数据科学与大数据技术专业培养方案

合集下载

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当今信息时代最热门的专业方向之一,随着信息技术的快速发展,对于数据科学与大数据技术专业人材的需求也越来越大。

因此,如何科学合理地培养数据科学与大数据技术专业人材成为了学校和企业面临的重要问题。

本文将从课程设置、实践教学、教师团队、实习实训和综合能力培养五个方面探讨数据科学与大数据技术专业的培养方案。

一、课程设置1.1 确保基础课程的全面性和深度:包括数据结构、数据库原理、统计学基础等课程,为学生打下坚实的理论基础。

1.2 引入前沿技术课程:如机器学习、深度学习、自然语言处理等,培养学生对最新技术的理解和应用能力。

1.3 设置实践课程:如数据挖掘实践、大数据处理实践等,让学生通过实际操作掌握技能。

二、实践教学2.1 实验室建设:配备先进的大数据处理设备和软件工具,提供学生实践操作的平台。

2.2 项目实践:组织学生参预实际项目,锻炼他们的团队合作和问题解决能力。

2.3 创新实践:鼓励学生参加数据科学竞赛、科研项目等,培养他们的创新思维和实践能力。

三、教师团队3.1 学术背景:教师应具有扎实的数据科学与大数据技术理论基础和丰富的实践经验。

3.2 行业背景:教师中应有从业经验丰富的专家,能够为学生提供最新的行业动态和实践经验。

3.3 团队合作:建立跨学科的教师团队,促进不同专业背景的教师之间的合作,为学生提供全面的教学资源。

四、实习实训4.1 与企业合作:建立与企业的实习基地,为学生提供实习机会,让他们在实践中学习和成长。

4.2 实习指导:为学生提供专业的实习指导老师,指导学生在实习中解决问题,提升实践能力。

4.3 实习评估:建立科学的实习评估机制,对学生的实习表现进行评估,为学生提供改进建议。

五、综合能力培养5.1 综合实践项目:组织学生参预综合实践项目,让他们在实践中综合运用所学知识。

5.2 跨学科交叉:鼓励学生参加跨学科的课程和项目,培养他们的综合能力和跨学科思维。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当前社会发展中非常重要的领域,对于培养优秀的数据科学与大数据技术专业人才具有重要意义。

本文将从五个大点出发,详细阐述数据科学与大数据技术专业的培养方案。

正文内容:1. 理论基础培养1.1 理论知识体系构建:数据科学与大数据技术专业培养方案应重点建立起完整的理论知识体系,包括数学、统计学、计算机科学等基础学科,为学生提供坚实的理论基础。

1.2 专业核心课程设置:培养方案应包含专业核心课程,如数据挖掘、机器学习、大数据分析等,帮助学生系统学习相关领域的核心知识和技能。

2. 实践能力培养2.1 实验室实践:培养方案应安排学生参与实验室实践,通过实际操作和实验项目,锻炼学生的实践能力和解决问题的能力。

2.2 实习实训:为了提高学生的实际应用能力,培养方案可以安排学生进行实习实训,让他们在真实的工作环境中应用所学知识,培养解决实际问题的能力。

3. 项目驱动培养3.1 项目学习:培养方案可以引入项目学习,让学生通过参与真实项目,了解项目管理和团队合作等实践技能。

3.2 项目实践:通过组织学生参与实际项目的开发和实施,培养学生的项目实践能力,提高其在实际工作中的竞争力。

4. 综合素质培养4.1 语言表达能力:培养方案应注重培养学生的语言表达能力,包括口头表达和书面表达,使其能够清晰、准确地表达自己的观点和想法。

4.2 团队合作能力:数据科学与大数据技术通常需要多人合作完成,培养方案应注重培养学生的团队合作能力,包括沟通、协作和领导等方面的能力。

5. 学科交叉培养5.1 跨学科课程设置:培养方案可以设置一些跨学科的课程,如数据可视化、人工智能等,帮助学生拓宽视野,提高综合能力。

5.2 学科交流与合作:为了促进学科交叉与合作,培养方案可以组织学生参加学术交流会议、合作研究项目等,增强学生的学科交流与合作能力。

总结:通过以上五个大点的详细阐述,我们可以看出,数据科学与大数据技术专业的培养方案应该注重理论基础培养、实践能力培养、项目驱动培养、综合素质培养和学科交叉培养。

数据科学与大数据技术专业培养方案(满足工程教育要求)

数据科学与大数据技术专业培养方案(满足工程教育要求)

一、培养目标本专业旨在培养思想品德好、专业素质高、实践能力强,掌握数据科学专业方向所需的基础理论和方法,具有经济、金融等相关行业知识背景,具备较强的数据收集、数据处理和数据分析的技术和能力的国际化应用型数据科学人才。

学生毕业后,能在国家机关和企事业单位从事经济、金融、贸易、商务等行业的大数据分析,能利用数据科学方法开展商务流通大数据应用、金融大数据应用,能开发基于大数据的新产品和新业务,推动大数据在相关行业的应用创新。

二、培养规格及标准⒈知识结构本专业学生应具备以下几方面的知识:(1)通识教育知识:思想政治理论课、英语、大学语文、体育、哲学与社会、历史与文化、文学与艺术、科学与创新、数学思维与经济分析等;(2)基础知识:数据科学导论、数学分析、线性代数A、概率论A、数理统计、Python程序设计、计算机系统基础、C++程序设计、数据结构、数据库原理与设计等;(3)专业知识:大数据探索性分析、最优化方法、数据挖掘与机器学习、计算统计、应用回归分析、应用时间序列分析、应用多元统计分析、分布式计算、人工智能、自然语言处理、深度学习、文本挖掘等;(4)相关专业知识:微观经济学、宏观经济学、计量经济学、国际金融、国际贸易、商务大数据案例分析、金融数据风险建模、运筹学、管理学、博弈论等;(5)有关当代知识:数据科学的理论和应用前沿。

