实验07 旋转液体的物理特性研究

合集下载

旋转流体力学的特性与应用研究

旋转流体力学的特性与应用研究

旋转流体力学的特性与应用研究引言旋转流体力学是研究旋转流体中的流动行为和相应的力学特性的一门学科。

在实际应用中,旋转流体力学被广泛应用于航空航天、海洋工程、能源系统以及工业流体力学等领域。

本文将探讨旋转流体力学的基本概念、特性以及其在各个领域的应用研究。

1. 旋转流体力学的基本概念旋转流体力学研究的对象是旋转的流体,即在旋转系统中流动的流体。

旋转流体力学研究的基本方程包括质量守恒方程、动量守恒方程、能量守恒方程以及状态方程等。

其中,质量守恒方程描述了流体质量的守恒,动量守恒方程描述了旋转流体中力的平衡,能量守恒方程描述了旋转系统中能量的转化和传递,状态方程描述了流体的状态。

旋转流体的运动状态可以通过流体的速度分布、压力分布以及温度分布等参数来描述。

在研究旋转流体力学时,需要考虑旋转对流体流动产生的影响,如离心力、科里奥利力等。

2. 旋转流体力学的特性旋转流体力学具有许多独特的特性,包括旋转涡的形成、离心力的影响、科里奥利力的作用以及涡旋运动等。

这些特性对于理解旋转流体力学的行为和应用研究具有重要的意义。

2.1 旋转涡的形成在旋转系统中,由于旋转对流体产生的影响,会形成旋转涡。

旋转涡是流体中的旋转流动结构,它具有一定的旋转速度和旋转方向。

旋转涡的形成与旋转流体力学中的旋转不稳定性有关,可以通过数值模拟和实验测量来研究。

2.2 离心力的影响旋转流体力学中的一个重要特性是离心力的影响。

离心力是由于旋转对流体产生的离心效应而产生的一种力。

离心力的大小与旋转系统的旋转速度、流体质量以及旋转半径等因素有关。

离心力对流体的影响主要体现在两个方面。

首先,离心力会使流体呈现非均匀分布,造成压力差,从而驱动流体的流动。

其次,离心力会使流体中的悬浮颗粒产生离心沉积现象,这对于研究颗粒的分离和分级有重要意义。

2.3 科里奥利力的作用科里奥利力是由于旋转对流体产生的偏转效应而产生的一种力。

科里奥利力的大小和方向与流体速度、旋转速度以及旋转方向等因素有关。

旋转液体物理特性的测量

旋转液体物理特性的测量

旋转液体物理特性的测量1.背景及应用早在力学创建之初,就有牛顿的水桶实验,牛顿发现,当水桶中的水旋转时,水会沿着桶壁上升。

旋转的液体有一些独特的物理特征。

如盛有液体的圆柱形容器绕其圆柱面的对称轴匀速转动时,旋转液体的表面将成为抛物面;通过旋转液体,可以分离不同比重的液体等等。

根据旋转液体的这些特性,产生了一系列的应用。

如目前广泛应用的分离机等。

图1给出了一种液体镜头,它在一个大容器里旋转水银。

由于旋转液体的表面是一个理想的抛物面,同时水银能很好地反射光线,所以能起反射镜的作用。

通常这样一个光滑的曲面,完全可以代替需要大量复杂工艺并且价格昂贵的玻璃镜头,从而可以有效地降低大型望远镜的制造成本。

2. 实验原理盛有液体的圆柱形容器绕其圆柱面的对称轴匀速转动时,旋转液体的表面将成为抛物面。

抛物面的参数与重力加速度和旋转角速度有关,利用此性质可以测重力加速度;旋转液体的上凹面可作为光学系统加以研究,还可测定液体折射率等。

1)旋转液体表面公式牛顿发现,当圆柱体中的水旋转时,水会沿着圆柱体壁上升。

定量计算时,选取随圆柱形容器旋转的参考系,这是一个转动的非惯性参考系。

液体相对于参考系静止,任选一小块液体P ,其受力如图2。

i F 为沿径向向外的惯性离心力,mg 为重力,N 为这一小块液体周围液体对它的作用力的合力,由对称性可知,N 必然垂直于液体表面。

在Y X 坐标下),(y x P 则有:图1 大型望远镜的液体镜片图2 实验原理图0cos =-mg N θ 0sin =-i F N θ x m F i 2ω=gxx y 2d d tan ωθ==根据图2有: 0222y x gy +=ω (1)ω为旋转角速度,0y 为 0=x 处的y 值。

此为抛物线方程,可见液面为旋转抛物面。

2)用旋转液体测量重力加速度原理在实验系统中,一个盛有液体半径为R 的圆柱形容器绕该圆柱体的对称轴以角速度ω匀速稳定转动时,液体的表面形成抛物面,如图3。

旋转液体实验报告_数据

旋转液体实验报告_数据

一、实验目的1. 了解旋转液体在旋转过程中产生的物理现象;2. 掌握测量旋转液体表面形状、离心力、重力加速度等参数的方法;3. 分析旋转液体在不同转速下的物理特性。

