重庆巴蜀中学数学全等三角形单元测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;

(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠D CE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明

△DBE≌△CFD,得出EB=DF,即可得出结论;

(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.

试题解析:(1)证明:如图,作DF∥BC交AC于F,

则△ADF为等边三角形

∴AD=DF,又∵∠DEC=∠DCB,

∠DEC+∠EDB=60°,

∠DCB+∠DCF=60°,

∠EDB=∠DCA ,DE=CD,

在△DEB和△CDF中,

120

EBD DFC

EDB DCF

DE CD

∠=∠=︒

∠=∠

⎪=

∴△DEB≌△CDF,

∴BD=DF,

∴BE=AD .

(2).EB=AD成立;

理由如下:作DF∥BC交AC的延长线于F,如图所示:

同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,

又∵∠DBE=∠DFC=60°,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD.

点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.

2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且

PA=PE,PE交CD于F

(1)证明:PC=PE;

(2)求∠CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

【答案】(1)证明见解析(2)90°(3)AP=CE

【解析】

【分析】

(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,

∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.

【详解】

(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,

在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;

(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP ,

∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等),

∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°;

(3)、AP =CE

理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP ,

在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),

∴PA=PC ,∠BAP=∠DCP ,

∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E

∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,

即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE

考点:三角形全等的证明

3.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .

(1)求出AFC ∠的度数;

(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)

(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.

【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.

【解析】

【分析】

(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;

(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;

(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出

相关文档
最新文档