四川省成都市八年级上学期数学期末考试试卷
(北师大版)四川省成都市高新区八年级数学上册期末试卷及答案
(2)当 P 在 A 左侧时,AP=2OA=3,P( 9 ,0 )(6 分) 2
∴ S BOP
27 4
(7 分)
3 当 P 在 A 右侧时,AP=20A=3,P( ,0 ) (9 分)
2
∴ S BOP
9 4
(10 分)
20. (本小题满分 10 分)
解答:(1)因为 △ABD 是等边三角形,E 是 AB 中点
21. 如图,∠AOE=∠BOE=22.5°,EF∥OB,EC⊥OB,若 EC=1,则 EF=
.
22. 点 P(3, a )、Q( 7 , b )在一次例函数 y 1 x c 的图象上,则 a与b 的大小关系 3
是
.
23.实数 a、b、c 在数轴上的位置如图所示,化简下列代数式的值
a 2 (c a b)2 b c 3 b3 =
时内(含 3 小时)的同学共有多少人?
19. (本小题满分 10 分)
如图,直线 y 2x 3 与 x 轴相交于点 A,与 y 轴相交于点 B.
⑴ 求 A、B 两点的坐标; 来源:/tiku/
⑵ 过 B 点作直线 BP 与 x 轴相交于 P,且使 AP=2OA, 求 ΔBOP 的面积.
4544 2 2 2 2
(3 分)
59 2 2
(6 分)
x 1 y 2 (2)解方程: 2
2x y 0
①×2 得:2x-y=-4 ③ ③+②得:4x=-4 ∴x=-1 把 x=-1 代入②得,y=2
(1 分) (3 分)
(5 分)
x 1
∴原方程组的解为
y
2
(6 分)
16.(本小题满分 7 分)
(友情提醒:在解题过程中可以直接运用以下结论:在直角三角形中,300 的角所对的直角边 的长等于斜边长的一半)
四川省成都市青羊区成都市石室联合中学2022-2023学年八年级上学期期末数学试题
四川省成都市青羊区成都市石室联合中学2022-2023学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .B .C .D .二、填空题三、计算题13.计算:(1)()11231622+-+(2)()0322023π-+++14.计算题:(1)解方程组:324x y x y -=⎧⎨+=⎩(2)解不等式组4125102(23)3(1)12x x x x -≥-⎧⎨--+≥-⎩(并把解集在数轴上表示出来).四、问答题15.如图,在四边形ABCD 中,∠B =90°,AB =20,BC =15,CD =7,DA =24,求此四边形ABCD 的面积.五、作图题16.如图,在平面直角坐标系中,()0,1A ,()3,2B ,()2,3C .(1)在图中作出ABC 关于x 轴对称的111A B C △;(2)在图中作出ABC 绕点O 逆时针旋转90︒的图形222A B C △,并写出2B 的坐标;(3)求ABC 的面积.六、应用题17.习近平总书记指出,“红色是中国共产党、中华人民共和国最鲜亮的底色”,要用好红色资源,赓续红色血脉,为引导广大青少年相立正确的世界观、人生观、价值观,但承红色基因,某校组织了一次以“赓续红色血脉·强国复兴有我”为主题的演讲比赛,比赛成绩分为以下5个等级:A .100分、B .90分、C .80分、D .70分、E .60分,比赛结束后随机抽取部分参赛选手的成绩,整理并绘制成如下统计图,请你根据统计图解答下列问题:(1)所抽取学生比赛成绩的众数是______分,中位数是______分;(2)求所抽取学生比赛成绩的平均数;(3)若参加此次比赛的学生共100名,且学校计划为比赛成绩进入A、B两个等级的学生购买奖品,请估计学校共需要准备多少份奖品?七、问答题(1)点C的坐标为______;八、填空题22.如图,在直角坐标系中,直线y =-B 分别在y 、x 轴上,且30B ∠=︒,AB =与直线MN 平行时点A 的坐标为23.如图,在平面直角坐标系中,1A B V 角三角形,且123C C C ∠==∠=∠∠⋯=123n B B B B ⋯,,,,分别在正比例函数y =的横坐标分别为1,2,3,…,n ,线段图中所反映的规律,n n n A B C 的顶点n C九、问答题24.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;(3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,要使(2)中所有方案获利相同,则m 的值应为多少?25.如图:已知()2,0A ,直线BC 解析式为33y x =+与x 、y 轴交于C ,B 两点.(1)求直线AB 的解析式;(2)如图1,点E 在线段BC 上,D 在线段CB 的延长线上,且CE BD =,M 为线段AB 上一点,当点M ,E ,D 构成以M 为直角顶点的等腰直角三角形时,求点D 的坐标;(3)如图2,以点A 为中心,顺时针旋转OAB 得AHQ ,点O ,B 分别对应点H ,Q ,N 为线段AB 的中点,请直接写出NHQ V 面积的最大值.26.如图,在ABC 中,AB AC =,过点A 作MN BC ∥,点D 在MN 上,作BDP BAC ∠=∠,DP 交AC 延长线于点P .(1)证明:ABD APD ∠=∠;(2)证明:BD DP =;(3)如图2,当120BAC ∠=︒,BD 为ABC ∠角平分线,4AB AC ==,将PD 绕点P 顺时针旋转60︒得线段PQ ,求QAD 面积.。
2022-2023学年四川省成都市武侯区八年级(上)期末数学试卷
2022-2023学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)在﹣,,﹣3.2,,这五个数中,无理数的个数为()A.2B.3C.4D.52.(4分)成都市某一周内每天的最高气温为:6,8,10,10,7,8,8(单位:℃),则这组数据的极差为()A.2B.4C.6D.83.(4分)将直角三角形的三条边长同时扩大3倍,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.无法判断4.(4分)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b<0B.k<0,b<0C.k<0,b>0D.k>0,b>05.(4分)举反例是一种证明假命题的方法,为说明命题“若m>n,则>1”是假命题,所举反例正确的是()A.m=6,n=3B.m=0.2,n=0.1C.m=2,n=1D.m=1,n=﹣16.(4分)射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭全部射完后,两人的成绩如图所示,根据图中信息,估计小明和小华两人中为新手的是()A.小明B.小华C.都为新手D.无法判断7.(4分)已知一次函数y=3x﹣1与y=2x图象的交点是(1,2),则方程组的解为()A.B.C.D.8.(4分)中国象棋历史悠久,战国时期就有关于它的正式记载,观察如图所示的象棋棋盘,我们知道,行“马”的规则是走“日”字对角(图中向上为进,向下为退),如果“帅”的位置记为(5,1),“马2退1”后的位置记为(1,4)(表示第2列的“马”向下走“日”字对角到达第1列的位置),那么“马8进7”后的位置可记为()A.(8,4)B.(7,4)C.(7,3)D.(7,2)二、填空题(本大題共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)计算:()3=.10.(4分)已知,都是方程ax﹣y=b的解,则a=,b=.11.(4分)如图是某灯具的镜面反射示意图,从光源点P处发出的光线PA,PB经弯曲的镜面反射后射出,且满足反射光线AC∥BD,若∠PAC=40°,PA⊥PB于点P,则∠PBD的度数为.12.(4分)若点A(x1,y1),B(x2,y2)在直线y=﹣3x+2上,且满足x1>x2,则y1y2(选填“>”或“<”).13.(4分)如图,在正方形ABCD的外面分别作Rt△ABE和Rt△BEF,其中∠AEB=∠EFB=90°,∠BEF =∠BAE=30°,BF=3,则正方形ABCD的面积是.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:(1+)(3﹣);(2)解方程组:.15.(8分)某校组织广播操比赛,打分项目(每项满分10分)包括以下几项,服装统一、进退场有序、动作规范,其中甲、乙两个班级的各项成绩(单位:分)分别如下:项目服装统一进退场有序动作规范班级甲班1088乙班899(1)填空:根据表中提供的信息,甲、乙两个班级各项成绩的这6个数据的众数是,中位数是;(2)如果将服装统一、进退场有序、动作规范这三项得分依次按30%,30%,40%的比例计算各班的广播操的比赛成绩,试问甲、乙两个班级哪个班的广播操比赛成绩较高?16.