户)50.3万亿元,同比增长3.0%.其中数据“50.3万亿”用科学记数法表示为( )A.5.03×1014 B.5.03×1013 C.0.503×1014 D.5.03×10125.不改变原式的值,将6﹣(﹣3)+(﹣7)﹣(+2)中的减法改成加法,并写成省略加号的形式是( )A.6+3﹣7+2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣26.下列计算不正确的是( )A.﹣1.5×(﹣3)=4.5B.(﹣1.2)×(﹣7)=﹣8.4C.﹣8×(﹣1.3)=10.4D.0×(﹣1.6)=07.两个非零有理数的和为零,则它们的商( )A.1B.﹣1C.0D.不能确定8.下列各数中,结果相等的是( )A.23和32B.(﹣2)3和﹣23C.(﹣3)2和﹣32D.|﹣2|3和(﹣2)39.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于( )A.﹣2B.﹣6C.0D.210.数轴上的两点所表示的数分别为a,b,且满足ab>0,a+b<0,下列结论正确的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0二.填空题(共6小题,满分18分,每小题3分)11.比﹣27大3的数是 .12.底数是﹣2,指数是4的幂可以写成 .13.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.14.将数2 024.624四舍五入取近似值,精确到个位为 .15.计算(﹣2)÷6×的结果是 .16.在数4、﹣6、3、﹣2、1中,任意取3个不同的数相乘,其中乘积最大是 .三.解答题(共9小题,满分72分,每小题8分)17.(8分)计算:(1)(﹣7)+13﹣5;(2)(﹣)﹣(﹣)﹣|﹣1|.18.(6分)如果a、b互为相反数,c、d互为倒数,m的绝对值为5,求的值.19.(6分)先阅读第(1)小题,再计算第(2)小题:(1)计算:﹣1+(﹣5)+24+(﹣3)解:原式=(﹣1﹣)+(﹣5﹣)+(24+)+(﹣3﹣)=﹣1﹣﹣5﹣+24+﹣3﹣=﹣1﹣5﹣3+24﹣﹣+﹣=15﹣=13(2)计算(﹣15)+(﹣19)+14+(﹣1).20.(10分)计算:(1);(2).21.(6分)阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).22.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.(8分)某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图,增加粮食记作“+”,减少粮食记作“﹣”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化精况的一半,求7号这天仓库粮食变化情况.24.(10分)①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.25.(10分)阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数.所以,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.根据以上阅读完成:(1)|3.14﹣π|= ;(2)|x+y|=x+y,则x+y ;(3)计算:.参考答案一.选择题1.B.2.C.3.D.4.B.5.D.6.B.7.B.8.B.9.B.10.B.二.填空题11.﹣24.12.(﹣2)4.13.8.14.2025.15..16.48.三.解答题17.解:(1)原式=6﹣5=1;(2)原式=﹣﹣=﹣=0.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值为5,∴a+b=0,cd=1,m=±5,当a+b=0,cd=1,m=5时,;当a+b=0,cd=1,m=﹣5时,;所以原式的值为﹣7或3.19.解:(﹣15)+(﹣19)+14+(﹣1)=﹣15﹣﹣19﹣+14+﹣1﹣=﹣15﹣19+14﹣1﹣﹣+﹣=﹣21﹣=﹣2220.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.21.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)﹣4+2﹣6+5+3﹣7=﹣7答:前6天,仓库粮食减少7袋;(2)设7号粮食变化x袋,由题意得,,解得:x=﹣2答:7号粮食减少2袋.24.解:①当a、b、c中没有负数时,都是正数,则原式=1+1+1+1=4;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1﹣1=0;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1+1=0;当a、b、c都是负数时,则原式=﹣1﹣1﹣1﹣1=﹣4,综上所述,代数式的值是4或﹣4或0;②当有理数a+b+c=0且abc≠0时,a、b、c中至少有1个正数,有1个负数.则代数式的值是:0.25.解:(1)|3.14﹣π|=π﹣3.14;故答案为:π﹣3.14;(2)|x+y|=x+y,则x+y≥0,故答案为:≥0;(3)原式=1﹣+﹣+﹣+⋯+﹣=1﹣=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章《有理数》综合测试卷(100分钟120分)
一、填空题:(每题2分,共20分)
1、绝对值等于4的数有个,它们是.
2、绝对值等于-3的数有个.
3、绝对值等于本身的数有个,它们是
4、已知a是绝对值最小的负整数,b是最小正整数,c是绝对值最小的有理数,则c+a+b= 。

5、若 a 、b互为相反数,c 、d互为倒数,则(a+b)20-(c
d )20=。

6、若 | a|<2 ,且a是整数,那么a =。

7、已知|x|=3,()4
y, 且xy <0 ,则x-y的值
12=
+
是.
8、比-8大3的数是,比a大-5的数是
9、相反数等于它本身的数是,绝对值等于它本身的数是
,倒数等于它本身的数是
10、如果2
-x,则x=______
-
=
二、思考题:(1、2题每小题2分,3、4题各5分,共20分)
1、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=
16=4 2 ,1+3+5+7+9=25=5 2 ,……
猜想:(1) 1+3+5+7…+99 = ;
(2) 1+3+5+7+…+(2n-1)= _____________ .
(结果用含n 的式子表示,其中n =1,2,3,……)。

2、如图21所示,数轴上标出了7个点,相邻两点之间的距离都
相等,已知点A 表示-4,点G 表示8
(1)点B 表示的有理数是 表示原点的是点
(2)图21中的数轴上另有点M 到点A ,点G 距离之和为13,则
这样的点M 表示的有理数是 。

