石墨烯在锂离子电池中的应用
石墨烯在锂离子电池负极材料中的应用
石墨烯在锂离子电池负极材料中的应用摘要:随着近几年石墨烯的研究进展,在复合材料领域石墨烯扮演的角色越来越重要。
随着科技的发展,锂离子电池应用的范围越来越广。
负极材料作为锂离子电池重要部分,越来越多的被人们研究开发。
基于此,文章就锂离子电池负极材料中石墨烯的应用加以分析和探讨。
关键词:锂离子电池;负极材料;石墨烯随着科技的发展,锂电池凭借高电压、高能量密度、良好的循环性能、低自放电等突出优势在人们生活中的应用越来越广泛。
在锂离子电池中电位比较低的一端叫负极,在原电池中起氧化作用。
锂电池中负极所需要的材料为负极材料。
根据实际生产中锂离子电池生产成本核算,负极材料成本约占比锂电池总成本的1/4~1/3,因此负极材料的研究至关重要。
一、什么是石墨烯石墨烯是由单层碳原子排列成六边形晶格而形成的一种异形体。
自然界中有许多它的“同胞兄弟”如石墨、钻石、碳、碳纳米管。
这些都是碳的其他异形体。
石墨烯他的化学结构很简单,作为一种新型的材料,将会变得极其容易获得,不会像之前难以获得的材料那么昂贵,这将会使价格变得低廉,也让人们更容易所接受。
再说它的空间结构,它的形状是一种类似足球比赛中守门员的球网,是一种薄膜,是一种六角型晶格平面的薄膜,是一种只有一个碳原子的厚度二维材料,是一种新型的、坚固的二维材料,这就区别了和三维材料的区别,在后面我们会说出石墨烯也是可以由二维材料变成三维材料的。
石墨烯具有一些不同于其他材料的一些特性,他是最坚固的材料,它能传导热量和电能,它几乎是透明的。
所以相较于之前用于储能材料,和用于光电催化方面的材料,石墨烯具有着一些得天独厚的优势,也意味这在这些方面上,石墨烯将会得到更为广泛的使用。
二、石墨烯的制备技术目前我们国家在研究石墨烯生产方法时主要有两个方向,分别是物理法制备和化学法制备。
利用微机械剥离法能够得到高质量的石墨烯,但是由于此种方法处理出来的石墨烯通常尺寸较小,应用范围不广阔因此并不适合大规模生产,目前比较适用的还是化学方法,化学方法总共分为两种,一种是化学气象沉积法,这种方法通常是用Ni,Ru等一些过度金属来做基底,在利用甲烷和乙烯等一些小分子来高温气态的条件下发生一些化学反映,在基底层可以生长出石墨烯,这种方法目前主要用来制备墨烯薄膜,但是由于使用过渡金属作为基底,成本相对比较高。
石墨烯在锂离子电池中的应用研究
石墨烯在锂离子电池中的应用研究随着科技的发展和人们生活质量的不断提高,对电池能量密度、电池寿命和安全性的要求也越来越高。
而现在,石墨烯这种材料在锂离子电池中的应用研究,正在经历一波热潮。
一、石墨烯的介绍石墨烯是由单层碳原子构成的二维材料,它具有独特而优异的电学、热学、力学和光学性质。
它的导电性、导热性以及毒性不强使它成为最理想的电池材料之一,因为它可以显著提升电池的性能水平。
二、石墨烯在锂离子电池中的应用(一)提高电池能量密度石墨烯可以大大提高电池的能量密度,是因为它的独特结构可以使得锂离子能够更好地储存和释放。
而且,石墨烯具有优异的电导率,这也可以加快电池运作的速度,提高能量密度。
(二)延长电池寿命石墨烯作为电池导电模块的成分之一,可以防止电池内的能量损失,从而使电池寿命得到显著的延长。
同时,石墨烯还可以避免电池内部的极化现象和锂离子的“溢出”现象,确保电池的稳定性和长寿命。
(三)提高电池安全性石墨烯的强韧性和高温耐受性可以将电池内部的压力和温度控制在合理的范围内,从而提高电池的安全系数。
此外,石墨烯具有良好的高温抗氧化性能,可以防止电池内部物质的氧化腐蚀,从而避免电池的短路和爆炸等安全隐患。
三、展望石墨烯在锂离子电池中的应用前景虽然石墨烯在锂离子电池中的应用研究还没有完全成熟,但是已经被广泛认为是未来电池材料的翘楚。
据预测,在未来5年左右,石墨烯在电池领域的市场规模将达到数十亿美元,成为一个全新的产业增长点。
同时,石墨烯还有着广泛的其他应用领域,例如:医疗、环保、新材料等,因此,石墨烯可以作为一种新兴的产业,给人类社会带来更多的惊喜和发展可能性。
四、总结石墨烯因其独特的特性,在各个领域得到了广泛的研究和应用。
而在锂离子电池中的应用研究更是令人兴奋,这种材料能够为电池的能量密度、电池寿命和安全性提供更好的保障,未来的市场前景也十分广阔。
因此,我们有理由相信,石墨烯材料必将在锂离子电池领域内发挥更为重要和广泛的作用。
石墨烯在锂离子电池中应用
Abstract
Graphene is a tw o dim ensio nal m at erial only m ade of carbon at om s. Due t o it s
墨烯制备和研究方面的开创性工作获得了 2010 年的诺贝尔物理学奖 . 关键词 石墨烯 ; 诺贝尔奖; 量子霍尔效应; 狄拉克费米子
GRAPHENE: A NEW QUANTUM MATERIAL
Zhang Yi
( In st itu t e of Physics , Ch ines e A cademy of Sciences, Beijin g 100190)
[ 2, 3]
狄拉克费米子行为
. 这种奇特的狄拉克费米子
之前从未在真实的材料中发现 , 而仅仅在理论上 被理论物理学家讨论过 . 石墨烯各种新奇的物理 特性已引起了科学界的广泛关注 . 首次在实验上 制备出石墨烯的两位俄裔英国科学家也因此获得 2010 年度的诺贝尔物理学奖[ 4] .