(8分)如图,在平面直角坐标系xOy中,点A的坐标为(2,4),点B的坐标为(5,2).(1)请在图中画出点B关于x轴的对称点B′,则点B′的坐标为;(2)在(1)的条件下,连接AB′交x轴于点C,则点C的坐标为;(3)在(2)的条件下,连接OA,BC,求证:OA∥BC.17.(10分)已知一次函数y=﹣x+4的图象分别与x轴,y轴相交于A,B两点.(1)分别求A,B两点的坐标;(2)点C在线段AB上,连接OC,若直线OC将△AOB的面积分成1:3两部分,求点C的坐标.18.(10分)在四边形ABCD中,∠BAD=90°,AB=AD.(1)如图1,若AB=2,BC=,CD=.i)连接BD,试判断△BCD的形状,并说明理由;ii)连接AC,过A作AE⊥AC,交CD的延长线于点E,求△ACE的面积;(2)如图2,若∠BCD=135°,BC=2,四边形ABCD的面积为,求CD的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知x,y满足则这个方程组的解为.20.(4分)估算﹣2.7的结果的整数部分是.21.(4分)如图,在数轴上,点A表示的数是1,点B表示的数是3,在数轴的上方作Rt△ABC,且∠ABC =90°,BC=1,以点A为圆心,AC的长为半径画弧,交数轴于D,E两点(其中点D在A的右侧),现将点D表示的数记为x,点E表示的数记为y,则代数式x2﹣2xy+y2的值为.22.(4分)古希腊几何学家海伦在他的著作《度量》中,给出了计算三角形面积的海伦公式,若一个三角形三边长分别为a、b、c,记p=,三角形的面积为S=.如图,在△ABC中,AC=5,BC=3,过C作CD⊥AC,且满足CD=AC(点D和B居于直线AC的异侧),连接AD,BD,若BD=2,则△ABC的面积为.23.(4分)定义:对于平面直角坐标系xOy中的不在同一条直线上的三点P,M,N,若满足点M绕点P 逆时针旋转90°后恰好与点N重合,则称点N为点M关于点P的“垂等点”.请根据以上定义,完成下列填空:(1)若点M在直线y=3x﹣3上,点P与原点O重合,且点M关于点P的“垂等点”N刚好在坐标轴上,则点N的坐标为;(2)如图,已知点A的坐标为(3,0),点C是y轴上的动点,点B是点A关于点C的“垂等点”,连接OB,AB,则OB+AB的最小值是.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)已知某景点的门票价格如表:购票人数/人1~5051~100100以上每张门票价/元12108某校八年级(一)、(二)两个班共102人去游览该景点,其中(二)班人数多于(一)班人数,且(一)班人数不少于(二)班人数的一半,如果两个班以班为单位各自购票,那么两个班要支付的总费用为1118元.(1)请通过列二元一次方程组的方法,分别求两个班的学生人数;(2)如果两个班合在一起统一购票,试问此时两个班需要支付的总费用将比以班为单位各自购票的方式节约多少呢?25.(10分)在Rt△ABC中,∠ACB=90°,点D为边AC上的动点,连接BD,将△ABD沿直线BD翻折,得到对应的△A′BD.(1)如图1,当AD⊥A′D于点D时,求证:BC=DC;(2)若BC=a,AC=2a.i)如图2,当B,C,A′三点在同一条直线上时,求AD的长(用含a的代数式表示);ii)连接AA′,A′C,当A′C=a时,求的值.26.(12分)如图,在平面直角坐标系xOy中,直线y=﹣x+4分别交x轴,y轴于点A,B,点C在x轴的负半轴上,且OC=OB,点P是线段BC上的动点(点P不与B,C重合),以BP为斜边在直线BC 的右侧作等腰Rt△BPD.(1)求直线BC的函数表达式;=S△ABC时,求点P的坐标;(2)如图1,当S△BPD(3)如图2,连接AP,点E是线段AP的中点,连接DE,OD.试探究∠ODE的大小是否为定值,若是,求出∠ODE的度数;若不是,请说明理由.。
2023-2024学年四川省成都市温江区八年级(上)期末数学试卷及答案解析
2023-2024学年四川省成都市温江区八年级(上)期末数学试卷一、选择题:本大题共8个小题,每小题4分,共32分。
在每小题给出的四个选项中,1.(4分)下列各式:①,②,③,④,⑤中,最简二次根式有()A.1个B.2个C.3个D.4个2.(4分)在平面直角坐标系中,点A的坐标是(﹣2,3),点A关于y轴对称的点A'的坐标()A.(﹣2,﹣3)B.(2,﹣3)C.(3,﹣2)D.(2,3)3.(4分)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是()时间/小时78910人数3764A.8,8B.8,8.5C.9,8.5D.9,94.(4分)一次函数y=kx+b与y=x﹣2的图象如图所示,则关于x,y的方程组的解是()A.B.C.D.5.(4分)如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E,若∠A=23°,则∠CED =()A.57°B.63°C.67°D.73°6.(4分)如图,已知圆柱底面的周长为6m,圆柱高为3m,BC为底面圆的直径,一只蚂蚁在圆柱的表面上从点A爬到点C的最短距离为()m.A.B.C.D.7.(4分)《九章算术》是中国古代第一部数学专著,在其方程章中有一道题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.甲、乙持钱几何?”.题意大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50.如果乙得到甲所有钱的,那么乙也共有钱50.甲、乙两人各带了多少钱?若设甲带钱为x,乙带钱为y,则可列方程组()A.B.C.D.8.(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是()A.B.C.D.二、填空题:本大题共5个小题,每小题4分,共20分。
9.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的边长为.10.(4分)果农小明随机从甲、乙、丙三个品种的枇杷树中各选20棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.甲乙丙404039s2 2.3 2.7 2.311.(4分)如图,BD和CD是△ABC的角平分线,∠BDC=120°,则∠A=.12.(4分)在平面直角坐标系中,点O为坐标原点,点A(3,4),点B(0,5),直线y =kx+5恰好将△OAB平均分成面积相等的两部分,则k的值是.13.(4分)如图,在直角坐标系中,长方形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(﹣2,4),将矩形沿对角线AC翻折,B点落在D点的位置,那么点D的坐标为.三、解答题:本大题共5个小题,共48分。
四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)
八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A关于原点对称的点在第三象限,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()A. B.C. D.4.下列各组数中,是勾股数的是()A.5,6,7B.3,4,5C.1,2,D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差B.众数C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是()A. B.C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:3_________.(填“>”“<”或“=”)10.若有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A 的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A:90~100分;B:80~89分;C:70~79分;D:60~69分;E:59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD,分别以AB,CD为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF,猜想线段EF与线段BC之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M,N的坐标分别为(2,0),(0,6),在x轴的负半轴上有一点A,且满足,连接MN,AN.