二、实验原理旋转液体实验是基于牛顿第二定律和牛顿万有引力定律。

当液体在旋转容器中旋转时,液体受到离心力和重力的作用,形成特殊的物理现象。

根据牛顿第二定律,离心力与液体的质量、旋转半径和角速度有关;根据牛顿万有引力定律,重力与液体的质量、地球质量、旋转半径和重力加速度有关。

三、实验仪器与设备1. 旋转液体实验装置:包括旋转容器、旋转电机、测速仪、激光测距仪等;2. 数据采集系统:包括计算机、数据采集卡、软件等;3. 其他:秒表、天平、刻度尺等。

四、实验步骤1. 将旋转液体实验装置安装好,确保旋转容器、旋转电机、测速仪、激光测距仪等设备正常运行;2. 在旋转容器中倒入适量的液体,调整液面高度,确保液体表面平坦;3. 打开旋转电机,缓慢增加转速,观察液体表面形状、涡流等现象;4. 利用激光测距仪测量液体表面形状,记录数据;5. 利用测速仪测量旋转液体的角速度;6. 利用天平测量液体的质量;7. 记录实验数据,包括转速、角速度、液体表面形状、离心力、重力加速度等。

五、实验数据1. 实验过程中,液体表面形状呈现抛物线状,随着转速的增加,抛物线越来越陡峭;2. 实验测得旋转液体的角速度与转速成正比;3. 实验测得离心力与液体质量、旋转半径和角速度的平方成正比;4. 实验测得重力加速度与液体质量、地球质量、旋转半径的平方成反比。

六、实验结果与分析1. 旋转液体表面形状:实验结果显示,随着转速的增加,液体表面形状逐渐变为抛物线状,符合牛顿第二定律;2. 离心力:实验结果显示,离心力与液体质量、旋转半径和角速度的平方成正比,符合牛顿第二定律;3. 重力加速度:实验结果显示,重力加速度与液体质量、地球质量、旋转半径的平方成反比,符合牛顿万有引力定律。

七、实验结论1. 旋转液体实验验证了牛顿第二定律和牛顿万有引力定律的正确性;2. 通过旋转液体实验,可以测量液体表面形状、离心力、重力加速度等参数;3. 旋转液体实验为研究旋转液体在旋转过程中的物理现象提供了实验依据。

旋转的液体实验报告高中

旋转的液体实验报告高中

实验名称:旋转的液体实验目的:1. 观察旋转液体中的现象,了解液体在旋转过程中受到的力。

2. 分析液体旋转的原理,探讨液体旋转对周围环境的影响。

实验器材:1. 旋转实验装置(包括旋转盘、支架、容器、液体等)2. 激光笔3. 测量尺4. 计时器5. 记录纸实验步骤:1. 将旋转实验装置安装好,确保旋转盘平稳旋转。

2. 向容器中加入适量的液体,确保液体高度适中。

3. 打开激光笔,使其固定在旋转盘上方,激光笔发出的光线垂直照射到液体表面。

4. 启动旋转盘,观察激光笔在液体表面形成的旋转光圈。

5. 记录旋转过程中光圈的变化情况,包括光圈的大小、形状、颜色等。

6. 调整旋转盘的速度,观察光圈的变化,分析液体旋转对光圈的影响。

7. 在不同角度、不同高度的位置观察激光笔照射到液体表面的光圈,分析液体旋转对光圈的影响。

8. 关闭旋转盘,重复步骤4-7,对比分析旋转前后光圈的变化。

实验结果:1. 当旋转盘开始旋转时,激光笔照射到液体表面的光圈逐渐扩大,并形成旋转的形状。

2. 随着旋转速度的增加,光圈的大小和形状变化更为明显。

3. 在不同角度、不同高度的位置观察激光笔照射到液体表面的光圈,发现光圈的变化趋势与旋转盘速度有关。

4. 旋转过程中,光圈的颜色逐渐变暗,说明液体在旋转过程中受到的力导致光线散射。

实验分析:1. 液体在旋转过程中受到离心力作用,使液体表面形成旋转光圈。

2. 旋转速度越快,离心力越大,光圈的大小和形状变化越明显。

3. 激光笔照射到液体表面的光圈变化,反映了液体旋转对光线的影响。

4. 液体旋转过程中,光线散射导致光圈颜色变暗。

实验结论:1. 液体在旋转过程中受到离心力作用,使液体表面形成旋转光圈。

2. 液体旋转对光线产生散射作用,导致光圈颜色变暗。

3. 旋转速度、角度、高度等因素对液体旋转光圈的影响存在差异。

实验心得:通过本次实验,我了解到液体在旋转过程中受到的离心力作用,以及液体旋转对光线的影响。

旋转液体

旋转液体
利用旋转液体测定重力加速度及焦距
[实验目的] 研究旋转液体表面形状,并由此求出重力加速度; 将旋转液体看作光学成像系统,探求焦距与转速的关系。 [实验仪器] 甘油, 旋转液体物理特性测量仪,气泡式水平仪,直尺。 [实验原理] 当一个盛有液体的圆柱形容器绕其圆柱面的对称轴以角速度 ω 匀速转动时 ( ω < ω max , ω max 为液面的最低处与容器底部接触时的角速度),液体的表面将成为抛物面, 抛物面方程为: y = y 0 +
ω2

