河北省2015年中考数学试题及答案

合集下载

2015年河北省中考数学试题清晰扫描版

2015年河北省中考数学试题清晰扫描版
8
2015 年河北省中考数学试题及答案
9
2015 年河北省中考数学试题及答案
10
2015 年河北省中考数学试题及答案
11
2015 年河北省中考数学试题及答案
12
2015 年河北省中考数学试题及答案
13
2015 年河北省中考数学试题及答案
14
2015 年河北省中考数学试题及答案
15
2015 年河北省中考数学试题及答案
2015 年河北省中考数学试题及答案
1
2015 年河北省中考数学试题及答案
2
2015 年河北省中考数学试题及答案
3
2015 年河北省中考数学试题及答案
4
2015 年河北省中考数学试题及答案
5
பைடு நூலகம்
2015 年河北省中考数学试题及答案
6
2015 年河北省中考数学试题及答案
7
2015 年河北省中考数学试题及答案
16

2015年河北省中考数学试题及解析

2015年河北省中考数学试题及解析

D.要消去 x,可以将①×(﹣5)+②×2
12.(2 分)(2015•河北)若关于 x 的方程 x2+2x+a=0 不存在实数根,则 a 的取值范围是( )
A.a<1
B.a>1
C.a≤1
D.a≥1
13.(2 分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点
数 3 相差 2 的概率是( )
位所得到的数,据此判断即可.
C:根据积的乘方的运算方法判断即可.
D:根据同底数幂的乘法法则判断即可.
解答: 解:∵
=2,
∴选项 A 不正确; ∵6×107=60000000, ∴选项 B 不正确; ∵(2a)2=4a2, ∴选项 C 不正确; ∵a3•a2=a5, ∴选项 D 正确. 故选:D. 点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确: ①(am)n=amn(m,n 是正整数);②(ab)n=anbn(n 是正整数). (2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:
24.(11 分)(2015•河北)某厂生产 A,B 两种产品,其单价随市场变化而做相应调整.营
销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.
A,B 产品单价变化统计表
第一次 第二次 第三次
A 产品单价(元/件) 6
5.2
6.5
B 产品单价(元/件) 3.5
4
3
并求得了 A 产品三次单价的平均数和方差:
①a﹣p= (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂
的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. (3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要 熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相 乘时才是底数不变,指数相加. (4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学 记数法 a×10n 表示的数“还原”成通常表示的数,就是把 a 的小数点向右移动 n 位所得 到的数.若科学记数法表示较小的数 a×10﹣n,还原为原来的数,需要把 a 的小数点向 左移动 n 位得到原数. 5.(3 分)(2015•河北)如图所示的三视图所对应的几何体是( )

2015年河北中考数学试题及答案word版

2015年河北中考数学试题及答案word版

2015年河北中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333…(3循环)B. √2C. 0.5D. 3.14答案:B2. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 1答案:A3. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B4. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 45°D. 90°答案:B5. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 无法确定答案:B6. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是答案:D7. 下列哪个选项是正比例函数?A. y = 2xB. y = x^2C. y = 1/xD. y = x + 1答案:A8. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 25答案:C9. 下列哪个选项是锐角三角形?A. 30°,60°,90°B. 45°,45°,90°C. 50°,60°,70°D. 80°,85°,90°答案:C10. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共15分)11. 一个数的平方是25,这个数是______。

答案:±512. 一个数的倒数是2,这个数是______。

答案:1/213. 一个角的余角是40°,那么这个角的度数是______。

答案:50°14. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是______。

2015河北中考数学试题(附答案及举一反三试题)

2015河北中考数学试题(附答案及举一反三试题)

答案:B
拓展:外心
举一反三:外心
答案:C 过点C做AB的平行线GH ∵内错角 ∴BAC=ACG=50 GCD=CDF=90 ACD=ACG+GCD=140
答案:D
答案:C 首先找反比例函数图像 再根据所给关系找点
答案:D
答案:B 与点3相差2的数有:1、5 则题干转换为:掷骰子掷到1、5的概率为 2/6=1/3
举一反三
1.【2013重庆假期作业】在△ABC中,AB=AC,D是BC的中点,则∠ADB是() A.锐角 B.钝角 C.直角 D.无法确定 答案:C 分析:等腰三角形性质,三线合一
A.10 B.20 C.30 D.40
答案:A 分析:∠C=70 ∠ADE=∠AED=∠EDC+∠C 则∠ADC=∠ADE+∠EDC=2∠EDC+∠C=90 ∴∠EDC=10
一次函数的应用 180km A B
C
20km
160km
答案:40km 分析: 由题分析可知
求得摩托车的函数公式为 Y=40x+20 当x=3时 Y=140 此时距C地为180-140=40km
二 次 函 数
二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题三角形内角为60 五边形内角108 六边形内角120 ∠3=90-60=30 ∠2=108-90=18 ∠1=120-108=12
分式的化简求值
分式的化简求值: (1)代入 (2)利用已知,求 出关系
判定的方式 定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。 判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也 相等(简称:等角对等边)。 在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这 个三角形是等腰三角形,且该角为顶角。 在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个 三角形是等腰三角形,且该角为顶角。 在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角 形是等腰三角形,且该边为底边。 显然,以上三条定理是“三线合一”的逆定理。 有两条角平分线(或中线,或高)相等的三角形是等腰三角形。 有两边相等且有一个角的度数是60度的三角形是等边三角形。