(1)求直线AN的函数表达式.(2)将线段MN沿y轴方向平移至,连接,'.①当线段MN向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x,y的二元一次方程组为则的值为_________.20.已知x,y是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC,AB为直角边在外作等腰直角和等腰直角,且,连接DE.若,,则的面积为__________.23.如图,AE和AD分别为的角平分线和高线,已知,且,,则AC的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B20支/盒180元/盒已知该公司共有员工5000人,花费42500元.(1)该公司采购了抗原试剂盒A和抗原试剂盒B各多少盒?(2)若抗原试剂盒B在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A有m盒,采购费用为W元,请写出W关于m的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A,D,E三点在同一条直线上.(1)当与在如图1所示位置时,连接CE,求证:;(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE,若BE平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x轴于点A,交y轴于点B,点在直线上,直线经过点C和点.(1)求直线的函数表达式;(2)Q是直线上一动点,若,求点Q的坐标;(3)在x轴上有一动点E,连接CE,将沿直线CE翻折后,点D的对应点恰好落在直线上,请求出点E的坐标.八年级上期期末数学测试卷(天府卷)A卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10.11.12.13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B关于x轴对称,∴.∵,轴,∴点P的纵坐标为1,∴,∴,∴,∴点的坐标为.16.解:(1)100(2)C等级的学生为100×20%=20(名).故B等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD是正方形,∴.在和中,∴,∴.在正方形ABCD中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD是正方形,∴,∴.18.解:(1)∵,∴.∵,∴.又∵点A在x轴的负半轴上,∴.设直线AN的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y轴相交于点C,则.∴.②设将线段MN沿y轴方向平移m个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.B卷19.7解:①+②,得.20.1解:由题意知,,,∴且,∴,∴,∴,∴.21.解:由题意知,五个边长为1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为5,∴拼成的大正方形的边长为.22.30解:如图,过点D作AB的垂线交BA的延长线于点H,交DE于点F,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.解:如图,在AD上截取AG,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD是的高线,,易得,即,∴.联立解得∴,∴,,∴.在中,.设点E到直线AB的距离为h,则,∴.∵AE是的角平分线,∴点E到直线AC的距离为.设,则.∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x盒,抗原试剂盒B y盒.由题意,得,解得故该公司采购了抗原试剂盒A100盒,抗原试剂盒B125盒.(2)由题意,得.即W关于m的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC与AE相交于点O,则,∴在和中,.(2)解:.理由如下:如图1,过点C作于点F.∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C作交AE的延长线于点F.∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴,∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q在线段DC的延长线上时,∵,∴,∴,∴.②当点Q在线段DC上时,在y轴上取一点M,使得,则.∵,∴点Q在直线AM上.设,则.在中,,∴,解得.∴.由,,可得直线AM的函数表达式为.联立解得∴.综上所述,点的坐标为或.(3)①当点E在点A的左侧时,如图2所示.∵,,,∴,,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE于点F,构造,使,可得.设直线CF的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E在点A的右侧时,如图3所示.同理可得:.以为直角边作等腰直角,交直线CE于点F,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.。
四川省成都市新都区2023-2024学年八年级上学期期末考试数学试题
四川省成都市新都区2023-2024学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________A .()3052535x y x y =+⎧⎨+=-⎩B .()3052535x y x y =-⎧⎨+=+⎩C .()302535x y x y =⎧⎨+=+⎩D .()3052535x y x y =-⎧⎨+=-⎩二、填空题三、解答题(1)画出ABC V 关于x 轴对称的图形A B C '''V ,并写出顶点B '的坐标;(2)在y 轴上求作一点P ,使PC PB +的值最小,并求出最小值.16.杨升庵,四川新都人,明代文学家、学者、官员,他的著作数量之繁多,范围之广博,内容之丰富,在整个中国文化史上都鲜有人比肩,堪称是一位百科全书式的学者.某校开展了“弘扬升庵精神,学习传统文化”读书活动,为了解学生课外阅读中国古代文学作品情况,随机调查了50名同学平均每周课外阅读用时,如图是根据调查所得的数据绘制的统计图的一部分,请根据以上信息,解答下列问题(1)补全条形统计图;(2)在这次调查的数据中,平均每周课外阅读所用时间的众数是小时,中位数是小时;(3)若该校共有1600名学生,根据以上调查结果估计该校全体学生平均每周课外古诗词阅读用时不低于3小时的同学共有多少人?17.如图,已知CF AE ⊥,AB AE ⊥,180ABC DFC ∠+∠=︒(1)求证∶DF BC ∥;(2)若CF 平分BCE ∠,3EF CD == ,求CF 的长度18.如图,直线3y kx =+经过点()1,4B -和点()5,A m ,与x 轴交于点C(1)求k ,m 的值;(2)求AOB V 的面积;(3)若点P 在x 轴上,当PBC V 为等腰三角形时,直接写出此时点P 的坐标四、填空题23.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()4,1A -,()0,5B ,()0,1C ,点D 与点A 关于y 轴对称,连接BD ,在边AB 上取一点E ,在BD 的延长线上取一点F ,并且满足AE DF =,连接EF 交边AD 于点G ,过点G 作EF 的垂线交y 轴于点H ,则点H 的坐标为五、解答题24.“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售;据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元(1)求A ,B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划购进以上两种型号的新能源汽车(两种型号的汽车均购买)共20辆,且A (型汽车不超过6辆,根据市场调查,销售1辆A 型汽车可获利0.8万元,销售1辆B 型汽车可获利0.5万元,请问怎么安排采购方案获利最大?25.如图,在平面直角坐标系中,直线l 与x 轴交于点()4,0A -,与y 轴交于点()0,2B ,已如点()2,0C -.(1)求直线l 的表达式;(2)点P 是直线l 上一动点,且BOP △和COP V 的面积相等,求点P 坐标;(3)在平面内是否存在点Q ,使得ABQ V 是以AB 为底的等腰直角三角形?若存在,请求出所有符合条件的点Q 的坐标;若不存在,请说明理由. 26.在ABC V 中,,90AB BC ABC =∠=o ,点D 是边AC 上一点,连接DB ,过点C 作直线BD 的垂线,垂足为点E(1)如图1,若AF BD ⊥于点F ,求证:CE BF =;(2)如图2,在线段EC 上截取EG EB =,连接AG 交BD 于点H ,求证:2CG EH =;(3)如图3,若点D 为AC 的中点,点M 是线段BC 延长线上的一点,连接DM ,求CM ,BM ,DM 的数量关系。