具体课程设置详见本专业指导性教学计划。

⒉能力通过培养,学生应具备以下几方面的能力:(1)具有扎实的数据分析的理论基础和大数据技术,培养比较系统的大数据分析思维;(2)掌握数据科学的基本理论、基本方法和基本技术,具有大数据采集和数据挖掘的技术,具备解决涉及大数据问题的能力;(3)掌握系统的经济、金融等方面的行业知识,具有运用数据科学的理论、方法和技术分析相关领域实际问题的能力;(4)掌握英语,听、说、读、写、译能力均达到较高水平。

具有较强的英语口语和书面交流能力,熟练运用专业英语能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

2.数据科学与大数据技术专业培养方案一、专业简介〔一〕历史沿革数据科学与大数据技术专业由学校“数据科学与大数据技术〞教学工作小组负责,依托计算机学院、理学院、经济管理学院、信息管理学院和通信学院共同建设,师资从全校范围内选拔组建,该专业2021年通过教育部审核批准,我校是全国第二批设立该全日制本科专业的高校。

〔二〕学生招生本专业2021年方案招生1个班,约30名学生。

该专业招生采用入校后二次选拔方式,面向所有被录取到我校的全日制本科生,综合高考成绩、英语分级考试成绩、数学分级考试成绩、专业面试成绩择优录取。

二、培养目标本专业根据“厚根底、宽专业、重能力、高素质〞的人才培养要求,培养具有良好的科学与人文素养、扎实的专业知识与技能、较强的工程实践与创新能力,具备计算机、数学、统计学等多学科知识和技能,具有分析问题、解决问题、自主学习以及国际视野的高素质应用型人才。

本专业毕业生应熟悉计算机专业根本知识、方法和技能,掌握大数据系统与平台技术〔数据采集、清洗、存储、计算等大数据系统与平台相关技术〕、大数据分析与可视化技术〔数据分析、人工智能、数据挖掘等大数据分析相关技术和数据可视化技术〕、特定场景下大数据开发与应用等方面的根本工程能力,具备工程师所必需的学习与创新、沟通与表达、合作与交流等根本能力与素养,具有良好的职业开展力和适应力的工程师与专业管理人才。

毕业生适合在信息技术企业和企事业单位信息技术或管理部门,以大数据采集与预处理、存储与管理、高性能计算、智能分析与挖掘、展现与应用等生命周期相关技术或应用为主要内容,从事现场或一线的平台规划、设计、部署、管理、运维,或系统开发、测试、支撑、效劳与管理等工作,并在五年内成长为能够独立胜任相关岗位工作的技术或管理工程师,或进入相关领域研究生阶段继续深造。

三、毕业要求:工程知识:能够将数学、自然科学、工程根底和专业知识用于解决复杂大数据技术和大数据应用的复杂工程问题。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当今信息时代最热门的专业方向之一,随着大数据时代的到来,数据科学家和大数据工程师的需求不断增加。

为了满足市场需求,各大高校纷纷开设了数据科学与大数据技术专业,并制定了相应的培养方案,以培养出高素质的数据科学家和大数据工程师。

一、课程设置1.1 数据科学基础课程数据科学专业的基础课程包括统计学、数据结构、数据库原理等,通过这些课程的学习,学生可以建立起对数据科学的基本理论和方法的认识。

1.2 大数据技术课程大数据技术专业的课程包括分布式计算、数据挖掘、机器学习等,学生通过这些课程的学习可以掌握大数据处理和分析的技术。

1.3 实践课程除了理论课程外,学校还会安排实践课程,如数据分析实训、大数据项目实践等,让学生在实际操作中掌握数据科学和大数据技术的应用。

二、实习实训2.1 企业实习为了让学生更好地了解行业需求,学校会安排企业实习,让学生有机会在真实的工作环境中实践所学知识。

2.2 实训项目学校还会组织实训项目,如大数据分析竞赛、数据科学项目实践等,让学生在实践中提升自己的能力。

2.3 导师指导学校会为学生配备导师,帮助学生解决实习实训中遇到的问题,指导他们在实践中不断成长。

三、科研项目3.1 科研基金学校会鼓励学生参与科研项目,申请科研基金,培养学生的科研能力和创新意识。

3.2 学术论文学生可以选择参加学术会议、发表学术论文,提升自己的学术水平和影响力。

3.3 科研团队学校会组建科研团队,邀请学生参与科研项目,培养学生的团队合作能力和创新精神。

四、实用技能4.1 编程能力数据科学与大数据技术专业需要具备扎实的编程能力,学校会安排相关编程课程,培养学生的编程技能。

4.2 数据处理能力学生需要掌握数据处理和分析的技术,学校会安排相关实践课程,让学生熟练运用数据处理工具。

4.3 解决问题能力学校还会培养学生的解决问题能力,通过案例分析、项目实践等方式,让学生学会独立思考和解决实际问题。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、背景介绍数据科学与大数据技术是当前信息时代的热门领域之一,它涉及数据的采集、存储、处理和分析等多个方面。

为了培养具备数据科学与大数据技术专业背景的人材,我们制定了以下的培养方案。

二、培养目标1. 培养具备扎实的数学、统计学和计算机基础知识的学生;2. 培养具备数据科学与大数据技术的理论和实践能力的学生;3. 培养具备数据分析、数据挖掘和机器学习等技能的学生;4. 培养具备解决实际问题和应用数据科学与大数据技术的能力的学生。

三、课程设置1. 基础课程- 数学分析- 线性代数- 概率论与数理统计- 计算机基础- 数据结构与算法- 数据库原理与应用2. 专业课程- 数据科学导论- 数据挖掘与机器学习- 大数据技术与应用- 数据可视化与交互设计- 数据仓库与商业智能- 分布式计算与云计算- 自然语言处理与文本挖掘- 数据安全与隐私保护3. 实践课程- 数据科学与大数据技术实验- 数据科学与大数据技术项目实践- 数据科学与大数据技术实习四、实践环节1. 实验课程学生将通过实验课程掌握数据科学与大数据技术的基本操作和应用,包括数据采集、数据清洗、数据分析和数据可视化等方面的实践技能。

