2016年南京市中考模拟数学测试卷(建邺一模)及答案

合集下载

2016年南京市建邺区数学一模试卷及答案

2016年南京市建邺区数学一模试卷及答案

x+9≥4,
18.(6 分)解不等式组 2
并写出不等式组的整数解.
2x-3<0,
19.(7 分)如图,在四边形 ABCD 中,AB∥CD,点 E、F 在对角线 AC 上,且∠ABF=
∠CDE,
AE=CF.
(1)求证:△ABF≌△CDE;
(2)当四边形 ABCD 满足什么条件时,四边形 BFDE 是菱形?为什么?
写作法,保留作图痕迹)
(2)如图②,在△ABC 中,AB=AC,∠BAC=36°,点 D、E 是△ABC 的两个巧妙点,
其中 AD=AB,AE=AC,BD=BC=CE,连接 DE,分别交 AB、AC 于点 M、N.
求证: DA2=DB·DE.
A
A
D
M
N
E
B
C
图①
B
C
图②
深入研究
(第 27 题)
(3)在△ABC 中,AB=AC,若存在一点 P,使 PB=BA,PA=PC.点 P 可能为△ABC
ab (a+b)(a-b)
=- 1 .····················································································· 4 分 a+b
当 a= 2+1,b= 2-1 时,
原式=- 18.(本题 6 分)
1
=-
( 2+1)+( 2-1)
3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净
后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定
位置,在其他位置答题一律无效.
4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.

2022——2023学年南京市建邺区中考数学专项提升仿真模拟卷(3月4月)含答案

2022——2023学年南京市建邺区中考数学专项提升仿真模拟卷(3月4月)含答案

2022-2023学年南京市建邺区中考数学专项提升仿真模拟卷(3月)一、选一选(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上)1.下列计算结果为负数的是()A.(-3)+(-4)B.(-3)-(-4)C.(-3)⨯(-4)D.(-3)-42.计算a 6×(a 2)3÷a 4的结果是()A.a 3B.a 7C.a 8D.a 93.若锐角三角函数tan55°=a,则a 的范围是()A.0<a <1B.1<a <2C.2<a <3D.3<a <44.下列各数中,相反数、值、平方根、立方根都等于其本身的是()A.0B.1C.0和1D.1和-15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是()A.2B.2.5C.3D.46.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB 的长度为a,则在这三种视图的所有线段中,长度为a 的线段条数是()A.12条B.9条C.6条D.5条二、填空题(本大题共10小题,每小题2分,共20分.没有需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7.函数中,自变量x的取值范围是________.8.分解因式a3﹣a的结果是_____.9.若关于x的一元二次方程x2-kx-2=0有一个根是1,则另一个根是____.10.中国航母是中国人民海军艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.11.若甲组数据1,2,3,4,5的方差是S甲2,乙组数据6,7,8,9,10的方差是S乙2,则S甲2_______S乙2(填“>”、“<”或“=”)12.在同一平面直角坐标系中,反比例函数y1=kx(k为常数,k≠0)的图像与函数y2=-x+a(a为常数,a≠0)的图像相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为________.13.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧 BD的长为________cm.14.如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=________°.15.如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL 是正方形,则正方形IJKL的边长为________(用含a的代数式表示).16.如图,以AB 为直径的半圆沿弦BC 折叠后,AB 与 BC相交于点D.若13CD BD =,则∠B=________°.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(a+2+1a )÷(a-1a).18.解没有等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.19.如图,①四边形ABCD 是平行四边形,线段EF 分别交AD、AC、BC 于点E、O、F,②EF⊥AC,③AO=CO .(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是(直接写出这个条件的序号).20.某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的与零售价如下表所示:品名西红柿豆角4.6(单位:元/千克) 3.6零售价(单位:元/千克) 5.47.5问:他当天卖完这些西红柿和豆角能赚多少钱?21.超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?22.河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:(1)【收集数据】若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是________.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.(2)【整理数据】将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:成绩(单位:分)频数频率A类(80~100)18B类(60~79)9C类(40~59)6D类(0~39)3①C类和D类部分的圆心角度数分别为________°、________°;②估计九年级A、B类学生一共有________名.(3)【分析数据】教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和河西中学71524320.75复兴中学71804970.82你认为哪所学校本次测试成绩较好,请说明理由.23.下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果到0.1m).(参考数据:tan15°≈0.27,tan30°≈0.58)24.一辆货车从甲地出发以每小时80km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5h后,在距乙地160km处与轿车相遇.图中线段AB表示货车离乙地的距离y1km与货车行驶时间x h的函数关系.(1)求y 1与x 之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y 2与x 的图像,求该图像与x 轴交点坐标并解释其实际意义.25.某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试,得知该产品每天的量t (件)与每件价x (元/件)之间有如下关系:390t x =-+.(1)请写出该超市这种产品每天的利润y (元)与x 之间的函数表达式;(2)当x 为多少元时,利润?利润是多少?26.Rt△ABC 中,∠ACB=90°,AC:BC=4:3,O 是BC 上一点,⊙O 交AB 于点D,交BC 延长线于点E.连接ED,交AC 于点G,且AG=AD.(1)求证:AB 与⊙O 相切;(2)设⊙O 与AC 的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD 的长.27.图①是一张∠AOB=45°的纸片折叠后的图形,P 、Q 分别是边OA、OB 上的点,且OP=2cm .将∠AOB 沿PQ 折叠,点O 落在纸片所在平面内的C 处.(1)①当PC∥QB 时,OQ =cm ;②在OB 上找一点Q,使PC ⊥QB (尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ 的长.2022-2023学年南京市建邺区中考数学专项提升仿真模拟卷(3月)一、选一选(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上)1.下列计算结果为负数的是()A.(-3)+(-4)B.(-3)-(-4)C.(-3)⨯(-4)D.(-3)-4【正确答案】A【分析】根据有理数的运算法则依次计算后比较即可.【详解】解:选项A,(-3)+(-4)=-7,符合题意;选项B,(-3)-(-4)=-3+4=1,没有符合题意;选项C,(-3)⨯(-4)=12,没有符合题意;选项D,(-3)-4=81,没有符合题意.由此可得,只有选项A的计算结果为负数,故选A.本题主要考查了有理数的运算法则.熟知运算法则是解题的关键.2.计算a6×(a2)3÷a4的结果是()A.a3B.a7C.a8D.a9【正确答案】C【分析】根据幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则依次计算即可.【详解】解:a6×(a2)3÷a4=a6×a6÷a4=a12÷a4=a8.故选C.本题主要考查了幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则,熟记运算法则是解题的关键.3.若锐角三角函数tan55°=a,则a的范围是()A .0<a <1B.1<a <2C.2<a <3D.3<a <4【正确答案】B【详解】分析:首先明确tan45°=1,解答即可.详解:∵tan45°=1,∴1<tan55°,∴1<tan55°<2.故选B.点睛:本题考查了锐角三角函数的增减性,利用角的三角函数值和锐角三角函数的增减性是解决这类题目的基本思路.4.下列各数中,相反数、值、平方根、立方根都等于其本身的是()A.0B.1C.0和1D.1和-1【正确答案】A【详解】分析:由相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,即可求得答案.详解:∵相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,∴相反数、平方根、立方根都等于它本身的数是0.故选A .点睛:本题考查了相反数、平方根与立方根的定义.此题比较简单,注意熟记定义是解此题的关键.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是()A.2B.2.5C.3D.4【正确答案】B【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB 的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是()A.12条B.9条C.6条D.5条【正确答案】D【分析】观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a的线段,俯视图中有3条长度为a的线段,由此即可解答.【详解】观察三棱锥的三视图,可得主视图只有底边的长度为a的线段,左视图中只有左侧边的长度为a的线段,俯视图中有3条长度为a的线段,所以在这三种视图的所有线段中,长度为a的线段条数是1+1+3=5条.故选D.本题考查了简单几何体的三视图,解决本题的难点是判断出三棱锥的三视图是三个全等的等边三角形.二、填空题(本大题共10小题,每小题2分,共20分.没有需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7.函数中,自变量x的取值范围是________.【正确答案】x≤1【详解】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1-x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.8.分解因式a3﹣a的结果是_____.【正确答案】a(a+1)(a﹣1).【分析】先提取公因式a后再利用平方差公式因式分解即可.【详解】解:a3-aa-=a(21)=2(a+1)(a-1).故答案为2(a+1)(a-1).本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都没有能够在分解即可.9.若关于x 的一元二次方程x 2-kx-2=0有一个根是1,则另一个根是____.【正确答案】-2.【详解】试题分析:由于该方程的项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.试题解析:设方程的另一根为x 1,由根据根与系数的关系可得:x 1•1=-2,∴x 1=-2.考点:根与系数的关系.10.中国航母是中国人民海军艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.【正确答案】6.75×104.【详解】试题解析:67500=6.75×104.考点:科学记数法—表示较大的数11.若甲组数据1,2,3,4,5的方差是S 甲2,乙组数据6,7,8,9,10的方差是S 乙2,则S甲2_______S 乙2(填“>”、“<”或“=”)【正确答案】=【分析】先求各组平均数,再根据方差公式计算,比较计算结果即可得出答案.【详解】∵甲组的平均数:()1234553++++÷=∴甲组的方差:()()()()()222222132333435352S ⎡⎤=-+-+-+-+-÷=⎣⎦甲∵乙组的平均数:()67891058++++÷=∴乙组的方差:()()()()()2222226878889810852S ⎡⎤=-+-+-+-+-÷=⎣⎦乙∴22S S =甲乙故=.本题考查的是方差,熟记方差的公式是解决本题的关键.12.在同一平面直角坐标系中,反比例函数y 1=kx(k 为常数,k ≠0)的图像与函数y 2=-x+a(a为常数,a≠0)的图像相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为________.【正确答案】(n,m)【详解】分析:根据反比例函数y1=kx(k为常数,k≠0)的图像与函数y2=-x+a(a为常数,a≠0)的图像两个交点关于直线y=x对称,由此即可解答.详解:∵反比例函数y1=kx(k为常数,k≠0)的图像与函数y2=-x+a(a为常数,a≠0)的图像两个交点关于直线y=x对称,点A的坐标为(m,n),∴点B的坐标为(n,m).故答案为(n,m).点睛:本题主要考查了反比例函数图象与函数图象的交点问题,熟知直线y=x对称的两个点的坐标就是x和y互换是解题的关键.13.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧 BD的长为________cm.【正确答案】73.【分析】连接OB、OD,首先根据圆周角定理求出∠BOD的度数,然后根据弧长公式求解.【详解】解:如图,连接OB、OD,∵∠A=110°,∴∠C=70°,∴∠BOD =140°,则劣弧 BD=140371803ππ⨯=.本题考查弧长的计算、圆周角定理、圆内接四边形的性质,根据圆周角定理求出∠BOD 的度数是解题的关键.14.如图,点F、G 在正五边形ABCDE 的边上,BF、CG 交于点H,若CF=DG,则∠BHG=________°.【正确答案】108°【详解】分析:根据正多边形的性质及已知条件可证得△BCF ≌△CDG ,根据全等三角形的性质可得∠CBF=∠GCD ,由三角形的外角的性质可得∠BHG =∠CBF+∠BCH=∠DCG+∠BCH=∠BCD ,即可求得∠BHG 的度数.详解:∵五边形ABCDE 是正五边形,∴BC=CD ,∠BCF=∠CDG=108°,在△BCF 和△CDG 中,BC CDBCF CDG CF DG =⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△CDG ,∴∠CBF=∠GCD ,∴∠BHG =∠CBF+∠BCH=∠DCG+∠BCH=∠BCD=108°.故答案为108.点睛:本题主要考查了正五边形的性质,证明△BCF ≌△CDG 是解决本题的关键.15.如图,正八边形ABCDEFGH 的边长为a,I、J、K、L 分别是各自所在边的中点,且四边形IJKL 是正方形,则正方形IJKL 的边长为________(用含a 的代数式表示).【正确答案】22a 【详解】分析:过点A 作AM ⊥IL 于点M ,过点H 作HN ⊥IL 与点N ,可得四边形AMNH 为矩形,根据正八边形的性质可得∠BAH=135°,由此可得∠BAM=45°,在等腰直角三角形AIM 中,AI=12a ,可求得AM=IM=24a ,同理求得HN=LN=24a ,所以IL=IM+MN+LN=IM+AH+LN=24a +a+24a =22a .详解:过点A 作AM ⊥IL 于点M ,过点H 作HN ⊥IL 与点N ,可得四边形AMNH 为矩形,∵八边形ABCDEFGH 为正八边形,∴∠BAH=135°,∵∠HAM=90°,∴∠BAM=45°,在等腰直角三角形AIM 中,AI=12a∴AM=IM=24a ;同理求得HN=LN=24a ,∴IL=IM+MN+LN=IM+AH+LN=24a +a+24a =22a +.故答案为22a .点睛:本题考查了正多边形的知识,作出辅助线求得IM 、NL 的长是解题的关键.16.如图,以AB 为直径的半圆沿弦BC 折叠后,AB 与 BC相交于点D.若13CD BD =,则∠B=________°.【正确答案】18°【分析】由折叠的性质可得∠ABC=∠CBD ,根据在同圆和等圆中,相等的圆周角所对的弧相等可得 =AC CD,再由13CD BD =和半圆的弧度为180°可得 AC 的度数×5=180°,即可求得 AC 的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.【详解】解:由折叠的性质可得∠ABC=∠CBD ,∴ =AC CD ,∵13CDBD =,∴ AC 的度数+ CD的度数+ BD 的度数=180°,即 AC 的度数×5=180°,∴ AC 的度数为36°,∴∠B=18°.故答案为:18.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小没有变,位置变化,对应边和对应角相等.还考查了圆弧的度数与圆周角之间的关系.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(a+2+1a)÷(a-1 a).【正确答案】1 1 a a + -【详解】分析:把括号内的分式通分相加,然后把除法转化成乘法,然后进行乘法运算即可求解.详解:原式=÷=·=·=.点睛:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.18.解没有等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【正确答案】﹣1≤x<2.【分析】求没有等式组的解集首先要分别解出两个没有等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,小小找没有到(”确定没有等式组解集的公共部分.【详解】解没有等式①,得x<2,解没有等式②,得x≥﹣1,∴没有等式组的解集是﹣1≤x<2.没有等式组的解集在数轴上表示如下:19.如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是(直接写出这个条件的序号).【正确答案】(1)证明见解析(2)②【分析】(1)根据平行四边形的性质可得AE∥CF,根据平行线的性质可得∠DAC=∠BCA,然后再加上条件AO=CO,对顶角∠AOE=∠FOC,可利用ASA证明△AOE≌△COF,根据全等三角形的性质可得AE=CF,根据一组对边平行且相等的四边形是平行四边形即可得四边形AFCE是平行四边形;(2)根据(1)的证明可得EF⊥AC多余.【详解】解:(1)∵四边形ABCD是平行四边形,∴AE∥CF,∴∠DAC=∠BCA,在△AOE和△COF中,DC ACBAO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA)∴AE=CF∴四边形AFCE是平行四边形(2)由(1)的证明可得EF⊥AC多余.故答案为②.点睛:本题主要考查了平行四边形的判定及性质,解题的关键是熟知平行四边形的判定方法和性质.20.某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的与零售价如下表所示:品名西红柿豆角(单位:元/千克) 3.6 4.6零售价(单位:元/千克) 5.47.5问:他当天卖完这些西红柿和豆角能赚多少钱?【正确答案】卖完这些西红柿和豆角能赚111.6元【详解】分析:设批发了西红柿x千克,豆角y千克,利用本题中的两个等量关系“①西红柿的千克数+豆角的千克数=40千克,②西红柿的斤数×西红柿的+豆角的斤数×豆角的=180元”,列出方程组,解方程组求得x、y的值,再利用“当天赚的钱=(西红柿的零售价-)×西红柿的重量+(豆角的零售价-)×豆角重量”,计算出当天赚的钱数即可.详解:设批发了西红柿x千克,豆角y千克由题意得:40 3.6 4.6180x yx y+=⎧⎨+=⎩解得:436 xy=⎧⎨=⎩(5.4-3.6)×4+(7.5-4.6)×36=111.6(元)答:卖完这些西红柿和豆角能赚111.6元.点睛:本题考查了二元方程组的=应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?【正确答案】(1)14(2)13【详解】分析:(1)已知总共有4个苹果,最重的只有1个,根据概率公式即可求得恰是最重的苹果的概率是14;(2)从四个苹果中随机抽取2个,总共有6种结果,总重量超过232g的结果有2种,根据概率公式即可求得总重量超过232g的概率是1 3.详解:(1);(2)共有6种等可能出现的结果,分别为①(100,110);②(100,120);③(100,125);④(110,120);⑤(110,125);⑥(120,125);总重量超过232g的结果有2种,即(110,125),(120,125).因此,总重量超过232g的概率是.点睛:本题考查了简单的概率计算,熟知概率公式是解题的关键.22.河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:(1)【收集数据】若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是________.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.(2)【整理数据】将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:成绩(单位:分)频数频率A类(80~100)18B类(60~79)9C类(40~59)6D类(0~39)3①C类和D类部分的圆心角度数分别为________°、________°;②估计九年级A、B类学生一共有________名.(3)【分析数据】教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和河西中学71524320.75复兴中学71804970.82你认为哪所学校本次测试成绩较好,请说明理由.【正确答案】(1)①;(2)①60;30;②225;(3)河西中学,理由:平均分相同,河西中学极差和方差较小,河西中学成绩更稳定(或复兴中学,理由:平均分相同,复兴中学A,B类频率和高,复兴中学高分人数更多)【分析】(1)抽取的学生必须具有代表性,能够反映全年级的的情况,可得出抽样方法中最合理的是①;(2)①分别用C类和D类所占的百分比×360°,计算即可;②A、B类学生一共有的人数=300×A、B类学生所占的百分比之和,计算就可求解;(3)从平均数、方差、高分段的人数,对两所学校分别分析即可.【详解】解:(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是:①在九年级学生中随机抽取36名学生的成绩,故答案为①;(2)①C类部分的圆心角度数为360°×16=60°,D类部分的圆心角度数为360°×112=30°,故答案为60°,30°;②估计九年级A、B类学生一共有300×1124⎛⎫+⎪⎝⎭=225,故答案为225;(3)河西中学,理由是平均分相同,河西中学极差和方差较小,河西中学成绩更稳定.复兴中学,理由是平均分相同,复兴中学A,B类频率和高,复兴中学高分人数更多.本题考查了抽样、扇形统计图、用样本估计总体、频数与频率等,熟练掌握相关知识,能从统计图表中得到必要的信息是解题的关键.23.下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果到0.1m).(参考数据:tan15°≈0.27,tan30°≈0.58)【正确答案】1.4m【详解】分析:过点A作AP⊥EF,垂足为P,可证明四边形ADEP为矩形,再求得∠BAP=15°,AP=CP,在Rt△APB中,根据锐角三件函数可得BP=0.27AP=0.27CP,再由BC=CP—BP 求得CP的长,即可求得CF的长.详解:过点A作AP⊥EF,垂足为P,∵AD⊥DE,∴∠ADE=90°,∵AD∥EF,∴∠DEP=90°,∵AP⊥EF,∴∠APE=∠APC=90°,∴∠ADE=∠DEP=∠APE=90°,∴四边形ADEP为矩形,∴EP=AD=0.5m,∠APC=90°,∠ACB=45°,∴∠CAP=45°=∠ACB,∠BAP=∠CAP—∠CAB=45°—30°=15°∴AP=CP在Rt△APB中,tan∠BAP==tan15°=0.27,∴BP=0.27AP=0.27CP,∴BC=CP—BP=CP—0.27CP=0.73CP=1.2m,∴CP=1.64m,∴CF=EF—EP—CP=3.5—0.5—1.64=1.36≈1.4m点睛:本题主要考查了解直角三角形的应用,正确作出辅助线,构造直角三角形是解题的关键.24.一辆货车从甲地出发以每小时80km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5h后,在距乙地160km处与轿车相遇.图中线段AB表示货车离乙地的距离y1km与货车行驶时间x h的函数关系.(1)求y1与x之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x轴交点坐标并解释其实际意义.【正确答案】(1)y1=—80x+360;(2)糊涂见解析,与x轴交点坐标为(0.9,0),轿车比货车晚出发0.9h【分析】(1)根据题意,设出y1与x之间的函数表达式,用待定系数法求函数的解析式即可;(2)根据轿车和货车同时到达,可得终点坐标为(4.5,360),设出函数的解析式为y2=k2x+b2,,用待定系数法求出函数的解析式,画出函数图象,求得图象与x轴的交点坐标,并实际情况写出该点的实际意义即可.【详解】解:(1)由条件可得k1=—80,设y1=—80x+b1,过点(2.5,160),可得方程160=—80×2.5+b1,解得b1=360,∴y1=—80x+360;(2)当y1=0时,可得x=4.5,轿车和货车同时到达,终点坐标为(4.5,360),设y2=k2x+b2,过点(2.5,160)和(4.5,360),解得k2=100,b2=—90,∴y2=100x—90图像如下图:与x轴交点坐标为(0.9,0),说明轿车比货车晚出发0.9h.本题考查了函数的应用,解题的关键是根据函数图象的点的坐标求的函数的解析式,题目中还渗透了数形的数学思想.25.某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试,得知该产品每天的量t (件)与每件价x (元/件)之间有如下关系:390t x =-+.(1)请写出该超市这种产品每天的利润y (元)与x 之间的函数表达式;(2)当x 为多少元时,利润?利润是多少?【正确答案】(1)y =—3x²+150x—1800(2)当售价为25元时,有利润75元【详解】分析:(1)由每天的利润﹦件数×(售价-购进价)即可求出每天的利润y(元)与x 之间的函数表达式;(2)根据二次函数的值的性质解决即可.详解:(1)表达式为y =(—3x+90)(x—20),化简为y =—3x²+150x—1800;(2)把表达式化为顶点式y =—3(x—25)²+75,当x=25时,y 有值75.答:当售价为25元时,有利润75元点睛:本题是二次函数应用——利润问题,常用公式有:(1)利润=售价-进价,(2)总利润=单个商品的利润×量,解决这类问题的基本思路为:先建立函数模型,把利润问题转化为函数的最值问题,从而使问题得到解决26.Rt△ABC 中,∠ACB=90°,AC:BC=4:3,O 是BC 上一点,⊙O 交AB 于点D,交BC 延长线于点E.连接ED,交AC 于点G,且AG=AD.(1)求证:AB 与⊙O 相切;(2)设⊙O 与AC 的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD 的长.【正确答案】(1)证明见解析(2)258【详解】分析:(1)连结OD,由∠ACB=90°,可得∠OED+∠EGC=90°,再由OD=OE,根据等腰三角形的性质可得∠ODE=∠OED,再因AG=AD,根据等腰三角形的性质可得∠ADG =∠AGD,由∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,可得OD⊥AB,所以AB是⊙O的切线;(2)连接OF,由EF∥AB,AC:BC=4:3,可得CF:CE=4:3.在Rt△ECF中,EF =5,求得CF=4,CE=3.设半径=r,则OF=r,CF=4,CO=r-3.在Rt△OCF中,由勾股定理求得r=256,再证得△CEF∽△DBO,根据相似三角形的性质可得CF CEDO DB,由此求得BD=258.详解:(1)证明:连结OD∵∠ACB=90°,∴∠OED+∠EGC=90°,∴OD=OE,∴∠ODE=∠OED,∵AG=AD,∴∠ADG=∠AGD,∵∠AGD=∠EGC,∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,∴OD⊥AB,∵OD为半径,∴AB是⊙O的切线;(2)连接OF.∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3.又∵EF=5,∴CF=4,CE=3.设半径=r,则OF=r,CF=4,CO=r-3.在Rt△OCF中,由勾股定理,可得r=.∵EF∥AB,∴∠CEF=∠B,∴△CEF∽△DBO,∴=,∴BD=.点睛:本题主要考查了切线的判定方法、勾股定理以及相似三角形的判定和性质,证明切线的常用的方法是切线的判定定理.27.图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.【正确答案】(1)2;见解析(2)当点C在∠AOB的内部或一边上时,则重叠部分即为△CPQ【详解】分析:(1)①证明四边形,即可得OQ=OP=2cm;②分点C、P在BQ同侧和异侧两种情况作图即可;(3)当折叠后重叠部分为等腰三角形时,符合条件的点Q共有5个;点C在∠AOB的内部或一边上时,由折叠的性质、三角形内角和定理以及解直角三角形即可求出OQ 的长;点C在∠AOB的外部时,同理求出OQ的长即可.详解:(1)①当PC∥QB时,∠O=∠CPA,由折叠的性质得:∠C=∠O,OP=CP,。