2015年河北中考数学真题卷含答案解析

2015年河北中考数学真题卷含答案解析

2015年河北省初中毕业生升学文化课考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共42分)一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:3-2×(-1)=( )A.5B.1C.-1D.62.下列说法正确的是( ) A.1的相反数是-1 B.1的倒数是-1 C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是( )4.下列运算正确的是( ) A.(12)-1=-12B.6×107=6 000 000 C.(2a)2=2a 2D.a 3·a 2=a 55.图中的三视图所对应的几何体是( )点O的是( ) 6.如图,AC,BE是☉O的直径,弦AD与BE交于点F,下列三角形中,外心不是··A.△ABEB.△ACFC.△ABDD.△ADE7.在数轴上标注了四段范围,如图,则表示√8的点落在( )A.段①B.段②C.段③D.段④8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上.符合条件的示意图是( )10.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )11.利用加减消元法解方程组{2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2 12.若关于x 的方程x 2+2x+a=0不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.12B.13C.15D.1614.如图,直线l:y=-23x-3与直线y=a(a 为常数)的交点在第四象限,则a 可能在( )A.1<a<2B.-2<a<0C.-3≤a ≤-2D.-10<a<-415.如图,点A,B 为定点,定直线l ∥AB,P 是l 上一动点,点M,N 分别为PA,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长; ③△PMN 的面积;④直线MN,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③B.②⑤C.①③④D.④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以第Ⅱ卷(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若|a|=2 0150,则a= . 18.若a=2b ≠0,则a 2-b 2a 2-ab 的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2= °.20.如图,∠BOC=9°,点A 在OB 上,且OA=1.按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下: -3x=x2-5x+1.(1)求所捂的二次三项式;(2)若x=√6+1,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;证明:(3)用文字叙述所证命题的逆命题为.23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:A,B 产品单价变化统计表第一次 第二次 第三次 A 产品单价(元/件) 6 5.2 6.5 B 产品单价(元/件)3.543并求得了A 产品三次单价的平均数和方差:x A =5.9;s A 2=13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m>0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.25.(本小题满分11分)如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y C,求y C的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分...,且这两部分的比是1∶4时,求h的值.26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).图1发现(1)当α=0°,即初始位置时,点P 直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B;(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小,并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求α及S阴影.图2拓展如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.图3探究当半圆K与矩形ABCD的边相切时,求sinα的值.备用图答案全解全析:一、选择题1.A 原式=3-(-2)=3+2=5,故选A.2.A 根据在一个数的前面加上负号就是这个数的相反数,知1的相反数是-1,故选A.3.C 可以动手操作,也可根据对折的顺序及菱形的对称性来判断.选C.4.DA.(12)-1=2,本选项错误; B.6×107=60 000 000,本选项错误; C.(2a)2=4a 2,本选项错误;D.a 3·a 2=a 3+2=a 5,本选项正确,故选D. 5.B 根据主视图排除选项A,C,D,故选B.6.B 外心即为三角形外接圆的圆心,∵△ACF 的顶点F 不在圆O 上,∴圆O 不是△ACF 的外接圆,∴点O 不是△ACF 的外心,故选B.7.C ∵2.82=7.84,2.92=8.41,∴√2.82<√8<√2.92,故选C. 8.C 延长AC 交直线EF 于点G,∵AB ∥EF,∴∠BAC=∠CGD=50°,∵∠ACD 是△CDG 的外角,∴∠ACD=∠CGD+∠CDG=50°+90°=140°,故选C.9.D 本题考查方向角的简单识别,选D.10.C 由题意设y=k x (k>0,x>0),因为当x=2时,y=20,所以k=40,故选C.11.D 解二元一次方程组时,在消去一个未知数之前应先计算方程组的各个方程中这个未知数的系数的最小公倍数,然后进行消元,选项D 正确.12.B 由题意知Δ=4-4a<0,∴a>1,故选B.13.B ∵任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数有6种情况,与点数3相差2的点数为1或5,∴任意抛掷一枚质地均匀的正方体骰子一次,向上一面的点数与点数3相差2的概率为26=13.