2. 项目实践学生将通过项目实践课程参预实际的数据科学与大数据技术项目,锻炼解决实际问题的能力,并学习与团队合作和项目管理相关的技能。

3. 实习学生将在相关企业或者机构进行为期一定时间的实习,通过实践来加深对数据科学与大数据技术的理解和应用,同时积累实际工作经验。

五、评估与考核1. 课程考核每门课程将通过考试和实验报告等方式进行评估,以确保学生掌握了相应的知识和技能。

2. 项目评估项目实践课程将通过项目报告和答辩等方式进行评估,以评价学生在实际项目中的表现和能力。

3. 实习评估实习期结束后,学生将提交实习报告,并由导师或者企业进行评估,以评价学生在实习过程中的表现和能力。

六、就业方向数据科学与大数据技术专业毕业生可以在以下领域就业:- 互联网企业:如阿里巴巴、腾讯等;- 金融行业:如银行、保险、证券等;- 医疗健康领域:如医院、医疗器械企业等;- 零售与电商行业:如京东、苏宁等;- 媒体与广告行业:如新闻机构、广告公司等;- 政府与公共事业部门:如统计局、环保局等。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、专业背景及目标数据科学与大数据技术是一门涉及数据分析、数据挖掘、机器学习和大数据处理等领域的学科。

随着信息技术的飞速发展,数据科学与大数据技术在各行各业中的应用日益广泛。

本专业旨在培养具备扎实的数学、统计学和计算机科学基础,熟悉数据科学与大数据技术的理论和方法,具备数据分析、数据挖掘和大数据处理能力的专业人才。

二、培养目标1.掌握数学、统计学和计算机科学的基本理论和方法,具备扎实的数学和计算机科学基础;2.熟悉数据科学与大数据技术的理论和方法,了解数据挖掘、机器学习、人工智能等相关领域的最新进展;3.具备数据分析、数据挖掘和大数据处理的能力,能够运用相关工具和技术解决实际问题;4.具备团队合作和沟通能力,能够在跨学科和跨领域的团队中开展科研和工程项目;5.具备终身学习和创新精神,能够适应信息技术快速发展的需求。

三、课程设置1.数学基础课程线性代数、概率论与数理统计、离散数学等。

2.计算机科学基础课程计算机程序设计、数据结构与算法、计算机网络等。

3.数据科学与大数据技术核心课程数据挖掘、机器学习、数据可视化、大数据处理技术等。

4.专业选修课程数据分析、自然语言处理、深度学习、云计算等。

5.实践教学环节包括实验课程、项目实训、实习等,旨在培养学生的实际操作能力和解决实际问题的能力。

四、实践教学环节1.实验课程通过开展数据科学与大数据技术相关的实验,培养学生的实际操作能力和数据处理能力。

例如,设计一个数据挖掘算法,应用于某个实际数据集,分析并解释挖掘结果。

2.项目实训组织学生参与大数据项目实训,让学生在实际项目中应用所学知识,培养解决实际问题的能力和团队合作能力。

例如,参与一个金融领域的大数据分析项目,分析用户的消费行为和信用评级。

3.实习安排学生到企事业单位或科研机构进行实习,让学生接触真实的工作环境,了解行业需求和实际工作流程。

例如,到一家电商公司实习,参与大数据平台的建设和数据分析工作。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、引言数据科学与大数据技术是当前信息时代的重要领域之一,其在各行各业中的应用日益广泛。

为了培养具有扎实的数据科学与大数据技术背景的专业人材,本专业培养方案旨在为学生提供全面的理论知识和实践技能,使他们能够在数据科学与大数据技术领域中具备竞争力。

二、培养目标本专业培养方案旨在培养具备以下能力和素质的高级专业人材:1. 掌握数据科学与大数据技术的基本理论和方法,具备深入理解和解决实际问题的能力;2. 具备大数据处理与分析的技术能力,能够运用各种工具和算法进行数据挖掘、机器学习和人工智能等相关任务;3. 具备数据科学与大数据技术的实践能力,能够独立完成数据科学项目的设计、实施和评估;4. 具备团队合作和沟通能力,能够在跨学科和跨领域的团队中有效地协作;5. 具备良好的职业道德和社会责任感,能够适应信息时代的快速变化和不断更新的技术需求。

三、课程设置1. 基础课程- 数据结构与算法分析- 数据库原理与应用- 统计学基础- 数学建模与优化- 计算机网络- 离散数学2. 专业核心课程- 大数据技术与应用- 数据挖掘与机器学习- 自然语言处理与信息检索- 数据可视化与交互- 云计算与分布式系统- 高性能计算与并行程序设计3. 选修课程学生可以根据自身兴趣和发展方向选择以下课程中的若干门进行学习:- 深度学习与神经网络- 社交网络分析- 数据隐私与安全- 人工智能与智能系统- 金融数据分析- 医疗大数据分析四、实践环节为了培养学生的实践能力,本专业培养方案设置了以下实践环节:1. 实验课程:通过开设相关的实验课程,让学生学以致用,掌握数据科学与大数据技术的实际操作和应用。

2. 实习实训:学生将参预相关企业或者科研机构的实习实训,通过实践项目的参预,提升自己的实际能力和解决问题的能力。

3. 毕业设计:学生将完成一项数据科学与大数据技术相关的毕业设计项目,通过独立完成项目,展示自己的综合能力和创新能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当今社会中非常热门的专业领域之一。