2016年中考数学真题试题及答案(word版)

2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )

2022年江苏省南京市建邺区中考数学一模试卷及答案解析

2022年江苏省南京市建邺区中考数学一模试卷及答案解析

2022年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2022的倒数是()A.﹣2022B.2022C.D.﹣2.(2分)下列计算中,结果正确的是()A.a2+a2=a4B.a2•a3=a6C.(a3)2=a5D.a3÷a2=a 3.(2分)估计的值在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.(2分)如图,在数轴上,点A、B分别表示数a、b,且a+b=0.若AB=4,则点A表示的数为()A.﹣4B.﹣2C.2D.45.(2分)如图,把矩形纸片ABCD分割成正方形纸片ABFE和矩形纸片EFCD,分别裁出扇形ABF和半径最大的圆.若它们恰好能作为一个圆锥的侧面和底面,则AD:AB为()A.3:2B.7:4C.9:5D.2:16.(2分)在平面直角坐标系中,点A的坐标是(﹣2,3),将点A绕点C顺时针旋转90°得到点B.若点B的坐标是(5,﹣1),则点C的坐标是()A.(﹣0.5,﹣2.5)B.(﹣0.25,﹣2)C.(0,﹣1.75)D.(0,﹣2.75)二、填空题(本大题共10小题,每小题2分,共20分。

请把答案填写在答题卡相应位置上)7.(2分)若式子在实数范围内有意义,则x的取值范围是.8.(2分)第24届冬季奥林匹克运动会在北京举行.据报道,在赛事期间,创纪录地有超过6400万人使用奥林匹克网站和APP关注冬奥会.用科学记数法表示6400是.9.(2分)方程=的解为.10.(2分)设x1,x2是方程x2﹣2x﹣1=0的两个根,则x1(1+x2)+x2=.11.(2分)科学家发现某种细菌的分裂能力极强,这种细菌每分钟可由1个分裂成2个,将一个细菌放在培养瓶中经过a(a>5)分钟就能分裂满一瓶.如果将8个这种细菌放入同样的一个培养瓶中,那么经过分钟就能分裂满一瓶.12.(2分)为了解某校“双减”政策落实情况,一调查机构从该校随机抽取100名学生,了解他们每天完成作业的时间,得到的数据如图(A:不超过30分钟;B:大于30不超过60分钟;C:大于60不超过90分钟;D:大于90分钟),则该校2000名学生中每天完成作业时间不超过60分钟的学生约有人.13.(2分)如图,⊙O的直径AB=4cm,PB、PC分别与⊙O相切于B、C两点,弦CD∥AB,AD∥CP,则PB=cm.14.(2分)如图,在△ABC中,∠B=30°,点D是AC上一点,过点D作DE∥BC交AB 于点E,DF∥AB交BC于点F.若AE=5,CF=4,则四边形BFDE的面积为.15.(2分)如图,点A是函数y=图象上的任意一点,点B、C在反比例函数y=的图象上.若AB∥x轴,AC∥y轴,阴影部分的面积为4,则k=.16.(2分)如图,“爱心”图案是由函数y=﹣x2+6的部分图象与其关于直线y=x的对称图形组成.点A是直线y=x上方“爱心”图案上的任意一点,点B是其对称点.若,则点A的坐标是.三、解答题(本大题共11小题,共88分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)化简()÷.19.(8分)如图,在菱形ABCD中,E、F分别是BC、DC的中点.(1)求证:∠AEF=∠AFE;(2)若菱形ABCD的面积为8,则△AEF的面积为.20.(8分)2021年7月24日,杨倩获得了东京奥运会的首枚金牌,这也激发了人们对射击运动的热情.李雷和林涛去射击场馆体验了一次射击,两人成绩如下:李雷10次射击成绩统计表命中环数命中次数5环26环17环38环39环1(1)完成下列表格:平均数(单位:环)中位数(单位:环)方差(单位:环2)李雷77林涛75(2)李雷和林涛很谦虚,都认为对方的成绩更好.请你分别为两人写一条理由.21.(8分)如图,高铁车厢一排有5个座位,其中A座、F座靠窗,C座、D座被过道隔开.甲、乙两人各买了一张同班次高铁的车票,假设系统已将两人分配到同一排,且在同一排分配各个座位的机会是均等的.(1)甲的座位靠窗的概率是;(2)求甲、乙两人座位相邻(座位C、D不算相邻)的概率.22.(8分)尺规作图:如图,已知△ABC,AB=AC,作矩形MNPQ,使得点M、N分别在边AB、AC上,点P、Q在边BC上,且MN=2MQ(不写作法,保留作图痕迹).23.(8分)甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为y1(单位:m)、y2(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为v1m/s,乙的速度为v2m/s.(1)v1:v2=,a=;(2)求y2与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.24.(8分)图①是一只消毒液喷雾瓶的实物图,其示意图如图②,AB=6cm,BC=4cm,∠ABC=85°,∠BCD=120°.求点A到CD的距离.(精确到三位小数,参考数据:sin65°≈0.905,cos65°≈0.423,tan65°≈2.144,≈1.732)25.(8分)如图①,在△ABC中,CA=CB,D是△ABC外接圆⊙O上一点,连接CD,过点B作BE∥CD,交AD的延长线于点E,交⊙O于点F.(1)求证:四边形DEFC是平行四边形;(2)如图②,若AB为⊙O直径,AB=7,BF=1,求CD的长.26.(8分)已知二次函数y=x2﹣2(p+1)x+q的图象经过(1,0)、(0,﹣5)两点.(1)求p、q的值;(2)点A(x1,y1)、B(x2,y2)是该函数图象上两点,若x1+x2=2,求证y1+y2>0.27.(10分)如图①,在四边形ABCD中,AB=AD=5,BC=CD=5,∠B=90°.点M在边AD上,AM=2,点N是边BC上一动点.以MN为斜边作Rt△MNP,若点P在四边形ABCD的边上,则称点P是线段MN的“勾股点”.(1)如图①,线段MN的中点O到BC的距离是.A.B.C.3D.2(2)如图②,当AP=2时,求BN的长度.(3)是否存在点N,使线段MN恰好有两个“勾股点”?若存在,请直接写出BN的长度或取值范围;若不存在,请说明理由.2022年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】根据倒数的定义即可得出答案.【解答】解:2022的倒数是.故选:C.【点评】本题考查了倒数,掌握乘积为1的两个数互为倒数是解题的关键.2.【分析】根据积的乘方等于把每个因式分别乘方,再把所得的幂相乘和幂的乘方:底数不变,指数相加计算即可.【解答】解:A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a2+3=a5,故本选项不合题意;C.(a3)2=a3×2=a6,故本选项不合题意;D.a3÷a2=a3﹣2=a,故本选项符合题意.故选:D.【点评】本题考查的是同底数幂的除法、积的乘方和幂的乘方,掌握它们的运算法则是解题的关键.3.【分析】先求出的范围<<,即可得出答案.【解答】解:∵<<,∴3<<4,∴在3与4之间,故选:B.【点评】本题考查了估计无理数的大小,题目比较好,难度不大.4.【分析】根据相反数的性质,由a+b=0,AB=4即可推出点A表示的数.【解答】解:∵在数轴上,点A、B分别表示数a、b,且a+b=0,∴a=﹣b,a<0,b>0,∵AB=4,∴a=﹣2,b=2,∴点A表示的数为﹣2,故选:B.【点评】题主要考查数轴上点表示的数,熟练掌握相反数的性质是解决本题的关键.5.【分析】设圆锥的底面的半径为rcm,则DE=2rcm,AE=AB=(AD﹣2r)cm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到=2πr,解方程求出r,然后计算AD:AB即可.【解答】解:设此弧所在圆的半径为rcm,则DE=2rcm,AE=AB=(AD﹣2r)cm,则=2πr,解得r=,则AD:AB=AD:(AD﹣)=3:2.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】如图,设AB的中点为Q,过点Z作AN⊥x轴于点N,过点Q作QK⊥AN于点K,过点C作CT⊥QK于T,利用全等三角形的性质求解即可.【解答】解:如图,设AB的中点为Q,∵A(﹣2,3),B(5,﹣1),∴Q(1.5,2),过点Z作AN⊥x轴于点N,过点Q作QK⊥AN于点K,过点C作CT⊥QK于T,则K(﹣2,1)AK=2,QK=3.5,∵∠AKQ=∠CTQ=∠AQC=90°,∴∠AQK+∠CQT=90°,∠CQT+∠TCQ=90°,∴∠AQK=∠TCQ,在△AKQ和△QTC中,,∴△AKQ≌△QTC(AAS),∴QT=AK=2,CT=QK=3.5,∴C(﹣0.5,﹣2.5)故选:A.【点评】本题考查坐标与图形性质﹣旋转,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