由于液体的体积不变,则
π R 2 h0 = ∫ y (2πxdx ) = 2π ∫ y0 +
R R 0 0
ω 2 x2
xdx 2g
(2)
y0= h0 − 由方程(1) , (2)可得
ω 2R2
4gx0Biblioteka =R 2(3)由(3)式可知液面在 x0 处的高度是恒定的。 将激光垂直照射 x=x0 处液面, 在屏上读出反射光点与入射光点的距离 x ′ 。 入射角为 θ , 反射角为 θ,入射光线与反射光线的夹角为 2θ, 则
lg(H − h0 ) 与 lg ω 作最小二乘法直线拟合,求出 m 的值。
[注意事项] 1. 不要直视激光束,也不要直视经准镜面反射后的激光束. 2. 实验过程中,将在屏幕上观察到几个光斑,它们分别对应于空气、液体、屏幕和 杯子之间的折射和反射而形成的不同光路, 注意确保测量对象是实验所要求的 光束。 3. 必须逐渐地改变转动角速度, 并在测量前等待足够长的时间以确保液体处于平 衡态。
3
tan(2θ ) =
x′ 。 (H − h0 )
[实验内容] 1. 利用气泡式水平仪将屏幕、转盘调至水平位置。 2. 测出 h0 , H , D ( = 2 R ) 3. 逐渐改变转动角速度,待液体处于平衡态时,将激光垂直照射 x=x0 处液面,在屏 上读出反射光点与入射光点的距离 x ′ 。

旋转液体物理实验报告

旋转液体物理实验报告

旋转液体物理实验报告实验名称:旋转液体物理实验实验目的:1.了解旋转液体的物理特性。

2.探究旋转液体的重心及转速与液面高度的关系。

3.探究旋转液体的受力情况及对液体形态的影响。

实验原理:呈圆柱形的容器内装有液体,外部加一转速为ω的恒力。

旋转容器两端长度分别为L、l,容器内液体的高度为h,容器内物质密度为ρ。

实验步骤:1.清洁容器并倒入液体,注意不要注入过多以避免溢出。

2.固定容器并通过电机使其开始旋转。

3.调节电机速度,记录旋转液面高度h、旋转速度ω及容器两端长度L、l等实验数据。

4.拍摄旋转液面形态,记录旋转过程中液面的变化。

实验数据记录:表格1:旋转液面高度与电机转速的关系旋转液面高度h/cm 电机转速ω/rpm1.5 30001.0 40000.8 50000.5 6000表格2:旋转液面高度与容器长度的关系旋转液面高度h/cm 容器两端长度L/cm 容器端长l/cm1.5 30 201.0 40 200.8 50 200.5 60 20实验结论:1.旋转液体的重心随液面高度变化而变化,液面高度越高重心越高,液面高度越低重心越低。

2.在相同容器长度L的条件下,当液面高度相同时,液体的受力均匀,且液面呈现扁平状态。

3.在相同液面高度的条件下,当容器端长l增加时,液面形态容易变得不稳定。

实验分析:1.通过实验数据分析可得知,液面高度越高旋转液体的重心越高,液面高度越低旋转液体的重心越低,与理论分析相符。

2.液面呈现扁平状态说明液体的受力均匀,符合力学原理。

3.容器端长l的增加会使液面形态不稳定,原因是在过长的容器端长下,外力产生的作用点一侧产生凸起使液体形成弧形,导致液面变得不稳定。

实验心得:通过本次旋转液体物理实验,我们深入了解了旋转液体的物理特性及相关影响因素,并在实验过程中掌握了调节实验参数、记录实验数据和分析实验结果的方法技巧,提高了自身实验能力和科学素养。

旋转液体 实验报告

旋转液体 实验报告

旋转液体实验报告旋转液体实验报告引言:在科学实验中,我们常常通过观察物体在不同条件下的行为来探索其特性和规律。

本次实验旨在研究旋转液体的行为,并探讨其中的原理和现象。

通过这一实验,我们可以更好地理解液体的性质以及旋转对其造成的影响。

实验目的:1. 观察旋转液体的形态和行为;2. 探究旋转液体的原理和现象;3. 分析旋转液体的应用领域和潜在价值。

实验材料:1. 一个透明的圆形容器;2. 水或其他液体;3. 一个旋转装置。

实验步骤:1. 将透明容器放在旋转装置上,并固定好;2. 将液体倒入容器中,使其充满;3. 启动旋转装置,使容器开始旋转;4. 观察液体在旋转过程中的变化。

实验结果:通过观察实验,我们发现以下几个有趣的现象:1. 在容器开始旋转后,液体会形成一个凹面镜状的曲面;2. 随着旋转速度的增加,液体曲面的凹度会增大,液体会更加集中在中心;3. 当旋转速度达到一定程度时,液体会形成一个凸起的山峰状。

现象解释:这些现象可以通过离心力和液体的粘性来解释。

当容器开始旋转时,液体受到离心力的作用,向外侧移动。

由于液体的粘性,它们会相互摩擦并形成一个凹面镜状的曲面。

随着旋转速度的增加,离心力的作用也增加,液体分子之间的相互作用力变得更小,因此液体会更加集中在中心,形成一个凸起的山峰状。

应用领域:旋转液体的研究在多个领域有着广泛的应用价值:1. 空间科学:在宇宙中,由于缺乏重力,液体在旋转时会呈现出不同的行为,研究旋转液体可以帮助我们更好地理解宇宙中的物质行为;2. 工程设计:在某些工程领域,旋转液体可以用来模拟复杂的流体行为,帮助工程师设计更有效的流体系统;3. 医学研究:旋转液体的研究也可以应用于医学领域,帮助研究人员更好地了解血液在旋转时的行为,为血液循环系统的疾病诊断和治疗提供参考。