四川省成都市金牛区八年级(上)期末数学试卷
四川省成都市金牛区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)4的平方根是()A.±2B.﹣2C.2D.162.(3分)实数π,,﹣3.,,中,无理数有()个.A.1B.2C.3D.43.(3分)要使式子有意义,则x的取值范围是()A.x>2B.x>﹣2C.x≥2D.x≥﹣24.(3分)下列各组数中不能作为直角三角形三边长的是()A.,,B.7,24,25C.6,8,10D.1,2,35.(3分)如图所示,点A(﹣1,m),B(3,n)在一次函数y=kx+b的图象上,则()A.m=n B.m>nC.m<n D.m、n的大小关系不确定6.(3分)下列命题为真命题的是()A.若a2=b2,则a=bB.等角的余角相等C.同旁内角相等,两直线平行D.=,S A2>S B2,则A组数据更稳定7.(3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,308.(3分)如图所示,直线y=kx+b(k≠0)与x轴交于点(﹣5,0),则关于x的方程kx+b =0的解为x=()A.﹣5B.﹣4C.0D.19.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.10.(3分)园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.65平方米D.80平方米二、填空题(每小题4分,共16分)11.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2017的值是.12.(4分)在平面直角坐标系内,一个点的坐标为(2,﹣3),则它关于x轴对称的点的坐标是.13.(4分)如图,已知一次函数y1=k1x+b1和y2=k2x+b2的图象交于点P(2,4),则关于x的方程k1x+b1=k2x+b2的解是.14.(4分)如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=.三、解答题(本大题共6个小题,共54分)15.(10分)计算下列各题(1)+|1﹣|+()﹣1﹣20170(2)×﹣(﹣1)2.16.(12分)解方程(不等式)组(1)解方程组:(2)解不等式组:,并把解集在数轴上表示出来.17.(6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB的度数.18.(8分)某校为了进一步改进本校八年级数学教学,提高学生学习数学的兴趣,校教务处在八年级所有班级中,每班随机抽取了部分学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢“、“B﹣比较喜欢“、“C﹣不太喜欢“、“D﹣很不喜欢“,针对这个题目,问卷时要求被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校八年级共有1000名学生,请你估计该年级学生对数学学习“不太喜欢”的有多少人?19.(8分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用A型车6辆,B型车8辆,一次运完,且恰好每辆车都满载货物,请求出该物流公司有多少吨货物要运输?20.(10分)在平面直角坐标系xOy中,一次函数的图象经过点A(4,1)与点B(0,5).(1)求一次函数的表达式;(2)若P点为此一次函数图象上一点,且S△POB=S△AOB,求P点的坐标.一、填空题(每小题4分,共20分)21.(4分)已知0≤x≤3,化简=.22.(4分)如图,圆柱体的高为12cm,底面周长为10cm,圆柱下底面A点除有一只蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm.23.(4分)如图,直线y=﹣x+m与y=nx+5n(n≠0)的交点横坐标为﹣3,则关于的不等式﹣x+m>nx+5n>0的整数解是.24.(4分)如图,点P的坐标为(2,0),点B在直线y=x+m上运动,当线段PB最短时,PB的长度是.25.(4分)如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC ≌△ADP时,则C点的坐标是,Q点的坐标是.二、解答题26.(8分)春天来了,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)直接写出小明开始骑车的0.5小时内所对应的函数解析式.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早12分钟到达乙地,求从家到乙地的路程.27.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连结EF,试猜想EF、BE、DF之间的数量关系.(1)思路梳理把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即点F、D、G共线,易证△AFG≌,故EF、BE、DF之间的数量关系为.(2)类比引申如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°,连结EF,试猜想EF、BE、DF之间的数量关系为,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠BAD+∠EAC =45°,若BD=3,EC=6,求DE的长.28.(12分)如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).四川省成都市金牛区八年级(上)期末数学试卷参考答案一、选择题(每小题3分,共30分)1.A;2.B;3.C;4.D;5.C;6.B;7.C;8.A;9.C;10.A;二、填空题(每小题4分,共16分)11.1;12.(2,3);13.x=2;14.20°;三、解答题(本大题共6个小题,共54分)15.;16.;17.;18.比较喜欢;19.;20.;一、填空题(每小题4分,共20分)21.2x﹣3;22.13;23.﹣4;24.+m;25.(0,4+2);(2+2,2+2);二、解答题26.y=20x;27.△AFE;EF=DF+BE;EF=DF﹣BE;28.;。
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。
四川省成都市2021-2022学年八年级上学期期末数学试题
2021~2022学年度上期八年级期末质量检测数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效. 3.考试结束后由监考老师将答题卡收回.A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.11 )A .11B .11C 11D .11-2.在平面直角坐标系中,下列各点位于第四象限的是( ) A .(2,3) B .(2,3)- C .(2,3)- D .(2,3)-- 3.下列几组数,能作为直角三角形的三边长的是( ) A .6,8,9 B .6,8,10 C .6,8,11 D .6,8,124.在平面直角坐标系中,点(1,2)M 关于x 轴对称的点的坐标是( ) A .(1,2)-- B .(1,2) C .(2)- D .2) 5.下列等式成立的是( ) A 325= B 326=C 3322÷=D 321= 6.金沙遗址陈列馆有5个展厅,分别是第一展厅:远古家园;第二展厅:王都剪影:第三展厅:天地不绝:第四展厅:千载遗珍;第五展厅:解读金沙.某班同学分小组到以上五个展厅进行研学活动,人数分别为:9,11,8,11,10(单位:人),这组数据的众数和中位数分别是( ) A .11人,10人 B .11人,8人 C .11人,9人 D .9人,8人 7.