随着信息技术的快速发展,大数据时代已经到来,对于数据科学与大数据技术专业的需求也越来越大。

因此,制定一套科学合理的专业培养方案对于培养高素质的数据科学与大数据技术人才至关重要。

本文将从四个方面详细阐述数据科学与大数据技术专业培养方案。

一、课程设置1.1 数据科学基础课程:包括数学基础、统计学、概率论等,帮助学生建立起数据科学的基本理论知识。

1.2 数据处理与分析课程:学习数据清洗、数据挖掘、数据可视化等技术,培养学生对数据的处理与分析能力。

1.3 大数据技术课程:学习分布式计算、数据存储与管理、机器学习等技术,使学生能够掌握大数据技术的核心知识。

二、实践环节2.1 实习实训:安排学生到企业或研究机构进行实习实训,让学生接触真实的数据科学与大数据技术项目,提升实践能力。

2.2 实验课程:设置数据科学与大数据技术的实验课程,通过实际操作,让学生掌握数据处理与分析的具体方法和技巧。

2.3 项目实践:组织学生参与数据科学与大数据技术相关的项目,培养学生的团队合作能力和解决实际问题的能力。

三、跨学科交叉3.1 与数学学科的交叉:加强数据科学与数学学科的交叉,培养学生的数学建模和数据分析能力。

3.2 与计算机科学的交叉:结合计算机科学的知识,培养学生的编程和算法设计能力。

3.3 与领域知识的交叉:将数据科学与大数据技术应用于各个领域,如金融、医疗等,培养学生的专业领域知识和实践能力。

四、综合素质培养4.1 语言能力培养:加强英语听说读写能力的培养,提高学生的跨文化交流能力。

4.2 创新能力培养:鼓励学生参与科研项目和创新实践,培养学生的创新思维和解决问题的能力。

4.3 终身学习能力培养:培养学生的自主学习能力和持续学习的意识,使其能够适应技术快速更新的环境。

综上所述,数据科学与大数据技术专业培养方案应该从课程设置、实践环节、跨学科交叉和综合素质培养等方面进行全面规划。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、引言随着信息时代的到来,数据科学和大数据技术成为了当今社会中一个重要的领域。

为了培养具备数据科学和大数据技术相关知识和技能的专业人才,本文将提出一份数据科学与大数据技术专业的培养方案。

二、专业概述数据科学与大数据技术专业旨在培养具备数据分析、数据挖掘、机器学习、数据可视化等方面的知识和技能,能够应用这些知识和技能解决实际问题的专业人才。

三、培养目标1. 掌握数据科学与大数据技术的基本理论和方法;2. 具备数据分析、数据挖掘、机器学习、数据可视化等方面的实际操作能力;3. 能够独立进行数据科学和大数据技术的研究与开发工作;4. 具备良好的团队合作和沟通能力,能够与不同领域的专业人员进行合作。

四、培养内容1. 基础课程(1)数学基础:包括线性代数、概率论与数理统计、离散数学等;(2)计算机基础:包括计算机组成原理、数据结构与算法、操作系统等;(3)数据科学基础:包括数据分析方法、数据挖掘算法、机器学习基础等。

2. 专业课程(1)数据科学与大数据技术导论:介绍数据科学与大数据技术的基本概念和发展历程;(2)数据预处理与清洗:学习数据清洗和预处理的方法和技术;(3)数据分析与挖掘:学习数据分析和挖掘的基本理论和方法;(4)机器学习与深度学习:学习机器学习和深度学习的基本原理和应用;(5)大数据处理与存储:学习大数据处理和存储的技术和工具;(6)数据可视化与交互设计:学习数据可视化和交互设计的方法和工具。

3. 实践环节(1)项目实训:通过参与真实的数据科学和大数据技术项目,培养学生解决实际问题的能力;(2)实习实训:组织学生到相关企业或机构进行实习,提升学生的实际操作能力;(3)毕业设计:要求学生独立完成一个数据科学和大数据技术相关的研究项目,展示所学知识和技能。

五、培养方式1. 课堂教学:通过理论讲解、案例分析等方式,传授基础知识和理论;2. 实验教学:通过实验操作,培养学生的实际操作能力;3. 项目实训:通过参与项目,培养学生解决实际问题的能力;4. 实习实训:通过实习,提升学生的实际操作能力;5. 毕业设计:通过毕业设计,展示学生所学知识和技能。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、专业背景和目标数据科学与大数据技术专业是为了满足当前社会对数据分析和处理的需求而设立的。

随着互联网和信息技术的迅猛发展,大量的数据被产生和存储,如何从这些海量数据中提取有价值的信息成为了一个重要的问题。

数据科学与大数据技术专业旨在培养具备数据分析、数据挖掘、机器学习等技能的专业人才,以应对数据时代的挑战。

二、专业课程设置1. 数据科学基础课程- 数据结构与算法- 数据库原理与应用- 统计学基础- 数据可视化- 数据挖掘与机器学习2. 大数据技术课程- 大数据存储与管理- 大数据计算与分析- 分布式系统与并行计算- 数据安全与隐私保护- 云计算与大数据平台3. 专业选修课程- 自然语言处理- 图像与视频分析- 社交网络分析- 数据科学实践- 数据科学伦理与法律三、实践教学环节1. 实习实训为了提高学生的实际操作能力和解决实际问题的能力,专业设置了实习实训环节。

学生将有机会在企业或科研机构中参与数据科学与大数据技术相关的项目,锻炼自己的实际操作能力。

2. 毕业设计毕业设计是专业培养方案的重要组成部分。

学生需要选择一个与数据科学与大数据技术相关的课题,进行研究和实践,并撰写毕业论文。

毕业设计旨在培养学生的科研能力和创新能力。

四、专业实验室建设为了支持专业的教学和科研工作,学校将建设一流的数据科学与大数据技术实验室。

实验室将配备先进的计算设备和大数据处理平台,为学生提供良好的学习和实践环境。

五、就业前景数据科学与大数据技术专业毕业生将具备丰富的数据分析和处理经验,可以在各个行业中从事数据科学家、大数据工程师、数据分析师等相关职业。

随着大数据技术的广泛应用,数据科学与大数据技术专业的就业前景广阔。

六、专业特色1. 实践导向专业注重学生的实践能力培养,通过实习实训和毕业设计等环节,使学生能够将所学知识应用于实际问题的解决。

2. 多学科交叉专业涉及计算机科学、数学、统计学等多个学科的知识,培养学生的综合能力和跨学科的思维能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述数据科学与大数据技术是当今信息时代最炙手可热的专业之一,其培养方案的设计对于培养具备数据分析和处理能力的专业人才至关重要。