结论:通过本次实验,我们深入了解了旋转液体的行为和原理,并探讨了其在不同领域的应用潜力。

旋转液体的研究不仅仅是一种有趣的科学实验,更是为我们揭示了液体的复杂性和多样性。

旋转水实验报告

旋转水实验报告

一、实验目的1. 通过旋转水实验,观察并分析旋转液体表面的形状变化。

2. 探究旋转液体表面的形状与重力加速度、旋转角速度之间的关系。

3. 了解旋转液体在科学研究和实际应用中的重要性。

二、实验原理当圆柱形容器中的液体绕其圆柱面的对称轴匀速转动时,液体表面会形成一个抛物面。

这是因为液体受到向心力(惯性离心力)的作用,导致液体表面各点向旋转轴方向偏离。

抛物面的形状与重力加速度、旋转角速度等因素有关。

三、实验器材1. 圆柱形容器2. 水泵3. 计时器4. 刻度尺5. 数据记录表四、实验步骤1. 将圆柱形容器装满水,确保水面与容器边缘相平。

2. 使用水泵将容器内的水抽出,使其旋转。

3. 观察并记录旋转水表面的形状,用刻度尺测量抛物面的参数。

4. 改变旋转速度,重复步骤3,观察并记录不同旋转速度下抛物面的形状。

5. 根据实验数据,分析旋转液体表面的形状与重力加速度、旋转角速度之间的关系。

五、实验结果与分析1. 观察结果显示,旋转水表面呈抛物面形状。

随着旋转速度的增加,抛物面的开口角度减小,形状更加扁平。

2. 通过计算,得到旋转液体表面的抛物线方程为:y = (gR^2ω^2/2) x^2,其中y为抛物面高度,x为抛物面水平距离,g为重力加速度,R为圆柱形容器半径,ω为旋转角速度。

3. 分析结果表明,旋转液体表面的形状与重力加速度、旋转角速度之间存在以下关系:- 重力加速度越大,抛物面的开口角度越小,形状更加扁平。

- 旋转角速度越大,抛物面的开口角度越小,形状更加扁平。

六、实验结论1. 旋转液体表面呈抛物面形状,其形状与重力加速度、旋转角速度有关。

2. 通过旋转液体实验,可以测量重力加速度和旋转角速度,为科学研究提供数据支持。

3. 旋转液体在科学研究和实际应用中具有重要意义,如液体镜头、分离机等。

七、实验拓展1. 探究不同密度液体的旋转液体实验,观察并分析其表面形状变化。

2. 研究旋转液体在不同温度下的性质变化,如表面张力、粘度等。

旋转液体综合实验实验报告

旋转液体综合实验实验报告

竭诚为您提供优质文档/双击可除旋转液体综合实验实验报告篇一:旋转液体综合实验旋转液体综合实验浙江大学物理实验教学中心20XX-11旋转液体综合实验在力学创建之初,牛顿的水桶实验就发现,当水桶中的水旋转时,水会沿着桶壁上升。

旋转的液体其表面形状为一个抛物面,可利用这点测量重力加速度;旋转液体的抛物面也是一个很好的光学元件。

美国的物理学家乌德创造了液体镜面,他在一个大容器里旋转水银,得到一个理想的抛物面,由于水银能很好地反射光线,所以能起反射镜的作用。

随着现代技术的发展液体镜头正在向一“大”一“小”两极发展。

大,可以作为大型天文望远镜的镜头;反射式液体镜头已经在大型望远镜中得到了应用,代替传统望远镜中使用的玻璃反射境。

当盛满液体(通常采用水银)的容器旋转时,向心力会产生一个光滑的用于望远镜的反射凹面。

通常这样一个光滑的曲面,完全可以代替需要大量复杂工艺并且价格昂贵的玻璃镜头,而哈勃空间望远镜的失败也让我们了解了玻璃镜头何等脆弱。

小,则可以作为拍照手机的变焦镜头。

美国加利福尼亚大学的科学家发明了液体镜头,它通过改变厚度仅为8mm的两种不同的液体交接处月牙形表面的形状,实现焦距的变化。

这种液体镜头相对于传统的变焦系统而言,兼顾了紧凑的结构和低成本两方面的优势。

旋转液体的综合实验可利用抛物面的参数与重力加速度关系,测量重力加速度,另外,液面凹面镜成像与转速的关系也可研究凹面镜焦距的变化情况。

还可通过旋转液体研究牛顿流体力学,分析流层之间的运动,测量液体的粘滞系数。

【实验原理】一、旋转液体抛物面公式推导定量计算时,选取随圆柱形容器旋转的参考系,这是一个转动的非惯性参考系。

液相对于参考系静止,任选一小块液体p,其受力如图1。

Fi为沿径向向外的惯性离心力,mg为重力,n为这一小块液体周围液体对它的作用力的合力,由对称性可知,n必然垂直于液体表面。

在x-Y坐标下p(x,y)则有:图1原理图ncos??mg?0nsin??Fi?0Fi?m?x2tan??dydx??xg2根据图1有:y??22x?y0(1)2g为旋转角速度,y0为x?0处的y值。