已知一次函数y kx b =+的图象如图示,则k ,b 的取值范围是( )A .0,0k b <>B .0,0k b <<C .0,0k b >>D .0,0k b ><8.如图,直线AB CD ∥,点E 在AC 上,若130,20A D ∠=∠=︒︒,则AED ∠=( )A .70︒B .75︒C .80︒D .85︒ 9.若关于x ,y 的方程组72ax y x by +=⎧⎨+=-⎩的解为3,1.x y =⎧⎨=⎩则a ,b 的值分别是( )A .2,5a b ==B .2,5a b =-=C .2,5a b ==-D .2,5a b =-=- 10.关于一次函数21y x =-+,下列说法不正确...的是( ) A .图象与y 轴的交点坐标为()0,1 B .图象与x 轴的交点坐标为1,02⎛⎫ ⎪⎝⎭C .y 随x 的增大而增大D .图象不经过第三象限第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11100=__________.12.直角三角形的一个锐角为35︒,则另一锐角为__________︒.13.已知直线y ax b =+和直线12y x =交于点(2,1)P --,则关于x ,y 的二元一次方程组102ax b yy x +=⎧⎪⎨-=⎪⎩的解是__________.14.《九章算术》是我国古代一部著名的数学专著,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少3元.问有多少人?该物品价值多少元?设有x 人,物品价值y 元,则可列方程组为__________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:101(2021)|31|122π-⎛⎫-+-+ ⎪⎝⎭(2)计算:232)(32)63+ 16.(本小题满分6分) 解方程组:725,2 3.x y x y -=⎧⎨+=⎩17.(本小题满分8分)如图,AE BC ∥,且,ABD ADB DAE E ∠=∠∠=∠,若63ABC ∠=︒,求DBC ∠的度数.18.(本小题满分8分)为迎接成都2022年第31届世界大学生夏季运动会,某中学开展“‘大运会’知识宣传”活动.为了调查学生对‘大运会’知识的掌握情况,学校随机抽取40名学生进行了相关知识测试,将成绩(成绩取整数)分为“A :69分及以下,B :70~79分,C :80~89分,D :90~100分”四个等级进行统计,得到右边未画完整的统计图:D 组成绩的具体情况是:分数(分) 93 95 97 98 99 人数(人) 23251根据以上图表提供的信息,解答下列问题: (1)请补全条形统计图;(2)D 组成绩的众数是__________分,中位数是__________分; (3)请计算D 组成绩的平均数(精确到0.1). 19.(本小题满分10分)某商场按标价销售某种商品时,每件可获利30元.元旦节期间,为庆祝2022年虎年的到来,商场开展打折销售活动,按标价的八折销售该商品10件与在标价的基础上降低25元销售该商品12件所获利润相等. (1)求该商品进价,标价分别是多少?(2)若此商场共销售该商品200件,其中打八折销售x 件,其余均按标价销售,请写出此商场销售完该商品共获利润W (元)与x 的函数关系式. 20.(本小题满分10分)在平面直角坐标系xOy 中,正比例函数(0)y mx m =≠的图象经过点(2,4)A ,过点A 的直线(0)y kx b k =+>与x 轴、y 轴分别交于B ,C 两点.(1)求正比例函数的表达式;(2)若AOB 的面积为BOC 的面积的43倍,求直线y kx b =+的表达式; (3)在(2)的条件下,若一条平行于OA 的直线DE 与直线BC 在第二象限内相交于点D ,与y 轴相交于点E ,连接OD ,当OC 平分AOD ∠时,求点D 的坐标.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)2150≈__________.(结果精确到1)22.若点(,)m n 在函数34y x =-的图象上,则62m n -的值是__________.23.对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知327,5316*=*=,那么11*=__________.24.如图,在Rt ABC 中,90,5,10B AB BC ∠==︒=,以AC 为斜边作等腰Rt ACD ,连接BD ,则BD 的长为__________.25.如图六边形ABCDEF 是正六边形,曲线123456FA A A A A A 叫做正六边形的渐开线,满足1AA AF =,21BA BA =,32CA CA =,43DA DA =;点B 、点A 与点1A 共线,点C 、点B 与点2A 共线,点D 、点C 与点3A 共线…,当点A 坐标为(1,0),点B 坐标为(0,0)时,点2021A 的坐标是___________.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(本小题满分8分)2020年是我国决胜脱贫攻坚的收官之年.在这个关键阶段,某网络电商企业响应中央号召,开展消费扶贫行动,利用互联网拓宽销售渠道,解决农产品“卖难”问题.该网络电商企业从一水果种植专业户处购进甲,乙两种水果进行销售.专业户为了感谢电商企业的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按16元/千克的价格出售.设经销商购进甲种水果x 千克,付款y 元,y 与x 之间的函数关系如图所示.(1)请写出当060x ≤≤和60x >时,y 与x 之间的函数关系式;(2)若电商企业计划一次性购进甲,乙两种水果共150千克,且甲种水果不少于50千克,但又不超过70千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W (元)最少? 27.(本小题满分10分)如图1,在ABC 中,已知AD 是BC 边上的高,过点B 作BE AC ⊥于点E ,交AD 于点F ,且65,25,35AD BD CD ===(1)求BE 的长; (2)求证:AF BC =;(3)如图2,在(2)的条件下,在ED 的延长线上取一点G ,使BG BE =,请猜想DG 与DE 的数量关系,并说明理由.28.(本小题满分12分)如图1,在平面直角坐标系xOy 中,直线:4l y x =+交x 轴于点C ,交y 轴于点D ,,(2,3)AB CD A ∥,点P 是直线l 上一动点,连接,AP BP .(1)求直线AB 的表达式; (2)求2AP +的最小值; (3)如图2,将三角形ABP 沿BP 翻折得到A BP ',当点A '落在坐标轴上时,请直接写出直线BP 的表达式.2021~2022学年度上期八年级期末质量检测数学参考答案及评分标准A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CBBDBADACC第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.10; 12.55 13.21x y =-⎧⎨=-⎩; 14.8373x y x y -=⎧⎨+=⎩.三、解答题(本大题共6个小题,共54分)15.(本题满分12分,每小题6分)解:(1)原式131223=+-+ 4分332= 6分(2)原式324=-+ 3分322=-+ 4分3= 6分16.(6分)725,2 3.x y x y -=+=⎧⎨⎩①②解:①+②得1x = 3分把1x =代入②得123y +=1y = 5分∴原方程组的解为1,1.x y =⎧⎨=⎩ 6分(用其它方法解对仍得满分) 17.(8分)证明:∵AE BC ∥,∴DBC E ∠=∠. 1分 ∵ADB EAD E ∠=∠+∠,DAE E ∠=∠, ∴2ADB E E E ∠=∠+∠=∠. 3分 ∵ABD ADB ∠=∠,∴2ABD ADB E ∠=∠=∠. 4分 ∵ABC ABD DBC ∠=∠+∠,∴23ABC E DBC DBC ∠=∠+∠=∠. 6分 又∵63ABC ∠=︒, ∴1213DBC ABC ∠=∠=︒. 8分 18.(8分)解:(1)补全条形统计图如图所示. 1分(2)98,97; 5分(每空2分) (3)D 组成绩的平均数9329539729859913⨯+⨯+⨯+⨯+=6分965≈.(分) 8分19.(10分)解:(1)设该商品进价是x 元,标价是y 元, 1分 根据题意得:30,10(0.8)12(3025).y x y x -=⎧⎨-=-⎩ 4分解得:90,120.x y =⎧⎨=⎩6分答:该商品进价是90元,标价是120元. 7分 (用其它方法解对仍得满分)(2)30(200)(1200.890)W x x =-+⨯-, 9分246000(0200)W x x =-+≤≤. 