应力应变分析习题解答

合集下载

材料力学习题应力状态和强度理论

材料力学习题应力状态和强度理论

应力状态分析与强度理论基 本 概 念 题一、选择题1. 三种应力状态分别如图(a )、(b )、(c )所示,则三者间的关系为( )。

A .完全等价B .完全不等价C .图(b )、图(c )等价D .图(a )、图(c )等价题1图2. 已知应力情况如图所示,则图示斜截面上的应力为( )。

(应力单位为 MPa)。

A .70-=ασ,30-=ατB .0=ασ,30=ατC .70-=ασ,30=ατD .0=ασ,30-=ατ3. 在纯剪切应力状态中,其余任意两相互垂直截面上的 正应力,必定是( )。

A .均为正值B .一为正值一为负值C .均为负值 题2图D .均为零值4. 单元体的应力状态如图所示,由x 轴至1σ方向的夹角为( )。

A .︒5.13 B .︒-5.76 C .︒5.76 D .︒-5.13题4图 题5图5. 单元体的应力状态如图所示,则主应力1σ、2σ分别为( )。

(应力单位MPa). -33-A .901=σ,102-=σB .1001=σ,102-=σC .901=σ,02=σD .1001=σ,02=σ 6. 如图6所示单元体最大剪应力m ax τ为( )。

A .100 MPaB .50 MPaC .25 MPaD .0题6图 题7图7. 单元体如图所示,关于其主应力有下列四种答案,正确的是( )。

A .1σ>2σ,03=σ B .3σ<2σ<0,03=σ01=σ C .1σ>0,2σ= 0,3σ<0,1σ<3σ D .1σ>0,2σ= 0,3σ<0,1σ>3σ8. 已知应力圆如图7-22所示,图(a )、(b )、(c )、(d )分别表示单元体的应力状态和A 截面的应力,则与应力圆所对应的单元体为( )。

A .图(a )B .图(b )C .图(c )D .图(d )题8图9. 在图示四种应力状态中,其应力圆具有相同的圆心和相同的半径是( )。

-34-题9图A .图(a )、图(d )B .图(b )、图(c )C .图(a )、图(b )、图(c ) 、图(d )D .图(a )、图(d )、图(b )、图(c )10. 如图所示,较大体积的钢块上开有一贯穿的槽,槽内嵌入一铝质立方体,铝块受到均布压力P 作用,假设钢块不变形,铝块处于( )。

13应力应变分析及强度理论

13应力应变分析及强度理论
15 . 5 , 0
15 . 5 90 105 . 5 0
x y
15 . 5 主应力 1 方向: 0
主应力
3
105 .5 方向: 0

18
(3)主单元体:

y
xy

3
1

15.5
x
19
13-5空间应力状态
代表单元体任意斜截面上应力 的点,必定在三个应力圆 圆周上或圆内。
纯剪切应力状态下: u=τ 2/2G
复杂应力状态下:
u= σ1ε1/2+ σ2ε2/ 2 + σ3ε3/ 2
= [σ12+ σ22+ σ32-2μ(σ1σ2+σ2σ3 +σ3σ1)] /2E
三、体积改变比能和形状改变比能
单元体的变形表现为 体积的改变和形状的改变,其变形 能和比能也由以下这两部分组成:
σ
3
σ1
σ2
σ2
σ
σ1
3
8
13-2 平面应力状态分析-解析法
一个微分六面体可以简化为平面单元体
9
1.斜截面上的应力
y
x

yx

a
xy

x
α
a
n

dA
x

y

a
xy

yx

F 0
n
t
y
F 0
t
10

1 1 ( ) ( ) cos 2 sin 2 x y x y xy 2 2
33
(2)最大伸长线应变理论(第二强度理论)脆性断裂 最大伸长线应变是引起材料断裂破坏的主要因 观点: 素,即认为无论是单向或复杂应力状态, 1 是