旋转液体特性研究中水量对结果的影响

旋转液体特性研究中水量对结果的影响
ho(mm) Uk k UD D E ho(mm) Uk k UD D E 72 0.00378 0.145 0.03 117.38 0.02607 86.94 0.0021 0.1649 0.03 117.38 0.012738 74 0.00264 0.157 0.03 117.38 0.016817 90 0.00122 0.1623 0.03 117.38 0.007521 77 0.00116 0.16 0.03 117.38 0.007255 93.3 0.00103 0.1615 0.03 117.38 0.006383 79 0.000378 0.1603 0.03 117.38 0.002373 96 0.00112 0.162 0.03 117.38 0.006918 81 0.00105 0.161 0.03 117.38 0.006527 99 0.00135 0.1616 0.03 117.38 0.008358 84 0.00922 0.161 0.03 117.38 0.057268 102 0.000837 0.1633 0.03 117.38 0.005132
旋转液体特性研究中水量对结果的影响
学号: 摘 要:旋转液体特性研究试验是大学物理实验中典型的综合试验
项目之一,本文通过利用不同的水量进行实验,探究水量对实验结果 (激光束平行转轴入射测斜率法求重力加速度)的影响,在对实验数 据进行分析之后,得出了实验结果较为理想的水量,并得出相关的影 响的情况的结论。
因 液 体 的 体 积 不 随 角 速 度 变 化 , 所 以 有
即:y0 =h0-ω ^2*R^2/4g 联立等式(2)和(3)可求得:X0=R/2^1/2 。因此,在
(3)
X=R/2^1/2 处,液面的高度始终保持不变,并且将 X0=R/2^1/2 带入(2)式得, h0=ω ^2*X0^2/2g+y0=ω ^2* R^2/4g+y0 (4)

旋转液体综合实验实验报告结论

旋转液体综合实验实验报告结论

旋转液体综合实验实验报告结论经过对旋转液体的实验探究,我们发现旋转液体的运动规律和静止液体有所不同。

在旋转液体中,液体分子受到离心力和向心力的作用,导致液体呈现出特定的运动规律和形态。

本实验主要探究液体在旋转过程中的运动规律和形态变化。

我们对旋转液体的运动规律进行研究。

实验结果表明,液体在旋转过程中呈现出圆形运动的规律,即液体呈现出环状的形态。

液体分子受到离心力和向心力的作用,使得液体向外凸起,形成一个圆环状的形态。

而在液体中心,液体分子受到向心力的作用,使得液体向内凹陷,形成一个凹陷的圆形区域。

这种运动规律是由液体分子受到离心力和向心力的相互作用所导致的。

我们研究了旋转液体的形态变化。

实验结果表明,在液体旋转过程中,液体的形态发生了明显的变化。

当液体旋转速度较慢时,液体呈现出一个平整的圆形。

当旋转速度逐渐增加时,液体逐渐向外凸起,形成一个圆环状的形态。

当旋转速度进一步增加时,液体中心出现一个凹陷区域,形成一个类似于飞碟的形态。

而当旋转速度进一步增加时,液体中心的凹陷区域逐渐消失,液体呈现出一个平整的圆形。

我们对液体旋转的特性进行了探究。

实验结果表明,液体的旋转速度对液体的形态和运动规律都有着重要的影响。

当液体旋转速度较慢时,液体分子受到的离心力和向心力较小,液体呈现出一个平整的圆形。

当旋转速度逐渐增加时,离心力和向心力逐渐增大,液体呈现出一个圆环状的形态。

当旋转速度进一步增加时,液体分子受到的离心力和向心力达到平衡,液体呈现出一个类似于飞碟的形态。

当旋转速度进一步增加时,液体分子受到的离心力和向心力不再平衡,液体呈现出一个平整的圆形。

旋转液体的运动规律和形态变化与静止液体有所不同。

液体分子受到离心力和向心力的作用,导致液体呈现出特定的运动规律和形态。

液体旋转速度对液体的形态和运动规律都有着重要的影响。

本实验的探究结果对于深入理解液体的运动规律和形态变化具有一定的参考价值。

大学物理旋转液体实验报告

大学物理旋转液体实验报告

竭诚为您提供优质文档/双击可除大学物理旋转液体实验报告篇一:大学物理旋转液体【实验题目】如何研究旋转液体问题班级姓名学号教师姓名上课日期20XX年月日教室7教b段406房间座位号(以上信息请根据网络选课页面填写完整。

)任课教师签字:最终成绩:篇二:大学物理一实验报告(共5篇)篇一:大学物理实验报告模板.**学院物理系大学物理学生实验报告实验项目:实验地点:班级:姓名:座号:实验时间:月物理系编制一、实验目的:二、实验仪器设备:三、实验原理:四、实验步骤:教师签名:五、实验数据记录六、实验数据处理七、实验结论与分析及思考题解答1、对实验进行总结,写出结论:2、思考题解答:篇二:大学物理实验报告**学院物理系大学物理学生实验报告实验项目:空气比热容比测定实验实验地点:班级:姓名:座号:实验时间:月日物理系编制一、实验目的:①用绝热膨胀法测定空气的比热容比?。

②观察热力学过程中状态变化及基本物理规律。

③学习气体压力传感器和电流型集成温度传感器的原理及使用方法。

二、实验仪器设备:贮气瓶,温度计,空气比热容比测定仪。

数字电压表1-进气活塞;2-放气活塞;3-ad590;4-气体压力传感器;5-704胶粘剂图4-4-1实验装置简图三、实验原理:气体由于受热过程不同,有不同的比热容。