故选B.14.D 直线y=-23x-3与y 轴的交点坐标为(0,-3),若直线y=a 与直线y=-23x-3的交点在第四象限,则a<-3,故选D.15.B ∵点M,N 分别为PA,PB 的中点,∴无论点P 怎样移动,总有MN=12AB,直线l 与直线MN 的距离及直线MN,AB 之间的距离不变,所以选项①③④中的值不变.随着点P 的移动,点P 与点A,B 的距离及∠APB 的大小发生变化,故选B.16.A 将甲纸片拼成如图1所示的正方形,其面积与原来矩形的面积相等,将乙纸片拼成如图2所示的正方形,其面积与原来矩形的面积相等,故选A.图1 图2二、填空题17.答案 ±1解析 ∵|a|=2 0150=1,∴a=±1. 18.答案 32解析 ∵a=2b ≠0,∴原式=(a+b)(a -b)a(a -b)=a+b a =2b+b 2b =32. 19.答案 24解析 正三角形、正方形、正五边形、正六边形的每个内角的度数分别为60°、90°、108°、120°,由题图可知∠3=90°-60°=30°,∠1=120°-108°=12°,∠2=108°-90°=18°,所以∠3+∠1-∠2=30°+12°-18°=24°.20.答案 9解析 由题意可知:AO=A 1A,A 1A=A 2A 1,……,则∠AOA 1=∠OA 1A,∠A 1AA 2=∠A 1A 2A,……,∵∠BOC=9°,∴∠A 1AB=2×9°=18°,∠A 2A 1C=27°,∠A 3A 2B=36°,∠A 4A 3C=45°,……, ∴9°(n+1)=90°,解得n=9. 三、解答题21.解析 (1)设所捂的二次三项式为A,则A=x 2-5x+1+3x(2分)=x 2-2x+1.(4分)(2)若x=√6+1,则A=(x-1)2(6分)=(√6+1-1)2(7分)=6.(10分)22.解析 (1)CD.(1分)平行.(2分)(2)证明:连结BD.(3分)在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB.(5分)∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB.(7分)∴四边形ABCD是平行四边形.(8分)(3)平行四边形的对边相等.(10分)23.解析(1)y=4x大+210.(3分)(2)①当x大=6时,y=4×6+210=234.∴y=3x小+234;(7分)②依题意,得3x小+234≤260,解得x小≤82,(9分)3∵x小为自然数,∴x小最大为8,即最多能放入8个小球.(10分)评析一次函数的应用问题大多数以生活情境为背景命题,解答此类试题,应在弄懂题意的前提下,建立函数模型,然后结合函数性质以及方程(组),不等式知识作答.24.解析(1)如图所示.(2分)25.(4分)(2)x B=1(3.5+4+3)=3.5,s B 2=(3.5-3.5)2+(4-3.5)2+(3-3.5)2 =16.(7分)∵16<43150,∴B 产品的单价波动小.(8分)(3)第四次调价后,对于A 产品,这四次单价的中位数为6+6.52=254;(9分)对于B 产品,∵m>0,∴第四次单价大于3.又∵3.5+42×2-1=132>254, ∴第四次单价小于4.∴3(1+m%)+3.52×2-1=254,(10分)∴m=25.(11分)25.解析 (1)把x=2,y=1代入y=-(x-h)2+1,得h=2.∴解析式为y=-(x-2)2+1(或y=-x 2+4x-3).(2分)对称轴为直线x=2,顶点为B(2,1).(4分)(2)点C 的横坐标为0,则y C =-h 2+1,∴当h=0时,y C 有最大值,为1.(5分)此时,l 为y=-x 2+1,对称轴为y 轴,当x ≥0时,y 随着x 的增大而减小, ∴x 1>x 2≥0时,y 1<y 2.(7分)(3)把线段OA 分成1∶4两部分的点为(-1,0)或(-4,0).把x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2. 但h=-2时,线段OA 被分为三部分,不合题意,舍去.同样,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去). ∴h 的值为0或-5.(11分)26.解析 发现 (1)在.(1分)当OQ 过点B 时,在Rt △OAB 中,AO=AB,得∠DOQ=∠ABO=45°,∴α=60°-45°=15°.(3分)(2)如图1,连结AP,有OA+AP ≥OP,当OP 过点A,即α=60°时等号成立.∴AP ≥OP-OA=2-1=1.∴当α=60°时,P,A 间的距离最小.(5分)PA 的最小值为1.(6分)图1(3)如图1,设半圆K 与PC 交点为R,连结RK,过点P 作PH ⊥AD 于点H,过点R 作RE ⊥KQ 于点E.在Rt △OPH 中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°-30°=30°.(7分)由AD ∥BC 知,∠RPQ=∠POH=30°.∴∠RKQ=2×30°=60°.∴S 扇形RKQ =60π(12)2360=π24.在Rt △RKE 中,RE=RK ·sin 60°=√34, ∴S △RKP =12PK ·RE=√316.∴S 阴影=π24+√316.(8分)拓展 如图3,∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON ∽△BMN,∴AN BN =AO BM ,即1-BN BN =1x, ∴BN=x x+1.(10分)如图2,当点Q 落在BC 上时,x 取最大值,作QF ⊥AD 于点F.图2BQ=AF=√OQ 2-QF 2-AO=√32-12-1=2√2-1.∴x 的取值范围是0<x ≤2√2-1.(11分)[注:如果考生答“x ≤2√2-1或x<2√2-1”均不扣分]探究 半圆与矩形相切,分三种情况:①如图3,半圆K 与BC 切于点T,设直线KT 与AD 和OQ 的初始位置所在直线分别交于点S,O',则∠KSO=∠KTB=90°,作KG ⊥OO'于点G.图3Rt △OSK 中,OS=√OK 2-SK 2=√(5)2-(3)2=2. Rt △OSO'中,SO'=OS ·tan 60°=2√3,KO'=2√3-32.Rt △KGO'中,∠O'=30°,∴KG=12KO'=√3-34.∴Rt △OGK 中,sin α=KG =√3-3452=4√3-3.②半圆K 与AD 切于点T,如图4,图4同理可得sin α=KG OK =12O'K 52=12(O'T -KT)52=√(52)2-(12)2×√3-125=6√2-110.③当半圆K 与CD 相切时,点Q 与点D 重合,且为切点. ∴α=60°,∴sin α=sin 60°=√32.综上所述,sin α的值为4√3-310或6√2-110或√32.(14分)。