(3)若将原点取在点D ,则点C 表示的有理数是 ,此时
点B 与点
表示的有理数互为相反数。

3、甲、乙、丙、丁四个有理数讨论大小问题.甲说:我是正整
数中最小的.•乙说:我是绝对值最小的.丙说:我与甲的一半相反.丁
说:我是丙的倒数.你能写出它们分别是多少吗然后按从小到大的顺序排列.
4、已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2,•那么所有满足条件的点B对应的数有哪些
三、选择题:(每题2分,共44分)
1、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是().
A、+
B、-
C、×
D、÷
2、两个有理数a ,b在数轴上的位置如图,下列四个
式子中运算结果为正数的式子是(
a
A、a+b
B、a-b
C、ab
D、
b
3、计算(1-2)(3-4)(5-6)……(9-10)的结果是().
A、-1
B、1
C、-5
D、10
4、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、个
单位长度的速度向右移动,开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙、丙之间,则x 值可能是下列数中
的( ).
A 、11
B 、14
C 、17
D 、20
5、已知两个有理数相加,和小于每一个加数,请写出满足上述
条件的
一个算式: .
6、已知m 、n 为有理数时,关于2m +n 值的判断正确的是( )
A 、2m +n ≥0
B 、2m +n ≤0
C 、2m +n >0
D 、2m +n >1
7、已知m 为有理数时,11
22++m m =( )
A 、1
B 、-1
C 、1±
D 、不能
确定
8、已知有理数a 、b 满足(),0212=-+-b a
另有两个不等于零的有
理数n m ,使得1-=++-=-mn mn n n m m n m n m 且
,试比较bn am 与的大小。

9、在有理数-21
,+7,-,10%,0,-32中自然数有m 个,分
数有n 个,负有理数有p 个,比较m, n ,p 的大小得( ).
A 、m 最小
B 、n 最小
C 、p 最小
D 、m, n, p
三个一样大
10、则│a │≥0,那么 ( )
A .a>0
B .a<0
C .a ≠0
D .a 为任意数
11、若│a │=│b │,则a 、b 的关系是 ( )
A .a=b
B .a=-b
C .a+b=0或a-b=0
D .a=0
且b=0
12、若│x │+x=0,则x 一定是 ( )
A .负数
B .0
C .非正数
D .非负数
13、若 ab > 0 ,且 a + b < 0 ,那么( )
>0,b >0; >0,b <0; C. a <0 ,b <0; D. a <0,b
>0
14、│- π|的值是( ).
A .0
B .- π
C .π-
D .+π
15、一个数和它的倒数相等,则这个数是( )
A .1
B .1-
C .±1 D.±1和0
16、如果a a -=||,下列成立的是( )
A .0>a
B .0<a
C .0≥a
D .0≤a
17、 若x 为有理数, 则x x -表示的数是 ( )
A. 正数
B. 非正数
C. 负数
D. 非负数
18、设n 是自然数, 则2)1()1(1
+-+-n n 的值为 ( ) A. 0 B. 1 C. -1 D. 1或-1
19、若x,y 都表示有理数,那么下列各数中一定为正数的是:
( )
A |x+5|
B (x +y)2
C y 2+21
D |x 2+y 2|
20、若a 、b 为有理数,a>0,b<0,且│a │<│b │,那么a ,
b ,—a ,—b 的大小关系是( )
A 、b< —a< —b<a
B 、b< —b< —a<a
C 、b< —a< a<—b
D 、—a< —b < b <a
21、有理数a 、b 在数轴上的对应的位置如图所示:下列各式
正确的是( ) 0-11a b
A .a + b <0
B .a + b >0
C .a -b = 0
D .a -b >0
22、│m │与-5m 的大小关系是 ( )
A .│m │>-5m
B .│m │<-5m
C .│m │=-5m
D .以上都有可能
四、计算题:(第1、2、3、4、5、6题各4分,第6题8分,第7题8分,共40分)
1、如果
0)2(12=-++b a ,求20082009)(a b a ++的值。

2、已知 a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为1,

cdx x b a -++2
3、已知│a│=4,│b│=3,且a>b,求a、b的值.
a+的值。

4、已知│a│=1,│b│=4,且ab<0,求b
5、已知有理数a,b,c在数轴上的对应点如图所示,化简:
-
a-
+
- c 0 b a -
a
b
c
c
b
6、出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远
(2)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升
7、股民小胡上星期五以每股元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)
(1)星期五收盘时,每股是元;
(2)本周内最高价是每股元,最低价是每股元;
(3)已知小胡买进股票时付了3‰得手续费,卖出时需付成交额3‰的手续费和2‰的交易税,如果小胡在星期五收盘前将全部股票卖出,他的收益情况如何
参考答案:
一、填空题:
1、2 ±4
2、0
3、无数 0和正数(非负数)
4、0
5、-1(互为相反数→a+b=0,互为倒数→cd=1)
6、1, 0 ,-1
7、6或-4
8、-5,a -5
9、0 0和正数 1和-1 10、±2
二、思考题:
1、1)2500 2)n 2
2、1)-2 C 2)-5或9 3)-2 F
3、甲1 乙0 丙-21
丁-2 4、-3 -1 1 3
三、选择题:1、C 2、A 3、A 4、B 5、略 6、A
7、A 8、am >bn 9、略 10、D 11、C 12、C
13、C 14、C 15、C 16、D 17、D 18、A
19、C 20、C 21、A 22、D
四、计算题:
1、0
2、0或2
3、A 4 B ±3
4、3或-3
5、解:由图示知:c<0<b<a,
∴a-b>0,b-c>0,c-a<0,
∴|a-b|=a-b,|b-c|=b-c,|c-a|=-(c-a),
∴|a-b|+|b-c|-|c-a|=a-b+b-c+c-a=0.
6、1)39千米 2)26.65升
7、1)元 2)元元 3)-元。

相关文档
最新文档