对应于气体受热的等容及等压过程,气体的比热容有定容比热容c和定压比热容c。

定vp容比热容是将1kg气体在保持体积不变的情况下加热,当其温度升高1?c时所需的热量;而定压比热容则是将1kg气体在保持压强不变的情?cv况下加热,当其温度升高1?c时所需的热量。

显然,后者由于要对外作功而大于前者,即c定容比热容c之比vp。

气体的比热容比?定义为定压比热容c和p??ccpv是一个重要的物理量,经常出现在热力学方程中。

2四、实验步骤:5(1)用气压计测量大气压强p0设为(1.0248?10pa);(2)开启电源,将电子仪器部分预热10分钟,然后用调零电位器调节零点;(3)关闭放气活塞2,打开进气活塞1,用充气球向瓶内打气,使瓶内压强升高(即数字电压表显示值升高120~140mv左右,关闭进气活塞1。

[精品]旋转液体特性实验报告参考及改进

[精品]旋转液体特性实验报告参考及改进

[精品]旋转液体特性实验报告参考及改进实验目的:
1、掌握旋转液体的特性;
2、通过实验观察液体在旋转时的重力与惯性相互作用,加深对液体力学的理解;
3、探究旋转液体表面的形状,研究表面张力对液体形态的影响。

实验器材:
钢球、圆形玻璃容器、旋转台、电机、电源、自制齿轮传动装置。

实验原理:
旋转液体的质心会以圆形轨道运动,这是由于液体分子惯性继续运动的原因导致的;液体表面的形态也会受到表面张力的影响而发生变化。

实验步骤:
1、将圆形玻璃容器放置在旋转台上,并将钢球放入容器中。

2、手动转动旋转台,观察钢球在旋转液体中的行为。

3、通过自制的齿轮传动装置改变旋转台的转速,观察钢球在高速和低速下的行为差异。

4、将一滴液体滴入容器中,观察液体表面形态的变化。

实验结果:
1、在低速旋转时,钢球会在液体中滚动,产生一定的水柱高度。

3、在液体表面滴入液滴后,液滴在旋转时具有扁平的椭圆形态,与表面张力有关。

改进方案:
1、添加摄像头,记录实验过程,以便更好的观察和分析结果。

2、添加红外线传感器,监测钢球位置并自动调节旋转速度,以保持钢球在液体表面上运动。

3、改造旋转台,使其能够沿任意方向旋转,以便更好地研究液体的行为。

旋转的液体实验报告

旋转的液体实验报告

一、实验目的1. 了解旋转液体在容器中运动的基本规律;2. 掌握旋转液体产生的离心力及其对液体运动的影响;3. 观察旋转液体在容器壁上形成的液膜现象。

二、实验原理旋转液体在容器中运动时,由于受到离心力的作用,液体表面会形成液膜。

液膜的形成与液体的粘度、旋转速度、容器形状等因素有关。

本实验通过改变旋转速度、液体种类等条件,观察液膜的变化,研究旋转液体在容器中的运动规律。

三、实验器材1. 旋转装置(如离心机、旋转平台等);2. 容器(如玻璃瓶、塑料瓶等);3. 液体(如水、酒精、甘油等);4. 温度计;5. 秒表;6. 记录纸、笔。

四、实验步骤1. 准备实验器材,确保旋转装置、容器、液体等符合实验要求;2. 将待测液体倒入容器中,液面高度适中;3. 将容器固定在旋转装置上,确保旋转过程中容器不会倾倒;4. 开启旋转装置,逐渐提高旋转速度,观察液膜的变化;5. 记录不同旋转速度下液膜的变化情况,包括液膜形状、厚度、颜色等;6. 改变液体种类,重复实验步骤,比较不同液体在相同旋转速度下的液膜变化;7. 记录实验数据,分析实验结果。

五、实验结果与分析1. 实验结果显示,随着旋转速度的提高,液膜逐渐变薄,液膜形状从圆形逐渐变为椭圆形,最后断裂成多个液滴;2. 不同液体在相同旋转速度下,液膜的变化情况有所不同。

例如,水在较高旋转速度下容易形成液膜,而甘油在较低旋转速度下就容易出现液滴;3. 通过实验数据可以看出,液膜的厚度与旋转速度、液体粘度等因素有关。

旋转速度越高,液膜越薄;液体粘度越高,液膜越厚。

六、实验结论1. 旋转液体在容器中运动时,受到离心力的作用,液体表面会形成液膜;2. 液膜的形成与旋转速度、液体粘度等因素有关;3. 液膜的变化可以反映旋转液体在容器中的运动规律。

七、实验注意事项1. 实验过程中,注意旋转装置的稳定性,防止容器倾倒;2. 实验过程中,注意观察液膜的变化,及时记录实验数据;3. 实验结束后,清理实验器材,保持实验室整洁。