2015年河北省中考数学试卷和解析答案

2015年河北省中考数学试卷和解析答案

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题地四个选项中只有一个是正确地)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.62.(3分)下列说法正确地是()A.1地相反数是﹣1 B.1地倒数是﹣1C.1地立方根是±1 D.﹣1是无理数3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后地图案是()A.B.C.D.4.(3分)下列运算正确地是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a55.(3分)如图所示地三视图所对应地几何体是()A.B.C.D.6.(3分)如图,AC,BE是⊙O地直径,弦AD与BE交于点F,下列三角形中,外心不是点O地是()A.△ABE B.△ACF C.△ABD D.△ADE7.(3分)在数轴上标注了四段范围,如图,则表示地点落在()A.段①B.段②C.段③D.段④8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°9.(3分)已知:岛P位于岛Q地正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件地示意图是()A.B.C.D.10.(3分)一台印刷机每年可印刷地书本数量y(万册)与它地使用时间x(年)成反比例关系,当x=2时,y=20.则y与x地函数图象大致是()A.B.C.D.11.(2分)利用加减消元法解方程组,下列做法正确地是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2 12.(2分)若关于x地方程x2+2x+a=0不存在实数根,则a地取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥113.(2分)将一质地均匀地正方体骰子掷一次,观察向上一面地点数,与点数3相差2地概率是()A.B.C.D.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB地大小.其中会随点P地移动而变化地是()A.②③B.②⑤C.①③④D.④⑤16.(2分)如图是甲、乙两张不同地矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等地正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=.18.(3分)若a=2b≠0,则地值为.19.(3分)平面上,将边长相等地正三角形、正方形、正五边形、正六边形地一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求地线段了,则n=.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确地演算过程,随后用手掌捂住了如图所示地一个二次三项式,形式如图:(1)求所捂地二次三项式;(2)若x=+1,求所捂二次三项式地值.22.(10分)嘉淇同学要证明命题“两组对边分别相等地四边形是平行四边形”是正确地,她先用尺规作出了如图1地四边形ABCD,并写出了如下不完整地已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇地想法写出证明;(3)用文字叙述所证命题地逆命题为.23.(10分)水平放置地容器内原有210毫米高地水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中地所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大地函数关系式(不必写出x大地范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小地函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化地情况,绘制了如表统计表及不完整地折线图. A ,B 产品单价变化统计表并求得了A 产品三次单价地平均数和方差:=5.9,s A 2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B 产品单价变化地折线图.B 产品第三次地单价比上一次地单价降低了 %(2)求B 产品三次单价地方差,并比较哪种产品地单价波动小;(3)该厂决定第四次调价,A 产品地单价仍为6.5元/件,B 产品地单价比3元/件上调m%(m >0),使得A 产品这四次单价地中位数是B 产品四次单价中位数地2倍少1,求m 地值.25.(11分)如图,已知点O (0,0),A (﹣5,0),B (2,1),抛物线l :y=﹣(x ﹣h )2+1(h 为常数)与y 轴地交点为C .(1)l 经过点B ,求它地解析式,并写出此时l 地对称轴及顶点坐标;(2)设点C 地纵坐标为y c ,求y c 地最大值,此时l 上有两点(x 1,y 1),(x 2,y 2),其中x1>x2≥0,比较y1与y2地大小;(3)当线段OA被l只分为两部分,且这两部分地比是1:4时,求h地值.26.(14分)平面上,矩形ABCD与直径为QP地半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间地距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x地代数式表示BN地长,并求x地取值范围.探究:当半圆K与矩形ABCD地边相切时,求sinα地值.2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题地四个选项中只有一个是正确地)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.2.(3分)下列说法正确地是()A.1地相反数是﹣1 B.1地倒数是﹣1C.1地立方根是±1 D.﹣1是无理数【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1地相反数是﹣1,正确;B、1地倒数是1,故错误;C、1地立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后地图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中地顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选:C.4.(3分)下列运算正确地是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5【分析】A:根据负整数指数幂地运算方法判断即可.B:科学记数法a×10n表示地数“还原”成通常表示地数,就是把a地小数点向右移动n位所得到地数,据此判断即可.C:根据积地乘方地运算方法判断即可.D:根据同底数幂地乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.5.(3分)如图所示地三视图所对应地几何体是()A.B.C.D.【分析】对所给四个几何体,分别从主视图和俯视图进行判断.【解答】解:从主视图可判断A,C、D错误.故选:B.6.(3分)如图,AC,BE是⊙O地直径,弦AD与BE交于点F,下列三角形中,外心不是点O地是()A.△ABE B.△ACF C.△ABD D.△ADE【分析】利用外心地定义,外心:三角形外接圆地圆心是三角形三条边垂直平分线地交点,叫做三角形地外心,进而判断得出即可.【解答】解:如图所示:只有△ACF地三个顶点不都在圆上,故外心不是点O地是△ACF.故选:B.7.(3分)在数轴上标注了四段范围,如图,则表示地点落在()A.段①B.段②C.段③D.段④【分析】根据数地平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴地点落在段③,故选:C.8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°【分析】如图,作辅助线;首先运用平行线地性质求出∠DGC地度数,借助三角形外角地性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选:C.9.(3分)已知:岛P位于岛Q地正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件地示意图是()A.B.C.D.【分析】根据方向角地定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.10.(3分)一台印刷机每年可印刷地书本数量y(万册)与它地使用时间x(年)成反比例关系,当x=2时,y=20.则y与x地函数图象大致是()A.B.C.D.【分析】设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x地函数图象.【解答】解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x地函数图象大致是C,故选:C.11.(2分)利用加减消元法解方程组,下列做法正确地是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【分析】方程组利用加减消元法求出解即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选:D.12.(2分)若关于x地方程x2+2x+a=0不存在实数根,则a地取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【分析】根据根地判别式得出b2﹣4ac<0,代入求出不等式地解集即可得到答案.【解答】解:∵关于x地方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选:B.13.(2分)将一质地均匀地正方体骰子掷一次,观察向上一面地点数,与点数3相差2地概率是()A.B.C.D.【分析】由一枚质地均匀地正方体骰子地六个面上分别刻有1到6地点数,掷一次这枚骰子,向上地一面地点数为与点数3相差2地有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀地正方体骰子地六个面上分别刻有1到6地点数,掷一次这枚骰子,向上地一面地点数为点数3相差2地有2种情况,∴掷一次这枚骰子,向上地一面地点数为点数3相差2地概率是:=.故选:B.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【分析】先求出直线y=﹣x﹣3与y轴地交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴地交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)地交点在第四象限,∴a<﹣3.故选:D.15.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB地中点,对下列各值:①线段MN地长;②△PAB地周长;③△PMN地面积;④直线MN,AB之间地距离;⑤∠APB地大小.