2 物理与工程 V ol. 21
unique t w o dimensio nal honey com b lat t ice st ruct ur e, Dirac ferm io n s behavior of carriers, and ot her ex ot ic physical charact erist ics, graphene has at tr act ed ex t ensiv e at t ent ion r ecent ly. Graphene also prom ises f or applications in many f ields such as elect ro nicd, info rmat ion technolog y, energ y co nvert ion. Because of t he pioneering w ork in prepar at ion and charact er izat ion o f graphene, A. K. Geim and K. S. Nov oselov , t he U niversit y of M anchest er shared No bel Prize in P hy sics in 2010. Key Words Graphene; Nobel P rize; Quant um H al l eff ect ; Dirac fert mon 过机械剥离的方法制得了石墨烯 , 发现它在大气 1 介绍 晶体管于 1947 年 12 月发明, 它开创了 现代 的半导体工业, 是计算机信息技术的基石 . 随着人 们对计算速度和性能的不断追求 , 传统半导 体器 件尺寸的不断缩小并已经到达了瓶颈 . 人们 急需 具有更快的电子输运和更精确的电子操纵的新材 料来实 现未 来高 速 高效 电子 器件 的应 用. 2004 年, 曼彻斯特大学的康斯 坦丁 诺沃 肖洛夫 ( K. S. No voselov ) 和安德烈 海姆 ( A. K. Geim ) 通 和室温环境下具有稳定的结构 , 并且具有极大的 场效应和极高 的载 流子 迁移 率 ( ~ 15 000cm 2 V- 1 s- 1 ) [ 1] . 之后又发现其载流子表现出独特的
石墨烯在锂离子电池中的应用综述
石墨烯在锂离子电池中的应用
学生姓名 贾凯洋
指导教师 杨贵进
西北师范大学物理与电子工程学院
2019/4/12
物理与电子工程学院本科生毕业论文答辩
目 录
选题背景
石墨烯的制备和性质
石墨烯在锂离子电池中的应用 石墨烯在锂离子电池中应用的总结及前景 展望
2019/4/12
2019/4/12
物理与电子工程学院本科生毕业论文答辩 表1.石墨烯改性正极材料的简要制备方法
正极材料 LiFePO4
石墨烯在锂离子电池正极材料中的应用
共沉淀法 + 热处 理 水热法+热处理 喷雾干燥 + 热处 理 溶胶-凝胶法 水解+溶剂热法 2~5μm 280
复合方法
Li3V2(PO4遇到的问题的基本途径之一
石墨烯因其优异的性能在锂离子电池电极材料的选择中被广 泛关注
2019/4/12
物理与电子工程学院本科生毕业论文答辩
锂离子电池工作原理
图1 锂离子电池工作原理示意图 2019/4/12
物理与电子工程学院本科生毕业论文答辩
锂离子电池的应用
电压高、能量密度 大、循环性能好、 自放电小、无记忆 效应
物理与电子工程学院本科生毕业论文答辩
石墨烯做锂离子电池负极材料的问题
制备过程石墨烯片层极易堆积
石墨烯首次充放电库伦效率低
石墨烯循环性能差 石墨烯的其他问题
2019/4/12
物理与电子工程学院本科生毕业论文答辩
石墨烯/锰氧化物复合材料
MnOX+2xLi++2xe2C+Li++e-
石墨烯在锂离子电池负极材料中的应用研究进展
石墨烯在锂离子电池负极材料中的应用研究进展结合当前利用石墨烯材料特殊二维结构、优良物理化学特性来改善锂离子电池较低能量密度、较差循环性能等缺陷的研究热点,综述石墨烯材料及石墨烯复合材料在锂离子电池负极材料中的应用研究进展,指出现有电极材料的缺陷和不足,讨论作为锂离子电池电极的石墨烯复合材料结构与功能调控的重要性,并简要评述石墨烯在相关领域中所面临的挑战和发展前景。
标签:石墨烯;锂离子电池;负极材料石墨烯是一种结构独特并且性能优异的新型材料,它是由碳原子以sp2杂化连接的单原子层二维蜂窝状结构,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1,2]。
由于石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用,特别是在未来实现基于石墨烯材料的高能量密度、高功率密度应用有着非常重要的理论和工程价值。
理想的石墨烯是真正的表面性固体,其所有碳原子均暴露在表面,具有用作锂离子电池负极材料的独特优势:(1)石墨烯具有超大的比表面积,比表面积的增大可以降低电池极化,减少电池因极化造成的能量损失。
(2)石墨烯具有优良的导电和导热特性,即本身已具有了良好的电子传输通道,而良好的导热性确保了其在使用中的稳定性。
(3)在聚集形成的宏观电极材料中,石墨烯片层的尺度在微纳米量级,远小于体相石墨的,这使得Li+在石墨烯片层之间的扩散路径较短;而且片层间距也大于结晶性良好的石墨,更有利于Li+的扩散传输。
因此,石墨烯基电极材料同时具有良好的电子传输通道和离子传输通道,非常有利于锂离子电池功率性能的提高。
1 石墨烯直接作为锂离子电池负极材料商业化锂离子电池石墨负极的理论容量为372 mAh/g。
为实现锂离子电池的高功率密度和高能量密度,提高锂离子电池负极材料的容量是一个关键性问题。
无序或比表面积高的热还原石墨烯材料具有大量的微孔缺陷,能够提高可逆储锂容量。
因此,相对石墨材料,石墨烯的储锂优点有:(1)高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达到700~2000 mAh/g,远超过石墨材料的理论比容量372 mAh/g(LiC6);(2)高充放电速率:多层石墨烯材料的面内结构与石墨的相同,但其层间距离要明显大于石墨的层间距,因而更有利于锂离子的快速嵌入和脱嵌。
石墨烯材料在锂离子电池中的应用
石墨烯材料在锂离子电池中的应用
石墨烯材料可以作为锂离子电池的负极材料。
传统锂离子电池的负极材料常采用石墨材料,但其容量有限,存在容量衰减和安全问题。