材料力学典型例题及解析7.应力应变状态典型习题解析

材料力学典型例题及解析7.应力应变状态典型习题解析

应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。

绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。

b = 60 mm ,h = 100 mm 。

解题分析:从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。

则各点处的应力状态如图示。

2、梁截面惯性矩为点微体上既有正应力又有切应力。

解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z 1点处弯曲正应力(压应力)MPa 100Pa 10100m10500m 1050m N 101064833−=×=×××⋅×==−−z I My σ1点为单向压缩受力状态,所以021==σσ,MPa 1003−=σ2点为纯剪切应力状态,MPa 30Pa 1030m10100602N1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa303−=σ3点为一般平面应力状态弯曲正应力MPa50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−z I My σ弯曲切应力σ14τ2F S =120 kN题图1中性轴324hστ25 mm 31b M =10 kN·mσ3150 mm 1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−zz bI S F τMPa6.8MPa6.58Pa)10522()2Pa 1050(2Pa 1050)2(22626622minmax −=×+×±×=+−±+=x y x yx τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。

弹塑性力学习题集 很全有答案

弹塑性力学习题集 很全有答案
3—8 有一处于二向拉伸应力状态下的微分体( σ1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ),其主应变
为 ε1 = 1.7 ×10−4 , ε 2 = 0.4 ×10−4 。已知ν = 0.3,试求主应变 ε 3 。 3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。
2—9 已知一点的应力张量为:
50 50 80
σ ij
=
0 − 75MPa
(对称)
− 30
试求外法线
n
的方向余弦为: nx
=
1 2
,ny
=
1 2
, nz
=
1 2
的微斜面上的全应力 Pα
,正
应力 σ α 和剪应力τ α 。
2—10 已知物体的应力张量为:
50 30 − 80
σ ij
=
0 − 30MPa
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
2
3
各弹性常数的物理意义。
3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据
单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来

应力状态与应变状态例题

应力状态与应变状态例题
A.(1)正确、(2)不正确;
B.(1)不正确、(2)正确;
C.(1)、(2)都正确;
D.(1)、(2)都不正确。
若构件内危险点的应力状态为二向等拉,则除 ( B )强度理论以外,利用其他三个强度理论得到 的相当应力是相等的。
A.第一; B.第二; C.第三; D.第四;
r1
r2
r3 1 3
第二强度理论
3

1+
1-(2+3)
对于铸铁: 0.25
1 3 2
2
(1+)
0.8
0.5
1
2
1
2 2
2
3 2
3
1 2
3
0.6
基本习题结束
铸铁水管冬天结冰时会因冰膨胀而被胀裂, 而管内的冰却不会破坏。这是因为( B )。
第一强度理论
1 +
23 11
x 10, y 23, xy 11
max
min
x y
2
x
2
y
2
2 x
10
29.8MPa
3.72MPa
(单位 MPa)
1 29.28MPa,2 3.72MPa,3 0
1 29.28MPa< 30MPa
故满足强度要求。
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试用第三、第四强度理论校核此结构是否安全。
xy
cos 2
0
故所给45度方向是主应力方向。
一受扭圆轴,直径d=20mm,圆轴的材料为 钢,E=200GPa,ν=0.3。现测得圆轴表面上与轴线成450 方向的应变为ε=5.2×10-4,试求圆轴所承受的扭矩。

《材料力学》第7章-应力状态和强度理论-习题解

《材料力学》第7章-应力状态和强度理论-习题解
解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。

应力应变分析习题解答

应力应变分析习题解答

402
94.72 5.28
MPa
习题解答
根据大小来确定主应力的次序如下:
1 94.72MPa, 2 50MPa, 3 5.28MPa
于是该单元体的形状改变比能为:
uf
1 6E
(1
2)2
(2
3 ) 2
(3
1)2
1 0.3106
6 200103
[(94.72
50)2
(50
5.28)2
y
m x
n
y
y
x
n
x
习题解答
x
2
y
x
2
y
cos2
x
sin
2
x
2
y
sin
2
x
cos2
A
2
Bo
x
y
习题解答
3、各单元体各面上的应力如图所示(应力单位MPa)。试利用应力圆: 1)求指定截面上的应力; 2)求主应力的数值; 3)在单元体上绘出主平面的位置及主应力的方向。
30
30
30
60o
30
解:1)由以下应力公式 可得
y 30MPa
解:要想求单元体的形状改变比能,必须先求出
该单元体的三个主应力,由右图可知 z 50
为该单元体的一主应力,于是可只计算垂直于z轴的
70MPa
平面上的主应力。由平面应力公式可得
m a x
min
x
y 2
x
2
y
2
2x
40MPa x z 50MPa
70 30 2
70 30 2 2
2
y
2
2x
70 30 2

