高中数学-排列组合二项式定理知识点

合集下载

35:排列组合和二项式定理高三复习数学知识点总结(全)

35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。

排列组合二项式定理概率基础知识点+思维导图练习

排列组合二项式定理概率基础知识点+思维导图练习

;展开
式共有项数为
项.
(2)二项展开式的通项 Tr1
,表示第
项.
(3)二项展开式中的二项式系数为
;项的系数是指
.
11、(1)对称性:与首末两端
的两项的二项式系数相等,即 Cnr
C nr n
(r
0,1, 2,, n)
18
(2)二项式系数最大的项在中间.当幂指数 n 为偶数时,最大的二项式系数为

最大二项式系数为第
项;当 n 为奇数时,最大的二项式系数为

最大的二项式系数为第
项.
(3)二项式系数之和为
.二项展开式中,各奇数项的二项式系数之和与各偶数
项的二项式系数之和相等,即:
==.源自12、若 (x 1)7 a0 a1x a2 x2 a7 x7 ,令
一、特殊元素特殊位置优先
,得 a0 a1 a2 a7
八、合理分类与分步策略 8、在一次演唱会上共有 10 名演员,其中 8 人能够唱歌,5 人会跳舞,现要演出一个 2
人唱歌 2 人伴舞的节目,有多少种选派方法?
九、构造模型策略 9、马路上有编号为 1,2,3,4,5,6,7,8,9 的九只路灯,现要关掉其中的 3 盏,但不能关掉相
邻的 2 盏或 3 盏,也不能关掉两端的 2 盏,求满足条件的关灯方法有多少种?
; Ann
;规定, 0!

7、组合数 Cnm 的含义:
8、计算: Cnm
=

9、组合数的性质
(1)Cnm
;(2)Cnm
C m1 n
10、(1)对于 n N * , (a b)n
;(3)Cn0 Cn1 Cn2 Cnn1 Cnn

高一数学排列组合二项式定理及其应用分析总结归纳

高一数学排列组合二项式定理及其应用分析总结归纳

02
二项式定理及其应用
二项式定理的展开式
二项式定理:(a+b)^n = a^n + n*a^(n-1)*b + n*(n-1)/2*a^(n-2)*b^2 + ... + b^n 展开式特点:每一项的系数是n的阶乘除以(n-k)的阶乘 展开式应用:求解组合问题、概率问题、数列问题等 展开式计算:利用公式进行计算,注意系数和指数的变化规律
多项式定理的应用:在数学、 物理、工程等领域有广泛应用
多项式定理的证明:通过数学 归纳法进行证明
多项式定理的推广:将二项式 定理推广到更高阶的多项式
二项式定理的扩展形式
二项式定理的推广:从n次方推广到任意次方 二项式定理的拓展:从整数推广到实数 二项式定理的推广和拓展:从二项式定理推广到多项式定理 二项式定理的推广和拓展:从二项式定理推广到组合定理

期望值:二项 式定理在期望 值计算中的应

方差:二项式 定理在方差计
算中的应用
在统计学中的应用
概率计算:二项式定理可以用于计算概率,例如计算抛硬币、掷骰子等事件的概率。 统计推断:二项式定理可以用于统计推断,例如进行假设检验、参数估计等。 统计模型:二项式定理可以用于建立统计模型,例如建立线性回归模型、逻辑回归模型等。 数据分析:二项式定理可以用于数据分析,例如进行数据清洗、数据可视化等。
计算期望:二项 式定理可以用来 计算期望,如 E(X) = Σ[k * P(X=k)]
在代数中的应用
求解多项式方 程:利用二项 式定理求解多
项式方程
求函数值:利 用二项式定理
求函数值
求极限:利用 二项式定理求
极限
求导数:利用 二项式定理求

高中数学排列组合与二项式定理知识

高中数学排列组合与二项式定理知识

高中数学排列组合与二项式定理知识
排列组合与二项式定理是高中数学的一个重要学习内容。

知识点你都掌握了吗?下面是店铺为你整理的高中数学排列组合与二项式定理知识,一起来看看吧。

高中数学排列组合知识
高中数学二项式定理知识
高中数学排列组合与二项式定理解题技巧
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8. 会计算事件在n次独立重复试验中恰好发生k次的概率.。