石墨烯材料由于其独特的二维结构和高度导电性,可以提供更高的比容量和更好的循环性能。
石墨烯负极还可以通过调控多孔结构增加锂离子的扩散速度,提高电池放电性能。
石墨烯材料还可用于锂离子电池的电解液中。
电解液是锂离子电池中起着电荷传递和离子输运的关键作用的部分。
加入石墨烯材料可以改善电解液的电导率、离子传输速率和电池的循环寿命。
石墨烯通过其高度的表面积和化学活性,可以增加电解液中锂离子与电解液的接触面积,提高离子的扩散速度和电池的性能。
石墨烯材料在锂离子电池中具有重要的应用潜力。
通过其优异的电化学性能和结构特性,石墨烯可以提高锂离子电池的能量密度、循环性能和安全性,为锂离子电池的进一步发展和应用提供了新的可能。
石墨烯在锂电池中的应用研究资料
石墨烯在锂电池中的应用研究资料石墨烯是一种由碳原子构成的单原子厚的二维材料,具有良好的导电性、热导性和力学性能,因此在电池领域具有广阔的应用前景。
本文将从石墨烯在锂电池正负极材料以及电解液中的应用角度,综述石墨烯在锂电池中的研究进展。
一、石墨烯在锂电池正极材料中的应用研究锂离子电池的正极材料主要有锂钴酸盐(LiCoO2)、锂铁磷酸盐(LiFePO4)等。
石墨烯在锂电池正极材料中的应用主要体现在两个方面:增强材料的导电性和改善电化学性能。
1.增强材料的导电性:石墨烯具有优异的电导率,将其与正极材料进行复合可以显著提高其导电性能。
例如,将石墨烯与LiCoO2进行复合制备出的复合材料可以提高锂离子的扩散速率和材料的导电性能,从而提高了锂电池的放电容量和循环寿命。
2.改善电化学性能:石墨烯与正极材料之间的复合可以提高材料的电化学性能。
石墨烯不仅可以增加正极材料的导电性,还可以改善其电化学反应的动力学过程,减小锂离子的插入/脱出电阻。
因此,利用石墨烯与正极材料的复合可以提高正极材料的容量、循环寿命和功率密度。
二、石墨烯在锂电池负极材料中的应用研究锂离子电池的负极材料主要有石墨等。
石墨烯在锂电池负极材料中的应用主要体现在以下几个方面:提高材料的电子传导性、增加锂离子的扩散速率、改善循环稳定性以及抑制锂金属的钝化现象。
1.提高电子传导性:石墨烯与石墨等负极材料的复合可以提高材料的电子传导性,从而降低电阻,改善电池的功率输出性能。
2.增加锂离子的扩散速率:石墨烯具有二维结构,可以提供更多的锂离子插入位点,增加锂离子的扩散速率,提高电池的充放电速度。
3.改善循环稳定性:石墨烯与石墨等负极材料的复合可以形成更稳定的结构,抑制材料的体积膨胀,从而提高电池的循环寿命。
4.抑制锂金属的钝化:在锂金属负极中加入石墨烯可以改善锂电池的充放电性能,减少锂金属负极表面的簧曲现象,提高电池的循环寿命。
三、石墨烯在锂电池电解液中的应用研究1.增加电解液的导电性:将石墨烯引入锂离子电池的电解液中可以提高电解液的导电性,减小电池的内阻,提高电池的放电容量和功率密度。
石墨烯的十大用途
石墨烯的十大用途
一、电子学领域
石墨烯在电子领域的用途是最明显的,它几乎可以在任何一个电子装
置中发挥作用,其应用的范围从电路器件到高频器件都能发挥重要的作用,从而使得电子设备的性能更加优异。
具体来说,石墨烯可以用于制造低阻
抗电路,高频电路,低损耗电路,高信噪比电路,还可以实现快速传输,
工作电流小,功耗低,可以制造可折叠、轻便、薄芯的灵敏传感器等,可
以大大缩短产品的规模和尺寸,降低电路板的复杂度,使用寿命更长,提
升电子装置的效能。
二、电池领域
石墨烯在电池领域的应用也非常广泛,它可以用于普通的锂离子电池,也可以用于锂硫、锂空气电池中,石墨烯能吸收高能量的电荷,在电池负
极的形成新的结构,改进电池的放电稳定性和容量,还可以降低电池的耐
久性,有利于把电池保护在一定的稳定状态,使用寿命更长。
三、燃料电池领域
石墨烯也可以用于燃料电池,由于其优异的热稳定性和优越的电导性,石墨烯可以有效提升燃料电池的功率和效率,进一步提高燃料电池的可靠
性及安全性,燃料电池可以用于太阳能、热能、水能等可再生能源的转换
和储存,以及汽车、船舶等的应用。
石墨烯在锂离子电池中的应用研究
石墨烯在锂离子电池中的应用研究石墨烯是一种由碳原子构成的单层二维材料,具有优异的导电和导热性能,透明性强,并且具有强大的力学韧性。
这些特性使得石墨烯在科学研究和各种应用领域都备受关注。
近年来,石墨烯在锂离子电池领域的应用也越来越受到重视。
本文将介绍石墨烯在锂离子电池中的应用研究进展。
一、石墨烯作为锂离子电池的电极材料目前,石墨烯主要应用于锂离子电池的电极材料中。
众所周知,锂离子电池的电极材料主要分为负极材料和正极材料。
石墨烯作为电池负极材料,具有以下优点:1.高比表面积:石墨烯可以实现单层碳原子的紧密排列,形成大量的微小孔隙和高表面积,这不仅可以提高电极表面容量,而且可以增加锂离子的扩散速度,提高电池的性能。
2.良好的电导性:石墨烯具有高导电性,能够提供良好的电子传输和电荷存储,减少电极内阻,从而提高电池的输出功率。
3.优异的力学性能:石墨烯的组成结构可以保持相对稳定,即使在长时间循环充放电的过程中也能保持结构完整性,从而延长电池的使用寿命。
虽然石墨烯作为电极材料具有许多优点,但是它也面临着一些挑战。
例如,石墨烯的制备和应用成本较高,需要进一步降低成本才能实现大规模商业化应用。
二、石墨烯增强锂离子电池正极材料除了作为负极材料,石墨烯中的碳纳米管和颗粒可以作为锂离子电池正极材料的补充,以增加其性能。
石墨烯包覆的锂离子电池正极材料可以提高锂离子的扩散速度和电池的能量密度。
石墨烯与锂离子电池正极材料的结合还可以降低电极材料的体积变化率,延长电池的使用寿命。
三、未来展望目前,石墨烯在锂离子电池领域的研究还处于起步阶段。
随着石墨烯技术的不断发展和成熟,石墨烯在锂离子电池领域的应用前景非常广阔。
未来,石墨烯技术还有许多发展空间,例如开发更经济实用的制备方法,探索更广泛的应用领域。
总之,石墨烯在锂离子电池中的应用研究为电池的性能和寿命提供了新的提升方案。
虽然存在一些挑战和难点,但是未来的发展和探索将为锂离子电池技术的进一步提升提供新的解决方案。
石墨烯及其复合材料在锂离子电池负极材料中的应用
2017年10月石墨烯及其复合材料在锂离子电池负极材料中的应用吉功涛(江苏省邗江中学,江苏扬州225009)摘要:石墨烯因其独特的二维空间网络结构[1],有极大的比表面积,良好导电性能,是优异的电极材料。
可通过与金属氧化物复合的方法将其机械性能和导电性能的优势最大化。