2010-2023历年江苏省南京市建邺区中考一模数学试卷(带解析)

2010-2023历年江苏省南京市建邺区中考一模数学试卷(带解析)

2010-2023历年江苏省南京市建邺区中考一模数学试卷(带解析)第1卷一.参考题库(共20题)1.在函数中,自变量x的取值范围是▲.2.已知AB=AC,DB=DE,∠BAC=∠BDE=α.【小题1】如图1,α=60°,探究线段CE与AD的数量关系,并加以证明;【小题2】如图2,α=120°,探究线段CE与AD的数量关系,并说明理由;【小题3】如图3,结合上面的活动经验探究线段CE与AD的数量关系为_______ ___ .(直接写出答案).3.分解因式:= ▲.4.如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.【小题1】判断AE与⊙O的位置关系,并说明理由;【小题2】当BC=4,AC=3CE时,求⊙O的半径.5.计算(2+)-=▲.6.平安加气站某日的储气量为10000立方米.假设加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站的储气量为y(立方米),加气总时间为x(小时)(加气期间关闭加气枪的时间忽略不计).从7︰00开始,加气站加气枪的使用数量如下表所示:时间段7︰00—7︰30]7︰30—8︰008︰00以后加气枪使用︰数量(单位:把)356【小题1】分别求出7︰00—7︰30及8︰00之后加气站的储气量y(立方米)与时间x(小时)的函数关系式.【小题2】若每辆车的加气量均为20立方米,请通过计算说明前50辆车能否在当天8︰00之前加完气.7.矩形ABCD中, AD="8" cm,AB="6"cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动至点B停止,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE ,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的(▲).8.在一幅长8分米,宽6分米的矩形风景画(如图1)的四周镶嵌宽度相同的金色纸边,制成一幅矩形挂图(如图2).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.9.南京长江三桥是世界上第一座弧线形钢塔斜拉桥,全长15600m,用科学记数法表示为(▲).A.156×102mB.15.6×103mC.0.156×104mD.1.56×104m10.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A="63" º,那么∠B= ▲ º.11.已知反比例函数的图象经过点(-1,2),则这个函数的图象位于(▲).A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限12.如果a与-3互为相反数,那么a等于(▲).A.3B.-3C.D.13.如图,某同学在大楼30m高的窗口看地面上两辆汽车B、C,测得俯角分别为60°和45°,如果汽车B、C在与该楼的垂直线上行使,求汽车C与汽车B之间的距离.(精确到0.1m,参考数据:,)14.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为▲.15.如图,正方形ABCD的边长为2,将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止,那么在这个过程中,线段QF的中点M所经过的路线长为▲.16.如图,矩形ABCD中,A(-4,1),B(0,1),C(0,3),则D点坐标是▲.17.已知是方程的解,则a= ▲.18.计算19.如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒.【小题1】当以OB为半径的⊙O与⊙A相切时,求t的值;【小题2】探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A 相外切.若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由.20.从正面观察下图所示的两个物体,看到的是(▲).第1卷参考答案一.参考题库1.参考答案:2.参考答案:【小题1】见解析。

2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)

2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)

2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2014年江苏省南京市建邺区中考一模数学试卷及答案

2014年江苏省南京市建邺区中考一模数学试卷及答案

南京市建邺区2014年中考一模数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答卷纸上,答在本试卷上无效.2.请认真核对监考教师在答卷纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答卷纸及本试卷上.3.答选择题必须用2B 铅笔将答卷纸上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答卷纸上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答卷纸上) 1.在1,-1,-2这三个数中,任意两数之和的最大值是(▲).A .1B . 0C .-1D .-32.16的值等于(▲).A .4B .-4C .±4D3.计算(ab 2)3的结果是(▲).A .ab 5B .ab 6C .a 3b 5D .a 3b 64.若反比例函数y=2x的图像经过点A (1,m ),则m 的值是(▲).A . 2B .2C .-12D .125.从正面观察下图所示的两个物体,看到的是(▲).6.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是(▲).A .小沈B .小叶C .小李D .小王二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答卷纸相应位置.......上) (第6题)小沈 小叶 小李 小王7.计算: (3+1) (3-3)= ▲ .8.南京目前正全面推进9条轨道交通线的建设,在建线路超过150公里,总投资超800亿元.将800亿用科学记数法表示为 ▲ .9.分解因式:a 2-9= ▲ .10.在函数y =1x -1中,自变量x 的取值范围是 ▲ .11.已知⎩⎨⎧x =2,y =1是方程2x +ay=5的解,则a = ▲ .12.一块长方形菜地的面积是150m 2,如果它的长减少5m ,那么菜地就变成正方形,若设原菜地的长为x m ,则可列方程为: ▲ .13.如图,在凸四边形ABCD 中,AB=BC=BD ,∠ABC =80°,则∠ADC 等于 ▲ °. 14.如图,大圆的半径等于小圆的直径,且大圆的半径为4,则图中阴影部分的面积是 ▲ . 15.如图,在平面直角坐标系中,点A 、B 的坐标分别为(3,1)、(1,0),若将线段BA 绕点B 顺时针旋转90°得到线段BA ',则点A '的坐标为 ▲ .16.如图,⊙C 过原点并与坐标轴分别交于A 、D 两点.已知∠OBA =30°,点D 的坐标为(0,23),则点C 的坐标为( ▲ , ▲ ).三、解答题(本大题共有11小题,共计88分.请在答卷纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题6分)计算: ( a 2a -b +b 2b -a ) ÷a +b ab .18.(本题6分)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2) ,x -12<x 3,并写出不等式组的整数解.19.(本题7分)已知:如图,AD 、BF 相交于点O ,点E 、C 在BF 上,BE =FC ,AC =DE ,(第14题)DACB(第13题)(第16题)(第15题)AB =DF .求证:OA =OD ,OB =OF .20.(本题7分)某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.21.(本题8分)如图,为了测量停留在空中的气球的高度,小明先站在地面上某点处观测气球,测得仰角为27°,然后他向气球方向前进了50 m ,此时观测气球,测得仰角为45°.若小明的眼睛离地面1.6 m(下列数据供参考:sin27°≈0.45,cos27°≈22. (本题8分)(1)甲、乙、丙三只不透明的口袋中都装有1个白球、1个红球,它们除颜色外都相同,搅匀后分别从三只口袋中任意摸出1个球,求从三只口袋摸出的都是红球(第19题)ABFECDO图②(第20题)图①某校学生最喜欢的球类运动项目扇形统计图其他乒乓球 32%足球 20%篮球26%羽毛球 16%0某校学生最喜欢的球类运动项目条形统计图学生人数5101520A(第21题)的概率.(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A 、B 、C 、D 处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是 ▲ .① 1 2 ② 1 4 ③ 1 8 ④ 11623.(本题8分)某物流公司有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图a ,每条输出传送带每小时出库的货物流量如图b ,而该日仓库中原有货物8吨,在0时至4时,仓库中货物存量变化情况如图c .(1)根据图像,在0时至2时工作的输入传送带和输出传送带的条数分别为(▲);A .8条和8条B .14条和12条C .12条和14条D .10条和8条 (2)如图c ,求当2≤x ≤4时,y 与x 的函数关系式;(3)若4时后恰好只有4条输入传送带和4条输出传送带在工作(至货物全部输出完毕为止),请在图c24.(本题9分) 已知,在△ABC 中,AD 为∠BAC 的平分线,点E 在BC 的延长线上,且∠EAC =∠B ,以DE 为直径的半圆交AD 于点(1)判断AF 与DF (2)只用无刻度的直尺........画出△ADE 的边DE (3)若EF =4,DF =3,求DH 的长.25.(本题9分)已知二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,AB =4,其中点A 的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图像的顶点在一次函数y =x 的图像上,并直接写出平移后相应的二次函数的关系式.(第23题)图 图c图时)(第24题)EC DB26.(本题10分)如图,在△ABC中,AB=AC=42,BC=8.⊙A的半径为2,动点P从点B出发沿BC方向以每秒1个单位的速度向点C运动,以点P为圆心,以PB为半径作⊙P,设点P运动的时间为t秒.(1)当⊙P与直线AC相切时,求t的值;(2)当⊙P与⊙A相切时,求t的值;(3)延长BA交⊙A于点D,连接AP交⊙A于点E,连接DE并延长交BC于点F.当△ABP与△FBD相似时,求t的值.(第26题) C27.(本题10分)已知△ABC 中,∠C 是其最小的内角,如果过顶点B 的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的伴侣分割线.例如:如图1,在Rt △ABC 中,∠C =20°,过顶点B 的一条直线BD 交AC 于点D ,且∠DBC =20°,显然直线BD 是△ABC 的关于点B 的伴侣分割线.(1)如图2,在△ABC 中,∠C =20°,∠ABC =110°.请在图中画出△ABC 的关于点B 的伴侣分割线,并标注角度;(2)在△ABC 中,设∠B 的度数为y ,最小内角∠C 的度数为x .试探索y 与x 之间满足怎样的关系时,△ABC 存在关于点B 的伴侣分割线.建邺区2014年九年级学情分析卷数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.(第27题)图1图2ABCDCAB一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.32 8.10108⨯ 9.)3)(3(-+a a 10.1≠x 11.112.150)5(=-x x 13.140 14.π4 15.(2,-2) 16.)3,1(- 三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:原式=abba b a b b a a +÷---)(22 =ba ab b a b a +⨯--)(22 ···································································································· 3分 ba abb a b a b a +⨯--+=)())((ab = ························································································································· 6分18.(本题6分)解:解不等式①,得x ≥-1. ······························································································· 2分解不等式②,得x <3.··································································································· 4分 所以,不等式组的解集是-1≤x <3. ······································································· 5分 整数解为—1,0,1,2. ······························································································· 6分19.(本题7分) 证明:连接AF ,BD ,∵BE =CF ,∴BC =FE . 又∵AC =DE ,AB =DF ,∴△ABC ≌△DFE .……………………… 3分 ∴∠ABF =∠DFB . ∴AB ∥DF . 又∵AB =DF ,∴四边形ABDF 为平行四边形. ····························∴ OA =OD , OB =OF . ·································································································· 7分 20.(本题7分) (1)50,图略; ···················································································································· 3分 (2)390; ······························································································································ 5分 (3)答案不唯一,例如:建议学校组织乒乓球和篮球比赛 ················································ 7分 21.(本题8分)解:依题意得,BD=CD ,设CD =x ,则AD =x +50, ···························································· 1分在Rt △ADC 中,︒=27tan AD CD ,∴51.050≈+x x. ················································· 4分 解得0.52≈x . ·············································································································· 6分∴高度约为6.536.10.52=+(m ). ············································································ 7分 答:气球离地面的高度约为53.6m . ····················································································· 8分 22.(本题8分)(1)树状图或枚举法正确; ································································································· 3分 共有8种等可能结果 ··········································································································· 4分 ∴从三只口袋摸出的都是红球的概率是81. ······································································ 6分 (2)③ ···································································································································· 8分 23. (本题8分)(1)B . ······························································································································· 2分 (2)由图象可知:当2≤x ≤4时,y 是x 的一次函数,设b kx y +=,将(2,12)、(4,32)代入得:⎩⎨⎧=+=+324122b k b k ,解得:⎩⎨⎧-==810b k∴当2≤x ≤4时,810-=x y ···························································································· 6分 (3)画图正确 ······················································································································ 8分24. (本题9分) 解:(1)DF AF =. 理由如下:∵AD 平分BAC ∠,∴∠BAD =∠CAD .又∵∠B =∠CAE ,∴∠BAD +∠B =∠CAD +∠CAE . 即∠ADE =∠DAE ,∴DE AE =.…………………………………… 2分∵DE 是直径,∴EF ⊥AD ,∴DF AF =.…………………………………………………(2)画图正确…………………………………… 5分 (3)由勾股定理得5==DE AE∵∠ADH =∠EDF ,∠AHD =∠DFE=90°, ∴△ADH ∽△EDF .BB∴DEADDF DH =.∴6.3=DH .………………………………………………………… 9分25.(本题9分)解:(1)∵A (1,0),AB =4,∴B (5,0)或(-3,0).将A (1,0),B (5,0)或A (1,0),(-3,0)代入c bx x y ++=2得⎩⎨⎧=-=56c b 或⎩⎨⎧-==32c b , ∴二次函数的关系式为562+-=x x y 或322-+=x x y .………………………… 3分顶点坐标分别为(3,-4)、(-1,-4) …………………………………………… 5分(2)每一个结果正确各1分,平移方式正确各1分. ············································· 9分 26.(本题10分)解:(1)过点P 作PK ⊥AC ,垂足为点K , ∵⊙P 与直线AC 相切,∴t PK BP ==.由AB =AC =BC =8得△ABC 是等腰直角三角形, 可得∠C=45°, ∴△PKC 是等腰直角三角形. ∴PC =2PK =2t ,∴t +2t=8.解得t=828- ················································································································ 3分(2)过点A 作AM ⊥BC,垂足为点M ,则222PM AM AP +=, AM=421=BC , PM= t -4或4-t , 若⊙P 与⊙A 外切,则=+2)2(t 22)4(4t -+, 解得37=t .………………………5分 若⊙P 与⊙A 内切,则=-2)2(t 22)4(4-+t , 解得7=t . 综上所述,当37=t 或7=t 时,⊙P 与⊙A 相切.……………………… ···················· 7分 (3)当△ABP ∽△FBD 时,∠D =∠BPA ,B又∠D =∠AED =∠FEP , ∴∠D =∠AED =∠FEP =∠BPA .∴∠BFD =2∠D .∵︒=∠+∠+∠180BFD B D , ∴∠D =45°,∴∠BAP =90°.∴AP 与AC 重合,∴8=t ..……………………………… ······································· 10分 27.(本题10分)解:(1)画图正确,角度标注正确 ······················································································ 2分 (2)设BD 为△ABC 的伴侣分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形, 易知∠C 和∠DBC 必为底角,∴ ∠DBC =∠C =x .当∠A =90°时,△ABC 存在伴侣分割线,此时x y -90=, 当∠ABD =90°时,△ABC 存在伴侣分割线,此时x y +=90, 当∠ADB =90°时,△ABC 存在伴侣分割线,此时x y x >=且,45; 第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形, 当∠DBC =90°时,若BD =AD ,则△ABC 存在伴侣分割线, 此时90180-=--y y x ,∴x y 21135-=, 当∠BDC =90°时,若BD =AD ,则△ABC 存在伴侣分割线, 此时∠A =45°,∴x y -135=.综上所述,当x y -90=或x y +=90或x y x >=且,45或x y 21135-=或x y -135=时△ABC 存在伴侣分割线.。