本文将探讨数据科学与大数据技术专业的培养方案,包括课程设置、实践环节、师资队伍、学生实习以及毕业要求等方面。

一、课程设置1.1 理论课程:包括数据结构、数据库原理、数据挖掘、机器学习等,为学生提供扎实的理论基础。

1.2 实践课程:包括数据处理、数据分析、数据可视化等,培养学生实际操作能力。

1.3 综合课程:包括数据科学导论、大数据技术应用、数据伦理等,让学生了解行业发展趋势和伦理规范。

二、实践环节2.1 实习实训:安排学生到企业或科研机构进行实习,锻炼学生实际应用能力。

2.2 项目实践:组织学生参与数据科学与大数据技术项目,提升学生团队协作和解决问题的能力。

2.3 实验课程:设置实验课程,让学生动手实践,掌握数据处理和分析技能。

三、师资队伍3.1 学术导师:拥有丰富的科研经验和教学经验,指导学生进行科研项目。

3.2 实践导师:具有实际工作经验的专业人士,指导学生进行实习和项目实践。

3.3 行业导师:邀请行业专家参与教学,分享行业最新动态和实践经验。

四、学生实习4.1 实习机会:与企业建立合作关系,为学生提供丰富的实习机会。

4.2 实习指导:为学生提供实习指导老师,帮助学生顺利完成实习任务。

4.3 实习成果:要求学生完成实习报告和实习总结,总结实习经验和成果。

五、毕业要求5.1 学位要求:完成学分要求,通过毕业论文答辩,取得数据科学与大数据技术相关专业学位。

5.2 就业指导:为毕业生提供就业指导和职业规划,帮助毕业生顺利就业。

5.3 继续深造:鼓励毕业生继续深造,攻读硕士或博士学位,提升专业水平。

结语通过以上探讨,我们可以看到,数据科学与大数据技术专业的培养方案需要全面考虑课程设置、实践环节、师资队伍、学生实习以及毕业要求等方面,以培养具备数据分析和处理能力的专业人才为目标,为行业发展提供人才支撑。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、引言数据科学与大数据技术是当今社会中非常热门和前沿的领域,它涉及到数据的收集、存储、处理和分析等方面。

为了培养具备数据科学与大数据技术专业知识和技能的人才,我们制定了以下的专业培养方案。

二、培养目标1. 培养具备扎实的数学、统计学和计算机科学基础知识的学生;2. 培养具备数据分析、数据挖掘和机器学习等技术的实践能力;3. 培养具备大数据处理、存储和管理等技术的实践能力;4. 培养具备解决实际问题和进行创新研究的能力;5. 培养具备团队合作和沟通能力,能够在跨学科和跨领域的环境中工作。

三、课程设置1. 基础课程- 数学基础:包括高等数学、线性代数、概率论与数理统计等;- 计算机基础:包括计算机组成原理、数据结构与算法、操作系统等;- 数据科学基础:包括数据分析方法、数据挖掘技术、机器学习基础等。

2. 专业课程- 大数据处理技术:包括分布式系统、数据存储与管理、数据处理与分析等;- 数据可视化:包括可视化原理、可视化工具与技术、交互式可视化等;- 数据安全与隐私保护:包括数据安全基础、隐私保护技术、数据伦理等;- 深度学习与人工智能:包括深度神经网络、卷积神经网络、自然语言处理等。

3. 实践环节- 实习:学生需要参加为期一定时间的实习,以提升实际应用能力;- 实验:学生需要完成一定数量的实验,加深对理论知识的理解和实践操作能力;- 毕业设计/论文:学生需要完成一项独立的数据科学或大数据技术相关的项目或研究。

四、专业实践1. 实习为了提高学生的实际应用能力,学生需要参加为期至少3个月的实习。

实习期间,学生将在企业或科研机构中进行相关的工作,实践所学的数据科学与大数据技术知识和技能。

2. 实验学生需要完成一定数量的实验,通过实践操作来加深对理论知识的理解和掌握。

实验内容包括数据处理、数据分析、机器学习模型的构建等方面。

3. 毕业设计/论文在毕业阶段,学生需要选择一个数据科学或大数据技术相关的课题,并完成一项独立的项目或研究。

数据科学与大数据技术专业培养方案(满足工程教育要求)

数据科学与大数据技术专业培养方案(满足工程教育要求)

数据科学与大数据技术专业培养方案一、培养目标本专业旨在培养思想品德好、专业素质高、实践能力强,掌握数据科学专业方向所需的基础理论和方法,具有经济、金融等相关行业知识背景,具备较强的数据收集、数据处理和数据分析的技术和能力的国际化应用型数据科学人才。

学生毕业后,能在国家机关和企事业单位从事经济、金融、贸易、商务等行业的大数据分析,能利用数据科学方法开展商务流通大数据应用、金融大数据应用,能开发基于大数据的新产品和新业务,推动大数据在相关行业的应用创新。

二、培养规格及标准1.知识结构本专业学生应具备以下几方面的知识:(1)通识教育知识:思想政治理论课、英语、大学语文、体育、哲学与社会、历史与文化、文学与艺术、科学与创新、数学思维与经济分析等;(2)基础知识:数据科学导论、数学分析、线性代数A、概率论A、数理统计、Python程序设计、计算机系统基础、C++程序设计、数据结构、数据库原理与设计等;(3)专业知识:大数据探索性分析、最优化方法、数据挖掘与机器学习、计算统计、应用回归分析、应用时间序列分析、应用多元统计分析、分布式计算、人工智能、自然语言处理、深度学习、文本挖掘等;(4)相关专业知识:微观经济学、宏观经济学、计量经济学、国际金融、国际贸易、商务大数据案例分析、金融数据风险建模、运筹学、管理学、博弈论等;(5)有关当代知识:数据科学的理论和应用前沿。