旋转液体物理实验报告

旋转液体物理实验报告

旋转液体物理实验报告实验名称:旋转液体物理实验实验目的:通过旋转一个容器中的液体,观察液体在高速旋转下的行为,探究液体分子之间的相互作用及旋转力学原理。

实验材料:旋转容器、水、食用油、其他液体(可选)、测量器具(刻度尺、天平等)实验步骤:1. 将旋转容器装置好,保证容器平稳放置,且能够自由旋转。

2. 加入一定量的液体,如水或食用油等,保证液体深度不超过容器高度的50%,以避免喷溅。

3. 以较慢的速度开始旋转容器,同时观察液体的行为,记录下液体的运动状况。

4. 逐渐增加旋转速度,观察液体运动的变化,记录下液体形态、液面的高度和变化等情况。

5. 可以尝试加入其他液体,如色素或更稠密的液体,观察液体在相互作用下的变化。

6. 根据实验结果,分析液体在旋转过程中的行为和原理。

实验结果:1. 在较低速度下旋转容器时,液体呈现出类似惯性运动的状态,呈“拱形”分布。

2. 随着旋转速度的增加,液体开始内旋,形成中心孔洞,并且切面上会产生明显的凸起,即“反正塞定律”。

3. 如果加入了其他液体,则不同液体之间的相互作用会引起液体的混合或分层现象。

实验分析:液体在旋转中的行为是由旋转力学原理决定的。

在旋转容器时,容器与液体产生相对运动,液体分子会因此产生惯性力,使液体向外绕曲一定程度,形成了“拱形”。

当旋转速度逐渐增加时,液体的惯性力也将会逐渐增强。

液体顶部的面积较小,旋转半径小,相对速度会变大,因此离心力也会增加。

这样,液体顶部将会“积聚”出来,形成中心孔洞。

而由于液体的黏性和表面张力,液体的“飞溅”出去又会立即被拉回来,形成了明显的凸起。

液体中的“层流”,即较稠密的液体位于下层,较稀疏的液体位于上层,也与旋转速度有关。

实验意义:旋转液体物理实验可以直观地观察液体在旋转过程中被离心力所影响的变化,深入了解液体本身的性质和分子之间的相互作用。

此外,实验还可以拓展到其他领域,如建筑、化学等,以进一步扩展学生的实践及科学素养。

旋转液体研究实验报告

旋转液体研究实验报告

旋转液体研究实验报告实验目的:本实验旨在研究液体在旋转情况下的物理特性,探究液体旋转对液体分布、表面形态和稳定性等方面的影响。

实验装置与材料:1. 旋转平台:用于提供旋转动力。

2. 试管架:用于支撑试管。

3. 试管:容纳液体的玻璃管。

4. 液体:选择不同种类的液体进行实验。

实验步骤:1. 将试管放置在试管架上。

2. 加入适量的液体至试管中。

3. 启动旋转平台,使试管开始旋转。

4. 观察液体在旋转过程中的行为,包括液面的变化、液滴的形成与移动等。

实验数据与结果:1. 在液体旋转过程中,液面出现明显的偏移现象,呈现凹或凸面状。

2. 高速旋转时,液面形成不规则的波纹,并且液滴从液面上溅射出来。

3. 小液滴在旋转试管内迅速移动,并逐渐汇聚成大液滴。

4. 不同种类的液体在旋转过程中表现出不同的特性,部分液体较难形成稳定的液面。

实验讨论:1. 液体在旋转过程中,受到向心力的作用,导致液面形成凸或凹面状。

这是因为向心力使液体团聚在远离旋转轴的一侧,使其凸起或下陷。

2. 高速旋转时,液体的表面张力会使液滴从液面上溅射出来。

这是因为液体的表面张力无法阻止液滴被向外甩出的力。

3. 液滴在旋转试管内迅速移动并合并,是由于旋转使得离心力使得导致液滴向试管顶部靠拢,在顶部汇聚成大液滴。

4. 不同液体的旋转特性差异可能与液体的粘度、表面张力等有关。

结论:旋转液体会对液体的分布、表面形态和稳定性产生影响。

液体在旋转下呈现凹或凸面状,液滴在旋转试管内迅速移动并汇聚成大液滴。

不同液体的旋转特性差异可能与液体的物理性质有关。

旋转液体物理实验报告

旋转液体物理实验报告

旋转液体物理实验报告旋转液体物理实验报告摘要:本次实验旨在研究旋转液体的物理性质,通过观察和测量旋转液体的形态和行为,探讨液体在旋转时的力学特性。

实验中我们使用了旋转平台和不同形状的容器,通过改变旋转速度和液体的种类,观察液体的形态变化和力学行为。

实验结果表明,旋转液体的形态受到离心力的影响,液体分子在旋转时呈现出特定的排列方式,同时也受到表面张力的影响。

引言:液体是一种特殊的物质状态,其分子之间存在着相对自由的运动。

在静止状态下,液体的形状取决于容器的形状,而在旋转状态下,液体的形态则会发生变化。

旋转液体的研究不仅有助于深入理解液体的力学性质,还对于工业生产和天文学等领域具有重要意义。

材料与方法:实验所需材料包括旋转平台、不同形状的容器、液体(如水、油等)以及测量工具(如尺子、天平等)。

首先,将容器固定在旋转平台上,并将液体注入容器中。

然后,通过调节旋转平台的转速,使液体开始旋转。

在液体旋转的过程中,观察液体的形态变化,并记录相关数据。

结果与讨论:在实验中,我们观察到了液体在旋转过程中的形态变化。

当旋转平台开始旋转时,液体会向外部边缘移动,形成一个凸起的曲面。

随着旋转速度的增加,液体的凸起部分逐渐变高,形成一个凹陷的中心部分。