本文对石墨烯的结构、性质、制备方法及其在锂离子电池负极材料方向上的应用进行了综述,提出其发展问题并对其发展前景进行展望。
关键词:石墨烯;锂离子电池;负极材料1985年克罗托、科尔和斯莫利发表关于发现富勒烯的论文,有关石墨微观结构的研究进入了人们的视野,此后1991年饭岛澄男成功制备碳纳米管推动了碳纳米管相关研究的发展,至2004年Geim 、Novoseiov 用机械剥离法成功制备石墨烯,学术界又掀起了针对石墨烯的研究热潮[1-2]。
如今,石墨烯的应用种类越来越多,研究越来越深入。
将石墨烯及其复合材料在锂离子电池负极中应用是现在一种前景和可行性都非常优秀的方案。
1石墨烯的空间结构及性质石墨烯是由单层碳原子以sp 2杂化形式成键形成的具有蜂窝状六边形结构的二维原子晶体[2]。
它能承载远大于其自身重量的物体,实验数据显示1m 2石墨烯能承受4kg 的重量而其面质量仅为0.77mg [2]足以证明其具有优异的机械性能,同时石墨烯理论比表面积达到2630m 2/g [3]。
以上石墨烯的性质体现其在复合材料领域有很大的应用价值。
石墨烯导电性能良好,其导电率能达到106S/m [4],可作为良好的电极材料。
此外,石墨烯还具有优良的导热性以及透光性。
其透光率达到97.7%,导热率为5×103W/mk ,理论导热性能是铜的十倍多[3-5],足以支持其在光学、热学领域的应用。
2石墨烯的制备方法机械剥离法是获取石墨烯成本最低的方法,通过对高定向热解石墨进行反复剥离获取石墨烯,运用此法得到的石墨烯能满足实验室需要,在本征石墨烯研究中应用广,但是受限于其制备规模,这种方法很难满足石墨烯的商业需求。
石墨烯在锂离子电池中的应用
220管理及其他M anagement and other石墨烯在锂离子电池中的应用唐 佳(宁德新能源科技有限公司,福建 宁德 352100)摘 要:本文介绍了石墨烯在锂离子电池中的应用,石墨烯作为新型碳材料既可取代石墨负极以提升负极材料的克容量,又可作为导电剂提升正极材料的导电性,也可作为添加剂改善Li-S 等新型电池的膨胀等问题,本文还对石墨烯未来的应用进行了展望。
关键词:石墨烯;锂离子电池;导电剂;添加剂中图分类号:TM912 文献标识码:A 文章编号:11-5004(2020)13-0220-2收稿日期:2020-07作者简介:唐佳,女,生于1988年,汉族,湖南衡阳人,博士研究生,工程师,研究方向:负极材料。
1 介绍石墨烯是目前已知最薄和最坚硬的纳米材料。
其强度是钢铁的20倍,且拉伸20%不断裂。
石墨烯的热导性高于碳纳米管和金刚石,其数值高达5300W/m·K。
在常温下,它的电子迁移率高于碳纳米管和硅,其迁移率大于15000cm2/V·s,并且其阻抗只有10-8Ω·m,是世界上阻抗最低的材料。
石墨烯优异的电子迁移率和极低的阻抗为其在锂离子电池中应用提供了可能。
因此,石墨烯在锂离子电池中的应用备受关注[1-3]。
2 石墨烯在负极中的应用石墨烯拥有巨大的比表面积和优异的电性能是其可作为锂离子电池负极材料的关键之一。
锂电池负极材料的主要种类有天然石墨,人造石墨,中间相炭微球及其他类型,其成本约占电芯成本的15%。
是石墨类结构由于其高导电性、稳定的层状结构、锂离子脱嵌性能好等优势成为了首先被应用于锂离子电池的碳负极材料。
但其理论比容量仅为372mAh/g [4]。
而石墨烯除了与石墨相同的层间嵌锂外,由于其巨大的表面积还可以实现锂离子在石墨烯片层两端嵌锂,因此被认为石墨烯的理论容量为740mAh/g,为传统石墨材料的两倍[5]。
Yoo E [6]等以氧化还原法制备石墨烯用于锂离子电池负极材料,实验结果显示首次循环的比容量为540mAh/g,相较石墨容量有明显的提升。
石墨烯材料的化学还原及其在锂离子电池中的应用
石墨烯材料的化学还原及其在锂离子电池中的应用石墨烯是一种由碳元素构成的薄膜材料,其独特的物理和化学性质使它成为了一个备受关注的研究领域。
目前,石墨烯已经进入了各种领域,例如能源、电子、生物医学等。
其中,在锂离子电池领域,石墨烯的应用也引起了人们极大的兴趣。
石墨烯的化学还原是研究锂离子电池中石墨烯应用的重要环节。
石墨烯的化学还原是指将氧化石墨烯还原为原始的石墨烯材料的过程。
氧化石墨烯是一种氧化的石墨烯薄膜,其结构中含有氧元素和其他杂质。
氧化石墨烯具有良好的分散性和可加工性,但其导电性和力学性能都较石墨烯差。
为了获得更好的性能,需要将其还原为石墨烯。
目前,石墨烯的化学还原主要有两种方法:化学还原和热还原。
在化学还原中,通过添加还原剂来还原氧化石墨烯,其中常见的还原剂有氢气、卤素化合物、硼氢化合物等。
化学还原可以在常温下进行,但还原剂的选择和处理过程都会对还原效果产生影响。
热还原则是将氧化石墨烯加热到高温下进行还原,通常需要在惰性气氛或气流中进行。
热还原所需的条件相对较为苛刻,但其还原的效果更加稳定。
化学还原和热还原的具体还原机理有所不同。
化学还原的还原过程主要是通过电子传递进行的;而热还原则是通过碳原子的异构化反应进行的。
无论是哪一种还原方法,都需要进行多次的处理才能获得较为完整的还原效果。
在实际应用中,根据具体的需求,石墨烯的还原程度也可以根据需要进行调整。
石墨烯的还原程度对其在锂离子电池中的应用具有重要的影响。
石墨烯的还原程度直接关系到其导电性和机械性能。
在锂离子电池中,石墨烯用作电极材料,如果还原不彻底,就会导致电极的导电性不足;如果还原太过彻底,则可能会导致电极的强度不足。
除了还原程度的影响,石墨烯的应用形态也对其性能具有影响。
目前,石墨烯的应用形态主要有两种,即分散状态和复合状态。
在分散状态下,石墨烯被单独分散在聚合物或者碳基材料中,这种应用形态可以提高石墨烯的导电性能和力学性能;在复合状态下,石墨烯与其他材料复合使用,这种应用形态可以实现石墨烯与其他材料的协同效应,进一步提高电极的性能。
石墨烯材料及其锂离子电池中的应用
石墨烯材料及其锂离子电池中的应用石墨烯是一种由碳原子单层排列而成的二维材料,具有很多出色的性质,如高导电性、高热导性、高拉伸强度和超薄透明性。
这使得石墨烯在很多领域中有着广泛的应用,其中之一就是锂离子电池。
锂离子电池是目前最常用的可充电电池之一,主要用于手机、电动车等便携设备中。
石墨烯在锂离子电池中的应用主要集中在负极材料和电解液增塑剂方面。
首先,石墨烯可以作为锂离子电池负极材料的添加剂。
传统的锂离子电池负极材料是石墨,但石墨烯的引入可以显著提高电池的性能。