具体课程设置详见本专业指导性教学计划。

2.能力通过培养,学生应具备以下几方面的能力:(1)具有扎实的数据分析的理论基础和大数据技术,培养比较系统的大数据分析思维;(2)掌握数据科学的基本理论、基本方法和基本技术,具有大数据采集和数据挖掘的技术,具备解决涉及大数据问题的能力;(3)掌握系统的经济、金融等方面的行业知识,具有运用数据科学的理论、方法和技术分析相关领域实际问题的能力;(4)掌握英语,听、说、读、写、译能力均达到较高水平。

具有较强的英语口语和书面交流能力,熟练运用专业英语能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当今信息时代的热门专业领域之一。

为了培养具备扎实的理论基础和实践能力的专业人材,我们制定了以下数据科学与大数据技术专业培养方案。

本文将详细介绍该方案的五个部份,分别是学科基础课程、专业核心课程、实践环节、实习实训和科研创新。

一、学科基础课程:1.1 数据结构与算法:学习数据结构和算法的基本概念、原理和常用算法,培养学生分析和解决实际问题的能力。

1.2 数据库原理与应用:掌握数据库的设计与管理技术,学习SQL语言和数据库开辟工具的使用,了解数据库的优化和性能调优。

1.3 统计学基础:学习统计学的基本概念和方法,包括概率论、数理统计和假设检验等,为后续的数据分析和建模打下基础。

二、专业核心课程:2.1 大数据技术与应用:学习大数据的存储、处理和分析技术,包括分布式存储系统、分布式计算框架和数据挖掘算法等,培养学生处理大规模数据的能力。

2.2 机器学习与数据挖掘:学习机器学习的基本原理和常用算法,了解数据挖掘的方法和技术,培养学生从数据中发现规律和进行预测的能力。

2.3 数据可视化与交互设计:学习数据可视化的原理和技术,包括图表设计、交互设计和可视化工具的使用,培养学生将数据转化为可视化图形的能力。

三、实践环节:3.1 实验课程:设置一系列与专业相关的实验课程,让学生通过实际操作掌握数据科学与大数据技术的基本方法和工具。

3.2 项目实践:组织学生参预实际项目,通过解决实际问题来提升学生的实践能力和团队协作能力。

3.3 学术交流:鼓励学生积极参加学术会议和竞赛,与同行交流、展示研究成果,提升学术素质和创新能力。

四、实习实训:4.1 实习机会:与企业合作,提供实习机会,让学生在真正的工作环境中锻炼专业能力和实践技巧。

4.2 实习指导:为学生提供专业的实习指导,匡助他们理解实际工作中的问题和挑战,培养解决问题的能力。

4.3 实习成果评估:对学生的实习成果进行评估,及时反馈并提供改进建议,匡助他们进一步提升自己的能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当前信息时代的热门专业,培养出的专业人材在各行各业都有着广泛的应用。

本文将从培养方案的角度,详细阐述数据科学与大数据技术专业的培养内容和方法。

一、理论基础培养1.1 数学基础数据科学与大数据技术专业的学生需要具备扎实的数学基础,包括概率论、数理统计、线性代数等。

这些基础知识是进行数据分析和建模的基础,对于学生后续的学习和实践具有重要作用。

1.2 计算机基础作为数据科学与大数据技术专业的学生,掌握计算机基础知识是必不可少的。

学生需要学习计算机的基本原理、操作系统、数据结构和算法等知识,以便能够熟练运用计算机进行数据处理和分析。

1.3 数据科学基础学生还需要学习数据科学的基本概念和方法。

这包括数据采集、数据清洗、数据分析和数据可视化等内容。

学生需要学会使用各种数据分析工具和编程语言,如Python、R等,以便能够进行数据分析和挖掘。

二、专业技能培养2.1 数据挖掘与分析学生需要学习数据挖掘和分析的方法和技术。

这包括数据预处理、特征选择、模型构建和模型评估等内容。

学生需要通过实际案例的分析和实践,掌握数据挖掘和分析的实际应用。

2.2 大数据处理与存储学生需要学习大数据处理和存储的技术。

这包括分布式计算、分布式存储、Hadoop、Spark等相关技术。

学生需要通过实际的项目实践,了解大数据处理和存储的具体应用场景和方法。

2.3 机器学习与人工智能学生需要学习机器学习和人工智能的基本原理和方法。

这包括监督学习、无监督学习、深度学习等内容。

学生需要通过实际的项目实践,掌握机器学习和人工智能的应用技巧。

三、实践能力培养3.1 实习实训学生需要参加相关企业或者机构的实习实训,通过实际项目的参预和实践,提升自己的实际操作能力和解决问题的能力。

实习实训可以匡助学生更好地了解行业需求,为将来的就业做好准备。

3.2 项目实践学生需要参预各类数据科学和大数据技术相关的项目实践,通过实际项目的设计和实施,提升自己的项目管理和团队合作能力。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、引言数据科学与大数据技术专业培养方案旨在培养具备数据科学与大数据技术领域的专业知识和技能的人材。

本方案旨在提供全面的课程设置和实践环节,以满足学生在数据科学与大数据技术领域的需求,并培养学生具备创新能力和团队合作精神。

二、培养目标本专业培养目标主要包括以下几个方面:1. 培养具备扎实的数学、统计学和计算机科学基础的学生;2. 培养具备数据分析、数据挖掘、机器学习等领域的核心理论和方法的学生;3. 培养具备大数据存储、处理和分析技术的学生;4. 培养具备数据科学项目实施和团队合作能力的学生;5. 培养具备良好的沟通和表达能力、职业道德和社会责任感的学生。