2016年南京市中考模拟数学测试卷(玄武一模)及答案

2016年南京市中考模拟数学测试卷(玄武一模)及答案

2016年南京市中考模拟数学测试卷(玄武一模)全卷满分120分.考试时间为120分钟.一、选择题(本大题共6小题,每小题2分,共12分.)1.下列运算正确的是A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.下列各数中,是无理数的是A .cos30°B .(-π)0C .-13D .643.计算2-1×8-||-5的结果是A .-21B .-1C .9D .114.体积为80的正方体的棱长在A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的 ⌒AC,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为 A .⎝⎛⎭⎫60π°B .⎝⎛⎭⎫90π°C .⎝⎛⎭⎫120π°D .⎝⎛⎭⎫180π°6.如图,正方形OABC 的边长为6,A ,C 分别位于x 轴、y 轴上,点P 在AB 上,CP 交OB 于点Q ,函数y =k x 的图象经过点Q ,若S △BPQ =14S △OQC ,则k 的值为A .-12B .12C .16D .18二、填空题(本大题共10小题,每小题2分,共20分.) 7.使式子1+1x -1有意义的x 的取值范围是 ▲ .8.计算:32-13= ▲ . 9.有一组数据:1,3,3,4,4,这组数据的方差为 ▲ . 10.设x 1,x 2是方程x 2+4x +3=0的两根,则x 1+x 2= ▲ .11.今年清明假期全国铁路发送旅客约41 000 000人次,将41 000 000用科学记数法表示为 ▲ .12.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是 ▲ .13.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,OH =8,则菱形ABCD的周长等于 ▲ .(第6题)ABAB CC(第5题)(第12题)14.如图,正五边形ABCDE 绕点A 顺时针旋转后得到正五边形AB ′C ′D ′E ′,旋转角为α(0°≤α≤90°),若DE ⊥B ′C ′,则∠α= ▲ °.15.如图,三个全等的小矩形沿“横—竖—横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 ▲ .16.若-2≤a <2,则满足a (a +b )=b (a +1)+a 的b 的整数值有 ▲ 个. 三、解答题(本大题共11小题,共88分.) 17.(12分)(1)解方程:3(x -1)=x (1-x ); (2)化简:2a a 2-9-1a -3;(3)解不等式组:⎩⎪⎨⎪⎧3x +1≤7,2x -13>x ,并将解集在数轴上表示.(第15题)ABCDE B ′ C ′ D ′E ′(第14题)ABC DOH(第13题)18.(7分)如图,□ABCD 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,并说明理由.19.(7分)从甲、乙、丙3名同学中随机抽取一名同学参与问卷调查,求下列事件的概率:(1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.OCBAD FE (第18题)20.(7分)元宵节那天,李老师给他的微信好友群发了一个小调查:“元宵节,你选择吃大汤圆,还是小元宵呢?”12小时内好友回复的相关数据如下图:(1)回复时间为5小时~12小时的人数为 ▲ ; (2)既选择大汤圆,又选择小元宵的人数为 ▲ ;(3)12小时后,又有40个好友回复了,如果重新制作“好友回复时间扇形统计图”,加入..“12小时后”这一项,求该项所在扇形的圆心角度数.21.(7分)如图,点P 、M 、Q 在半径为1的⊙O 上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:(1)sin60°= ▲ ;cos75°= ▲ ;(2)若MH ⊥x 轴,垂足为H ,MH 交OP 于点N ,求MN 的长.(结果精确到0.01,参考数据:2≈1.414,3≈1.732)(第21题)的人不超过 0.5小时0.5~11小时 ~5小时5小时回复人数及选择情况条形统计图好友回复时间扇形统计图 (第20题)22.(8分)二次函数y=ax2+bx+c的图象经过点(0,3),(3,6),(-2,11).(1)求该二次函数的关系式;(2)证明:无论x取何值,函数值y总不等于1;(3)如何平移该函数图象使得函数值y能等于1?23.(7分)如图,已知△ABC,△DCE是两个全等的等腰三角形,底边BC、CE在同一直线上,且AB=2,BC=1.BD与AC交于点P.(1)求证:△BDE∽△DEC;(2)求△DPC的周长.AB C DEP(第23题)24.(8分)如图,AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得∠DAC =∠AED .(1)求证:AC 是⊙O 的切线;(2)若点E 是 ⌒BD 的中点,AE 与BC 交于点F ,①求证:CA =CF ;②当BD =5,CD =4时,DF = ▲ .25.(7分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度v km/h 行驶了s km ,则打车费用为(ps +60q ·sv )元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y (元)与行驶里程x (km )的函数关系也可由如图②表示.(1)当x ≥6时,求y 与x 的函数关系式; (2)若p =1,q =0.5,求该车行驶的平均速度.x (km)O69 12 8y (元)(第25题)0元起步费 p 元 / 公里 q 元 / 1分钟 9元最低消费++计价规则①②B CDEFO (第24题)26.(8分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如下表.与第一次锻炼相比,王老师第二次锻炼步数增长..的百分率的3倍.设王老师第二次锻炼..的百分率是其平均步长减少时平均步长减少..的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10000 ①▲平均步长(米/步)0.6 ②▲距离(米)6000 7020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.27.(10分)如图①,现有长度分别为a 、b 、1的三条线段.【加、减】图②所示为长为a +b 的线段,请用尺规作出长为a -b 的线段.【乘】在图③中,OA =a ,OC =b ,点B 在OA 上,OB =1,AD ∥BC ,交射线OC 于点D .求证:线段OD 的长为ab .【除】请用尺规作出长度为ab 的线段.【开方】任意两个有理数的和、差、积、商(除数不为0)仍然是有理数,而开方运算则打开了通向无理数的一扇门.请用两种不同的方法,画出长度为a +b 的线段. 注:本题作(画)图不写作(画)法,需标明相应线段长度.OACBD③②a b 1①数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. x ≠1 8.369. 1.2 10.-4 11.4.1×107 12.5 13.64 14. 54° 15. 6.8 16.7 三、解答题(本大题共11小题,共88分) 17.(本题12分)(1)(本题4分)解:3(x -1) =-x (x -1)3(x -1)+x (x -1)=0 (x -1) (x +3)=0 x 1=1,x 2=-3.4分(2)(本题4分)解:2a a 2-9-1a -3=2a (a -3)(a +3)-1a -3=2a -a +3(a -3)(a +3)=a +3(a -3)(a +3)=1a -3. 8分(3)(本题4分)⎩⎪⎨⎪⎧3x +1≤7,①2x -13>x ,②解:解不等式①,得x ≤2,解不等式②,得x <-1,不等式组的解集为x <-1.12分18.(本题7分)(1)证明:∵四边形ABCD 为平行四边形 ∴BO =DO ,AO =CO . ∵AE =CF ,∴AO -AE =CO -CF ,即EO =FO . 在△BOE 与△DOF 中⎩⎪⎨⎪⎧BO =DO ∠BOE =∠DOF EO =FO ∴△BOE ≌△DOF .4分(2)四边形EBFD 为矩形.∵EO =FO ,BO =DO , ∴四边形EBFD 为平行四边形. ∵BD =EF ,∴四边形EBFD 为矩形. 7分19.(本题7分)解:(1)从甲、乙、丙3名同学中随机抽取1名同学参与问卷调查,恰好是甲的概率是13.3分(2)从甲、乙、丙3名同学中随机抽取2名同学参与问卷调查,所有可能出现的结果有:(甲,乙)、(甲,丙)、(乙,丙),共有3种,它们出现的可能性相同.所有的结果中,满足“甲在其中”(记为事件A )的结果只有2种,所以P(A )=23.7分 20.(本题7分)(1)10; 2分 (2)30;4分 (3)解:40200+40×360°=60°.答:“12小时后”这一项所在扇形的圆心角度数为60°.7分21.(本题7分)解:(1)32;0.26;(2)在Rt △MHO 中,sin ∠MOH =MHMO ,即MH =MO ·sin ∠MOH =1×32=32.∴OH =OM 2-MN 2=12.设P A ⊥x 轴,垂足为A , ∵∠NHO =∠P AO =90°, ∴NH ∥P A ,∴NH P A =OH OA ,即NH0.26=120.97, ∴NH ≈0.134.∴MN =MH -MN ≈0.73.7分22.(本题8分)(1)解:由题意得:⎩⎪⎨⎪⎧c =39a +3b +c =64a -2b +c =11,解得:⎩⎪⎨⎪⎧a =1b =-2c =3∴该函数的函数关系式为:y =x 2-2x +3.3分(2)证明:∵y =x 2-2x +3=(x -1)2+2,∴当x =1时,y 取最小值2,∴无论x 取何值,函数值y 总不等于1.6分(3)将该函数图象向下平移的距离大于等于1个单位长度. 8分23.(本题7分)(1)证明:∵△ABC ,△DCE 是两个全等的等腰三角形,且底边BC 、CE 在同一直线上,∴AB =AC =DC =DE =2,BC =CE =1, ∴BE =2BC =2. ∵DE CE =2,BEDE =2, ∴DE CE =BE DE. 又∵∠BED =∠DEC , ∴△BED ∽△DEC . 4分(2)解: ∵△ABC ,△DCE 是两个全等的等腰三角形,且底边BC 、CE 在同一直线上,∴∠ACB =∠DEC , ∴AC ∥DE . ∴PC DE =BC BE =12. ∴PC =22,PD =1, ∴△DPC 的周长=PC +PD +DC =22+1+2=322+1. 7分24.(本题8分)(1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°. ∴∠ABC +∠DAB =90°.∵∠DAC =∠AED ,∠AED =∠ABC , ∴∠DAC +∠DAB =90°, ∴ AC 是⊙O 的切线.3分(2)①证明:∵点E 是 ⌒BD的中点, ∴ ⌒BE= ⌒DE , ∴∠BAE =∠DAE .∵∠DAC +∠DAB =90°,∠ABC +∠DAB =90°, ∴∠DAC =∠ABC .∵∠CF A =∠ABC +∠BAE ,∠CAF =∠DAC +∠DAE , ∴∠CF A =∠CAF . ∴ CA =CF . 6分 ②DF =2.8分25.(本题7分)解:(1)当x ≥6时,设y 与x 之间的函数关系式为y =kx +b .根据题意,当x =6时,y =9;当x =8时,y =12.所以⎩⎨⎧9=6k +b ,12=8k +b .解得⎩⎨⎧k =1.5,b =0.所以,y 与x 之间的函数关系式为y =1.5x . 4分(2)根据图象可得,当x =8时,y =12,又因为p =1,q =0.5, 可得12=1·8+60·0.5·8v,解得v =60.经检验,v =60是原方程的根. 所以该车行驶的平均速度为60 km/h .7分26.(本题8分)(1)① 10000(1+3x );② 0.6(1-x ).(2)解: 由题意:10000(1+3x )× 0.6(1-x )=7020 解得:x 1=1730>0.5(舍去),x 2=0.1. ∴ x =0.1.6分 (3)解:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5. 答:王老师这500米的平均步长为0.5米8分 27.(本题10分)【加、减】如图①,线段AB 长为a -b .2分【乘】证明:∵AD ∥BC ,∴OB OA =OC OD ,即1a =bOD.∴OD =ab . 5分【除】如图②,OA =a ,OC =b ,点B 在OC 上,OB =1,BD ∥AC ,交OA 于点D .则OD =ab . 7分【开方】图③和图④中的MN 均为a +b .10分②AN③④B①。

2016年江苏省南京市联合体中考一模数学试卷含答案

2016年江苏省南京市联合体中考一模数学试卷含答案

(1)该课外活动小组抽取的样本容量是多少?请补全图中的频数分布直方图. (2)样本中,睡眠时间在哪个范围内的人数最多?这个范围的人数是多少? (3)设该校有九年级学生 900 名,若合理的睡眠时间范围为 7≤h<9,你对该校九年级学生的睡眠时间做 怎样的分析、推断?
22. (8 分) 如图,在四边形 ABCD 中,AD=CD=8,AB=CB=6,点 E、F、G、H 分别是 DA、AB、BC、CD 的中点. (1)求证:四边形 EFGH 是矩形; D (2)若 DA⊥AB,求四边形 EFGH 的面积..
1 3
21.解: (1)样本容量为 4÷ 0.08=50;„„„„„„„„„„„„„„„„„„„„„„„„„„1 分 第 6 小组频数为 50×(1-0.04-0.08-0.24-0.28-0.24)=6,补全图形 „„„„„„3 分
(2)睡眠时间在 6-7 小时内的人数最多;„„„„„„„„„„„„„„„„„„„„„4 分 这个范围的人数为 50×0.28=14 人; „„„„„„„„„„„„„„„„„„„„„5 分 (3)因为在 7≤h<9 范围内数据的频率为 0.24+0.12=0.36,„„„„„„„„„„„„„6 分 所以推断近 2 的学生睡眠不足. „„„„„„„„„„„„„„„„„„„„„„„8 分 3
(1)甲的速度为
m/min,乙的速度为
m/ min;
(2)在图②中画出 y2 与 x 的函数图像; (3)求甲乙两人相遇的时间; (4)在上述过程中,甲乙两人相距的最远距离为 m.
27.(9 分) 已知⊙O 的半径为 5,且点 O 在直线 l 上,小明用一个三角板学具(∠ABC=90° ,AB=BC=8)做数 学实验: (1)如图①,若 A、B 两点在⊙O 上滑动,直线 BC 分别与⊙O、l 相交于点 D、E. ①求 BD 的长; ②当 OE=6 时,求 BE 的长. (2)如图②,当点 B 在直线 l 上,点 A 在⊙O 上,BC 与⊙O 相切于点 P 时,则切线长 PB= ▲ .

中考数学仿真模拟测试题(附答案解析)

中考数学仿真模拟测试题(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。

2016年南京市建邺区中考一模数学试卷含答案

2016年南京市建邺区中考一模数学试卷含答案
平移后的二次函数的表达式为y=(x-3)2+1或y=(x+27)2-9.8分
26.(本题10分)
证明:(1)连接FO,
∵OF=OC,
∴∠OFC=∠OCF.
∵CF平分∠ACE,
∴∠FCG=∠FCE.
∴∠OFC=∠FCG.
∵CE是⊙O的直径,
∴∠EDG=90°,
又∵FG∥ED,
∴∠FGC=180°-∠EDG=90°,
16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为▲cm.
三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
5.如图,已知a∥b,∠1=115°,则∠2的度数是
A.45°
B.55°
C.65°
D.85°
6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y=5x2-3x+4与y=4x2-x+3的图像交点个数有
(2)求出点坐标E(6.4,0).4分

备考2023年中考数学一轮复习-数与式_有理数_数轴及有理数在数轴上的表示-单选题专训及答案

备考2023年中考数学一轮复习-数与式_有理数_数轴及有理数在数轴上的表示-单选题专训及答案

备考2023年中考数学一轮复习-数与式_有理数_数轴及有理数在数轴上的表示-单选题专训及答案数轴及有理数在数轴上的表示单选题专训1、(2020九台.中考模拟) 如图,数轴上蝴蝶所在点表示的数可能为()A . 3B . 2C . 1D . -12、(2019长春.中考真卷) 如图,数轴上表示-2的点A到原点的距离是()A . -2.B . 2.C .D .3、(2014徐州.中考真卷) 点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A . 3B . 2C . 3或5D . 2或64、(2016南京.中考真卷) 数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A . ﹣3+5B . ﹣3﹣5C . |﹣3+5|D . |﹣3﹣5|5、(2017无棣.中考模拟) 实数a,b,c,d在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为()A . aB . bC . cD . d6、(2018房山.中考模拟) 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A .B .C .D .7、(2017滨海新.中考模拟) 有理数a、b在数轴上的对应的位置如图所示,则下列各式中正确的是()A . a+b<0B . a+b>0C . a﹣b=0D . a﹣b>08、(2017路南.中考模拟) 如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则该数轴的原点为()A . 点EB . 点FC . 点MD . 点N9、(2019吉林.中考模拟) 如图,若数轴上A、B两点之间的距离是5,且点B在原点左侧,则点B表示的数是()A . 5B . -5C . 2D . -210、(2017灌南.中考模拟) 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,则下列关系正确的是()A . a+c=2bB . b>cC . c﹣a=2(a﹣b)D . a=c11、(2018金华.中考模拟) 如图,数轴上有A,B,C,D四个点,其中表示-2的相反数的点是()A . 点DB . 点C C . 点BD . 点A12、(2018青岛.中考真卷) 如图,点A所表示的数的绝对值是()A . 3B . ﹣3C .D .13、(2017揭西.中考模拟) 如图所示,则下列选项中代表数值最小的是()A . aB . bC . ﹣aD . ﹣b14、(2019梧州.中考模拟) 在数轴上,点A表示的数是﹣4,点B表示的数是2,线段AB的中点表示的数为()A . 1B . ﹣1C . 3D . ﹣315、(2020四川.中考模拟) 实数在数轴上对应点的位置如图所示,则下列判断正确的是()A .B .C .D .16、(2019信阳.中考模拟) 实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A .B .C .D .17、(2022黄埔.中考模拟) 如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()A . ﹣2B . 0C . 1D . 418、(2017乌鲁木齐.中考真卷) 如图,数轴上点A表示数a,则|a|是()A . 2B . 1C . ﹣1D . ﹣219、(2019沙雅.中考模拟) 实数a、b在数轴上的位置如图所示,下列各式成立的是()A .B . a-b>0C . ab>0D . a+b>020、(2020遵化.中考模拟) 如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A . ﹣2B . 0C . 1D . 421、(2020鼓楼.中考模拟) (2019·中山模拟) 如图,点A所表示的数的绝对值是()A . 3B . ﹣3C .D .22、(2020贵州.中考模拟) 下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x ﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A . 4个B . 5个C . 6个D . 7个23、(2020开平.中考模拟) 如图,数轴上,,,,五个点表示连续的五个整数,,,,,且,则下列说法正确的有()①点表示的数字是②③④A . 都之前B . 只有①③正确C . 只有①②③正确D . 只有③错误24、(2020邯郸.中考模拟) 边长为5的菱形ABCD按如图所示放置在数轴上,其中A 点表示数﹣2,C点表示数6,则BD=()A . 4B . 6C . 8D . 1025、(2016河北.中考真卷) 点A,B在数轴上的位置如图所示,其对应的数分别是a 和b。