应力状态分析及强度理论习题讲解

应力状态分析及强度理论习题讲解

答案:
D
四、计算
1. 构件内危险点应力状态如图所示,试作强度校核: 1)材料为铸铁,已知许用拉应力 t 30MPa,压应力 90MPa;3)材料仍为铸铁,应力分量中 为压应力。
15MPa
c 90MPa,泊松比 =0.25;2)材料为铝合金,
15MPa






45 , 45
90 90
45 45
45
x
O


45 , 45
(b)
45
45
x
(c)
(d)
4.用电阻应变仪测得空心钢轴表面一点与母线成45 方向 上的正应变 45 200 103。已知该轴转速为120r / min , 外径D 120mm,内径d 80mm,钢材E 210GPa, =0.28, 求轴传递的功率。
45
a b
1
45



1
3
O


45 3
x
(b)
4 WP D 1 12 10 1 8 /12 16 16 272.3 106 m 3 n E 所以 N WP 45 9550 1 120 210 109 272.3 106 200 103 112kW 9550 1 0.28 3 4 3 6
n

dA
y

30
120
1
t
30
20
1 2
x
2
40 30
(b)

4 5,26 B C
68
240
3)作应力圆(图(c)) (1)取比例尺,1cm-20MPa,在 - 坐标平 面内作点1(+20,0)、2(-40,0);

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。

2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。

5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

工程力学第8章剪应力分析习题及解析

工程力学第8章剪应力分析习题及解析

第8章弹性杆件横截面上的切应力分析8-1扭转切应力公式r(p)^M x p/I p的应用范圉有以下几种,试判断哪一种是正确的。

(A)等截面圆轴,弹性范囤内加载:(B)等截面圆轴:(C)等截面圆轴与椭恻轴:(D)等截面圆轴与椭恻轴.弹性范鬧内加较。

知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是A cTip) = M x p/l?在推导时利川J'等截面鬪轴受扭后.其横截血保持平血的假设•同时推导过程中还应用了剪切胡克定律.婆求在线弹性范刑加載。

8-2两根长度相等、直径不等的圆轴受扭后.轴表iftlJJU线转过相同的角度。

设直径大的轴和直径小的轴的横截面上的最大切应力分别为耳吨'和r2max,切变模虽分别为Gi和G2O试判断下列结论的正确性。

(A)(B)(C)若G、>G“则有r Inux > r2nux:(D)若G>G“则有右叭沁。

知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是c °因两恻轴等长,轴表面上母线转过相同角度,指切应变相同,即/,=/,=/由剪切胡克定律2“知> °2 时,f lnux > r2max °8-3承受相同扭矩且长度相等的直径为山的实心恻轴与内.外径分别为D2(a = d2/D2)的空心圆轴.二者横截面上的垠大切应力相等。

关于二者重之比(M/WJ有如下结论.试判断哪一种是正确的。

(A)(l-a4严;(B)(l-a4)V2(l-a2):(C)(l-^Xl-a2):(D)(1 一a」)的/(I一小)。

知识点:组合圆轴扭转时横截面上的切应力难度:难解答•\6M X I6M正确答案是D即A-d-a4)7D2匹=如=必W2人D;(l-a2)习题8/图⑴代入(2〉.得8-4由两种不同材料组成的圆轴,里层和外 层材料的切变模址分别为Gi 和Gi.且G = 2G 2. 圆轴尺寸如图所示。

圆轴受扭时.里、外层之间无相对滑动。

材料力学习题册答案-第7章-应力状态知识讲解

材料力学习题册答案-第7章-应力状态知识讲解

材料力学习题册答案-第7章-应力状态第七章应力状态强度理论一、判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。

(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。

(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。

(×) 原因:正应力一般不为零。

4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴上的一个点。

(×)原因:单向应力状态的应力圆不为一个点,而是一个圆。

三向等拉或等压倒是为一个点。

5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。

(×)原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。

(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。

(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。

(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。

(×)原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。

(×)原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。

A 最大面积B 最小面积C 最大应力D 最大内力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。

A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)