三、课程设置1. 基础课程- 高等数学- 线性代数- 概率论与数理统计- 数据结构与算法- 数据库原理与应用- 计算机网络2. 专业核心课程- 数据分析与挖掘- 机器学习- 大数据存储与管理- 大数据处理与分析- 数据可视化与交互设计- 云计算与分布式系统3. 选修课程- 自然语言处理- 图象与视频分析- 社交网络分析- 数据隐私与安全- 人工智能- 金融数据分析四、实践环节为了提高学生的实践能力和解决实际问题的能力,本专业设置了以下实践环节:1. 实验课程:通过实验课程,学生将学到的理论知识应用于实际场景,提高数据分析和处理的技能。

2. 实习:学生将有机会在相关企业或者机构进行实习,接触真正的数据科学和大数据技术项目,锻炼实际操作能力。

3. 毕业设计:学生需要完成一项数据科学与大数据技术相关的毕业设计项目,展示他们在该领域的综合能力。

五、评估与认证为了保证培养质量和学生的学习效果,本专业将进行以下评估与认证:1. 课程评估:每门课程结束后,学生将进行课程评估,包括教学质量、课程内容和教师评价等方面。

2. 实践评估:对学生的实践环节进行评估,包括实验课程、实习和毕业设计等方面。

3. 学生评估:对学生的学习情况进行评估,包括学习成绩、综合素质和团队合作等方面。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案一、引言数据科学与大数据技术是当前信息时代的重要领域,随着互联网、物联网和人工智能等技术的快速发展,大数据的应用已经渗透到各个行业和领域。

为了满足社会对数据科学与大数据技术专业人才的需求,本文将详细介绍数据科学与大数据技术专业的培养方案。

二、专业目标数据科学与大数据技术专业旨在培养具备扎实的数学、统计学和计算机科学基础,具备数据分析和处理能力,具备大数据技术应用和开发能力的高级专业人才。

毕业生应具备以下能力:1. 掌握数据科学与大数据技术的基本理论和方法;2. 具备数据分析和处理的能力,能够从大量数据中提取有价值的信息;3. 具备大数据技术的应用和开发能力,能够构建大规模数据处理和分析系统;4. 具备团队合作和沟通能力,能够在跨学科和跨领域的项目中协作工作;5. 具备终身学习的能力,能够持续跟进数据科学与大数据技术领域的最新发展。

三、课程设置1. 基础课程- 数学分析- 线性代数- 概率论与数理统计- 数据结构与算法- 数据库原理与应用- 计算机网络- 编程语言基础2. 专业课程- 数据挖掘与机器学习- 大数据处理与分析- 数据可视化与交互设计- 云计算与分布式系统- 自然语言处理与文本分析- 高性能计算与并行计算- 数据安全与隐私保护3. 实践课程- 数据科学实践项目- 大数据技术应用案例分析- 数据科学与大数据技术实训四、实践教学1. 实验室建设为了提供良好的实践环境,学校将建设先进的数据科学与大数据技术实验室,配备高性能计算设备、大数据存储和处理设备以及相关软件工具。

2. 实践项目学生将参与数据科学与大数据技术的实践项目,通过与企业合作或者校内实验室的研究项目,将所学理论知识应用于实际问题的解决中。

3. 实训课程学生将参与数据科学与大数据技术的实训课程,通过实际操作和案例分析,掌握数据科学与大数据技术的应用和开发技能。

五、实习与就业学生将在大数据相关企业或科研机构进行实习,通过实习经验积累实际工作经验。

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案

数据科学与大数据技术专业培养方案引言概述:数据科学与大数据技术是当前信息时代发展的重要领域,对于培养专业人才具有重要意义。

本文将从五个方面详细阐述数据科学与大数据技术专业培养方案,包括学科基础课程、实践能力培养、跨学科交叉培养、创新创业能力培养和实际应用能力培养。

一、学科基础课程:1.1 数据科学基础:介绍数据科学的基本概念、原理和方法,包括数据采集、数据清洗、数据分析和数据可视化等。

1.2 大数据技术基础:学习大数据处理的相关技术,如分布式计算、分布式存储、数据挖掘和机器学习等。

1.3 统计学基础:掌握统计学的基本理论和方法,为数据科学和大数据技术的应用提供统计分析的支持。

二、实践能力培养:2.1 实验实践:通过设计和完成实验项目,培养学生的数据处理和分析能力,提高他们的实际操作能力。

2.2 项目实训:参与实际项目的开发和实施过程,锻炼学生的团队协作能力和解决问题的能力。

2.3 数据挖掘竞赛:参加数据挖掘竞赛,提升学生的数据挖掘和机器学习算法应用能力。

三、跨学科交叉培养:3.1 数学学科交叉:学生需要学习数学学科的相关知识,如概率论、线性代数等,为数据科学和大数据技术的应用提供数学基础。

3.2 计算机科学交叉:学生需要学习计算机科学的相关知识,如数据结构、算法设计等,为数据处理和分析提供计算机支持。

3.3 领域知识交叉:学生需要学习相关领域的知识,如金融、医疗等,为数据科学和大数据技术的应用提供领域专业支持。

四、创新创业能力培养:4.1 创新思维培养:通过培养学生的创新思维,激发他们的创新潜能,提高解决问题的能力。

4.2 创业实践:提供创业实践的机会,让学生了解创业过程,培养他们的创业意识和创业能力。

4.3 创新项目:鼓励学生参与创新项目的研究和开发,培养他们的创新能力和团队合作能力。

五、实际应用能力培养:5.1 实际案例分析:通过分析实际案例,让学生了解数据科学和大数据技术在实际应用中的价值和挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据科学与大数据技术专业培养方案
2018年,我校数据科学与大数据专业将首次招生,招生规模预计为60人左右。

该专业依托湖北大学与中科曙光共建的“大数据学院”,借助双方共同投入2000万构建的大数据专业实验室,与中科曙光联合开展人才培养。

旨在培养具有大数据思维、运用大数据思维及分析应用技术、具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。