排列组合与二项式定理知识点精选全文完整版

排列组合与二项式定理知识点精选全文完整版

可编辑修改精选全文完整版排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。

排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。

全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。

高中数学-排列组合二项式定理知识点

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点2、排列、组合3、二项式定理内容典型题定义①二项式定理:(a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n=∑=nrrnCa n-rb r(n∈N+)②二项式展开式第r+1项通项公式:Tr-1=C r n a n-r b r其中C r n(r=0,1,2,…,n)叫做二项式系数.8.二项式8)1(-x的展开式中的第5项是( )A. 70x4B. 70x2C. 56x3D. -5623x9.二项式(x-2)12展开式中第3项的系数是( )A.264B.-264C.66D.-176010.(x-2)8 的展开式中, x6的系数是( )A. 56B. -56C. 28D. 22411.(x2+)5展开式中的10x是( )A.第2项B.第3项C.第4项D.第5项12.二项式x-1x6的展开式中常数项是( )A. 1B. 6C. 15D. 2013.设(3-x)n=nnxaxaxaa+⋅⋅⋅+++221,已知naaaa+⋅⋅⋅+++21=64,则n=.14.设二项式(3x+5)10=188991010axaxaxaxa++⋅⋅⋅+++,则18910aaaaa+-⋅⋅⋅-+-=.15.二项式2x-1x6的展开式中二项式系数最大的项是.性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大.③二项式系数的和为n2,即nC+1nC+…+rnC+…+nnC=n2④奇数项的二项式系数的和等于偶数项的二项式系数的和,即nC+2nC+…=1nC+3nC+…=12-n。

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。

本文将对这两个知识点进行总结和说明。

1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。

组合是指从一组元素中不考虑顺序地取出一部分元素的方式。

排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。

1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。

二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。

二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。

其中C(n, k)表示从n个元素中选择k个元素的组合数。

二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。

二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。

它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。

3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。

例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。

排列组合和二项式定理(高三)

排列组合和二项式定理(高三)

十、排列、组合和二项式定理1.排列数mn A 中1,n m n m ≥≥∈N 、、组合数mn C 中,1,0,n m n m n m ≥≥≥∈、N .(1)排列数公式!(1)(2)(1)()()!mn n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。

如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3);(2)满足2886x x A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01nC =. 如已知16m n mn m n C C A +++=,求 n ,m 的值(答:m =n =2)(3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++.2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如(1)将5封信投入3个邮筒,不同的投法共有 种 (答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法; (答:480)(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f 是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{ C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理在高中数学中,排列组合是一种重要的概念与工具,它涉及到对对象的选取和排列的方式。

而在排列组合的基础上,我们还能引出二项式定理,进一步探讨多项式的展开与计算。

本文将对这些数学知识点进行归纳总结和讨论。

一、排列组合的基本概念1.1 排列排列是从给定的一组对象中,按照一定的顺序选择若干个对象进行排列。

假设有n个不同的对象,要从中选择r个对象进行排列,可以得到的排列数记为P(n,r)。

P(n,r) = n!/(n-r)!1.2 组合组合是指从给定的一组对象中,无视其顺序,选择若干个对象。

同样假设有n个不同的对象,要从中选择r个对象进行组合,可以得到的组合数记为C(n,r)。

C(n,r) = n!/(r!(n-r)!)1.3 重复排列与重复组合当给定的一组对象中存在重复的元素时,我们可以计算可能的重复排列与重复组合。

计算公式如下:重复排列:P(n1,n2,...,nk) = n!/(n1!n2!...nk!)重复组合:C(n+r-1,r) = (n+r-1)!/(r!(n-1)!)二、排列组合的应用2.1 生日问题生日问题是指在一个房间里,至少有两个人生日相同的概率有多大。

利用排列组合的思想可以很方便地解决这个问题。

在一个房间里,有n 个人,假设有365天可以选作生日。

我们可以计算至少有两个人生日相同的概率,即为1减去没有人生日相同的概率。

P(at least two people have the same birthday) = 1 - P(no two people have the same birthday)= 1 - C(365,n)/365^n2.2 二项式定理与展开二项式定理是代数中的重要定理之一,它描述了两个数之和的幂展开后的表达式。

假设有实数a和b以及正整数n,根据二项式定理可以将(a+b)^n展开为:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n2.3 二项式系数与组合恒等式二项式系数指的是二项式展开中各项的系数。

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。

分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。

区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。

二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。

2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。

(n-m+1)=n。

注意:①全排列:Ann。

②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。

第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。

第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。

组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。

二项式定理与排列组合的应用知识点总结

二项式定理与排列组合的应用知识点总结

二项式定理与排列组合的应用知识点总结在数学中,二项式定理与排列组合是两个重要的概念。

二项式定理是代数中的一项基本定理,而排列组合是组合数学中的重要概念。

本文将对二项式定理和排列组合的应用进行知识点总结。

一、二项式定理二项式定理是数学中的一个重要定理,它是关于二项式与幂的展开公式。

二项式定理的公式表达如下:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, n) * a^0 * b^n其中,C(n, k)表示组合数,即从n个元素中选择k个元素的组合数。