10分(注:没写自变量取值范围不扣分) 20.(10分)解:(1)把点(2,4)A 代入函数y mx =, 得:42m =, 1分 解得2m =, 2分∴正比例函数的表达式为2y x =. 3分(2)如图1,∵AOB 的面积为BOC 的面积的43倍, ∴141||||||232A OB y OB OC ⋅=⨯⋅, ∴44||3OC =,解得3OC =或3-, 5分 ∴点(0,3)C 或(0,3)C -;把(0,3),(2,4)C A 分别代入(0)y kx b k =+≠得:324b k b =⎧⎨+=⎩,解得:123k b ⎧=⎪⎨⎪=⎩.∴132y x =+. 6分 同理:732y x =-. 7分 综上,直线y kx b =+的函数表达式为132y x =+或732y x =-. (3)如图2,设平行于OA 的直线DE 的关系式为2y x n =+.∵AO DE ∥,∴DEO AOC ∠=∠, ∵OC 平分AOD ∠, ∴DOC AOC ∠=∠, ∴DEO DOC ∠=∠. 过点D 作DF y ⊥轴于F , ∴90DFO DFE ∠=∠=︒, ∵DFDF =,∴()DFE DFO AAS ≌. ∴EF OF =. 8分 设(0,)F a ,则(0,2)E a ,由题点D 是直线CD 与直线132y x =+的交点, ∴(26,)D a a -,把(0,2),(26,)E a D a a -分别代入2y x n =+得:22(26)a n a a n=⎧⎨=-+⎩,解得:125a =, 9分 ∴612,55D ⎛⎫- ⎪⎝⎭. 10分 B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.7; 22.8; 23.2-;2415252;(注:答对一个给2分,答错不给分) 25.2019202332⎛- ⎝⎭.二、解答题(本大题共3个小题,共30分)26.(8分)解:(1)当060x ≤≤时,设y kx =,根据题意得601200k =,解得20k =;∴20y x =; 1分当60x >时,设1y k x b =+,根据题意得,11601200,901650.k b k b +=⎧⎨+=⎩解得115,300.k b=⎧⎨=⎩∴15300y x =+. 2分∴20(060),15300(60).x x y x x ≤≤⎧=⎨+>⎩ 3分(注:只写出第一个函数关系式得1分,只写出第二个函数关系式得2分)(2)设购进甲种水果a 千克,则购进乙种水果(150)a -千克,∴5070a ≤≤,当5070a ≤≤时,12016(150)42400W a a a =+-=+.当50a =时.min 2600W =元, 5分当6070a <≤时,21530016(150)2700W a a a =++-=-+.当70a =时,min?2630W =元, 7分∵26302600>,∴当50a =时,总费用最少,最少总费用为2600元.此时乙种水果15050100-=(千克).答:当购进甲种水果50千克,乙种水果100千克时,经销商付款总金额W 最少.8分27.(10分)解:(1)如图1,∵AD 是BC 边上的高,∴90ADC ∠=︒, ∴2222(65)(35)15AC AD CD =+=+=. 1分 ∵25BD =35CD = ∴253555BC BD CD =+==. ∵1122ABC S BC AD AC BE =⋅=⋅. ∴BC AD AC BE ⋅=⋅. 2分 ∴556515BE =.∴10BE =. 3分(2)如图1,∵BE AC ⊥于点E ,∴90BEC BEA ∠=∠=︒, ∴2222(55)(10)5CE BC BE =-=+=. 4分∴10AE AC CE =-=.由(1)10BE =,∴AE BE =, 5分∵9090ADC AEF BEC ∠=︒∠=∠=︒.∴90DAC C ∠+∠=︒,90EBC C ∠+∠=︒.∴DAC EBC ∠=∠.∴()AEF BEC ASA ≌.∴AF BC =. 6分(3)2DG DE =,理由:如图2,过点E 作EI BC ⊥于点I ,过点G 作GH CB ⊥延长线于H .在Rt BEC 中,∵BC EI BE EC ⋅=⋅, ∴55105EI =⨯,得25EI =.在Rt ECI 中, 由勾股定理得22225(25)5CI EC EI =-=-= ∴35525DI ==∴DI EI =,即DIE 是等腰Rt . ∴2210DE DI ==45EDC IED ∠=∠=︒, 8分 ∴45HDG EDC ∠=∠=︒,∴DHG 是等腰Rt . ∴2DG GH =.∵BG BE =,∴BGD BED ∠=∠.∵45HBG DGB BDG DGB ∠=∠+∠=∠+︒,45BEI BED DEI BED ∠=∠+∠=∠+︒,∴HBG BEI ∠=∠.∵GH CB ⊥,∴90BHG BIE ∠=∠=︒,∴()BGH EBI AAS ≌.∴GH BI =.∵BI BD DI =+,45GH BI ==, ∴2410DG GH ==,∴2DG DE =. 10分 28.(12分)解:(1)∵AB CD ∥,设AB 的表达式为y x b =+, 1分把()2,3A 分别代入y x b =+得:23b +=,解得:1b =, 2分∴AB 的表达式为1y x =+. 3分(2)如图1,过点C 作CF x ⊥轴,过点A 作AF CF ⊥于F ,PE CF ⊥于E . 4分∵4y x =+交x 轴于点C ,交y 轴于点D ,∴(0,4)D ,(4,0)C -.∴4DO CO ==.∴45DCO ∠=︒.∵CF x ⊥轴,∴45DCF ∠=︒.∵PE CF ⊥,∴EPC 是等腰Rt ,由勾股定理得22EP PC =.6分 ∴22AP AP EP +=+.由垂线段最短可得:AP PE AF +=时最小.∵,AF CF CF x ⊥⊥轴,∴AF x ∥轴.∵(2,3)A ,(4,0)C -,∴2(4)6AF ∴=--=. ∴2AP +的最小值是6. 8分(3)直线BP 的表达式为:21)21y x =-+--或21)21y x =+ 或173173y x ++=+或317317y x --=+(全部写对得4分,每写对1个得1分)12分。
四川省成都市天府新区2023-2024学年八年级上学期期末考试数学试卷(含答案)
2023–2024学年上期八年级数学A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列实数中,属于无理数的是()A.0B.C.D.2.下列各组数中,不能构成直角三角形三边的是()A.7,24,25B.9,12,15C.1,,3D.0.3,0.4,0.53.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为,黑棋(乙)的坐标为,则白棋(甲)的坐标为()A.B.C.D.4.下列运算,结果正确的是()A.B.C.D.5.如图,在下列给出的条件中,不能判定的是()A.B.C.D.6.下列命题是真命题的是()A.两个锐角之和一定是钝角B.各边对应相等的两个多边形一定全等C.D.实数和数轴上的点是一一对应的7.如图所示,一圆柱高8cm,底面半径为2cm,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是(π取3)()A.6cm B.10cm C.D.8.关于一次函数,下列结论错误的是()A.y的值随x值的增大而减小B.图象过定点C.函数图象经过第二、三、四象限D.当时,第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.若,则x=______.10.一个正比例函数的图象经过点,,则a的值为______.11.如图,阴影部分的直角三角形面积为______.12.如图,,,EF平分∠BEC,,则∠DEG的度数为______.13.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y 辆车,可列方程组为______.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图是一个8×8的正方形网格.(1)在此正方形网格中建立平面直角坐标系,使点A的坐标为,点B的坐标为(2)将点A向下平移5个单位,再关于y轴对称得到点C,求点C坐标;(3)画出,并求其面积.16.(本小题满分8分)为丰富市民假日休闲活动体验,以全民运动方式欢度国庆,2023年中秋和国庆期间,在天府新区兴隆湖畔,拉开了一场持续8天的“万千气象·公园城市生活节”,其中包含了城市路跑赛、水上潮运会、营地生活节、湖畔音乐节、国潮市集等多项主题活动,展现了公园城市美好生活场景.