2024年江苏省南京师大附中中考数学模拟试卷(一)及答案解析

2024年江苏省南京师大附中中考数学模拟试卷(一)及答案解析

2024年江苏省南京师大附中中考数学模拟试卷(一)一、单选题1.|﹣2|的值等于()A.2B.﹣C.D.﹣22.据《中国教育报》近期报道,4年来全国在义务教育阶段经费累计投入2.37万亿元,数据2.37万亿用科学记数法表示为()亿.A.2.37×103B.2.37×104C.2.37×105D.0.237×106 3.计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x44.一次函数y=2x+1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.不论x取何值,下列代数式的值不可能为0的是()A.x+1B.x2﹣1C.D.(x+1)27.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A.=1B.=1C.=1D.=1 8.如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+二、填空题9.要使分式有意义,则x的取值范围为.10.分解因式:4x2y﹣12xy=.11.已知点P(m﹣1,2m﹣3)在第三象限,则m的取值范围是.12.已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是.13.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为.14.为测量附中国旗杆的高度,小宇的测量方法如下:如图,将直角三角形硬纸板△DEF 的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.6米,到旗杆的水平距离DC=18米,按此方法,可计算出旗杆的高度为米.15.如图,在平面直角坐标系中,直线与直线分别与函数的图象交点A、B两点,连接AB、OB,若△OAB的面积为3,则k的值为.16.已知点D(2,a)为直线y=﹣x+3上一点,将一直角三角板的直角顶点放在D处旋转,保持两直角边始终交x轴于A、B两点,C(0,﹣1)为y轴上一点,连接AC,BC,则四边形ACBD面积的最小值为.三、解答题17.(1)计算:﹣÷;(2)解不等式组:.18.如图是三个可以自由转动的转盘,甲、乙两人中甲转动转盘,乙记录转盘停下时指针所指的数字.当三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平,并用概率知识说明理由.19.【阅读材料】老师的问题:已知:如图,△ABC 中,∠ACB =90°,CD 是斜边AB 上的中线.求作:菱形AECD .小明的作法:(1)取CD 的中点F ;(2)连接BF 并延长到E ,使FE =FB ;(3)连接AE ,CE .四边形AECD 就是所求作的菱形.【解答问题】请根据材料中的信息,证明四边形AECD 是菱形.20.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取甲、乙两个班(每个班均为40人)的学生进行测试,并对成绩进行整理(成绩为整数,满分100分).a.甲班成绩统计表:平均数众数中位数优秀率79847640%b.乙班良好这一组学生的成绩:70,71,73,73,73,74,76,77,78,79.c.乙班成绩统计图:说明:①成绩等级分为:80分及以上为优秀,70~79分为良好,60~69分为合格,60以下为不合格;②统计图中每小组包含最小值,不包含最大值.(1)已知甲班没有3人的成绩相同,成绩是76分的学生,在班的名次更好些;(2)从两个不同的角度推断哪个班的整体成绩更好.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.22.某商场销售一种成本为20元/kg的商品,市场调研反映:在某个月的第x天(1≤x≤30)的销售价格为(40+x)元/kg,日销售量y(kg)与x的函数关系如图所示.(1)求y与x的函数解析式;(2)销售该商品第几天时,日销售利润最大?(3)结合函数图象回答,在当月有多少天的日销售利润大于2250元?23.如图,等边三角形ABC中,P是边AC上的一个动点(不与A,C点重合),连接BP,将△BCP绕点C顺时针旋转至△ACD,过点C作CQ∥BP,交PD的延长线于点Q.(1)探究△PCD的形状;(2)求证:△APD≌△QDC;(3)若延长AD交CQ于点E,CE=2EQ,求∠CAQ的正切值.24.定义:若函数G1的图象上至少存在一个点,该点关于x轴的对称点落在函数G2的图象上,则称函数G1,G2为关联函数,这两个点称为函数G1,G2的一对关联点.例如,函数y=2x与函数y=x﹣3为关联函数,点(1,2)和点(1,﹣2)是这两个函数的一对关联点.(1)判断函数y=x+2与函数y=﹣是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,求b的值;(3)若函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,求2m2+n2﹣6m的取值范围.2024年江苏省南京师大附中中考数学模拟试卷(一)参考答案与试题解析一、单选题1.【分析】直接根据绝对值的意义求解.【解答】解:|﹣2|=2.故选:A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】解:由题可得:2.37万亿=23700亿=2.37×104.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【分析】首先根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出x4÷x的值是多少;然后用它加上x3,求出x4÷x+x3的结果是多少即可.【解答】解:x4÷x+x3=x3+x3=2x3,故x4÷x+x3的结果是2x3.故选:C.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了合并同类项的方法,要熟练掌握.4.【分析】根据一次函数图象的性质可得出答案.【解答】解:∵k=2>0,b=1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故选:A.【点评】此题考查了一次函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.5.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x≥﹣2;由②得,x<1,故此不等式组的解集为:﹣2≤x<1.在数轴上表示为:故选:C.【点评】本题考查的是在数轴上表示不等式组的解集,掌握解不等式组的方法是解答此题的关键.6.【分析】分别找到各式为0时的x值,即可判断.【解答】解:A、当x=﹣1时,x+1=0,故不合题意;B、当x=±1时,x2﹣1=0,故不合题意;C、分子是1,而1≠0,则≠0,故符合题意;D、当x=﹣1时,(x+1)2=0,故不合题意;故选:C.【点评】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.【分析】首先理解题意找出题中的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据此列方程即可.【解答】解:设甲、乙共用x天完成,则甲单独干了(x﹣22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的,乙每天完成全部工作的.根据等量关系列方程得:=1,故选:A.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB 的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【解答】解:∵一次函数y=x+的图象与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,由旋转的性质可知∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.【点评】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.二、填空题9.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.10.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.11.【分析】根据点P的位置可得,然后按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:∵点P(m﹣1,2m﹣3)在第三象限,∴,解不等式①得:m<1,解不等式②得:m<1.5,∴原不等式组的解集为:m<1,故答案为:m<1.【点评】本题考查了解一元一次不等式组,点的坐标,准确熟练地进行计算是解题的关键.12.【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x==﹣,∵抛物线经过(﹣4,0),对称轴为直线x=﹣,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【点评】本题考查抛物线与x轴的交点,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.13.【分析】根据弧长公式先计算出扇形的弧长,再利用圆的周长和圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长求解.【解答】解:扇形的弧长==10π,设圆锥的底面半径为R,则2πR=10π,所以R=5.故答案为:5;【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】根据题意证出△ACD∽△FED,进而利用相似三角形的性质得出AC的长,即可得出答案.【解答】解:∵CD⊥AB,△DEF为直角三角形,∴∠DEF=∠ACD,∵∠ADC=∠FDE,∴△ACD∽△FED,∴=,∵DE=0.5米,EF=0.25米,DC=18米,∴=,∴AC=9米,∵DG=1.6米,∴BC=1.6米,∴AB=10.6米,故答案为:10.6.【点评】此题主要考查了相似三角形的应用;由三角形相似得出对应边成比例是解题关键.15.【分析】由两条直线的解析式即可得到两直线平行,根据同底等高的三角形面积相等,=S△AOB,由△OAB的面积为3,得到,解得A 即可得到S△AOC的横坐标,代入求得纵坐标,把A的坐标代入即可求得k的值.【解答】解:设直线交y轴于点C,则C(0,2),连接AC,由题意可知OA∥BC,=S△AOB,∴S△AOC∵△OAB的面积为3,∴,即,∴|x|=3,∵在第二象限,∴A的横坐标为﹣3,把x=﹣3代入得,y=2,∴A(﹣3,2),∵函数的图象过点A,∴k=﹣3×2=﹣6,故答案为:﹣6.【点评】本题考查了两条直线的平行问题,三角形的面积,一次函数图象上点的坐标特征,求得A的坐标是解题的关键.16.【分析】先求出点D的坐标(2,2),进而得出S四边形ACBD=AB(2+1)=AB,只要AB最小时,四边形ACBD的面积最小,而DA=DB时,AB最小,即可得出结论.【解答】解:如图,取AB的中点F,连接DF,∵∠ADB=90°,∴AB=2DF∵点D(2,a)为直线y=﹣x+3上一点,∴a=﹣×2+3=2,∴D(2,2),过点D作DE⊥AB于E,∴DE=2,E(2,0),=S△ABC+S△ABD=AB•OC+AB•DE=AB(OC+DE)=AB=3DF,∴S四边形ACBD要四边形ACBD的面积最小,即DF最小,∵点D(2,2),点F在x轴上,∴当DF⊥x轴时,DF最小,最小值为DE=2,=3×2=6,∴S四边形ACBD最小故答案为6.【点评】此题主要考查了点的坐标特点,三角形的面积公式,直角三角形斜边的中线等于斜边的一半,判断出DF最小时,四边形ACBD的面积最小.三、解答题17.【分析】(1)先计算分式的除法,再算分式的减法,即可解答;(2)按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:(1)﹣÷=﹣•=﹣==﹣;(2),解不等式①得:x≤1,解不等式②得:x<﹣7,∴原不等式组的解集为:x<﹣7.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.18.【分析】画出树状图,计算出各种情况的概率,然后比较即可.相等则公平,否则不公平.【解答】解:不公平,理由如下:画树状图如下:由图可知:共有8种结果,且是等可能的,其中含有相同数字的结果有6种.则甲获胜的概率==,乙获胜的概率==,因为≠,所以这个游戏不公平.【点评】本题考查的是游戏公平性的判断、列表法与树状图法.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】由作法得CF=DF,EF=BF,则可判断△CEF≌△DBF,所以CE=DB,∠CEF =∠DBF,则CE∥BD,在根据斜边上的中线性质得到CD=AD=BD,则AD=CD=CE,然后根据菱形的判定方法可得到四边形AECD是菱形.【解答】证明:由作法得CF=DF,EF=BF,在△CEF和△DBF中,,∴△CEF≌△DBF(SAS),∴CE=DB,∠CEF=∠DBF,∴CE∥BD,∵CD为斜边AB上的中线,∴CD=AD=BD,∴AD=CE,∵AD=CE,AD∥CE,∴四边形AECD为平行四边形,∵AD=CD,∴四边形AECD是菱形.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直角三角形斜边上的中线性质和菱形的判定与性质.20.【分析】(1)根据中位数的定义求解即可;(3)根据中位数与优秀率的意义进行解答即可(答案不唯一).【解答】解:(1)成绩是76分的学生,在乙班的名次更好些.理由如下:甲班成绩的中位数是76分,而且没有3人的成绩相同,所以成绩是76分的学生在甲班位于第20或第21名;乙班优秀学生有3+9=12(人),根据乙班良好学生的成绩可知成绩是76分的学生在乙班位于第16名,所以成绩是76分的学生,在乙班的名次更好些.故答案为:乙;(2)甲班的整体成绩更好.理由如下:甲班成绩的中位数是76分,乙班成绩的中位数是=72(分),甲班成绩的优秀率是40%,乙班成绩的优秀率是×100%=30%,甲班成绩的中位数、优秀率均高于乙班,所以甲班的整体成绩更好.【点评】本题考查了统计的应用,中位数、众数、优秀率的意义,掌握中位数的定义及其意义是解决问题的关键.21.【分析】(1)连接OC,由切线的性质可知:∠OCD=90°,从而可知OC∥AD,由于OC=OA,从而可证明AC平分∠DAB;(2)由于∠B=60°,所以∠CAB=30°,所以∠DAC=30°,从而可求出AD的长度.【解答】(1)证明:连接OC,∵CD与⊙O相切,∴∠OCD=90°,∵∠ADC=90°,∴OC∥AD,∴∠ACO=∠DAC,∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,∴AC平分∠BAD;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=60°,OC=OB,∴△BOC是等边三角形,∴∠BOC=60°,∴∠CAO=30°,AC=,作OF⊥AC交AC于点C,∴OF=BC=1,+S扇形BOC图中阴影部分的面积=S△AOC===.【点评】本题考查圆的综合问题,涉及切线的性质,角平分线的判定,圆周角定理,锐角三角函数等知识,综合程度较高,属于中等题型.22.【分析】(1)设y=kx+b(k≠0),根据图象取两个点坐标代入,求出k,b的值即可.(2)设日销售利润为w元,列出w关于x的函数关系式,求最大值即可.(3)令w=2250,求出一元二次方程的两个解,结合二次函数的草图求出x的范围,从而得到结果.【解答】解:(1)设y=kx+b(k≠0),把(5,90),(10,80)代入上式得,,解得,,∴y与x的函数解析式为:y=﹣2x+100.(2)设日销售利润为w元,由题意得:w=(40+x﹣20)(﹣2x+100)=﹣2x2+60x+2000=﹣2(x﹣15)2+2450,∵﹣2<0,1≤x≤30,∴当x=15时,w最大,答:销售该商品第15天时,日销售利润最大.(3)令w=2250,则﹣2(x﹣15)2+2450=2250,解得,x1=5,x2=25,结合二次函数图象可知,当5<x<25时,w>2250,∴有19天的日销售利润大于2250元.【点评】本题主要考查了一次函数的应用,二次函数的应用,读懂题意,正确列出函数关系式是解题的关键.23.【分析】(1)由旋转的性质得出∠BCP=∠ACD=60°,CP=CD,则可得出△PCD是等边三角形;(2)证明∠CAD=∠DQC,根据AAS可证明△APD≌△QDC;(3)过点P作PM⊥AB于M,设QE=x,证明△DQE∽△CQD,得出,求出DQ=x,证出∠ACQ=90°,由锐角三角函数的定义可得出答案.【解答】(1)解:△PCD是等边三角形.理由:∵△ABC是等边三角形,∴∠ACB=60°,∵将△BCP绕点C顺时针旋转至△ACD,∴∠BCP=∠ACD=60°,CP=CD,∴△PCD是等边三角形;(2)证明:∵△PCD是等边三角形,∴PD=CD,∠PDC=∠CPD=60°,∴∠PAD=∠CDQ=120°,又∵CQ∥BP,∴∠CBP+∠QCB=180°,∵∠PCD=60°,∴∠CBP+∠DCQ=60°,∵将△BCP绕点C顺时针旋转至△ACD,∴∠CBP=∠CAD,∴∠CAD+∠DCQ=60°,又∵∠DCQ+∠DQC=60°,∴∠CAD=∠DQC,在△APD和△DQC中,,∴△APD≌△QDC(AAS);(3)解:过点P作PM⊥AB于M,设QE=x,∵CE=2EQ,∴CE=2x,CQ=BP=3x,∵△APD≌△QDC,∴∠ADP=∠QCD,∵∠DQE=∠CQD,∴△DQE∽△CQD,∴,∴DQ2=CQ•EQ,∴DQ=x,∴AP=DQ=x,∵△ABC是等边三角形,∴∠BAC=60°,∴∠APM=30°,∴PM=AP•sin60°=x,∴cos∠BPM==,∴∠BPM=60°,∴∠APB=∠APM+∠BPM=90°,∴∠ACQ=90°,∴AC=AB=2AP=2x,∴tan∠CAQ==,∴∠CAQ的正切值为.【点评】本题属于三角形综合题,考查了旋转的性质,等边三角形的判定与性质,全等三角形的判定和性质,相似三角形的判定和性质,锐角三角函数的定义等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题.24.【分析】(1)设函数y=x+2图象上一点为(a,a+2),把(a,﹣a﹣2)代入y=﹣得﹣a﹣2=﹣,即可解得a=1或a=﹣3,故函数y=x+2与函数y=﹣的关联点为(1,3)与(1,﹣3)或(﹣3,﹣1)与(﹣3,1);(2)设函数y=2x+b图象上一点为(p,2p+b),把(p,﹣2p﹣b)代入y=kx+k+5得﹣2p﹣b=kp+k+5,根据对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,可得,即可解得b的值为﹣3;(3)设函数y=x2﹣mx+1图象上一点为(t,t2﹣mt+1),把(t,﹣t2+mt﹣1)代入y=2x ﹣得﹣t2+mt﹣1=2t﹣,根据函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,知Δ=(2﹣m)2﹣4(1﹣)=0,有n2=﹣m2+4m,由n2≥0求出m的范围,结合2m2+n2﹣6m=2m2+(﹣m2+4m)﹣6m=m2﹣2m=(m﹣1)2﹣1,即可得到答案.【解答】解:(1)函数y=x+2与函数y=﹣为关联函数,理由如下:设函数y=x+2图象上一点为(a,a+2),这点关于x轴的对称点坐标为(a,﹣a﹣2),把(a,﹣a﹣2)代入y=﹣得:﹣a﹣2=﹣,解得a=1或a=﹣3,∴函数y=x+2与函数y=﹣的关联点为(1,3)与(1,﹣3)或(﹣3,﹣1)与(﹣3,1);(2)设函数y=2x+b图象上一点为(p,2p+b),这点关于x轴的对称点坐标为(p,﹣2p﹣b),把(p,﹣2p﹣b)代入y=kx+k+5得:﹣2p﹣b=kp+k+5,整理得:(p+1)k+2p+b+5=0,∵对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,∴对于任意实数k,(p+1)k+2p+b+5=0恒成立,∴,解得,∴b的值为﹣3;(3)设函数y=x2﹣mx+1图象上一点为(t,t2﹣mt+1),这点关于x轴的对称点为(t,﹣t2+mt﹣1),把(t,﹣t2+mt﹣1)代入y=2x﹣得:﹣t2+mt﹣1=2t﹣,整理得:t2+(2﹣m)t+1﹣=0,∵函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,∴关于t的方程t2+(2﹣m)t+1﹣=0有两个相等的实数解,∴Δ=(2﹣m)2﹣4(1﹣)=0,∴n2=﹣m2+4m,∵n2≥0,∴﹣m2+4m≥0,即m2﹣4m≤0,∴0≤m≤4,∵2m2+n2﹣6m=2m2+(﹣m2+4m)﹣6m=m2﹣2m=(m﹣1)2﹣1,∴当m=4时,2m2+n2﹣6m最大为8,当m=1时,2m2+n2﹣6m最大为﹣1,∴2m2+n2﹣6m的取值范围是﹣1≤2m2+n2﹣6m≤8.【点评】本题考查二次函数综合应用,涉及新定义,一次函数与反比例函数等知识,解题的关键是读懂题意,理解关联点、关联函数的概念,用含字母的式子表示相关点坐标。