其中会随点P地移动而变化地是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形地中位线平行于第三边并且等于第三边地一半可得MN=AB,从而判断出①不变;再根据三角形地周长地定义判断出②是变化地;确定出点P到MN地距离不变,然后根据等底等高地三角形地面积相等确定出③不变;根据平行线间地距离相等判断出④不变;根据角地定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB地中点,∴MN是△PAB地中位线,∴MN=AB,即线段MN地长度不变,故①错误;PA、PB地长度随点P地移动而变化,所以,△PAB地周长会随点P地移动而变化,故②正确;∵MN地长度不变,点P到MN地距离等于l与AB地距离地一半,∴△PMN地面积不变,故③错误;直线MN,AB之间地距离不随点P地移动而变化,故④错误;∠APB地大小点P地移动而变化,故⑤正确.综上所述,会随点P地移动而变化地是②⑤.故选:B.16.(2分)如图是甲、乙两张不同地矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等地正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【分析】根据图形可得甲可以拼一个边长为地正方形,图乙可以拼一个边长为地正方形.【解答】解:所作图形如图所示,甲乙都可以拼一个与原来面积相等地正方形.故选:A.二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=±1.【分析】先根据0次幂,得到|a|=1,再根据互为相反数地绝对值相等,即可解答.【解答】解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.18.(3分)若a=2b≠0,则地值为.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:19.(3分)平面上,将边长相等地正三角形、正方形、正五边形、正六边形地一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形地每个内角地度数是多少,然后分别求出∠3、∠1、∠2地度数是多少,进而求出∠3+∠1﹣∠2地度数即可.【解答】解:正三角形地每个内角是:180°÷3=60°,正方形地每个内角是:360°÷4=90°,正五边形地每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形地每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求地线段了,则n= 9.【分析】根据等腰三角形地性质和三角形外角地性质依次可得∠A1AB地度数,∠A2A1C地度数,∠A3A2B地度数,∠A4A3C地度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°地度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确地演算过程,随后用手掌捂住了如图所示地一个二次三项式,形式如图:(1)求所捂地二次三项式;(2)若x=+1,求所捂二次三项式地值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x地值代入计算即可求出值.【解答】解:(1)设所捂地二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.22.(10分)嘉淇同学要证明命题“两组对边分别相等地四边形是平行四边形”是正确地,她先用尺规作出了如图1地四边形ABCD,并写出了如下不完整地已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)填空,补全已知和求证;(2)按嘉淇地想法写出证明;(3)用文字叙述所证命题地逆命题为平行四边形两组对边分别相等.【分析】(1)命题地题设为“两组对边分别相等地四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD 是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行地四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等地四边形是平行四边形”地题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题地逆命题为:平行四边形两组对边分别相等.23.(10分)水平放置地容器内原有210毫米高地水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中地所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大地函数关系式(不必写出x大地范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小地函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?【分析】(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面地高度+放入小球上面地高度,即可解答;②根据题意列出不等式,即可解答.【解答】解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.24.(11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化地情况,绘制了如表统计表及不完整地折线图.A,B产品单价变化统计表并求得了A产品三次单价地平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化地折线图.B产品第三次地单价比上一次地单价降低了25%(2)求B产品三次单价地方差,并比较哪种产品地单价波动小;(3)该厂决定第四次调价,A产品地单价仍为6.5元/件,B产品地单价比3元/件上调m%(m>0),使得A产品这四次单价地中位数是B产品四次单价中位数地2倍少1,求m地值.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价地中位数,然后确定第四次调价地范围,根据“A产品这四次单价地中位数是B产品四次单价中位数地2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次地单价比上一次地单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品地方差小,∴B产品地单价波动小;(3)第四次调价后,对于A产品,这四次单价地中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴地交点为C.(1)l经过点B,求它地解析式,并写出此时l地对称轴及顶点坐标;(2)设点C地纵坐标为y c,求y c地最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2地大小;(3)当线段OA被l只分为两部分,且这两部分地比是1:4时,求h地值.【分析】(1)把点B地坐标代入函数解析式,列出关于h地方程,借助于方程可以求得h地值;利用抛物线函数解析式得到该图象地对称轴和顶点坐标;(2)把点C地坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数地最值地求法易得y c地最大值,并可以求得此时抛物线地解析式,根据抛物线地增减性来求y1与y2地大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分地比是1:4”可以推知把线段OA被l只分为两部分地点地坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点地坐标特征可以求得h地值.【解答】解:(1)把点B地坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l地对称轴为x=2,顶点坐标是(2,1);(2)点C地横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x地增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分地比是1:4,且O(0,0),A (﹣5,0),∴把线段OA被l只分为两部分地点地坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h地值是0或﹣5.26.(14分)平面上,矩形ABCD与直径为QP地半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间地距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x地代数式表示BN地长,并求x地取值范围.探究:当半圆K与矩形ABCD地边相切时,求sinα地值.【分析】(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间地距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x地取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD地边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ地初始位置所在地直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,求出OS==2,在R t△OSO′中,SO′=OS•tan60°=2,KO′=2﹣在R t△KGO′中,∠O′=30°,求得KG=KO′=﹣,在R t△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα地值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.【解答】解:发现:(1)在,当OQ过点B时,在R t△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间地距离最小,∴PA地最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,==,∴S扇形KRQ在Rt△RKE中,RE=RK•sin60°=,∴S=•RE=,∴S阴影=+;△PRK拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x地取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD地边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ地初始位置所在地直线分别交于点S,O′,则∠KSO=∠KTB=90°,作KG⊥OO′于G,在R t△OSK中,OS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在Rt△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在Rt△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα地值为:或或.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