石墨烯具有高导电性和高化学稳定性,可以增加负极材料的电子传导性和储存锂离子能力。
此外,石墨烯还可以提高电池的循环寿命和安全性能,减少电池在充放电过程中的容量衰减和短路的风险。
另外,石墨烯可以作为锂离子电池电解液的增塑剂。
锂离子电池的电解液通常使用有机溶剂,但这些有机溶剂在高温下易燃易爆,降低了电池的安全性能。
石墨烯可以作为增塑剂添加到电解液中,提高电解液的热稳定性和安全性。
此外,石墨烯还可以增加电解液的离子传导性能,提高电池的充放电速率和功率密度。
除了在锂离子电池中的应用,石墨烯还有其他很多潜在的应用领域。
例如,石墨烯可以用于超级电容器,其高电导性和大表面积有助于提高超级电容器的能量密度和充放电速率。
石墨烯还可以用于传感器领域,其高灵敏度和速度可以用于气体、湿度和压力等传感器的制备。
此外,石墨烯也可以应用于光电子学、催化和材料强化等领域。
总结起来,石墨烯在锂离子电池中的应用主要包括负极材料的添加剂和电解液的增塑剂。
石墨烯的引入可以提高电池的性能、循环寿命和安全性能。
除了锂离子电池,石墨烯还有许多其他潜在的应用领域,这使得石墨烯成为当前材料科学研究的热点之一、随着石墨烯技术的进一步发展和成熟,相信其在各个领域中的应用前景将会更加广阔。
石墨烯材料在锂离子电池中的应用
石墨烯材料在锂离子电池中的应用【摘要】石墨烯是一种具有单层碳原子排列的二维材料,具有优异的导电性和导热性。
锂离子电池是目前广泛应用于电子产品和电动车中的能量存储设备。
石墨烯在锂离子电池中可以提高电池的性能、循环寿命和安全性。
最新研究成果表明,石墨烯可以有效提高电池的能量密度和充放电速率。
未来,石墨烯在锂离子电池中的应用仍有很大潜力,可以进一步改善电池的性能和稳定性。
石墨烯材料在锂离子电池中具有重要的应用前景,对未来电池技术的发展将产生重要影响。
.【关键词】石墨烯材料、锂离子电池、电池性能、循环寿命、安全性、研究成果、发展方向、重要性、应用前景、技术发展、影响。
1. 引言1.1 什么是石墨烯材料石墨烯是一种由碳原子单层构成的二维材料,具有独特的结构和性质。
其结构类似于蜂窝状排列的碳原子,形成了一个具有极高强度和导电性的结构。
石墨烯的厚度仅为一个原子层,因此被认为是目前已知最薄的材料之一。
由于其独特的二维结构,石墨烯表现出许多非常特殊的性质,如超高的电导率、热导率和机械强度。
石墨烯还具有很高的表面积和可调控的化学性质,使其成为研究和应用领域的热门材料。
石墨烯的发现和研究在2004年由诺贝尔奖得主安德烈·盖姆和康斯坦丁·诺沃索洛夫领导的团队首次成功剥离出石墨烯单层,并证实了其独特性质。
自此以后,石墨烯材料在各个领域的应用研究得到了快速发展,特别是在电子学、光学、能源储存等领域展现出了广阔的应用前景。
在能源存储和转换领域,石墨烯材料的应用已经引起了越来越多的关注,特别是在锂离子电池中的应用潜力备受瞩目。
1.2 什么是锂离子电池锂离子电池是一种以锂离子作为电荷载体的可充电电池。
它是一种高效、轻便的能量存储设备,常见于我们生活中的移动设备如手机、笔记本电脑等。
锂离子电池的工作原理是通过锂离子在正极和负极之间来回移动,从而释放能量或者吸收能量。
在充电过程中,锂离子从正极向负极移动,电池储存能量;在放电过程中,锂离子从负极向正极移动,释放能量驱动设备运行。
石墨烯在锂离子电池电极材料中的应用
石墨烯在锂离子电池电极材料中的应用沈文卓;郭守武【摘要】随着电子产品的普及,对锂离子电池的可逆容量、倍率充放电能力和循环稳定性提出了更高的要求.石墨烯由于其独特的电子共轭态和单一的原子层结构,具有优越的电子迁移性、大的表面积和良好的热和化学稳定性.因此,众多研究者致力于借助石墨烯的独有特性来改善锂离子电池正极和负极材料的综合电化学性能.本文对石墨烯在锂离子电池正负极材料中的应用情况以及面临的主要问题做了简要综述.%It is challenging to develop lithium ion batteries (LIBs) possessing simultaneously large reversible capacity,high rate capability,and good cycling stability.Graphene sheets,owing to the unique electronic conjugate state within the basal plane and also the single atomic layered morphology,have superior electronic mobility,large surface area,and decent thermal and chemical stability.Hence,many works have been devoted to the improvements of the cathode and anode materials with graphene.In the work,the achievements and the main problem in the area are overviewed.【期刊名称】《电子元件与材料》【年(卷),期】2017(036)009【总页数】4页(P79-82)【关键词】石墨烯;正极材料;综述;负极材料;电化学性能;锂离子电池【作者】沈文卓;郭守武【作者单位】上海交通大学电子信息与电气工程学院,上海200240;上海交通大学电子信息与电气工程学院,上海200240【正文语种】中文【中图分类】O613.71与其他种类的二次电池相比,锂离子电池具有高能量密度、高电压、无记忆效应、低自放电率等优点[1-2],在日用电子产品(如手机、手提电脑、摄像机、电玩)、电动汽车(EV/PHEV/HEV)以及储能电站等领域得到普遍应用。
石墨烯及其复合材料在锂离子电池中的应用
石墨烯及其复合材料在锂离子电池中的应用一、简介锂离子电池作为一种重要的能量存储装置,在电子设备、电动车等领域得到了广泛应用。
然而,传统的锂离子电池在能量密度、循环寿命等方面还存在一些问题。
因此,寻找新的电池材料以提高锂离子电池的性能成为了科研工作者的主要研究方向之一。
石墨烯及其复合材料由于其独特的结构和优越的性能,成为了锂离子电池领域的热门研究方向。
二、石墨烯在锂离子电池中的应用2.1 石墨烯作为电极材料石墨烯具有极高的导电性和较大的比表面积,可以作为锂离子电池的电极材料。