为了解现场游客的游玩时间,随机抽取部分游客进行调查,并将调查结果绘制成如下两幅不完整的统计图.(1)本次调查被抽查的总人数为______人,并补全条形统计图.(2)本次活动游客游玩时间的中位数是______,众数是______.(3)若国庆节当天有4000名市民参与活动,请估计游玩时间在4小时及以上的市民共有多少人?17.(本小题满分10分)如图,在平面直角坐标系xOy中,直线:与x轴,y轴分别交于A,B两点,与直线:交于点C.(1)求点A,B,C的坐标;(2)设点D在线段OC上,过点D作轴交直线于点E,过点D作轴于点F,过点E作轴于点G.若四边形DEGF为正方形,求点D的坐标.18.(本小题满分10分)在中,,过点B作交直线AC于D,延长BD至E,使,连接AE,CE.(1)如图1,若,求∠CAE的度数;(2)若,试探究∠CAE与∠CBD的数量关系并说明理由;(3)如图2,若,,求的面积.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.若,则的算术平方根是______.20.方程组的解为,则被遮盖的■表示的数为______.21.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知大正方形的边长为,小正方形的边长为1,连接四条线段得到如图2新的图案,则阴影部分的面积为______.22.定义:若实数a,b满足(k为常数),则称点为“k倍幸福点”,如点为“3倍幸福点”.在平面直角坐标系xOy中,点,点B为直线l:上两点,其中点B为“k倍幸福点”,且的面积为,则k的值为______.23.如图,在中,,BC=3,AC=4,E为线段BC上一动点(点E不与B,C重合),F为线段AC上一动点(点F不与A,C重合),且始终满足,则的最小值为______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(本小题满分8分)2014年10月,四川天府新区正式获批成为第11个国家级新区.近十年来,天府新区全面践行新发展理念,努力推进公园城市先行区建设.为庆祝四川天府新区获批国家级新区10周年,甲、乙两个服装厂特推出以“奋楫扬帆启新程·喜迎新区十周年”为主题的文化衫,设甲服装厂的销售总费用为(元),乙服装厂的销售总费用为(元),销售量为x(件),,与x的函数关系式如图所示:(1)请分别求出,与x的函数关系式.(2)若当甲、乙服装厂的销售量相同且销售总费用相差150元时,则销售量是多少件?25.(本小题满分10分)在中,,,点D是平面内一点(不与点A,B,C重合),连接BD,CD,,连接AD.将沿直线AD翻折,得到,连接CG.(1)如图1,点D在∠ABC内部,BD交AC于点E,点F是BD上一点,且,连接AF.①求证:;②若,,求点G到直线BC的距离;(2)如图2,点D在∠BAC的内部,试探究BD,AD,CG之间的数量关系并说明理由.26.(本小题满分12分)如图1,在平面直角坐标系xOy中,直线:与直线交于点,直线与x轴,y轴分别交于点B,点C,的面积为.(1)求直线的表达式;(2)如图2,过点作直线分别交直线,于点E,点F,设点E在第三象限.①连接AD,设的面积为,的面积为,若,求点E的坐标;②当的面积最小时,求点E的坐标.2023-2024学年上期八年期末考试数学参考答案A卷一、选择题题号12345678答案C C B D A D B D 二、填空题9.16 10.2 11.15 12.38° 13.三、解答题14.解:(1)原式(2)化简得:①×3+②得:,解得:,把代入①得:,∴原方程组的解为.15.解:(1)如图所示:(2)点A向下平移5个单位得到点,关于y轴对称的点(3)16.解:(1)80,如图(2)3小时,3小时(3)(人)答:游玩时间在4小时及以上的市民共有1600人。
四川省成都市锦江区成都市七中育才学校2023-2024学年八年级上学期期末数学试题
四川省成都市锦江区成都市七中育才学校2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________件物品,每人出9元,多4元;每人出8元,少5元.问有多少人?该物品价值多少元?如果设有x 人,该物品值y 元,那么可列方程组为( )A .9485x y x y +=⎧⎨+=⎩B .9485x y x y -=⎧⎨+=⎩C .9485x y x y +=⎧⎨-=⎩D .9485x y x y -=⎧⎨-=⎩8.关于一次函数6y x =-+,下列结论正确的是( )A .图象不经过第二象限B .图象与x 轴的交点是()0,6C .图象与坐标轴形成的三角形的面积为36D .点()11,x y 和()22,x y 都在该函数图象上,若12x x <,则12y y >二、填空题___________,中位数是___________;(2)如果将服装统一、进退场有序、动作规范这三项得分依次按30%,30%,40%的比例计算各班的广播操的比赛成绩,试问甲、乙两个班级哪个班的广播操比赛成绩较高? 17.如图,点E ,F 分别是平行四边形ABCD 对角线AC 上两点,且AE CF =.(1)求证:四边形BEDF 是平行四边形;(2)若8AC =,6BC =,30ACB ∠=︒,求平行四边形ABCD 的面积.18.(1)已知直线1l :23y x =+和直线2l :y x =-,请在下面的坐标系中作出这两条直线,并直接写出方程组230x y x y -=-⎧⎨+=⎩的解______; (2)直线1l :23y x =+与x 轴,y 轴的交点分别为A ,B ,第一象限内有一点C 的坐标为(),3t t -+,且ABC V 与ABO V 的面积相等,求C 点坐标;(3)在(2)的条件下,若线段AB 与一次函数21y kx k =-+的图像有交点. ①一次函数21y kx k =-+的图像必过某个定点,则该定点的坐标为______; ②一次函数21y kx k =-+中k 的取值范围是______.四、填空题20五、解答题24.七中育才学校数学组组织学生举行“数学计算大赛”,需购买甲、乙两种奖品.若购买甲奖品3个和乙奖品4个,需160元;购买甲奖品4个和乙奖品5个,需205元.(1)甲、乙两种奖品的单价各是多少元?(2)学校计划购买奖品200个,设购买甲奖品a个,购买这200个奖品的总费用为W元.①求W关于a的函数关系式;②若购买甲奖品的数量不少于30个,同时又不超过80个,则该学校购进甲奖品、乙奖品各多少个,才能使总费用最少? 25.在ABC V 中,AB AC =,D 为平面上一点,分别连接DA ,DB ,DC .(1)如图1,当90BAC ∠=︒,点D 在边BC 上时,以AD 为腰在AD 右侧作等腰直角ADE V ,且=90DAE ∠︒,连接CE .求证:BD CE =;(2)如图2,当60BAC ∠=︒,点D 在ABC V 内部时,150ADB ∠=︒,3AD =,4BD =,求CD 的长;(3)如图3,当D 在ABC V 外部,且270BCD BAD ︒∠+∠=,2BD CD =,设BAC x ∠=︒,BDC y ∠=︒,则x y -的值是否发生变化,若不变,试求出这个值;若改变,请说明理由.26.在平面直角坐标系xOy 中,四边形OABC 为正方形,()6,0A ,()0,6C ,D 为线段OC 上一点,1OD =.(1)求直线DB 的函数解析式;(2)在正方形OABC 的边上有一点E ,若EB ED =,求E 点坐标;(3)作点C 关于x 轴的对称点C ',点E 为直线AB 上一动点,在射线BD 上是否存在点F ,使C EF 'V为等腰直角三角形,若存在,请直接写出F 点坐标,若不存在,请说明理由.。
2022-2023学年四川省成都市都江堰市、邛崃市、大邑县八年级(上)期末数学试卷