(完整版)2015年河北省中考数学试题(word版含答案)

(完整版)2015年河北省中考数学试题(word版含答案)

2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1 —10小题,每小题3分;11 —16小题,每小题2分,共42 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:3 2(1)()4.下列运算正确的是()A. 5B.1C.—1 D.62.下列说法正确的是() A.1的相反数是一1B.1的倒数是—1C.1 的立方根是土 1D. — 1是无理数3. 一张菱形纸片按图 1— 1、图1— 2依次对折后,再按图1 — 3打出一个圆形小孔,则展开铺平后的图案()A.B.6 1076000000 C.2a 22a2 D. a3 a2 a5 5.图2中的三视图所对应的几何体是()■ H --'■■s,:1 •■i ■.1正面主视图俯视團图2左视图6.如图3, AC BE 是。

O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是()9.已知:岛P 位于岛Q 的正西方,由岛P , Q 分别测得船R 位于南偏东30°和南偏西45°方向上, 符合条件的示意图是()y=20,则y 与x 的函数图像大致是()A. △ ABEB. △ ACFC. △ ABDD. △ ADE7.在数轴上标注了四段范围,如图 ()A.段①B.段 8.女口图 5, AB// EF, A.120 °B.130262.7 2.8图44,则表示 8的点落在②C.段③ CDL EF,Z BAC=50,贝U/ ACD=( °C.140 °D.150D.段④―乞 -----------2.9 310. 一台印刷机每年印刷的书本数量 y (万册)与它的使用时间x (年)成反比例关系,当x=2 时,图3图5EA东12.若关于x 的方程x 2 2x a 0不存在实数根,则a 的取值范围是()①线段MN 勺长;②厶PAB 的周长;③厶PMN 勺面积;④直线MN AB 之间的距离; ⑤/ APB 的大小.其中会随点P 的移动而变化的是() A.②③ B.②⑤ C.①③④ D.④⑤16. 图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚 线剪开后,各自要拼一个与原来面积相等的正方形,则 ()A.甲、乙都可以B. 甲、乙都不可以C.甲不可以,乙可以D. 甲可以,乙不可以二、填空题(本大题共4个小题,每小题3分,共12分,c 11.利用加减消元法解方程组 2x 5x 5y 3y10①,下列做法正确的是()A.要消去y ,可以将①5B. 要消去x ,可以将①3②(5)C.要消去y ,可以将①5D. 要消去x ,可以将①(5)②2 A.a<1 B.a>1 C.a < 1 D.a > 1 13.将一质地均匀的正方体骰子掷一次, A. 1 B. 1 C. 2 3观察向上一面的点数,与点数3相差2的概率是()14.如图6,直线I : y 1D.5 23X3与直线 y a (a 为常数)的交点在第四象 限,则a 可能在()A. 1 a 2B. 1.C. 3 a 2D. 10 15. 如图7,点A ,B 为定点,M N 分别为PA PB 的中点,a 4定直线I 对于下列各值: // AB, P 是I 上一动点,点17.若 20150,则 a*1T把答案写在题中横线上)甲- 图82 218. 若a 2b 0,则a 2 b 的值为a ab---------------19. 平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一 合并叠在一起,如图9,则/3+Z 1-Z 2= ___________ °20. 如图10,/ BOC=9,点A 在OB 上,且OA=1按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点Ai ,得第1条线段AA ;再以A 为圆心,1为半径向右画弧交OB 于点A ,得第2条线段AA; 再以A 为圆心,1为半径向右画弧交OC 于点A ,得第3条线段AA ;…… 这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n _________三、解答题(本大题共6个小题,共66分。

2015河北中考数学试题及答案word

2015河北中考数学试题及答案word

2015河北中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x - 3 = 5x + 1C. 2x + 3 = 5x + 1D. 2x - 3 = 5x - 1答案:D2. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个数的平方是36,那么这个数是多少?A. ±6B. 6C. -6D. 36答案:A4. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的周长是多少?A. 16厘米B. 18厘米C. 20厘米D. 22厘米答案:B5. 一个数列的前三项分别是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 128答案:A6. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = 3xD. y = 1/x答案:C7. 下列哪个选项是正确的?A. 3x^2 - 6x = 3x(x - 2)B. 3x^2 - 6x = 6x(x - 1)C. 3x^2 - 6x = 3x^2 - 2xD. 3x^2 - 6x = 6x^2 - 3x答案:A8. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的体积是多少立方厘米?A. 24B. 36C. 48D. 72答案:A9. 下列哪个选项是正确的?A. √16 = ±4B. √16 = 4C. √16 = -4D. √16 = 16答案:B10. 如果一个角的补角是120°,那么这个角是多少度?A. 60°B. 30°C. 90°D. 120°答案:B二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是____。

答案:52. 如果一个角的余角是45°,那么这个角是____。

2015年河北省中考数学试卷(含详细答案)

2015年河北省中考数学试卷(含详细答案)

绝密★启用前河北省2015年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:32(1)-⨯-=( )A.5B.1C.1-D.62.下列说法正确的是( )A.1的相反数是1-B.1的倒数是1-C.1的立方根是1±D.1-是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是 ( )图1图2 图3AB CD4.下列运算正确的是( )A.111()22-=-B.76106000000⨯=C.22(2)2a a=D.325a a a=5.右图中的三视图所对应的几何体是( )A BC D6.如图,,AC BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )A.ABE△B.ACF△C.ABD△D.ADE△7.在数轴上标注了四段范围,如图,( )A.段①B.段②C.段③D.段④8.如图,AB EF∥,CD EF⊥,50BAC∠=,则ACD∠=( )A.120B.130C.140D.1509.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30和南偏西45方向上.符合条件的示意图是( )A BC D毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共26页)数学试卷第2页(共26页)数学试卷 第3页(共26页) 数学试卷 第4页(共26页)10.一台印刷机每年印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当2x =时,20y =,则y 与x 的函数图象大致是( )AB C D 11.利用加减消元法解方程组2510, 536, x y x y +=-⎧⎨-=⎩①②下列做法正确的是( )A .要消去y ,可以将52⨯+⨯①②B .要消去x ,可以将3(5)⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将(5)2⨯-+⨯①②12.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A .12B .13C .15D .1614.如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限,则a 可能在( )A .12a <<B .20a -<<C .32a --≤≤D .104a --<<15.如图,点A ,B 为定点,定直线l AB ∥,P 是l 上一动点,点M ,N 分别为,PA PB 的中点,对于下列各值: ①线段MN 的长; ②PAB △的周长; ③PMN △的面积;④直线,MN AB 之间的距离; ⑤APB ∠的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A .甲、乙都可以B .甲、乙都不可以C .甲不可以,乙可以D .甲可以,乙不可以第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 17.若0||2015a =,则a = .18.若20a b =≠,则222a b a ab--的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则312∠+∠-∠=.20.如图,9BOC ∠=,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ; 再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ; 再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:2351x x x -=-+.(1)求所捂的二次三项式;(2)若1x ,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD ,并写出了如下不完整的已知和求证. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为 .23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米. (1)只放入大球,且个数为x 大,求y 与x 大的函数关系式(不必写出x 大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x 小. ①求y 与x 小的函数关系式(不必写出x 小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产,A B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:,A B 产品单价变化折线图第三次并求得了产品三次单价的平均数和方差:5.9A x =;2222143[(6 5.9)(5.2 5.9)(6.5 5.9)]3150A S =-+-+-=. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调(0)m m >%,使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.嘉淇毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页) 数学试卷 第8页(共26页)25.(本小题满分11分)如图,已知点)(0,0O ,0()5,A -,()2,1B ,抛物线l :2()1y x h =--+(h 为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;(2)设点C 的纵坐标为C y ,求C y 的最大值,此时l 上有两点11(,)x y ,22(,)x y ,其中120x x >≥,比较1y 与2y 的大小;(3)当线段OA 被l 只分为两部分,且这两部分的比是1:4时,求h 的值.26.(本小题满分14分)平面上,矩形ABCD 与直径为QP 的半圆K 如图1摆放,分别延长DA 和QP 交于点O ,且60DOQ ∠=,3OQ OD ==,2OP =,1OA AB ==.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向开始旋转,设旋转角为(060)αα≤≤.发现 (1)当0α=,即初始位置时,点P 直线AB 上(填“在”或“不在”). 求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中,简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值;(3)如图2,当点P 恰好落在BC 边上时,求α及S 阴影.图2图3图4拓展 如图3,当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设()0BM x x =>,用含x 的代数式表示BN 的长,并求x 的取值范围. 探究 当半圆K 与矩形ABCD 的边相切时,求sin α的值.图15 / 13河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A . 【考点】有理数的运算 2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A . 【考点】相反数、倒数、立方根及无理数的概念 3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C . 【考点】图形的折叠 4.【答案】D【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D .【考点】幂的运算 5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B . 【考点】几何体的三视图 6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△AC F 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B . 【考点】三角形的外心 7.【答案】C2 1.414 2.828=⨯=C .数学试卷 第11页(共26页)数学试卷 第12页(共26页)【考点】数轴与无理数的估算 8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥A B E F ,∴∥C H E F ,∴ 50∠=∠=︒H C A C A B ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。