石墨烯电极具有高能量密度、高功率密度以及良好的循环稳定性。
石墨烯的导电性可以使得电池具有更高的充电速率和放电速率,提高电池的功率密度。
同时,石墨烯的大比表面积可以增加电极与电解液之间的接触面积,提高电池的能量密度。
因此,石墨烯在锂离子电池中有着广泛的应用前景。
2.2 石墨烯包覆材料石墨烯可以用作包覆材料,将其包覆在锂离子电池的正极或负极材料表面。
石墨烯的包覆可以有效提高电极材料的导电性和循环稳定性。
例如,将石墨烯包覆在锂离子电池的钴酸锂正极材料表面,可以提高电池的循环寿命和容量保持率。
石墨烯包覆还可以解决一些电极材料的体积膨胀问题,提高电池的循环稳定性。
三、石墨烯复合材料在锂离子电池中的应用3.1 石墨烯复合正极材料石墨烯可以与金属氧化物、碳酸盐等材料形成复合材料,用作锂离子电池的正极材料。
石墨烯复合正极材料具有较高的比容量和循环寿命。
石墨烯可以提高正极材料的导电性和离子传导性,改善电池的性能。
因此,石墨烯复合正极材料在锂离子电池中有着广泛的应用前景。
3.2 石墨烯复合负极材料石墨烯可以与硅、锂钛酸等材料形成复合材料,用作锂离子电池的负极材料。
石墨烯复合负极材料具有较高的比容量和循环寿命。
石墨烯可以提高负极材料的导电性和离子传导性,改善电池的性能。
石墨烯还可以缓解负极材料的体积膨胀问题,提高电池的循环稳定性。
3.3 石墨烯复合电解液石墨烯可以与电解液中的添加剂形成复合材料,用于改善电解液的性能。
石墨烯在电池电极中的运用
扬州工业职业技术学院2017— 2018学年第二学期毕业设计(论文)(课程设计)课题名称:石墨烯在电池电极中的运用设计时间: 2017年10月15日-2018年5月10日系部:化学工程学院班级: 1502石油化工姓名:蒋添羽石墨烯在电池电极中是运用蒋添羽1502石油化工(本)【摘要】石墨烯是指从石墨上剥离出来是一层石墨薄片。
到如今为止,只有一种单个原子是厚度是最薄是。
那就是二维纳米碳材料,它是最基本是重复单元是有机化学中最稳定是苯环结构。
其中石墨烯具有许多优良是特性,比如厚度薄重量轻,具有高导电性和导热性,较高是载流子迁移率,还有自由电子空间移动,强度高等,因此,快速崛起是材料科学和凝聚态物理领域是一颗新星在许多方面具有优良是应用前景,比如纳米电子设备、催化剂、电池、电容器、光电设备、还有新型复合材料和传感材料。
【关键词】石墨烯还原氧化锂离子电池Oily wastewater treatmentTianyu jiang1502PetrochemicalAbstract:Graphene refers to a layer of graphite flakes peeled off from graphite. So far, only one atom has the thinnest thickness. Two-dimensional carbon nanomaterials, the most basic repeating unit is the most stable benzene ring structure in organic chemistry. Graphene has many excellent properties such as thin and light, high electrical conductivity and thermal conductivity, high carrier mobility, free electron space movement, high strength, and therefore the rapid rise of materials science and condensed matter physics A new star has many promisingapplications such as nanoelectronics, catalysts, batteries, capacitors, optoelectronics, new composite materials and sensing materials.Key Words:Graphene reduction lithium-ion battery一、介绍碳是构成自然界中物质是基本元素之一,同时在人类是发展史中也扮演了重要是角色。
石墨烯复合导电剂在锂离子电池中的应用研究进展
石墨烯复合导电剂在锂离子电池中的应用研究进展摘要:石墨烯在新时代是十分关键的材料,其在物理和化学特性具有一定优势,能够在锂离子电池中得到良好的应用,可以显著优化锂离子电池电子传输速度以及放电循环性能等等。
因此相关人员应该重视对石墨烯复合导电剂的研究,让其作用能够充分发挥作用。
为提高石墨烯复合导电剂的应用效果,本文通过文献法和分析法对石墨烯复合导电剂在锂离子电池中的应用进行了分析,从石墨烯特性、应用优势以及应用进展三方面展开论述,以供参考。
关键词:石墨烯复合导电剂;锂离子电池;应用引言:随着社会的不断进步,新能源汽车实现了繁荣发展。
新能源汽车不会给环境带来污染,同时也能够满足人们的出行需要,其在社会中具有至关重要的作用。
锂离子电池是新能源汽车的关键组成,具有储能的作用。
但是从目前新能源电池应用上来看,还存在一定问题,如充电慢、容量小以及能量低等等,这在很大程度上制约了新能源领域的发展。
基于此,提高锂离子电池性能变得越来越重要。
石墨烯在物理化学特性上具有一定的优势,将石墨烯复合导电剂应用在锂离正极具有显著效果,可以解决传统锂离子电池的问题。
一、石墨烯的特性石墨烯是当今时代的新材料,其具有二维结构,主要是由碳原子紧密堆积而成,简单来说就是对多层石墨的叠加。
由于其具有良好的物理化学性能使得石墨烯在众多领域都具有广阔的前景,在未来将成为重要的材料。
石墨烯的物理和化学性质如下表一所示。
表一石墨烯性质石墨烯的良好性能使其能够在锂离子中充分发挥作用,石墨烯可以作为电池正、负极的材料。
将其应用在电池正、负极中,可以显著的增加活性点位空间,从而在一定程度上提高电池的容量,延长电池的使用年限。
同时石墨烯也可以作为导电剂,促使电极之间完成互连,提高电子的传输速率。
可以说石墨烯在锂离子上有着重要应用,其是导电剂的材料未来发展的趋势。
二、石墨烯复合导电剂的应用优势石墨烯复合导电剂具有较强的应用优势,主要体现在以下几个方面:一是导电性能强。
石墨烯在锂电池中的应用