2016建邺区一模(数学)答案

2016建邺区一模(数学)答案
2016建邺区一模(数学)
数学参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计12分)
题号
1
2
3
4
5
6
答案
D
B
C
A
C
B
二、填空题(每小题2分,共计20分)
7.x≥2 8.-6 9.4.88×10610.1: 9 11.3π
∴BF∥DE.
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形.
又∵AB=AD,
∴□ABCD是菱形.
∴BD⊥AC.
∵BF=DE,BF∥DE,
∴四边形BEDF是平行四边形,
∴□BEDF是菱形.7分
20.(本题8分)
解:(1)在Rt△ADF中,由勾股定理得,
AD= = =15(cm).3分
(2)AE=AD+CD+EC=15+30+15=60(cm).4分
12.-313.丁14.(2,-3)15.54°16.
三、解答题(本大题共11小题,共计88分)
17.(本题6分)
解:原式=( )· 2分
=- .4分
当a= +1,b= -1时,
原式=- =- =- .6分
18.(本题6分)
解:解不等式①,得x≥-1.2分
解不等式②,得x< .4分
所以不等式组的解集是-1≤x< .5分
解法二:设这种台灯的售价为x元,
[600-10(x-40)](x-30)=10 000,4分
解得x1=50,x2=80,7分
答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元.8分