2015年河北中考数学试题及答案

2015年河北中考数学试题及答案

A.
段①
B.
段②
C.
段③
D.
段④
8. 如图,AB ∥ EF,CD ⊥ EF,∠BAC = 50∘,则∠ACD =
A.
120∘
B.
130∘
C.
140∘
D.
150∘
9. 已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30∘和南偏西45∘方向上, 符合条件的示意图是 ( )
A.
B.
C.
最懂数学老师的出题神器
2
+ 1(h为常数)与y轴的交
(1) l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标; (2)设点C的纵坐标为yC ,求yC 的最大值,此时l上有两点,其中x1 > x 2 ≥ 0,比较y1 与y2 的大 小; (3)当线段OA被l只分为两部分,且这两部分的比是1: 4时,求h的值. 26. 平面上,矩形ABCD与直径为QP的半圆K如图 1 摆放,分别延长DA和QP交于点O,且 ∠DOQ = 60∘,OQ = OD = 3,OP = 2,OA = AB = 1,让线段OD及矩形ABCD位置固定,将线 段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0∘ ≤ α ≤ 60∘ ).
(ii)如图①,连AP,有OA + AP ≥ OP,当OP过点A,即α = 60∘时等号成立. ∴ AP ≥ OP − OA = 2 − 1 = 1. ∴当α = 60∘时,P,A间的距离最小. PA的最小值为1. (iii)如图①,设半圆K与PC交点为R,连接RK,过点P作PH ⊥ AD于点H,过点R作RE ⊥ KQ于 点E. 在Rt △ OPH中,PH = AB = 1,OP = 2, ∴ ∠POH = 30∘, ∴ α = 60∘ − 30∘ = 30∘ . 由AD ∥ BC知,∠RPQ = ∠POH = 30∘ . ∴ ∠RKQ = 2 × 30∘ = 60∘. ∴ S扇形 RKQ =

2015年河北省中考数学试卷-答案

2015年河北省中考数学试卷-答案

河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A .【考点】有理数的运算2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A .【考点】相反数、倒数、立方根及无理数的概念3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C .【考点】图形的折叠4.【答案】D 【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D . 【考点】幂的运算5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B .【考点】几何体的三视图6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△ACF 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B .【考点】三角形的外心7.【答案】C2 1.414 2.828=⨯=C .【考点】数轴与无理数的估算8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥AB EF ,∴∥CH EF ,∴ 50∠=∠=︒HCA CAB ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。