石墨烯在锂电池中的应用墨烯具有10倍于商用硅片的高载流子迁移率(15000cm2/V•s),导电性能优越,尤其适用与制造锂电池导电添加剂、锂电池正负极复合材料等锂电池材料。
此外,石墨烯电极复合材料及导电添加剂能有效改善电极循环性能:加入石墨烯的磷酸铁锂正极复合材料,循环100周后,可逆比容量为纯LiPO4电极的1.4倍。
石墨烯在电池中的应用1.作为导电剂锂离子电池充放电是通过锂离子在正负极的脱嵌反应来实现的。
具体表现为,充电时正极锂离子脱插,负极锂离子嵌入;放电时正极锂离子嵌入,负极锂离子脱插。
在这个过程中,嵌入与脱插的锂离子越多,电池容量越大。
其充放电速度主要由锂离子在电极中的传输和脱嵌速度来决定。
所以如果电极材料中电子和锂离子传导通道越多,其充电速度就越快。
传统锂离子电池无法进行快速充电,主要受限于锂电池正负极导电性能不足,无法同电子进行充分反应,反应层集中在表面影响内部电极的反应,导致锂离子短时间内脱嵌速度不足,无法形成大电流,间接影响锂离子扩散系数,同时受限于高倍率充电下电池寿命的衰减。
而且传统电池在工作时会在电极表面形成一层固体电解质膜,阻挡了锂离子的“脚步”,进而减慢了锂离子的运输速度。
锂离子电池的正极材料主要有钴酸锂、锰酸锂、三元和磷酸铁锂等。
石墨烯在正极材料中属于面点接触,具有优异的导电性能,可以作为其电极的导电剂,优异于作为点点接触的常规导电剂。
锂电池有个性能叫做倍率性能,用C来衡量。
假设一块锂电池的容量是3000mAh,那么1C就是用3000mA的电流给它充电,一小时充满;2C就是用6000mA的电流充电,半小时充满。
续航与电量正相关的情况下,充到支持相同续航里程的电量,倍率性能大的电池充电时间更短。
电芯在快充时,主要的技术难点为锂离子在正极的快速脱离,在电解液的传输以及在负极的嵌入,其中相对重要的是要求正负极具有良好的导电性,可以在短时间进行大规模化学反应,这样电子的扩散速度加快,增加了锂离子的脱嵌和嵌入速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯在锂离子电池中的应用碳材料因其具有独特的性质和优异的功能,被广泛应用于高温耐火材料,生物工程材料,核反应堆用结构材料,导电用炭材料,电极材料等高科技产业中的各个领域。
碳元素的存在形式多种多样,有零维纳米结构富勒烯,一维碳纳米管,三维结构的金刚石、石墨,以及近几年发现的二维结构石墨烯。
图1 0维、1维、2维和3维碳结构示意图2004年英国的两位科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫从石墨中剥离出石墨片,然后通过特殊的胶带分离法制得仅由一层碳原子构成的薄片——石墨烯。
它是一种新型二维碳质材料,具有超大的比表面积, 同时具有良好的导电性和导热性, 也是很有潜力的储能材料,因此成为物理、化学、材料领域的研究热点。
石墨烯的出现在科学界掀起了巨大的波澜,这种新材料的诞生最终使安德烈·海姆和康斯坦丁·诺沃肖洛夫获得2010年诺贝尔物理学奖。
1 石墨烯的结构和性质石墨烯是只有一个碳原子层厚度的石墨,具有理想的二维晶体结构,碳原子通过SP2杂化成键,与周围其他三个碳原子以C—C单键相连,同时每个碳原子剩有一个垂直于石墨烯平面的p电子,未成对的p电子在与平面垂直的方向形成π轨道,可以在石墨烯晶体结构中自由移动,从而使得石墨烯具有良好的导电性能。
图1.1 石墨烯结构示意图但是,二维晶体在热学上不稳定,透射电镜观察及电子衍射分析表明单层石墨烯并不是完全平整的,而是呈现出本征的微观的不平整,在平面方向发生角度弯曲。
扫描隧道显微镜观察表明纳米级别的褶皱出现在单层石墨烯表面及边缘。
这种褶皱起伏变化可以导致静电的产生,从而使得石墨烯在宏观易于聚集,很难以单片层存在。
石墨烯只有一个碳原子厚度,并且是己知材料中最薄的一种,然而却非常牢固坚硬,它比钻石还强硬,其强度比钢铁还高100倍。
石墨烯也是目前己知导电性能最出色的材料,其电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
此外,石墨烯还具有许多优异的性能:如较高的杨氏模量、热导率、较高的载流子迁移率、巨大的比表面积、铁磁性等等。
这些优越的性质及其特殊的二维结构使得科学家认为石墨烯拥有非常美好的发展前景。
其中在储能领域,石墨烯可以作为锂离子电池、超级电容器、太阳能电池和燃料电池等储能器件的电极材料。
2 石墨烯在锂离子电池中的应用石墨烯作为一种由石墨制备的新型碳质材料,单层或者薄层石墨(2~10层的多层石墨烯)在化学电源里的应用潜力也备受关注。
石墨烯是单层碳原子,上下表面均可以存储锂离子,本身可以作为锂离子电池负极材料;同时由于石墨烯的优异机械性能和导电性能,也常用来与其他负极材料复合,以改善电极性能。
2.1石墨烯负极材料近几年石墨烯作为锂离子电池负极材料的报道不断出现。
Guo等制备了氧化石墨,随后经高温处理合成石墨烯,并以其为锂离子电池负极材料进行电化学测试,结果显示其可逆容量为672mAh/g,且有较好的循环性能。
Wang等通过化学法合成了石墨烯纳米带,并将其作为锂离子电池负极材料,进行恒电流充放电循环性能测试,结果显示首次放电及充电容量分别为945mAh/g和650mAh/g,100次循环之后,比容量为460mAh/g。
Yoo等人用石墨烯作为锂离子二次电池负极材料,其比容量达到540mAh/g,如果在其中掺入C60和碳纳米管后,负极的比容量可以达到784mAh/g和730mAh/g。
究其原由可能与材料中石墨烯片层的排列方式没有优化有关。
有研究报道如果以石墨烯经压制形成的石墨烯纸作为锂离子电池负极材料时, 循环性能就不很理想,即首次循环之后, 比容量就下降到了100mAh/g以下(充放电电流密度50mA/g)。
这是因为材料中石墨烯片层的排列方式与片层结构与材料的电化学性能密切相关, 一种较理想的结构是石墨烯片层全都垂直于集流体排成阵列, 这种结构既减小了锂离子在石墨烯片层之间的扩散距离, 同时也使锂离子在石墨烯片层间的嵌入、脱出更加快速,但这种结构的构建比较困难。
石墨烯作为锂离子电池的电极时,充放电曲线呈现出渐升渐降的特征,并且没有出现明显的电压平台。
这是由于石墨烯所特有的炭微晶sp2域以及较高的比表面积,在锂离子的嵌脱过程中,锂离子从石墨微晶中发生脱嵌,其在充放电过程中没有明显的锂离子嵌入石墨层间形成LiC6阶层化合物的电压平台,而是呈现出渐升渐降的硬炭的电化学特征,并且存在电压滞后现象。