OA1
= OC + CA1
= x
+ y 2
+
(
x
− y )2 2
+
2 xy
= max = 1
OB1
= OC − CB1
=
x
+ 2
y

(
x
− 2
y
)2
+
2 xy
= min
=2
b.确定主平面方位的方法
如图 7-3(b)(c)所示,将半径 CD 旋转 20 到 CA1 处,单元体 x 轴沿 20 旋转方向
图 7-2 应力圆 (2)应力圆的应用 ①应力圆与单元体应力间的关系 点面之间的对应关系:单元体某一面上的应力,必对应于应力圆上某一点的坐标; 夹角关系:圆周上任意两点所引半径的夹角等于单元体上对应两截面夹角的两倍,且两 者的转向一致。 ②求单元体上任一截面上的应力 从应力圆的半径 CD 按方位角 α 的转向转动 2α 得到半径 CE,圆周上 E 点的坐标就是
任意两个互相垂直的截面上的正应力之和为常数,即 + +90 = x + y 。
③最大切应力和最小切应力 切应力的大小
max min
=
x
− y 2
2
+ 2xy
=
1 2
(max
− min )
切应力极值所在截面方位角
tan
21
=
x − y 2 xy
最大和最小切应力所在平面与主平面的夹角为 45°,即1 = 0 + 45。
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 应力和应变分析强度理论

材料力学课后答案

材料力学课后答案

材料力学课后答案材料力学是研究材料内部力学性质和行为的学科,它是材料科学与工程学的重要基础课程之一。

通过学习材料力学,我们可以了解材料的力学性能和行为,为材料的设计、加工和应用提供理论基础和指导。

在课堂学习之外,课后习题是巩固知识、提高能力的重要途径。

下面是一些材料力学课后习题的答案,希望能对大家的学习有所帮助。

1. 什么是应力?应变?它们之间的关系是什么?答,应力是单位面积上的力,通常用σ表示,其公式为σ=F/A,其中F为作用在物体上的力,A为物体的受力面积。

应变是物体单位长度的形变,通常用ε表示,其公式为ε=ΔL/L0,其中ΔL为长度变化量,L0为原始长度。

应力和应变之间的关系由杨氏模量E来描述,公式为σ=Eε。

2. 什么是弹性模量?它有哪些类型?答,弹性模量是描述材料在弹性阶段的刚度和变形能力的物理量。

常见的弹性模量包括杨氏模量、剪切模量、泊松比等。

3. 什么是拉伸、压缩、剪切?答,拉伸是指物体在外力作用下沿着其长度方向发生的形变;压缩是指物体在外力作用下沿着其长度方向发生的缩短形变;剪切是指物体在外力作用下沿着其平面内部发生的相对位移形变。

4. 什么是胶性变形?塑性变形?答,胶性变形是指材料在受力作用下发生的可逆形变,即在去除外力后,材料可以恢复到原来的形状;塑性变形是指材料在受力作用下发生的不可逆形变,即在去除外力后,材料无法完全恢复到原来的形状。