2022——2023学年南京市建邺区中考数学专项突破仿真模拟卷(3月4月)含答案

2022——2023学年南京市建邺区中考数学专项突破仿真模拟卷(3月4月)含答案

第1页/总60页2022-2023学年南京市建邺区中考数学专项突破仿真模拟卷(3月)第I 卷(选一选)评卷人得分一、单选题1.12022-的相反数是().A .2022B .2022-C .12022D .12022-2.北京时间2022年4月16日9时56分,近地点高度约384000米的神舟十三号载人飞船返回舱成功着陆,完成任务.384000这个数用科学记数法表示为()A .338410⨯B .50.38410⨯C .438.410⨯D .53.8410⨯3.如图所示的几何体是由5个大小相同的小正方体组成的立体图形,这个立体图形的主视图是()A .B.C .D .4.计算23()a a -⋅的结果正确的是()A .6a -B .6a C .5a -D .5a 5.如图,两条直线AB CD 、相交于点O ,OE 平分AOD ∠.若54∠︒=AOE ,则BOD ∠的大小为()试卷第2页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※没有※※要※※在※※装※※订※※线※※内※※答※※题※※A .46︒B .54︒C .72︒D .82︒6.如图,数学兴趣小组用测角仪和皮尺测量一座信号塔CD 的高度,信号塔CD 对面有一座高15米的瞭望塔AB ,从瞭望塔项部A 测得信号塔顶C 的仰角为53︒,测得瞭望塔底B 与信号塔底D 之间的距离为25米,设信号塔CD 的高度为x 米,则下列关系式中正确的是()A .15sin5325-=︒x B .15cos5325-=︒x C .15tan5325-=︒x D .25tan5315=-︒x 7.如图,在ABC 中,90ACB ∠=︒,3AC =,=4BC .按以下步骤作图:①分别以B 、C 为圆心,大于12BC 的长为半径画圆弧,两弧相交于点M 和点N :②作直线MN ,交BC 于点D :③以点D 为圆心,DC 的长为半径画圆弧,交AB 于点E ,连结CE ,则BE 的长为()A .1.8B .2.4C .3.2D .4.88.如图,在平面直角坐标系中,ABCD 的顶点C 在x 轴的正半轴上,边CD x ⊥轴于点C ,对角线BD CD ⊥.函数8(0)y x x=>的图象点A 、点D .若1CD =,则BD 的长为()第3页/总60页A .2B .4C .6D .8第II 卷(非选一选)评卷人得分二、填空题90π=_________.10.如果关于x 的一元二次方程220ax x +-=有两个没有相等的实数根,那么a 的值可以是________.(写出一个a 值即可)11.正八边形一个外角的大小为________度.12.如图,在矩形ABCD 中,8AB =,4BC =.若矩形AEFG 与矩形ABCD 位似,点F 在矩形ABCD 的内部,且相似比为3:4,则点C 、F 之间的距离为_________.13.如图,在平面直角坐标系中摆放一等腰直角三角尺ABC ,已知直角顶点C 的坐标为(3,3)),点A 坐标为(,0)a ,点(0,)B b 在y轴正半轴上,则a b +的值为________.试卷第4页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※没有※※要※※在※※装※※订※※线※※内※※答※※题※※14.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为(1,1)、(1,3)、(3,3).若抛物线2y ax =的图象与正方形ABCD 有公共点,则a 的取值范围是_________.评卷人得分三、解答题15.先化简,再求值:()()()22123x x x++-+-,其中23x =.16.有两个没有透明的布袋A 、B ,分别装有3个小球,布袋A 中的小球分别标有数字1-,0,2,布袋B 中的小球分别标有数字2-,1,1,它们除数字没有同外其他均相同.从布袋A 、B 中各随机摸出一个小球,用画树状图(或列表)的方法,求摸出的两个小球的数字之和是正数的概率.17.抗疫工作中,某区有甲、乙两组志愿者分装蔬菜各210吨,乙组分装的速度是甲组分装的速度的2倍,甲组所需的时间比规定时间多1小时,乙组所需的时间比规定时间少2小时,求规定的时间.18.如图,ABC 内接于O ,45ACB ∠=︒,AD 是O 的直径,过点B 作AD 的平行线,交AC 的延长线于点P .(1)求证:PB 是O 的切线.第5页/总60页(2)若2AB =,30CAB ∠=︒,则 BC的长为_________.(结果保留π)19.图①、图②、图③均是55⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,所画图形的顶点均在格点上,(1)在图①中,画等腰三角形ABC ,使其面积为3.(2)在图②中,画等腰直角三角形ABD ,使其面积为5.(3)在图③中,画平行四边形ABEF ,使其面积为9.20.为了解甲、乙两省的旅游公司5月份收入情况,从这两省的旅游公司中,各随机抽取了25家旅游公司,获得了它们5月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.Ⅰ.甲省旅游公司5月份收入所得数据的频数分布直方图如下.(数据分成5组:57x ≤<,79x ≤<,911x ≤<,1113≤<x ,1315x ≤≤.)Ⅱ.甲省旅游公司5月份收入的数据在911x ≤<这一组的是:9.0,9.1,9.1,9.9,10.4,10.5,10.6,10.8Ⅱ.甲、乙两省旅游公司5月份收入的数据的平均数、中位数如下:试卷第6页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※没有※※要※※在※※装※※订※※线※※内※※答※※题※※平均数中位数甲省9.3m 乙省11.011.2(1)表中m __________.(2)在甲省抽取的旅游公司中,记5月份收入高于它们的平均收入的旅游公司的个数为a .在乙省抽取的旅游公司中,记5月份收入高于它们的平均收入的旅游公司的个数为b .问a 与b 的大小关系,并说明理由.(3)已知乙省共有1500家旅游公司,根据以上信息估计乙省旅游公司5月份的总收入为_______百万元.21.缂丝,是中国传统丝绸艺术品中的精华.缂丝织造技艺主要是使用古老的木机(如图①)及若干竹制的梭子和拨子,“通经断纬”的织造方法,将五彩的蚕丝线缂织成一幅色彩丰富的织物.缂丝工匠现要完成一件织品,工作一段时间后,记录了工作时间和织品长度的数据变化,并从函数角度进行了如下实验探究.【数据观察】记录的工作时间x (时)和织品长度y (厘米)的数据变化,如下表:工作时间x (时)02468织品长度y (厘米)33.64.24.85.4【探索发现】(1)建立平面直角坐标系,如图②,横轴表示记录的工作时间x ,纵轴表示织品长度y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果没有在同一条直线上,说明理由.【结论应用】(1)记录的工作时间达到5小时,求织品的长度.(2)如果每天工作10小时,要完成长为240厘米的织品,共需要多少天?第7页/总60页22.如图①,在ABC 中,90ABC ∠=︒,过点B 作直线BD 交边AC 于点D ,过点A 作AE BD ⊥,垂足为点E ,过点C 作CF BD ⊥,垂足为点F ,点O 为AC 的中点,连结OE 、OF .【证明推断】求证:OE OF =.小明给出的思路:先分别延长EO 、CF 交于点M ,再证明△≌△AEO CMO .请你根据小明的思路完成证明过程【拓展应用】如图②,当4BC AB =,45DBC ∠=︒时,解决下列问题:(1)EFO ∠的大小为_______度.(2)ODOC的值为__________.23.如图,在菱形ABCD 中,AC 为对角线,60ABC ∠=︒,12AB =.点P 是BC 边上一动点,当点P 没有与点B 重合时,过点P 作BC 的垂线交边AB 或边AD 于点E ,作点B 关于PE 中点的对称点B ',连结BB '、EB '.试卷第8页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※没有※※要※※在※※装※※订※※线※※内※※答※※题※※(1)求点A 到BC 的距离.(2)若点B 落在AC 上,则BEB ' 的面积为______.(3)在边BC 上取点F ,使4BC BF =.①将点P 在线段FC 上由点F 向点C 平移,求点B '所走的路径长.②作直线EF ,当EF 把BEB ' 的面积分成1:3两部分时,直接写出BP 的长.24.在平面直角坐标系中,已知抛物线2y x bx c =++(b 、c 是常数)点()0,1-和()2,7,点A 在这个抛物线上,设点A 的横坐标为m .(1)求此抛物线对应的函数表达式并写出顶点C 的坐标,(2)点B 在这个抛物线上(点B 在点A 的左侧),点B 的横坐标为12m --.①当ABC 是以AB 为底的等腰三角形时,求ABC 的面积.②将此抛物线A 、B 两点之间的部分(包括A 、B 两点)记为图象G ,当顶点C 在图象G 上,记图象G 点的纵坐标与点的纵坐标的差为h ,求h 与m 之间的函数关系式.(3)设点D 的坐标为(),2-m m ,点E 的坐标为()1,2--m m ,点F 在坐标平面内,以A 、D 、E 、F 为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m 的取值范围.答案:1.C【分析】根据相反数的定义选择即可.【详解】解:因为只有符号没有同的两个数互为相反数,所以12022的相反数是12022,故选:C.本题考查了相反数,熟记定义:只有符号没有同的两个数互为相反数是解题关键.2.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值≥10时,n 是正整数;当原数的值<1时,n是负整数.【详解】解:384000=3.84×105,故选:D.本题主要考查科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.3.C【分析】根据主视图是从物体正面看所得到的图形解答即可.【详解】解:从正面看有两层,底层三个正方形,上层左边一个正方形,即,故选:C .本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.D【分析】根据同底数幂的运算即可求解.【详解】原式235a a a =⋅=.故选D.容易题.失分原因是:对幂的乘法和乘方法则混淆,没有熟练掌握.5.C【分析】先根据角平分线定义求出∠AOD =2∠AOE =108°,再根据∠BOD =180°-∠AOD 求解即可.【详解】解:∵OE 平分AOD ∠,∴∠AOD =2∠AOE =2×54°=108°,∴∠BOD =180°-∠AOD =180°-108°=72°,故选:C .本题考查角平分线的定义,熟练掌握利用角平分线进行角的计算是解题的关键.6.C【分析】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,所以有∠AEC =90°,AE =BD =25米,DE =AB =15米,从而得CE =CD -DE =(x -15)米,在Rt △AEC 中,分别求出sin53°、cos53°、tan53°即可得出答案.【详解】解:如图,过点A 作AE ⊥CD 于E ,易得四边形ABDE 是矩形,∴∠AEC =90°,AE =BD =25米,DE =AB =15米,∴CE =CD -DE =(x -15)米,在Rt △AEC 中,∠AEC =90°,∴sin53°=sin ∠CAE =CE AC A 选项没有符合题意;cos53°=cos ∠CAE =AE AC =B 选项没有符合题意;tan53°=tan ∠CAE =1525CE x AE -=,故C 选项符合题意,D 选项没有符合题意;故选:C .本题考查了解直角三角形-仰角俯角问题,能借助仰角构造直角三角形并解直角三角形是解决问题的关键.7.C【分析】由勾股定理得AB =5,由作图知BC 为圆D 的直径,可得90BEC ∠=︒,从而可证明BCE BAC ∆∆:,根据相似三角形对应边成比例可求出BE 的长.【详解】解:在ABC 中,90ACB ∠=︒,3AC =,=4BC .∴AB 5===,由作图知,BC 为圆D 的直径,∴90BEC ∠=︒,∴BEC ACB ∠=∠,又,CBE ABC ∠=∠∴,CBE ABC ∆∆:∴CB BE AB BC=,即454BE =,∴BE =3.2,故选:C .本题主要考查了复杂作图,勾股定理,直径所对的圆周角是直角,相似三角形的判定与性质,证明CBE ABC ∆∆:是解答本题的关键.8.B【分析】延长AB 交x 轴于点E ,根据平行四边形的性质可得AB ∥CD ,AB =CD =1,再根据四边形CDBE 是矩形,可得BE =CD =1,从而得到AE =2,进而得到点A (4,2),D (8,1),即可求解.【详解】解:如图,延长AB 交x 轴于点E ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD =1,∵CD x ⊥轴,∴AB ⊥x 轴,∵BD CD⊥,∴∠BEC=∠DCE=∠BDC=90°,∴四边形CDBE是矩形,∴BE=CD=1,∴AE=2,∵函数8(0)y xx=>的图象点A、点D.∴当y=2时,x=4,;当y=1时,x=8,∴点A(4,2),D(8,1),∴点B(4,1),∴BD=8-4=4.故选:B本题主要考查了反比例函数的图象和性质,平行四边形的性质,矩形的判定和性质,熟练掌握反比例函数的图象和性质,平行四边形的性质,矩形的判定和性质是解题的关键.9.1【分析】首先计算算术平方根与零指数次幂,然后再根据运算法则计算即可.【详解】解:原式=2-1=1故1.本题考查算术平方根和零指数次幂,解题关键是熟练掌握运算法则.10.1(答案没有).【分析】根据根的判别式确定字母的取值范围,即可写出答案.【详解】解:关于x的一元二次方程220ax x+-=有两个没有相等的实数根,由题意可知:Δ=12﹣4a×(﹣2)=8a+1>0,∴a>-1 8,∵a≠0,∴a>-18且a≠0,故1(答案没有).本题考查一元二次方程的根的判别式,解题的关键是熟练运用一元二次方程的根的判别式,确定字母的取值范围.11.45【分析】根据正八边形得出八个内角都相等,再因为每个内角与它相应的外角互补,且多边形外角和为360︒,算出正八边形一个外角的大小.【详解】解:∵正八边形,∴正八边形八个内角都相等,∵正八边形的每个内角和它对应的外角互补,且外角和360︒,∴正八边形有八个相等的外角,∴正八边形一个外角为360845︒÷=︒,故45.本题考查了正多边形的性质,多边形外角和,正确理解以上图形性质是解题的关键.12【分析】连接AC,先由勾股定理求得AC=4,再根据矩形AEFG与矩形ABCD位似,点F在矩形ABCD的内部,且相似比为3:4,得34AFAC=,即可求出AF长,然后由CF=AC-A即可求解.【详解】解:如图,连接AC ,∵矩形ABCD ,∴∠B =90°∴AC =,∵矩形AEFG 与矩形ABCD 位似,点F 在矩形ABCD 的内部,且相似比为3:4,∴点F 在AC 上,∴34AF AC =34=,∴AF∴CF =AC -AF本题考查矩形的性质,勾股定理,位似图形的性质,熟练掌握位似图形的性质是解题的关键.13.6【分析】过点C 作DE ⊥x 轴于点E ,过点B 作BD ⊥DE 于点D ,可证得△BCD ≌△CAE ,从而得到CD =AE ,BD =CE ,再由点C 的坐标为(3,3)),点A 坐标为(,0)a ,点(0,)B b 在y 轴正半轴上,可得DE =b ,OE =CE =3,CD =AE =3-a ,即可求解.【详解】解:如图,过点C 作DE ⊥x 轴于点E ,过点B 作BD ⊥DE 于点D ,根据题意得:BC =AC ,∠ACB =90°,∴∠BCD +∠ACE =90°,∵DE ⊥x 轴,BD ⊥DE ,即∠AEC =∠D =90°,∴∠ACE +∠CAE =90°,∴∠CAE =∠BCD ,∴△BCD ≌△CAE ,∴CD =AE ,BD =CE ,∵点C 的坐标为(3,3)),点A 坐标为(,0)a ,点(0,)B b 在y 轴正半轴上,∴DE =b ,OE =CE =3,CD =AE =3-a ,∵CE +CD =DE ,∴3+3-a =b ,∴a +b =6.故6本题主要考查了坐标与图形,全等三角形的判定和性质,根据题意得到△BCD ≌△CAE 是解题的关键.14.139a ≤≤【分析】抛物线2y ax =开口向上,因此a 大于0,a 越大抛物线开口越小,a 越小抛物线开口越大,因此抛物线B 点时,a 取值,D 点时,a 取最小值,由此可解.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为(1,1)、(1,3)、(3,3),∴点D 的坐标为(3,1).∵抛物线2y ax =开口向上,∴0a >,∴当抛物线2y ax =B 点时,a 取值,D 点时,a 取最小值.将()1,3B 代入2y ax =得231a =⨯,解得3a =,将(3,1)D 代入2y ax =得213a =⨯,解得19a =,∴若抛物线2y ax =的图象与正方形ABCD 有公共点,则a 的取值范围是139a ≤≤.故139a ≤≤.本题考查正方形的性质,抛物线2y ax =图象与系数的关系,找到a 取值和最小值时与正方形的交点是解题的关键.15.33x +;5【分析】先用完全平方公式和多项式乘多项式的运算法则将原式展开,再合并同类项,代入x 的值计算即可.【详解】解:原式2244223x x x x x =++++---33x =+.当23x =时,原式23353=⨯+=.本题考查了整式的混合运算和求值.能正确根据整式的运算法则进行化简是解此题的关键.16.49【分析】画出树状图,得出所有等可能的情况数以及两数的和为正数的情况数,再运用概率公式计算即可.【详解】解:画树状图如下:从图中可知:共有9种等可能结果数,其中和为正数的有4种,∴摸出的两个小球的数字之和是正数的概率=49.此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以没有重复没有遗漏的列出所有可能的结果,列表法适合于两步完成的;树状图法适合两步或两步以上完成的;注意概率=所求情况数与总情况数之比.17.5小时【分析】设规定时间为x 小时,进而表示出两人完成所需要的时间,再表示出两人分装的速度,由乙组所需的时间比规定时间少2小时列出分式方程求出即可.【详解】解:设规定时间为x 小时,根据题意可列方程:210210212x x ⨯=+-,解得:x =5,经检验x =5是原方程的解,答:规定的时间为5小时.本题考查分式方程的应用,分析题意,找到合适的等量关系,列出方程是解决问题的关键,注意分式方程要检验.18.(1)见解析;3【分析】(1)连接OB,根据圆周角定理得到∠AOB=2∠ACB=90°,根据平行线的性质得到OB⊥BP,于是得到结论;(2)连接OC,求得OA=OB,根据圆周角定理得到∠COB=2∠CAB=60°,利用弧长的计算方法进行计算即可.(1)证明:连接OA,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵AD∥BP,∴∠OBP=90°,∴OB⊥BP,∵OB是⊙的半径,的切线;∴PB是O(2)如图,连接OC,∵∠AOB =90°,OA =OB ,2AB =,∴OA =OB ,∵30CAB ∠=︒,∴∠COB =2∠CAB =60°,∴ 601803BC l π=.本题考查切线的判定和性质,弧长的计算方法以及圆周角与圆心角的关系,掌握切线的判定方法,弧长的计算公式以及圆周角与圆心角的关系是解决问题的前提.19.(1)见解析(2)见解析(3)见解析【分析】(1)取格点C ,连接AC ,BC ,得到△ABC 即为所求,再利用三角形的面积计算方法求得到符合题意的图形,即可;(2)取格点D ,连接AD ,BD ,得到△ABD 即为所求,再根据勾股定理逆定理,即可;(3)取格点E ,F ,连接AF ,EF ,BE ,得到平行四边形ABEF ,即可求解.(1)解:如图,△ABC 即为所求;理由:2AB AC BC =====,∴AB =AC ,12332ABC S =⨯⨯= ;(2)解:如图,△ABD 即为所求;理由:AB AD BD ======∴AB =AD ,且222AB AD BD +=,∴△ABD 为等腰直角三角形,152ABD S == ;(3)解:如图,四边形ABEF 即为所求;理由:根据题意得:3,3AF BE ==且AF ∥BE ,∴AF =BE ,∴四边形ABEF 是平行四边形,339ABEF S =⨯= .本题主要考查了作图——应用与设计,勾股定理即其逆定理,平行四边形的判定和性质,解题的关键是理解题意,灵活运用所学的知识.20.(1)9.1;(2)a <b ,理由见解析;(3)16500【分析】(1)根据中位数的意义,求出甲、乙两省的旅游公司5月份收入从小到大排列,得出处在第13位的数据即可;(2)根据a ,b 所表示的意义,甲、乙两省的旅游公司所抽取的5月份的营业额的具体数据,得出答案;(3)根据乙省旅游公司5月份收入的数据的平均数以及公司的数量进行计算即可.(1)甲省旅游公司5月份收入的数据在57x ≤<有5家,在79x ≤<有6家,在911x ≤<有8家,这一组从小到大排列:9.0,9.1,9.1,9.9,10.4,10.5,10.6,10.8,所以25家中数据处在中间位置的一个数是9.1,因此中位数是9.1,即m =9.1,故9.1;(2)由题意得a =5+4+2=11(家),乙省旅游公司5月份收入的数据的平均数是11.0,中位数是11.2,因此所抽取的25家旅游公司5月份营业额在11.2以上的至少有13家,所以b 最小值为13,∴a <b ;(3)根据题意得:11.0×1500=16500(百万元),故16500.本题考查频数分布直方图、平均数、中位数,掌握平均数、中位数的意义是正确解答的前提.21.【探索发现】(1)图见解析;(2)0.33y x =+【结论应用】(1)织品的长度为4.5厘米;(2)共需要79天【探索发现】(1)在平面直角坐标系中描出以表格中数据为坐标的各点即可;(2)观察上述各点的分布规律,可知它们在同一条直线上,设这条直线所对应的函数表达式为y kx b =+,利用待定系数法即可求解;【结论应用】(1)利用前面求得的函数表达式求出5x =时,y 的值即可得出织品的长度;(2)利用前面求得的函数表达式求出240y =时,x 的值,然后用x 的值除以10即可求得所需的天数.【详解】解:探索发现:(1)如图②,(2)观察上述各点的分布规律,可知它们在同一条直线上,设这条直线所对应的函数表达式为y kx b =+,则32 3.6b k b =⎧⎨+=⎩,解得:0.33k b =⎧⎨=⎩,∴0.33y x =+.结论应用:(1)5x =时,0.353 4.5y =⨯+=,∴记录的工作时间达到5小时,织品的长度为4.5厘米;(2)240y =时,0.33240x +=,解得:790x =∴7901079÷=(天)∴如果每天工作10小时,要完成长为240厘米的织品,共需要79天.本题考查了函数的应用,利用了待定系数法求解析式,利用自变量的值求函数值,利用函数值求自变量的值.确定函数解析式是解题的关键.22.【证明推断】证明见解析;【拓展应用】(1)45;(2)35【分析】分别延长EO 、CF 交于点M ,由AE BD ⊥,CF BD ⊥得∠AED =∠CFD =90°,∠EFM =180°-∠CFD =90°,得AE CF ,则∠EAO =∠MCO ,△EFM 是直角三角形,由点O 为AC 的中点,得AO =CO ,又由∠AOE =∠COM ,得到△≌△AEO CMO (ASA ),得到OM =OE =12ME ,又有OF =12ME ,结论得证.【拓展应用】(1)连接OB ,先证明△AOE ≌△BOE (SSS ),得到∠AEO =∠BEO =12(360°-∠AEB )=135°,进一步得∠FEO =45°,延长EO 交AC 于点N ,再证△AOE ≌△CON (ASA ),得到OE =ON ,由△EFN 是直角三角形,得OE =ON =OF ,得出答案;(2)设AB =x ,则4BC AB ==4x ,由勾股定理得AC ,再由斜边上的中线定理得到AO =CO =2,在Rt △BFC 中,得FC =,在Rt △ABE 中,AE =2,再证明△ADE ∽△CFD ,得到AD AE CD CF =,求得AD =15AC =5,由OD =AO -AD =10,进一步即可得到答案.【详解】证明:如图①分别延长EO 、CF 交于点M ,∵AE BD ⊥,垂足为点E ,CF BD ⊥,垂足为点F ,∴∠AED =∠CFD =90°,∴AE CF ,∠EFM =180°-∠CFD =90°,∴∠EAO =∠MCO ,△EFM 是直角三角形,∵点O 为AC 的中点,∴AO =CO ,∵∠AOE =∠COM ,∴△≌△AEO CMO (ASA ),∴OM =OE =12ME ,∴O 是ME 的中点,∵△EFM 是直角三角形,∴OF =12ME ,∴OE =OF .(1)解:如图③,连接OB ,∵90ABC ∠=︒,∴△ABC 是直角三角形,∵点O 为AC 的中点,∴OB =AO =CO =12AC ,∵45DBC ∠=︒,∴∠ABE =90°-∠DBC =45°,∵AE BD ⊥,垂足为点E ,∴∠AEB =90°,∴△ABE 是等腰直角三角形,∴AE =BE ,∵OE =OE ,∴△AOE ≌△BOE (SSS ),∴∠AEO =∠BEO =12(360°-∠AEB )=135°,∴∠FEO =∠AEO -∠AED =45°,延长EO 交AC 于点N ,∵AE BD ⊥,垂足为点E ,CF BD ⊥,垂足为点F ,∴∠AED =∠CFD =90°,∴AE CF ,∴∠EAO =∠NCO ,∵点O 为AC 的中点,∴AO =CO ,∵∠AOE =∠CON ,∴△AOE ≌△CON (ASA ),∴OE =ON ,∵△EFN 是直角三角形,∴OE =ON =OF ,∴∠EFO =∠FEO =45°.故45;(2)解:设AB =x ,则4BC AB ==4x ,由勾股定理得AC ==,∴AO =CO =2,在Rt △BFC 中,∠FBC =45°,∴FC =BCsin ∠FBC =4x ×sin 45°=,在Rt △ABE 中,∠ABE =45°,∴AE =ABsin ∠ABE =x ×sin 45°∵AE CF ,∴∠EAD =∠FCD ,∵∠ADE =∠CDF ,∴△ADE ∽△CFD ,∴AD AE CD CF=,∴124AD CD ==,∴AD =15AC=5,∴OD =AO -AD10,∴OD OC35=,故35.此题考查了全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、解直角三角形、直角三角形斜边上中线的性质等知识,综合性较强,熟练掌握判定和性质是基础,添加适当的辅助线是关键.23.(2)(3)①2②1或9【分析】(1)过点A 作AG ⊥BC 于G ,根据sin ∠ABC =AG AB,求解即可;(2)连接PB ′,证四边形BPB ′E 是平行四边形,△ABC 与△AEB ′是等边三角形,求出BP =4,PES △BEB ′=12EB PE '⋅求解即可;(3)①如图,当P 由点F 移动到点C 时,点E 移动到点E ′,点B ′移动到点B ″,过点B ′作B ′G ⊥AD 于G ,求得GE ′=92,GB ″=GE ′+E ′B ″=332,然后由勾股定理求解;②分两种情况:I )当点P 在BF 上,点E 在AB 上时,II )当点E 在AD 上时,分别求解即可.