∴140∠=︒ACD ,故选C .【考点】平行线的性质9.【答案】D【解析】由题意知,R 位于岛P 南偏东30︒即PR 与南北方向的夹角为30︒;R 位于岛Q 南偏西45︒方向,即QR 与南北方向的夹角为45︒,故选D .【考点】方位角10.【答案】C 【解析】设=k y x,当2=x 时,20=y ,∴40=k ,∴双曲线图象过点()1,40,故选C . 【考点】反比例函数的图象11.【答案】D【解析】∵要消去x ,可将52⨯-⨯①②或可将(5)2⨯-+⨯①②;要消去y ,可以35⨯+⨯①②,故选D .【考点】在加减消元法解二元一次方程组12.【答案】B【解析】∵关于x 的方程20++=x x a 不存在实数根,∴2240-<a ,解得1>a ,故选B .【考点】一元二次方程的根的判别式13.【答案】B【解析】将正方体骰子抛掷一次,向上一面的点数有1,2,3,4,5,6,六种可能,其中点数与3相差2的是1和5两种,所以点数与3相差2的概率是2163=,故选B . 【考点】概率的计算14.【答案】D 【解析】直线233=--y x 与直线=y a 的交点坐标为39(,)22--a a ,∵交点在第四象限,∴39022-->a 且0<a ,解得3<-a ,∴a 可能在104-<<-a ,故选D .【考点】一次函数图象的交点坐标与不等式15.【答案】B【解析】点,M N 分别为,PA PB 的中点,点A ,点B 是定点,∴12=MN AB ,即MN 的长不变;随着点P 的移动,PA PB 的长也发生变化,∴△PAB 的周长发生变化;直线l 和MN 之间的距离保持不变,∴△PMN 的面积不变;直线,MN AB 之间的距离也不变;∠APB 的大小随着点P 的运动会变化,故选B .【考点】动点及角形中位线的有关计算16.【答案】A【解析】甲、乙两矩形的面积分别为2和5,要拼成面积相等的正方形,则拼成的两正方形的边长分别为甲沿虚线剪开后是四个全等的等腰直角三角形,,乙沿虚线剪开后得到四个全等的直角三角形和一个边长为1的正方形,其中直角三角形的两直角边分别为1和2A .【考点】矩形的性质及图形的拼接第Ⅱ卷二、填空题17.【答案】1±【解析】∵020151=,∴1=a ,∴1=±a .【考点】零指数幂和绝对值18.【答案】32【解析】∵20=≠a b ,∴()()()2222322+-+++=+==--a b a b a b a b b b a ab a a b a b . 【考点】分式的化简求值19.【答案】24【解析】∵正三角形、正方形、正五边形、正六边形的每个内角分别为60,90,108,120︒︒︒︒,∴112∠=︒,218∠=︒,330∠=︒,∴31 2 30121824∠+∠-∠=︒+︒-︒=︒.【考点】正多边形的内角20.【答案】9【解析】∵9∠=︒BOC ,∴画一条线段后外角129∠=⨯︒A AB ,画两条线段后外角12 3 9∠=⨯︒CA A ,画三条线段后外角3249∠=⨯︒A A B ,……,画n 条线段后外角的度数为()19+⨯︒n ,当()1990+⨯︒=︒n ,9=n ,即得到第9条线段后,就不能画出符合条件的线段了.【考点】三角形的外角及规律探索三、解答题21.【答案】解:(1)设所捂的二次三项式为A ,则2513 =-++x x A x221=-+x x .(2)若1=x ,则()21=-A x)211=-6=.【考点】整式的运算及化简求值22.【答案】(1)CD平行(2)证明:连接BD .在 △ABD 和 △CDB 中,∵ =AB CD , =AD CB , =BD DB ,∴ △≌△ABD CDB ,∴12∠=∠,34∠=∠,∴∥AB CD ,∥AD CB ,∴四边形 ABCD 是平行四边形.(3)平行四边形的对边相等.【考点】平行四边形判定方法的验证23.【答案】解:(1)4210=+大y x .(2)①当6=大x 时, 46210234=⨯+=y ,∴3234=+小y x .②依题意得3234260+≤小x ,解得283≤小x , ∵小x 为自然数, ∴小x 最大为8,即最多能放入8个小球.【考点】一次函数及一元一次不等式的实际应用24.【答案】解:(1)如图所示.(2)()3.5435133.++==B x , ()()()22223.5 3.54 3.53 3.5136-+-+-==Bs . ∵1436150<,∴B 产品的单价波动小. (3)第四次调价后, 对于A 产品,这四次单价的中位数为6 6.52524+=; 对于B 产品,∵0>m ,∴第四次单价大于3. 又∵3.54132521224+⨯-=>, ∴第四次单价小于4.∴()31 3.5252124++⨯-=m %, ∴25=m .25.【答案】解:(1)把 2=x , 1=y 代人()21=--+y x h 得2=h ,∴抛物线l 的解析式为()221=--+y x (或2+43=--y x x ),对称轴2=x ,顶点()2,1B .(2)点C 的横坐标为0,则2+1=-c y h ,当0=h 时,c y 有最大值为1.此时,l 为1=-+y x ,对称轴为y 轴,当0≥x 时,y 随着x 的增大而减小,∴当120>≥x x 时,12<y y .(3)把OA 分1:4两部分的点为()1,0-或()4,0-. 把 1=-x , 0=y 代人()21=--+y x h 得 0=h 或 2=-h . 当2=-h 时,OA 被分为三部分,不合题意,舍去. 同理,把4=-x ,0=y 代人()2 1=--+y x h 得5=-h 或 3()=-舍去h .∴h 的值为0或5-.【考点】二次函数的图象与性质26.【答案】发现 (1)在当OQ 过点B 时,在△Rt OAB 中,=AO AB ,得45∠=∠=︒COQ ABO ,∴604515=︒-︒=︒a .(2)如图1,连接AP ,有+≥OA AP OP ,当OP 过点A ,即60=a 时等号成立,∴0211≥-=-=AP P OA ,当60=a 时,,P A 间的距离最小, PA 的最小值为1.(3)如图1,设半圆K 与PC 交点为R ,连接RK ,过点P 作⊥PH AD 于点H ,过点R 作⊥RE KQ 于点E 。

2015年河北省中考数学试题及答案word版

2015年河北省中考数学试题及答案word版

2015年河北省中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 22/7答案:B2. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 26cmC. 30cmD. 40cm答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的平方是25,这个数是多少?A. 5B. -5C. 5或-5D. 以上都不对答案:C5. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 菱形答案:D6. 下列哪个选项是方程2x-3=7的解?A. x=-1B. x=5C. x=3D. x=10答案:B7. 一个圆的直径是10cm,其半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A8. 一个扇形的圆心角是60°,半径是5cm,其面积是多少?A. 5π cm²B. 10π cm²C. 15π cm²D. 25π cm²答案:B9. 一个长方体的长、宽、高分别是2cm、3cm、4cm,其体积是多少?A. 24cm³B. 26cm³C. 28cm³D. 30cm³答案:A10. 一个正数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 9答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。

答案:212. 一个数的绝对值是5,这个数可能是______或______。

答案:5或-513. 一个数的相反数是-7,这个数是______。

答案:714. 一个数除以-2等于3,这个数是______。

答案:-615. 一个数的平方根是4,这个数是______。

2015年河北省中考数学试卷与答案解析

2015年河北省中考数学试卷与答案解析

2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()B=25.(3分)(2015•河北)如图所示的三视图所对应的几何体是()B6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年). B . C . D (y=,11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是,213.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点B的概率是:=14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()﹣﹣﹣x15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=ABMN=16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()的正方形,图乙可以拼一个边长为二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.18.(3分)(2015•河北)若a=2b≠0,则的值为.==故答案为:19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.﹣﹣22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.,23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?,24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.产品第三次的单价比上一次的单价降低了=(=产品,这四次单价的中位数为;,×1=25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.,如图﹣﹣﹣OS==2=2﹣KO,在=,•RE=+,即,BQ=AF=AO=2﹣OS=,﹣,KO﹣====sin60的值为:或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档