这是由于旋转产生的离心力使液体分子在容器内部产生排列,从而形成特定的形态。

实验还表明,液体的形态变化受到液体种类和旋转速度的影响。

例如,当使用不同种类的液体进行实验时,我们发现不同液体的形态变化速度和程度不同。

这是由于不同液体的表面张力不同,从而影响了液体分子的排列方式。

此外,我们还测量了液体在旋转过程中的重量变化。

实验结果显示,液体的重量随着旋转速度的增加而增加。

这是由于旋转时液体分子的离心力增大,使液体分子之间的相互作用增强,从而增加了液体的重量。

结论:通过本次实验,我们深入了解了旋转液体的物理性质。

实验结果表明,旋转液体的形态受到离心力和表面张力的共同影响。

液体分子在旋转时呈现出特定的排列方式,形成凸起的边缘和凹陷的中心部分。

水中旋转实验报告

水中旋转实验报告

一、实验目的1. 了解水中旋转液体所表现出的物理现象。

2. 掌握利用旋转液体测量重力加速度的方法。

3. 研究旋转液体表面形状与重力加速度、旋转角速度之间的关系。

4. 探讨旋转液体在光学系统中的应用。

二、实验原理当圆柱形容器中的液体绕其圆柱面的对称轴匀速转动时,液体表面会形成一个抛物面。

这是由于液体在旋转过程中受到惯性离心力的作用,使得液体表面呈现出向外的倾斜。

根据旋转液体表面形状与重力加速度、旋转角速度之间的关系,可以推导出旋转液体表面方程:\[ y = \frac{1}{2} a r^2 \]其中,\( y \) 为液体表面高度,\( a \) 为重力加速度,\( r \) 为液体表面半径。

通过测量旋转液体表面形状的参数,可以计算出重力加速度。

此外,旋转液体的抛物面还可以作为光学元件,用于光学系统的研究。

三、实验仪器与材料1. 圆柱形容器2. 水银3. 旋转装置4. 游标卡尺5. 水平仪6. 激光测距仪7. 摄像机四、实验步骤1. 将圆柱形容器充满水银,确保液体表面平整。

2. 将旋转装置安装在圆柱形容器上,调整水平仪,确保旋转装置水平。

3. 启动旋转装置,使水银绕圆柱面的对称轴匀速转动。

4. 利用游标卡尺测量液体表面形状的参数,包括液体表面半径、表面高度等。

5. 利用激光测距仪测量液体表面形状的参数,包括液体表面半径、表面高度等。

6. 将测量数据输入计算机,进行数据处理和分析。

7. 计算重力加速度,并与理论值进行比较。

五、实验结果与分析1. 通过实验,观察到水中旋转液体表面呈现出抛物面形状,证实了旋转液体表面方程的正确性。

2. 利用实验数据计算出的重力加速度与理论值基本吻合,误差在可接受范围内。

3. 通过分析旋转液体表面形状与重力加速度、旋转角速度之间的关系,进一步了解了旋转液体的物理特性。

六、实验结论1. 旋转液体表面呈现出抛物面形状,是由于液体在旋转过程中受到惯性离心力的作用。

2. 通过测量旋转液体表面形状的参数,可以计算出重力加速度。

旋转液体综合实验实验报告结论

旋转液体综合实验实验报告结论

旋转液体综合实验实验报告结论
实验报告结论
一、旋转液体综合实验:
1、实验中,随着转速的升高,液面的确出现了涡现象,涡现象和其大小依赖于转速,大的转速的情况下出现的涡现象更明显,涡现的大小和角度又受所选择液体的不同而不同。

2、实验还表明,出现涡现的液平面会在涡现运动的过程中循环起来,这是由涡现中心圆上边缘的水流的速度较大,中心的水流速度较小所引起的,也就是说,圆上边缘的水流会把液面循环起来引起涡现的循环运动。

3、在实验中,当液体在转子内流动时,会出现不同的涡现现象,其类型包括:平坦涡现、扁平涡现、椭圆涡现、梯形涡现、蜂窝状涡现等。

液体在转子内的运动方式不同,涡现的类型也就不尽相同。

4、旋转液体综合实验表明,涡现受转子的转速和所选择液体的影响,液体运动的形式受液体的质量和转子的形状的影响,通过实验,还可以求出液体的重力系数、粘度系数、流变形系数等。

二、实验结论:
实验结果表明,旋转液体综合实验可以用来研究不同转速下的涡现特性,计算出液体的流动特性参数,和研究不同液体运动形式,它也可以用于在工程实践中模拟工况情况。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名 实验目的:
大学物理实验预习报告
实验班号
实验号
实验七 旋转液体的物理特性研究
实验原理及仪器介绍:
1. 请详细说明为什么液面在 x0 处高度是恒定的,为液体静止时的高度 h0?
2. 在测量重力加速度 g 时,为什么激光束必须打在点 x = x0 = R / 2 的液面处? 3. 在数据处理中,由 tan ~ 2 图求得图中直线斜率 K 后,如何求出重力加速度 g?
3
1
4. 推导出重力加速度 g 的不确定度的关系式。
实验内容:
1. 在测量旋转液体在某一定角速度 下的焦距时,应如何选择入射点?
2. 在实验操作中,如何保证屏幕处于水平位置?
3. 简要总结用最小二乘法处理数据的方法。
2
数据表格:
1. 记录所用测量仪器的仪器误差: 2. 列出数据记录表格:
教师签字: 月日
相关文档
最新文档