(1)解:如图,过点A作AG⊥BC于G,∵∠ABC=60°,∴sin∠ABC=AGAB,即sin60°=12AG,∴AG即点A到BC的距离为(2)解:如图,连接PB′,∵点B关于PE中点的对称点B ,∴PE、BB′互相平分,∴四边形BPB′E是平行四边形,∴BP=EB′,BP∥EB′,∴∠AEB′=∠ABC=60°,∵菱形ABCD,∴AB=BC,∴△ABC是等边三角形,∴∠BAC=60°,∴△AEB′是等边三角形,∴EB′=AE,∵PE⊥BC,∴∠BEP=30°,∴AB=2BP,PE,∴AB=3BP=12,∴EB′=BP=4,∴PE∴S △BEB ′=11422EB PE '⋅=⨯⨯=故(3)解:①如图,当P 由点F 移动到点C 时,点E 移动到点E ′,点B ′移动到点B ″,过点B ′作B ′G ⊥AD 于G ,∵菱形ABCD ,∠ABC =60°,AB =12,∴∠CDA =60°,CD =12,AD ∥BC ,∵CE ′⊥AD ,∴∠DCE ′=30°,∴DE ′=12CD =6,∴AE ′=AD -DE ′=6,∵BC =4BF =12,∴BF =3,∴BP =3,由(2)知,当BP =3时,AB ′=3,∠BAC =60°,∴∠GAB ′=60°,∵B ′G ⊥AD ,∴∠AB ′G =30°,∴AG =12AB '=32,GB ∴GE ′=92,由(2)知,E ′B ″=BC =12,∴GB ″=GE ′+E ′B ″=332,在Rt△GB′B″中,由勾股定理,得B′B=②I)当点P在BF上,点E在AB上时,如图1所示,当EF把BEB'的面积分成1:3两部分时,则31 BHHB=',∵BC=4BF=12,∴BF=3,由(1)知,四边形BPB′E是平行四边形,∴EB′∥BP,EB′=BP∴31 BF BH EB HB==''∴EB′=1,∴BP=1,II)当点E在AD上时,如图2所示,连接CB′,当EF把BEB'的面积分成1:3两部分时,则13 BHHB=',∴BB′=4BH,∵BC=4BF,∴BH BF BB BC=',∵∠FBH=∠CBB′,∴△FBH∽△CBB′,∴∠BFH=∠BC B′,∴FH ∥C B ′,∵E B ′∥CF ,∴四边形CFE B ′是平行四边形,∴E B ′=CF ,∵BC =4BF =12,∴CF =9,∴E B ′=CF =9,由(2)知,四边形BPE B ′是平行四边形,∴BP =E B ′=9.综上,当EF 把BEB ' 的面积分成1:3两部分时,BP 的长为1或9.图1图2本题考查菱形的性质,平行四边形的判定与性质,解直角三角形,勾股定理,相似三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.24.(1)y =x 2+2x -1,(-1,-2)(2)①8②h =21(1)13m m m ⎛⎫+><- ⎪⎝⎭或或h=214(1)3m m -<<(3)m ≤-1或3≤<m ≤4【分析】(1)用待定系数法求出抛物线解析式,再将抛物线解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A 、B 、C 三点坐标,再根据三角形面积公式求解即可;(3)分情况讨论:①当m <-1时,②当时-1≤m ≤1时,③当时1<m <2时,④当时有2<m <3时,⑤当时有3≤<m ≤4时,⑥当时有m ≥4时,分别画出图形求解即可.(1)解:把()0,1-和()2,7代入2y x bx c =++,得1427c b c =-⎧⎨++=⎩,解得:12c b =-⎧⎨=⎩,∴抛物线对应的函数表达式为:y =x 2+2x -1,∵y =x 2+2x -1=(x +1)2-2,∴顶点C 的坐标为(-1,-2);(2)解:①当x =-1-2m 时,y =(-1-2m +1)2-2=4m 2-2,∴B (-1-2m ,4m 2-2),当△ABC 是以AB 为底的等腰三角形时,则AC =BC ,又∵点C 在抛物线对称轴x =-1上,∴点A 、点B 关于直线x =-1对称,∴A (2m -1,4m 2-2),∵点A 的横坐标为m ,∴2m -1=m 解得:m =1,∴A (1,2),B (-3,2),∵y =x 2+2x -1=(x +1)2-2,∴C (-1,-2),∴S △ABC =1[1(3)][2(2)]82--⨯--=;②∵A (m ,(m +1)2-2),B (-1-2m ,4m 2-2),C (-1,-2),∴当点A 是点,即m >1或m <-13时,则h =(m +1)2-2-(-2)=(m +1)2;当点B 是点,即-13<m <1时,则h =4m 2-2-(-2)=4m 2,综上,h 与m 之间的函数关系式为:h =21(1)13m m m ⎛⎫+><- ⎪⎝⎭或或h=214(1)3m m -<<;(3)解:①当m<-1时,则2-m>3,1-m>2,如图,此时矩形ADEF与抛物线有3个交点;②当时-1≤m≤1时,则1≤2-m≤3,1-m>1,如图,此时矩形ADEF与抛物线只有2个交点;③当时1<m<2时,则0<2-m<1,-1<1-m<0,如图,此时矩形ADEF与抛物线只有2个交点;④当时有2<m<3时,则-1<2-m<0,-2<1-m<-1,如图,此时矩形ADEF与抛物线只有2个交点;⑤当时有3≤<m≤4时,则-1≤2-m≤-2,-3≤1-m≤-2,如图,此时矩形ADEF与抛物线有3个交点;⑥当时有m≥4时,则2-m≤–2,1-m≤-3,如图,此时矩形ADEF与抛物线只有2个交点;综上,当m≤-1或3≤<m≤4时,抛物线与矩形有3个交点.本题考查矩形的性质,待定系数法求二次函数解析式,二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.2022-2023学年南京市建邺区中考数学专项突破仿真模拟卷(4月)一、选一选(每小题3分,共36分)1.下列各组数中,互为相反数的是()A.2与12 B.(﹣1)2与1C.﹣1与(﹣1)2D.2与|﹣2|2.函数y =13x +-x 的取值范围是()A.x ≥1B.x ≥1且x ≠3C.x ≠3D.1≤x ≤33.,0.21,2π,18,0.20202中,无理数的个数为()A.1B.2C.3D.44.下列计算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 6C.a 2+a 2=a 3D.a 6÷a 2=a 35.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°6.没有等式组1040x x +>⎧⎨-≥⎩的解集是()A.﹣1≤x≤4B.x <﹣1或x≥4C.﹣1<x <4D.﹣1<x≤47.李老师为了了解学生暑期在家的阅读情况,随机了20名学生某的阅读小时数,具体情况统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)12863则关于这20名学生阅读小时数的说确的是()A.众数是8B.中位数是3C.平均数是3D.方差是0.348.计算(2017﹣π)0﹣(﹣13)﹣1tan30°的结果是()A.5B.﹣2C.2D.﹣19.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.一个几何体的三视图如图所示,则此几何体是()A.棱柱B.正方体C.圆柱D.圆锥11.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是()A.a <0,b <0,c >0B.﹣2b a=1C.a+b+c <0D.关于x 的方程ax 2+bx+c=﹣1有两个没有相等的实数根12.已知:如图,在平面直角坐标系xOy 中,等边△AOB 的边长为6,点C 在边OA 上,点D 在边AB 上,且OC =3BD ,反比例函数y =kx(k ≠0)的图象恰好点C 和点D ,则k 的值为()A.25B.16C.5D.4二、填空题(每小题3分,共15分)13.已知实数a 、b 、c满足﹣2c|=0,则代数式ab+bc 的值为__.14.计算:(2111m m m+--)•1m+1=__.15.对于一切没有小于2的自然数n ,关于x 的一元二次方程x 2﹣(n+2)x ﹣2n 2=0的两个根记作a n ,b n (n≥2),则223320072007111...2)(2)(2)(2)(2)(2)a b a b a b +++=------(______16.甲、乙两点在边长为100m 的正方形ABCD 上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A 点出发,乙从CD 边的中点出发,则__秒,甲乙两点次在同一边上.17.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由 BC,线段CD 和线段BD 所围成图形的阴影部分的面积为__.三、解答题(本题共7小题,共69分)18.先化简,再求值:3a (a 2+2a+1)﹣2(a+1)2,其中a=2.19.在Rt △ABC 中,∠C=90°,∠B=30°,AB=10,点D 是射线CB 上的一个动点,△ADE 是等边三角形,点F 是AB 的中点,连接EF .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年初三学情调研试卷(Ⅰ)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算结果为负数的是 A .-1+2 B .|-1| C .(-2)2D .-2-12.计算a 5·(-1a)2的结果是A .-a 3B .a 3C .a 7D .a 10 3.若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为 A .2 B .5 C .6 D .12 4.如图是一几何体的三视图,这个几何体可能是 A .三棱柱B .三棱锥C .圆柱D .圆锥5.如图,已知a ∥b ,∠1=115°,则∠2的度数是 A .45°B .55°C .65°D .85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有A .0个B .1个C .2个D .无数个主视图左视图俯视图(第4题)a b12(第5题)二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.若式子x -2在实数范围内有意义,则x 的取值范围是 ▲ . 8.若a -b =3,a +b =-2,则a 2-b 2= ▲ .9.据统计,2016年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人. 将4 880 000用科学记数法表示为 ▲ .10.若△ABC ∽△A'B'C',相似比为1:3,则△ABC 与△A'B'C'的面积比为 ▲ . 11.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 ▲ cm 2(结果保留π). 12.已知关于x 的方程x 2+mx -3=0的一个根是1,则它的另一个根是 ▲ . 13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.请你根据表中数据选一人参加比赛,最合适的人选是 ▲ .14.在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 ▲ .15.如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7= ▲ °. 16.如图①,在等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,且CE =4cm .将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则等边△ABC 的边长为 ▲ cm .A 5A 6 A 7 A 8A 910A 1 A 2A 3 A 4(第15题)三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1a -1b )÷a 2-b2ab,其中a =2+1,b =2-1.18.(6分)解不等式组⎩⎪⎨⎪⎧ x +92≥4,2x -3<0,并写出不等式组的整数解.19.(7分)如图,在四边形ABCD 中,AB ∥CD ,点E 、F 在对角线AC 上,且∠ABF =∠CDE , AE =CF .(1)求证:△ABF ≌△CDE ;(2)当四边形ABCD 满足什么条件时,四边形BFDE 是菱形?为什么?20.(8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm ,DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)图①(第20题)21.(7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是 ▲ ; (2)求甲、乙两名同学观看同一节目的概率.22.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR ”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:(1)本次问卷调查抽取的学生共有 ▲ 人,其中“不了解”的学生有 ▲ 人; (2)在扇形统计图中,学生对“人民币加入SDR ”基本了解的区域的圆心角为 ▲ °; (3)根据抽样的结果,估计该区6 000名初中生中了解“人民币加入SDR ”的有多 少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.(8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?某区抽取学生对“人民币加入SDR ”知晓情况扇形统计图非常了解 26%比较了解 基本了解不了解24.(9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4 h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h 后,货车、轿车分别到达离甲地y 1 km 和y 2 km 的地方,图中的线段OA 、折线BCDE 分别表示y 1、y 2与x 之间的函数关系.(1)求点D 的坐标,并解释点D 的实际意义; (2)求线段DE 所在直线的函数表达式; (3)当货车出发 ▲ h 时,两车相距20025.(8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究. 图①是二次函数y =(x -a )2+a3(a为常数)当a =-1、0、1、2时的图像.当a 取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上.(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为 ▲ ; (2)如图②,当a =0时,二次函数图像上有一点P (2,4).将此二次函数图像沿着(1) 中发现的直线平移,记二次函数图像的顶点O 与点P 的对应点分别为O 1、P 1.若点P 1到x 轴的距离为5,求平移后二次函数图像所对应的函数表达式.(第25题)26.(10分)如图,直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接DE 、EF ,过点F 作FG ∥ED 交AB 于点G . (1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE27.(11分)问题提出平面上,若点P 与A 、B 、C 三点中的任意两点均构成等腰三角形,则称点P 是A 、B 、C 三点的巧妙点.若A 、B 、C 三点构成三角形,也称点P 是△ABC 的巧妙点. 初步思考(1)如图①,在等边△ABC 的内部和外部各作一个△ABC 的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC 中,AB =AC ,∠BAC =36°,点D 、E 是△ABC 的两个巧妙点, 其中AD =AB ,AE =AC ,BD =BC =CE ,连接DE ,分别交AB 、AC 于点M 、N . 2(3)在△ABC 中,AB =AC ,若存在一点P ,使PB =BA ,P A =PC .点P 可能为△ABC 的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC 的度数;若不可能,请说明理由.2016年初三学情调研试卷(Ⅰ)数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.-6 9.4.88×106 10.1: 9 11.3π 12.-3 13.丁 14.(2,-3) 15.54 16.1433三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:原式=(b -a ab )·ab(a +b )(a -b )································································ 2分=-1a +b . ···················································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ··································· 6分18.(本题6分)解:解不等式①,得x ≥-1. ···································································· 2分解不等式②,得x <32. ······································································· 4分所以不等式组的解集是-1≤x <32. ························································ 5分不等式组的整数解为-1、0、1. ·························································· 6分19.(本题7分)解:(1)∵AB ∥CD ,∴∠BAC =∠DCA .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . 又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ····································································· 3分(2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ·················· 4分连接BD 交AC 于点O ,由(1)△ABF ≌△CDE 得AB =CD ,BF =DE ,∠AFB =∠CED , ∴BF ∥DE .∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形. 又∵AB =AD ,∴□ABCD 是菱形. ∴BD ⊥AC .∵BF =DE ,BF ∥DE , ∴四边形BEDF 是平行四边形,∴□BEDF 是菱形. ······································································ 7分20.(本题8分)解:(1)在Rt △ADF 中,由勾股定理得,AD =AF 2-FD 2=252-202=15(cm ). ······································· 3分 (2)AE =AD +CD +EC =15+30+15=60(cm ). ···································· 4分过点E 作EH ⊥AB 于H , 在Rt △AEH 中,sin ∠EAH =EHAE, ··················································· 6分 ∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ·················································· 8分21.(本题7分)解:(1)13 . ·························································································· 2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:一共有9种可能的结果,它们是等可能的,其中符合要求的有3种. P (甲、乙两名同学观看同一节目)= 39 = 13.答:甲、乙两名同学观看同一节目的概率为1 3.································· 7分22.(本题8分)解:(1)100,20.··················································································· 2分(2)72. ·························································································· 4分(3)6 000×80%=4 800人.答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.8分23.(本题8分)解法一:设这种台灯的售价上涨x 元,( 600-10x ) ( 40+x -30)=10 000, ················································· 4分 解得x 1 =10,x 2=40, ·································································· 6分 ∴当x =10时,40+x =50,当x =40时,40+x =80; ························ 7分解法二:设这种台灯的售价为x 元,[600-10(x -40)] (x -30)=10 000, ·················································· 4分 解得x 1 =50,x 2=80, ·································································· 7分答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元. ··········· 8分 24.(本题9分)解:(1)求出点坐标D ( 4,300 ). ······························································ 2分 点D 是指货车出发4h 后,与轿车在距离A 地300 km 处相遇. ·············· 3分 (2)求出点坐标E ( 6.4,0 ). ······························································· 4分 设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎪⎨⎪⎧4k +b =300,6.4k +b =0, 解得 ⎩⎪⎨⎪⎧b =800,k =-125, ∴DE 所在直线的函数表达式为y =-125x +800. ····························· 7分 (3) 2或5. ····················································································· 9分25.(本题8分)解:(1)y = 13x . ··················································································· 2分(2)点O 1的坐标为 ( 3,1) 或 (-27,-9) ············································· 4分平移后的二次函数的表达式为y =(x -3)2 +1或y =(x +27)2 -9. ·········· 8分26.(本题10分)证明:(1)连接FO ,∵ OF =OC , ∴ ∠OFC =∠OCF . ∵CF 平分∠ACE , ∴∠FCG =∠FCE . ∴∠OFC =∠FCG . ∵ CE 是⊙O 的直径, ∴∠EDG =90°, 又∵FG ∥ED ,(第26题)∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF, ········································································4分又∵OF是⊙O半径,∴FG与⊙O相切. ·······························································5分(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8. ·············································································7分∵在R t△OHE中,∠OHE=90°,∴OH=OE2-HE2=52-42=3.∴FH=FO+OH=5+3=8. ···················································9分S四边形FGDH=12(FG+ED)·FH=12×(4+8)×8=48. ···················· 10分27.(本题11分)解:(1)画对1个巧妙点给一分. ······························································· 2分(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,∵AD=AB,AB=AC,BD=BC,∴△ADB≌△ABC.同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE=∠AED=36°=∠BAD,∴∠BDM =∠BDA -∠MDA =36°,∠BMD =∠ADM +∠DAM =72°=∠ABD ,∴DB =DM . ············································································· 5分 ∵∠DBM =∠ABD ,∠AED =∠BAD ,∴△DAM ∽△DEA ,∴DM DA =DADE,DA 2 =D M ·DE ,∵DM =DB ,∴DA 2 =D B ·DE . ··················································· 7分(3)第一种如图①或图②(只需画一个即可),∠BAC =60°.第二种如图③,∠BAC =36°; 第三种如图④,∠BAC =108°; 第四种如图⑤,∠BAC =120°.以上共四种:60°、36°、108°、120°. ········································ 11分(第27题)图⑤图④图③(第27题)图①BACPBACPCBPBACPC。

相关文档
最新文档