石墨烯与石墨充放电曲线对比如图2-1所示。
图2-1 (a)石墨充放电曲线;(b)石墨烯充放电曲线2.2 石墨烯基复合负极材料石墨烯具有优异的电化学性能,许多研究者希望通过石墨烯与其他材料复合达到在电化学等领域实际应用的目的。
金属元素铝、锡和铅以及它们的氧化物可以合金的形式储存锂离子,并且这些材料作为锂离子电池负极材料具有较高的充放电容量。
Crosnier等通过研究得到锡与锂的合金材料Li4.4Sn的理论电容量可达到990mAh/g,远高于传统锂离子电池负极材料石墨的理论容量372mAh/g。
然而由于锂离子在嵌入这些金属基的时候会发生明显的体积膨胀,以及合金中锂相的脆弱导致电极的开裂,使得这些材料的循环性能不够理想。
Paek等将石墨烯溶解在乙二醇中与金红石结构的纳米二氧化锡复合,形成多孔复合材料,将其作为电极进行电化学测试,结果表明该复合材料的可逆容量为810mAh/g,与纯纳米二氧化锡颗粒相比,循环性能得到明显改善,30次循环之后,充电容量为570mAh/g,可逆容量保持率为70%;而纯纳米二氧化锡颗粒首次充电比容量为550mAh/g,15次循环之后迅速衰减到60mAh/g。
这主要是因为纳米二氧化锡颗粒已完全插入石墨烯层与层之间的空间中,在循环过程中,当锂插入二氧化锡晶格中时,石墨烯稳定的骨架缓冲了二氧化锡晶格的体积膨胀,而石墨烯与二氧化锡颗粒之间的空隙恰好成了缓冲空间,这使得材料拥有好的循环性能。
Wang等合成了二氧化钛-石墨烯杂化材料,并测试了锂离子的插入性能,结果显示,杂化材料明显增强了锂离子在二氧化钛中的脱插能力,在高的充电速率下,其比容量是纯二氧化钛的2倍,这主要是由于石墨烯的存在明显改善了材料的电导率。
石墨烯具有特殊的原子结构和电子结构,使其在复合材料中也有一定的结构优势和性能优势。
在锂离子的脱插过程中,石墨烯稳定的骨架缓冲了金属氧化物晶格的膨胀,可以在一定程度上缓冲材料体积的伸缩,延长材料的循环寿命及增强其性能。
石墨烯基复合材料虽然目前尚处于研究阶段,但在锂离子电池负极材料中具有较好的应用前景。
3 石墨烯做锂离子电池负极材料的问题2.3.1 制备过程石墨烯片层极易堆积由于石墨烯单片之间具有较强的范德华力,在没有任何保护剂存在的条件下,石墨烯之间很容易发生团聚和堆砌,这对石墨烯的应用带来了一定的障碍。
研究表明,制备的石墨烯多为片状堆积,表面致密,层与层之间结合致密,这种结构将导致石墨烯与锂离子的有效接触面积减少,使锂离子的脱嵌变得比较困难。
特别是在多次充放电的过程中,层与层之间可能会更趋于致密堆积,嵌在其中的锂离子无法脱出成为死锂,从而导致电池容量下降。
虽然通过在石墨烯表面利用物理或化学作用引入分子,可以阻碍石墨烯单片之间的团聚,从而得到较为稳定的石墨烯,但表面引入分子同时降低了石墨烯优异的导电等性能。
2.3.2 石墨烯首次充放电库伦效率低石墨烯作为锂离子电池负极材料时,有一个明显的特点就是首次库伦效率较低,一般在70%左右,首次库伦效率低表明嵌入的锂离子只能部分脱出,直接导致正极材料活性下降,从而使电池达不到设计容量。
石墨烯首次库伦效率低可能有以下原因:(1)石墨烯特有的单层碳原子结构具有较大的比表面积,首次循环过程中将分解电解质,在石墨烯表面生成较厚的SEI膜,消耗电解质和正极材料中的锂离子,从而导致首次充放电库伦效率较低。
(2)首次循环有一定的电化学反应发生,但是在之后的循环并没有发现相对应的电化学过程,这表明首次充放电过程发生的电化学反应是不可逆的。
首次充放电造成石墨烯微观结构上产生了变化,石墨烯片层在范德华力作用下紧密堆积,造成物理结构非常致密。
石墨烯片层的堆积导致锂离子在大量嵌入石墨烯片层之后没有很好的途径实现脱嵌,造成首次库伦效率低。
(3)另一种可能是制备石墨稀的时候,未能将氧化石墨上的含氧基团完全还原,导致石墨片层上残留了一定量的含氧基团,锂离子和这些基团发生反应之后便无法脱嵌,造成了嵌锂容量较大但库伦效率较低的情况。
2.3.3 石墨烯循环性能差石墨烯首次库伦效率较低,但在充放电几次循环之后,充放电效率达到90%以上,并一直保持至50周,说明在充放电前几周之后建立了一个较稳定的锂离子嵌脱途径。
在经历过50次充放电测试之后,嵌锂容量下降幅度仍然较大,说明该材料的循环稳定性较差,可能是因为锂离子的重复嵌脱使得石墨烯片层结构更加致密,锂离子嵌脱难度加大而使得循环容量降低。
通常采用其他材料与石墨烯复合来改善石墨烯的循环性能。
2.3.4 石墨烯其他问题石墨烯特殊的结构使其具有较大的比表面积,较大的比表面积有利于材料电化学性能的发挥,但同时也会降低材料的振实密度,从而减小电池的能量密度。
此外,目前石墨烯的大规模制备和应用仍是世界难题,从而推高石墨烯的成本,目前石墨烯市场售价1000~5000元/克不等,是黄金价格的数倍,这也是限制石墨烯在锂离子电池领域的应用。
4 石墨烯在锂离子电池中应用总结石墨烯具有特殊的原子结构和电子结构,作为锂离子电池的电极主要有以下几个特点:(1)石墨烯具有优良的导电和导热特性,具有良好的电子传输通道, 而良好的导热性能也确保了其在使用中的稳定性;(2)石墨烯片层间距大于结晶性良好的石墨,使得锂离子在石墨烯片层之间的扩散通畅,有利于锂离子的扩散传输。
因此,石墨烯基电极材料同时具有良好的电子传输通道和离子传输通道,非常有利于锂离子电池功率性能的提高;(3)石墨烯是单层碳原子,上下表面均可以存储锂离子,并且由于制备过程中引入了缺陷、边缘悬挂键等,这些位置均可以存储锂离子,所以存储容量大大提高了;(4)嵌锂电位高,充放电曲线陡峭,没有明显的电压平台,存在电压滞后现象。
此外,石墨烯/金属(金属氧化物)复合材料作为锂离子电池负极材料也有一定的结构优势和性能优势。
在锂离子的脱插过程中,石墨烯稳定的骨架结构缓冲了金属氧化物晶格的膨胀,减少了锂离子脱插过程对材料晶格的破坏,从而延长材料的循环寿命;另一方面,网状结构的石墨烯在复合材料中起到导电网络的作用,极大的提供高了锂离子在材料的迁移速率,从而提高了材料的倍率性能。
但是,由于石墨烯研究时间短,属于新型材料体系,大量的问题还需要研究,目前在锂离子电池领域应用仍然存在一些问题:(1)石墨烯制备过程中片层容易堆积,降低了理论容量;(2)首次循环库伦效率较低,大量锂离子嵌入后无法脱出,降低电解质和正极材料的活性;(3)锂离子的重复嵌脱使得石墨烯片层结构更加致密,锂离子嵌脱难度加大而使得循环容量降低;(4)石墨烯振实密度较低,降低电池的功率密度;(5)大规模制备困难,价格昂贵。