5. 什么是材料的疲劳破坏?有哪些影响因素?答,材料的疲劳破坏是指在交变应力作用下,材料在循环载荷下发生的破坏。

影响因素包括应力幅值、载荷次数、材料的强度和韧性等。

以上是对材料力学课后习题的部分答案,希望能够帮助大家更好地理解和掌握材料力学的知识。

在学习过程中,要多做习题、多思考、多讨论,相信通过努力,一定能够取得好成绩。

材料力学习题应力状态分析答案详解

材料力学习题应力状态分析答案详解
二、填空题
1、图示应力状态,按第三强度理论的强度条件为 。
(注: )
解答:
2、第三强度理论和第四强度理论的相当应力分别为 及 ,对于纯剪切应力状态,恒有 / = 。
解答:纯剪应力状态
3、一般情况下,材料的塑性破坏可选用最大剪应力或形状改变能密度强度理论;而材料的脆性破坏则选用最大拉应力或最大伸长线应变强度理论(要求写出强度理论的具体名称)。
解答:
17、一体积为10×10×10mm3的立方铝块,将其放入宽为10mm的刚性槽中,已知v(铝)=0.33,求铝块的三个主应力。
解答:
18、外径为D、内径为d的空心圆轴受扭转时,若利用一电阻应变片作为测力片,用补偿块作为温度补偿,采用半桥接线。问:(1)此测力电阻片如何粘贴可测出扭矩;(2)圆轴材料的E、v均为已知, 为测得的应变值,写出扭矩计算式。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。
解答:
10、已知受力构件某处的 , , ,材料的E=200GPa,v=0.3。试求该点处的 、 。
解答:在危险截面A上危险点在七上下边缘
由第三强度理论
不安全
12、图示齿轮传动轴内电机带动,作用在齿轮上的力如图示,已知轴的直径d=30mm,P=0.8kN,Q=2kN,l=50mm,齿轮节圆直径D=200mm。试用第三强度理论校核轴的强度。已知轴的 。
13、图示传动轴,皮带轮Ⅰ直径D1=80cm,皮带轮Ⅱ直径D2=40cm,已知轴的许用应力 。试以第四强度理论设计轴的直径d,并指出危险截面位置,画出危险点的应力状态。

第七章应力状态习题答案

第七章应力状态习题答案

( 2 )图解法作应力圆如题 7 . 4 图( d 1)所示。应力圆与 σ 轴的两个交点的坐标,即是 σ 1 、 σ 3 的数 值。由 CDx ,顺时针旋转 2α 0 ,可确定主平面的方位。 CDx 的长度即为最大切应力的数值。主应力单 元体如题 7 . 4 图(d2)所示。
5
( e )如题 7 . 4 图( e )所示。
τα =
σ x −σ y
2
⎛ 100 − 50 ⎞ sin 2α + τ xy cos 2α = ⎜ sin120D + 0 ⎟ MPa = 21.7 MPa 2 ⎝ ⎠
( 2 )图解法 作应力圆如题 7 . 3 图( cl )所示。从图中可量得 Dα 点的坐标,此坐标便是 σ α 和 τ α 数值。 ( d )如题 7 . 3 图( d )所示。
按照主应力的记号规定
σ 1 =4.7MPa, σ 2 =0, σ 3 =-84.7MPa
tan 2α 0 = − 2τ xy
σ x −σ y
=
=
−2 × 20 = −0.5 , α 0 =-13.3° 0 + 80
τ max =
σ1 − σ 3
2
4.7 + 84.7 MPa = 44.7 MPa 2

1
斜截面 AB 与 x 平面的夹角 a2 = 105 ,其上应力 σ a2=45MPa,τ a = 25 3MPa 。将这些数据代入斜截面

2
上应力公式中,对 AB 斜截面有
σx +σ y
2
+
σ x −σ y
2
cos 210。− τ xy sin 210。= 45 ①
σ x −σ y

工程力学 第9章 应力状态分析 习题及解析

工程力学 第9章 应力状态分析 习题及解析

习题9-1图 x15-'x x'σy'x'τ 1.25MPa15 (b-1)15a 4MP15-y'x'τx'x'σa1.6MP x (a-1) 习题9-2图302MPa 0.5MPa-60x'σ'x ''y x τ 工程力学(工程静力学与材料力学)习题与解答第9章 应力状态分析9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。

试求: 1.面内平行于木纹方向的切应力;2.垂直于木纹方向的正应力。

知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:(a )平行于木纹方向切应力6.0))15(2cos(0))15(2sin(2)6.1(4=︒-⨯⋅+︒-⨯---=''y x τMPa 垂直于木纹方向正应力84.30))15(2cos(2)6.1(42)6.1(4-=+︒-⨯---+-+-='x σMPa (b )切应力08.1))15(2cos(25.1-=︒-⨯-=''y x τMPa正应力625.0))15(2sin()25.1(-=︒-⨯--='x σMPa9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。

若已知胶层切应力不得超过1MPa 。

试分析是否满足这一要求。

知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:55.1))60(2cos(5.0))60(2sin(2)1(2-=︒-⨯⋅+︒-⨯---=''y x τMPa 1MPa 55.1||>=''y x τMPa ,不满足。