组合数的计算公式为:C(n, k) = n! / (k! * (n-k)!)二项式定理给出了二项式的展开公式,使我们可以快速求解幂指数较大的二项式。

其应用广泛,包括代数、概率统计等领域。

二、排列组合排列组合是组合数学中的一个分支,研究的是从给定的元素集合中选取出若干元素,按照一定规则进行排列或组合的方法。

排列和组合的计算公式如下:排列:P(n, k) = n! / (n-k)!组合:C(n, k) = n! / (k! * (n-k)!)其中,n表示元素的总个数,k表示选取的元素个数。

排列组合在实际问题中有着广泛的应用。

例如,在概率统计中,排列组合可用于计算事件发生的可能数;在密码学中,排列组合可用于计算密码的破解难度;在传统的魔方游戏中,排列组合可用于计算还原魔方的步骤等。

三、应用举例1. 掷硬币问题:将一枚硬币连续投掷3次,求出正反面出现的不同可能性。

解:根据排列组合的知识,将硬币的正反面看作两个元素,共有2个元素,从中选择3个元素排列,即为排列问题。

根据排列问题的计算公式,可得 P(2, 3) = 2! / (2-3)! = 2。

故,正反面出现的不同可能性为2种。

2. 发牌问题:从一副扑克牌中,随机抽出5张牌,在这5张牌中有几种同花色的可能性?解:根据排列组合的知识,将扑克牌的花色看作4个元素,从4个元素中选取1个元素,即为组合问题。

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点

高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。

分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。

区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。

二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。

(2)排列数、组合数:排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。

第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。

第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。

二项式定理与排列组合的知识点总结

二项式定理与排列组合的知识点总结

二项式定理与排列组合的知识点总结二项式定理是高中数学中的一个重要定理,它与排列组合有着密切的联系。

本文将对二项式定理和排列组合的知识点进行总结,希望能够为读者提供清晰明了的概念和理解。

一、排列组合的基本概念排列组合是数学中研究对象的一种组织方式。

排列是指将一组元素按照一定顺序进行布置,而组合是指从一组元素中取出若干元素组成一个集合。

1. 排列排列是指从一组元素中有序地选取若干个元素进行布置。

主要分为两种类型:有放回排列和无放回排列。

有放回排列是指在选择完元素后将其放回原处,元素可以被多次选取。

而无放回排列是指在选择完元素后不放回,下次选择时不能再选取。

2. 组合组合是指从一组元素中无序地选择若干个元素进行组合。

同样地,组合也可以分为有放回组合和无放回组合两种类型。

二、二项式定理的概念和公式二项式定理是代数学中的一个重要定理,用于展开二项式的幂。

它表述了如下公式:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中,a,b是实数或者变量,n为非负整数。

C(n, k)表示从n个元素中取出k个元素的组合数,也称为二项系数。

具体计算公式如下:C(n, k) = n! / (k!(n-k)!)三、二项式定理与排列组合的关系二项式定理中的二项系数C(n, k)正是组合数的计算公式,说明了二项式展开式中各项系数的求解方法。

1. 二项式系数的性质二项系数具有一些重要的性质,包括对称性、加法原理和乘法原理等。

这些性质在解决排列组合问题时具有重要的指导作用。

2. 应用举例利用二项式定理和排列组合的知识,可以解决一些实际问题。

比如,求解一组数的幂展开式中某一项的系数、计算某些特殊排列组合的总数等等。

四、应用示例在实际应用中,二项式定理与排列组合经常被用于解决一些概率、统计和计算问题。

高考排列组合及二项式定理知识总结与例题讲解(5分)

高考排列组合及二项式定理知识总结与例题讲解(5分)
练:在 的展开式中系数最大的项是多少?
解:假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为
题型七:含有三项变两项;
例:求当 的展开式中 的一次项的系数?
解法①: , ,当且仅当 时, 的展开式中才有x的一次项,此时 ,所以 得一次项为
它的系数为 。
解法②:
故展开式中含 的项为 ,故展开式中 的系数为240.
2、 2、
2、4n
3、 的展开式中的有理项是展开式的第项
3、3,9,15,21
4、(2x-1)5展开式中各项系数绝对值之和是
4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为35
5、求(1+x+x2)(1-x)10展开式中x4的系数
5、 ,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项 作积,第一个因式中的-x3与(1-x)9展开式中的项 作积,故x4的系数是
解:设 展开式中各项系数依次设为
,则有 ①, ,则有 ②
将①-②得:
有题意得, , 。
练:若 的展开式中,所有的奇数项的系数和为 ,求它的中间项。
解: , ,解得
所以中间两个项分别为 , ,
题型六:最大系数,最大项;
例:已知 ,若展开式中第 项,第 项与第 项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?
练:求式子 的常数项?
解: ,设第 项为常数项,则 ,得 , , .
题型八:两个二项式相乘;
例:
解:
.
练:
解:
.
练:
解:
题型九:奇数项的系数和与偶数项的系数和;
例:

高中数学专题讲解排列组合及二项式定理

高中数学专题讲解排列组合及二项式定理

排列组合及二项式定理【基本知识点】1.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++,令1x =,则0122n rn nn n n n C C C C C =++++++【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。

(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.(4),,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 (5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.(6)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种(7) 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的 二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元 素;再排其它的元素。

高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理高中数学知识点总结及公式大全:排列组合与二项式定理一. 排列组合排列组合是高中数学中重要的知识点之一,用于解决计数问题。

排列组合分为排列和组合两种情况。

1. 排列排列是指从一组对象中按照一定的顺序选择若干个对象进行排列。

高中数学中常用的排列公式为:An= n!/(n-r)!,其中n表示总数,r表示选取的个数。

排列的特点是考虑顺序,即不同的顺序被视为不同的排列。

2. 组合组合是指从一组对象中选择若干个对象进行组合,不考虑顺序。

高中数学中常用的组合公式为:Cn= n!/[(n-r)!*r!],其中n表示总数,r表示选取的个数。

组合的特点是不考虑顺序,即不同的顺序被视为相同的组合。

二. 二项式定理二项式定理是高中数学中的重要定理之一,用于展开一个任意次数的二项式表达式。

二项式定理的公式为:(a+b)^n = Cn0 * a^n * b^0 + Cn1 * a^(n-1) * b^1 + Cn2 * a^(n-2) * b^2 + ... + Cnr * a^(n-r) * b^r + ... + Cnn * a^0 * b^n 其中Cnr代表组合数,表示从n中选取r个的组合数。

三. 相关数学公式除了排列组合和二项式定理,高中数学还有许多重要的公式需要掌握。

1. 三角函数相关公式:- 三角恒等式:sin^2x + cos^2x = 1;tanx = sinx/cosx- 三角和差公式:sin(x ± y) = sinx*cosy ± cosx*siny;cos(x ± y) = cosx*cosy - sinx*siny- 三角倍角公式:sin2x = 2sinxcosx;cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2. 数列与数列求和公式:- 等差数列通项公式:an = a1 + (n-1)d;等差数列前n项和公式:Sn = n/2(a1 + an) = n/2(2a1 + (n-1)d)- 等比数列通项公式:an = a1 * r^(n-1);等比数列前n项和公式:Sn = (a1(1-r^n))/(1-r)3. 平面几何相关公式:- 点到直线的距离公式:d = | Ax0 + By0 + C | / √(A^2 + B^2)- 两点间距离公式:d = √[(x2 - x1)^2 + (y2 - y1)^2]- 矩形面积公式:S = a * b- 三角形面积公式:S = 1/2 * a * b * sinγ以上只是数学知识点的一部分,针对不同的题目和问题,可能还需要运用其他公式和方法进行解题。

高中数学排列组合与二项式定理知识点总结

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点

排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合二项式定理知识点
2、排列、组合
3、二项式定理
内容典型题
定义①二项式定理:
(a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n
=∑
=
n
r
r
n
C
a n-r
b r(n∈N+)
②二项式展开式第r+1项通项公式:
T
r-1
=C r n a n-r b r
其中C r n(r=0,1,2,…,n)叫做二项式系数.
8.二项式8)1
(-
x的展开式中的第5项是( )
A. 70x4
B. 70x2
C. 56x3
D. -562
3
x
9.二项式(x-2)12展开式中第3项的系数是( )
A.264
B.-264
C.66
D.-1760
10.(x-2)8 的展开式中, x6的系数是( )
A. 56
B. -56
C. 28
D. 224
11.(x2+)5展开式中的10x是( )
A.第2项
B.第3项
C.第4项
D.第5项
12.二项式x-1
x
6
的展开式中常数项是( )
A. 1
B. 6
C. 15
D. 20
13.设(3-x)n=n
n
x
a
x
a
x
a
a+⋅⋅⋅+
+
+2
2
1
,已知
n
a
a
a
a+⋅⋅⋅+
+
+
2
1
=64,则n=.
14.设二项式(3x+5)10=
1
8
8
9
9
10
10
a
x
a
x
a
x
a
x
a+
+⋅⋅⋅+
+
+,则
1
8
9
10
a
a
a
a
a+
-⋅⋅⋅-
+
-=.
15.二项式2x-1
x
6
的展开式中二项式系数最大的项是.
性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.
②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大.
③二项式系数的和为n2,即
n
C+1
n
C+…+r
n
C+…+n
n
C=n2
④奇数项的二项式系数的和等于偶数项的二项式系数的和,即
n
C+2
n
C+…=1
n
C+3
n
C+…=1
2-n。

相关文档
最新文档