本专业学生毕业后,能在统计部门、税务海关、公司企业以及金融保险机构等企事业单位从事大数据分析、大数据应用开发、大数据系统开发、大数据可视化以及大数据决策等工作,或继续攻读本学科及其相关学科的硕士学位研究生。

专业代码:080907
一、培养目标
本专业培养具有良好职业道德,具备系统的数学、人文与专业素养,较全面掌握数据科学专业方向所需的基本理论、基本方法和基本技术,具有较强的数据采集、存储、处理、分析与展示的基本能力,能够运用所学知识解决实际问题,具备较高的综合业务素质、创新与实践能力、以及良好外语运用能力。

能在国家机关和企事业单位从事经济、金融、贸易、商务等行业从事大数据研究、大数据分析、大数据应用开发、大数据系统开发、大数据可视化以及大数据决策等工作,能开发基于大数据的新产品和新业务,推动大数据在相关行业的应用创新的应用型数据科学人才。

二、毕业要求
本专业培养掌握大数据科学与技术相关的基本理论和基本知识,系统地掌握数据科学与工程专业知识,具备大数据应用系统设计与开发的能力,以及一定的科研工作能力,达到知识、能力与素质的协调发展。

毕业生在知识、能力和素质等方面应达到如下具体要求:
1.工程知识:能够将数学、自然科学、数据科学与大数据技术基础知识用于解决复杂工程科学技术问题。

2. 问题分析:具有解决数据科学与大数据技术领域复杂工程问题所需的专业知识,具备对复杂工程项目问题进行科学识别和提炼、定义和表达、技术分析和测试及运维管理的能
力,以解决复杂工程项目问题。

3. 设计/开发解决方案:能够设计大数据开发和大数据分析领域的复杂工程问题的解决方案,设计和开发满足特定需求的系统,包括硬件和软件,并能够在设计环节中体现创新意识。

4. 研究:能够基于数据科学原理,采用工程方法对复杂工程问题进行研究,包括需求分析、系统设计、编程实现、测试和维护,从而解决问题并进行评价。

5. 使用现代工具:能够针对数据科学与大数据技术领域复杂工程问题,选择与使用恰当的编程语言、开发平台、开发工具以及各种辅助的质量保证、建模工具等,来解决工程中的问题,并能够理解其局限性,了解数据科学领域的前沿理论与发展现状和趋势。

6. 工程与社会,环境与可持续发展:在解决数据科学与大数据技术领域复杂项目工程问题的同时,能够综合考虑安全与健康、经济、环境、文化、社会等制约因素,遵守法律法规与相关标准,理解和评价工程实践对其影响和应承担的责任,并能够理解和评价这些复杂项目工程实践对环境及社会可持续发展的影响。

7. 职业规划:具有人文社会科学素养、社会责任感,能够在工程实践中理解并遵守软件行业的职业道德和规范,履行责任。

8. 个人和团队:具有团队合作和在多学科背景环境中发挥个人作用的能力。

9. 沟通:具有在数据科学与大数据技术领域复杂项目工程活动中与他人和社会进行有效沟通的能力,包括能够理解和撰写效果良好的项目报告和设计文档,进行有效的陈述发言;具有一定的国际视野和跨文化交流的能力。

10. 项目管理:理解并掌握复杂项目工程的管理和经济决策方面的基本知识与方法,并能够应用于工程实践中。

11. 终身学习:具有自主学习和终身学习的意识,具有不断学习和适应计算机技术快速发展的能力。

12. 创新:具有创新意识,掌握解决数据科学与大数据技术领域工程项目设计与实施的创新方法。

三、核心课程
面向对象程序设计、操作系统、数据结构、数据库原理及应用、Java应用开发、算法分析与设计、Python程序设计、大数据分析与内存计算、Hadoop 大数据技术、数据导入与
预处理应用、数据挖掘技术与应用、数据可视化技术、数据采集与网络爬虫、大数据处理与编程实践、金融大数据分析、互联网金融信息挖掘等。

四、学制与学分要求
(一)学制:弹性学制,4年
(二)最低学分:毕业最低学分164学分。

其中必修128学分,选修32学分,课外创新实践4学分。

五、授予学位及要求
平均学分绩点不低于2.0,具体要求符合《湖北大学普通高等教育本科毕业生学士学位授予工作细则》,授予工学学士学位。

六、课程平台及实践教学体系学分分配表
(一)课程平台学分分配汇总表
七、课程设置明细
(一)通识教育课程平台(应修40学分,必修36学分,选修4学分)
1. 通识教育课程平台必修课程(36学分)
2.通识教育课程平台选修课程(4学分)
(二)学科大类课程平台(应修31学分:必修27学分,选修4学分)
1.学科大类课程平台必修课程(27学分)
(四)专业方向课程平台
(五)课外创新实践活动(4学分)
参照《湖北大学“第二课堂成绩单”制度实施方案》、《湖北大学“第二课堂成绩单”学分认定管理办法》文件中规定,每个专业须设置课外创新实践活动学分4学分。

八、集中性实践教学环节课程设置一览(18学分)
九、辅修专业、双学位培养计划
双学位课程设置:辅修专业课程+毕业设计(论文),共55学分。

十、其他说明
本培养方案针对数据科学与大数据专业本科生制定,方案的修订参考了《中国大数据人才培养体系(第一版)》。

课程体系包括通识教育课程平台、学科大类课程平台、专业核心课程平台、专业方向课程平台和课外创新实践活动5个部分。

其中:
1.通识教育平台应修40学分,必修学分36分,选修学分4分;
2.学科大类课程平台应修31学分,必修27学分,选修4学分;
3.专业核心课程平台必修47学分;
4.专业方向课程平台分为大数据应用开发方向和金融大数据分析与利用方向(方向的划
分是本专业师资和科研实际情况而设立,符合大数据人才的整体分类标准);
5.专业方向课程平台无必修课程,设置选修课程24学分。

相关文档
最新文档