9-3 结构中某点处的应力状态为两种应力状态的叠加结果。

试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。

知识点:平面应力状态分析 难度:难 解答:习题9-2图yσxσxyτ=yσxσxyτx=yσxσxyτ=左微元⎪⎪⎪⎩⎪⎪⎪⎨⎧-='-='-=-='+=--+='000000022cos 122sin )2sin(222cos 10)2cos(22σθσσσσθθστσθθσσσx y xy x 叠加 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+'=-=+=+=+'=''000022cos 1022sin 022cos 3σθσσσθττσθσσσy y y x xy x x0)cos 1()cos 1( )22sin (4)22cos 122cos 3(21222cos 122cos 330020202021=⎩⎨⎧-+=-+--+±-++=⎭⎬⎫σσθσθσθσθθσθθσσ 面内最大切应力:θσσστcos 2021max=-='该点最大切应力:031max2cos 12σθσστ+=-=左微元0023))30(2sin()(ττσ=︒-⨯-='x ,0230τσσ-='-='x y ,2))30(2cos(00τττ=︒-⨯='xy 右微元0023)302sin()(ττσ=︒⨯-=''x,0230τσσ-=''-=''x y ,2))30(2cos()(00τττ-=︒⨯-=''xy 叠加 03τσσσ='+'=y x x ,03τσσσ-=''+'=y y y ,0=''+'=xyxy xy τττ 013τσ=,02=σ,033τσ-= 面内031max32||τσστ=-='xABOσOσαα(a)习题9-4图A60CB60100-x σxσyxτxyτ92MPa(a)习题9-5图该点031max 32||τσστ=-=叠加[]⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡︒-⨯--+==--+==⎥⎦⎤⎢⎣⎡︒-⨯--+-++=MPa 30))45(2sin(2)30(5070MPa 1010)3050(0MPa 90))45(2cos(2)30(502)30(5080xy y x σσσ主应力0MPa 0MPa100304)]100(90[212109022231=⎩⎨⎧=⨯+-±+=⎭⎬⎫σσσ面内及该点:5021002||||31max max=-=-=='σσττMPa9-4 已知平面应力状态的最大正应力发生在与外力作用的自由表面AB 相垂直的面上,其值为0σ。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
1. MPa
MPa
MPa
2.
MPa
MPa
9-13图示外径为300mm的钢管由厚度为8mm的钢带沿20°角的螺旋线卷曲焊接而成。试求下列情形下,焊缝上沿焊缝方向的切应力和垂直于焊缝方向的正应力。
1.只承受轴向载荷FP = 250kN;
2.只承受内压p=5.0MPa(两端封闭)
3.同时承受轴向载荷FP = 250kN和内压p=5.0MPa(两端封闭)
难度:一般
解答:
(1)当 = 40℃
mm<
mm<
所以铝板内无温度应力,
(2)当 = 80℃
mm>
mm>
∴ (1)
(2)
所以解得qx = qy=70MPa(压)
, MPa
MPa
9-18对于一般平面应力状态,已知材料的弹性常数E、 ,且由实验测得 和 。试证明:
知识点:广义胡克定律、 三者之间的关系
难度:一般
难度:一般
解答:
正确答案是C。
(A)不满足切应力互等定律;
(B)不满足平衡;
(C)既可满足切应力互等,又能达到双向的平衡;
(D)不满足两个方向的平衡。
9-27微元受力如图所示,图中应力单位为MPa。试根据不为零主应力的数目,它是:
(A)二向应力状态;
(B)单向应力状态;
(C)三向应力状态;
(D)纯切应力状态。
MPa
9-7受力物体中某一点处的应力状态如图所示(图中p为单位面积上的力)。试求该点处的主应力。
知识点:应力圆的应用
难度:难
解答:
应力圆半径
9-8从构件中取出的微元,受力如图所示。试:
1.求主应力和最大切应力;
2.确定主平面和最大切应力作用面位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力应变分析习题解答
习题解答
1、试从图示各构件中A点处取出单元体,并表明单元 体各面上的应力
A
m2m
解:该构件在A点处受弯矩和扭矩作用产生拉应力和剪应力,
分别计算如下:
在A处受到的拉应力最大,即
m1 W
m1 D3
39.3 (0.02)3
50MPa
32
32
习题解答
在A处受到的剪应力为:
m2 2W
m1 D3
78.6 (0.02)3
50MPa
16
16
所以在A处单元体的应力图为:
50MPa
50MPa 50MPa
50MPa 50MPa
50MPa
习题解答
2、试根据相应的的应力圆上的关系,写出图示单元体任一斜面mn
上正应力及剪应力的计算公式。设mn面的法线与x轴成 角如图示 (作图时可设 y x )。
x
2
y
x
2
y
cos2
x
sin
2
x
2
y
sin
2
x
cos2
习题解答
60o 30sin(2 60o ) 25.98
30cos(260o) 15
2)主应力,由以下公式可得:
m a x
min
x
y 2
x
2
y
2
2x
max
30 30
MPa
显然,主应力方向沿着对角线方向。
3)绘出主平面位置及主应力方向
y
m x
n
y
y
x
n
x
习题解答
x
2
y
x
2
y
cos2
x
sin
2
x
2
y
sin
2
x
cos2
A
2
Bo
x
y
习题解答
3、各单元体各面上的应力如图所示(应力单位MPa)。试利用应力圆: 1)求指定截面上的应力; 2)求主应力的数值; 3)在单元体上绘出主平面的位置及主应力的方向。
30
30
30
60o
30
解:1)由以下应力公式 可得
y 30MPa
解:要想求单元体的形状改变比能,必须先求出
该单元体的三个主应力,由右图可知 z 50
为该单元体的一主应力,于是可只计算垂直于z轴的
70MPa
平面上的主应力。由平面应力公式可得
m a x
min
x
y 2
x
2
y
2
2x
40MPa x z 50MPa
70 30 2
70 30 2 2
50 x
z
m a x
min
x
y 2
x
2
y
2
2 x
50MPa
习题解答
根据大小来确定主应力的次序如下:
1 50MPa, 2 50MPa, 3 80MPa, max 65MPa
5、用45o应变花测得构件表面上一点处三个方向的线应变分别为
0o 700106, 45o 350106, 90o 500106 试解和任作一:选9应点0值比o 力B分例,圆别尺作,作如与求出图L该平bb所点线行示处成于。的4该5绘主轴o角出应的(纵变直顺坐数线时标值针L轴和转a、,方向L并向)b和根。的据LBc已A。线知过,的L交b0线Lo 、a上线的45于o
(5.28
94.72)2
]
12.99103 N m / m3
402
94.72 5.28
MPa
习题解答
根据大小来确定主应力的次序如下:
1 94.72MPa, 2 50MPa, 3 5.28MPa
于是该单元体的形状改变比能为:
uf
1 6E
(1
2)2
(2
3 ) 2
(3
1)2
1 0.3106
6 200103
[(94.72
50)2
(50
5.28)2
A点;作与Lb 线成 45o 角(逆时针转向)的BC线,交Lc 线于C点。 作即BA与轴B,C并两以线的O1垂A 直为等半分径线作,圆相,交按于上述O比1 点例。尺过量取O1应点变作圆横与坐标轴轴
的交点 D1 、D2 的横坐标,即得
习题解答 y
2
1
90 o
45o
C
1
a 0o
D2 O
x
O1
20
D1
45o 45o
Lc 90o 45o B
b
0o
La
2 Lb
1 750 106 , 2 550 106
再从应力圆上量得 20 22.6O ,故 0 11.3O
,主应变 1
的方向
如图中(a)所示。
习题解答
6、已知图示单元体材料的弹性常数 E 200GPa, 0.3
试求该单元体的形状改变比能
2
y
2
2x
70 30 2
70 30 2
2
402
94.72 5.28
MPa
习题解答
根据大小来确定主应力的次序如下:
1 94.72MPa, 2 50MPa, 3 5.28MPa
2)
y
由图中可知 x 80为该单元体的
一主应力,于是可只计算与x轴相
垂直平面上的主应力。由平面应力
80 公式可得:
如右图所示:
m in
m in max
习题解答
4、单元体各面上的应力如图(应力单位为MPa)。试用应力圆求主应力
及最大剪应力。 y
1)
30
由图中可知 z 50为该单元体的
40
一主应力,于是可只计算与z轴相
70
垂直平面上的主应力。由平面应力
40
x 公式可得:
50
z
m a x
min
x
y 2
x
相关文档
最新文档