2022-2023学年四川省成都市都江堰市、邛崃市、大邑县八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,无理数是()A.πB.C.0.6D.5.2121212.(4分)如图,以直角三角形的三边为边向外作正方形,根据图中数据,可得出正方形A的面积是()A.12B.24C.30D.103.(4分)若点A(a,﹣2),B(3,b)关于x轴对称,则a,b的值分别为()A.a=3,b=﹣2B.a=﹣3,b=﹣2C.a=3,b=2D.a=﹣3,b=24.(4分)李强是一名足球爱好者,2022年卡塔尔世界杯期间,他随机统计了20名各国参加世界杯赛人员的年龄,并制成如下统计表,则他们年龄的中位数和众数分别是()年龄(岁)242630343842人数354233A.26,34B.30,26C.38,42D.32,245.(4分)若x,y为实数,且(x﹣1)2与互为相反数,则x2+y2的平方根为()A.B.C.±5D.6.(4分)如图,在△ABC中,BM平分∠ABC,CM平分∠ACB,∠A=72°,则∠M=()A.126°B.54°C.102°D.108°7.(4分)下列命题中,假命题是()A.实数和数轴上的点是一一对应的B.a=3,b=4,c=5是一组勾股数C.有公共顶点且相等的两个角是对顶角D.函数中自变量x的取值范围是x≥28.(4分)在同一坐标系中,函数y=mx与函数y=x﹣m的图象可能是()A.B.C.D.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)有甲、乙两组数据,如果S甲2=3,S乙2=1.2,则组数据更加稳定.10.(4分)一条直的宽纸带如图折叠,若∠1=32°,则∠2=°.11.(4分)如图是人民公园的旅游简图,小颖在旅游简图上建立了平面直角坐标系,并写出音乐台的坐标是(2,4),望春亭的坐标是(0,﹣1),那么牡丹园的坐标是.12.(4分)河滨公园有一块长方形的草坪如图所示,有少数的人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了米,却踩伤了花草!青青绿草地,悠悠关我心,请大家文明出行,足下留“青”!13.(4分)如图,等边△ABC的边长为1,D是BC边上一点,过点D作DG⊥AB于点G,若AG=x,CD =y.则y与x的函数关系式为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:.(2)解方程组:.15.(8分)列方程组解应用题:为了丰富学生的课外体育活动,八年级2班需要购买排球和跳绳.根据下列对话,求出肖雨所购买的排球和跳绳的单价.16.(8分)某商场准备开展元旦促销活动,现采用移动车进行广播宣传.如图,移动广播车P在笔直的公路MN上以200米/分的速度沿PN方向行驶,张丽的家在公路的一侧,到公路的距离AB=300米.假如移动广播车P周围500米以内能听到广播宣传,张丽在家能够听到广播宣传吗?若能,请求出她总共能听到多长时间的广播宣传?若不能,请说明理由.17.(10分)学校坚持“德育为先、智育为重、体育为基、美育为要、劳动为本”的五育并举育人理念,拟开展校级优秀学生评比活动.下表是八年级1班三名同学综合素质考核的得分表:(每项满分10分)姓名行为规范学习成绩体育成绩艺术获奖劳动卫生李铭1010697张晶晶108898王浩97989(1)如果根据五项考核的平均成绩确定推荐1人,那么被推荐的是;(2)你认为表中五项考核成绩中最重要的是;请你设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各项的得分重新计算,比较出大小关系,并从中推荐得分最高的作为校优秀学生的候选人.18.(10分)已知直线l1:y=kx+b平行于直线y=2x,且过点A(﹣2,0).(1)求直线l1的解析式;(2)在下面的坐标系中,画出直线l1和l2:y=﹣x+1的图象,并根据图象直接写出方程的解;(3)若直线l2与x轴的交点为B,直线l1和l2的交点为C,以BC为边作Rt△PBC,在第一象限是否存在点P,使得Rt△PBC的面积为△ABC面积的2倍?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)正整数a,b分别满足,,则a b=.20.(4分)《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣.其中下卷第31题“雉兔同笼”流传尤为广泛,漂洋过海流传到了日本等国.“雉兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何?”设雉(鸡)有x只,兔有y只,则可列方程组为.21.(4分)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形拼接而成的.已知BE:AE=3:1,正方形ABCD的面积为80.连接AC,交BE于点P,交DG于点Q,连接FQ.则图中阴影部分的面积之和为.22.(4分)在平面直角坐标系xOy中,对于A,B两点给出如下定义:若点A到x,y轴的距离中的最大值等于点B到x,y轴的距离中的最大值,则称A,B两点为“等距点”.已知点E(4,4m﹣3),F(﹣1,﹣3﹣m)两点为“等距点”,则m=.23.(4分)如图,平面直角坐标系中,点A,C分别在y轴,x轴的负半轴上,∠ACB=90°,且AC=BC.BC 交y轴于点D、AB交x轴于点E,若AD平分∠BAC,则线段AD,OC,OD之间的数量关系是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.25.(10分)【基础巩固】(1)如图1,点E在线段BC上,AE=DE,∠AED=∠ABE=∠DCE=90°.求证:△ABE≌△ECD.【尝试应用】(2)如图2,∠AED=∠ABE=∠DCE=90°,若E是BC的中点,AB=4,CD=6,求AD的长.【拓展提高】(3)如图3,∠AED=∠ABC=90°,∠DCE=120°,E是BC的中点,AB=4,,求AD的长.26.(12分)在平面直角坐标系中,直线l分别交x轴,y轴于A,B两点,OA=OB.(1)如图1,点C在线段AB上,点D在线段AO上,DE⊥AB于点E,CF⊥OB于点F,若,CD=CO,求证:CE=OF;(2)在(1)的条件下,求直线AB的函数表达式;(3)如图2,若P(﹣1,0),点M,N分别是(2)中直线l和线段OB上的动点,求△PMN周长最小值的平方.。
四川省成都市金牛区八年级(上)期末数学试卷(含解析)
四川省成都市金牛区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)9的算术平方根是()A.±3B.﹣3C.3D.±812.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7 4.(3分)已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.a2>ab C.D.c﹣a<c﹣b 5.(3分)对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当时,y>0D.y值随x值的增大而增大6.(3分)已知是方程组的解,则a+b=()A.2B.﹣2C.4D.﹣47.(3分)若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6 8.(3分)下面四条直线,可能是一次函数y=kx﹣k(k≠0)的图象是()A.B.C.D.9.(3分)下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根10.(3分)在Rt△ABC中,∠ACB=90°,AB=10cm,AB边上的高为4cm,则Rt△ABC 的周长为()cm.A.24B.C.D.二、填空题(每小题4分,共16分)11.(4分)的相反数是,8的立方根是.12.(4分)若点P(﹣1,a)、Q(2,b)在一次函数y=﹣3x+4图象上,则a与b的大小关系是.13.(4分)如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)14.(4分)如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组的解为.三、解答题(共54分)15.(10分)计算下列各题(1)(2)16.(10分)计算题(1)解方程组:(2)解不等式组(并把解集在数轴上表示出来)17.(7分)已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF 分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.18.(8分)某中学10月份召了校运动会,需要购买奖品进行表彰,学校工作人员到某商场标价购买了甲种商品25件,乙种商品26件,共花费了2800元;回学校后发现少买了2件甲商品和1件乙种商品,于是马上到该商场花了170元把少买的商品买回.(1)分别求出甲、乙两种商品的标价.(2)若元旦前,学校准备为全校教职工购买甲、乙两种商品作为慰问品,需要购买甲、乙两种商品共200件,请求出总费用w(元)与甲种商品a(件)之间的函数关系式(不需要求出自变量取值范围)19.(9分)为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.20.(10分)如图,已知直线AB:y=﹣x+4与直线AC交于点A,与x轴交于点B,且直线AC过点C(﹣2,0)和点D(0,1),连接BD.(1)求直线AC的解析式;(2)求交点A的坐标,并求出△ABD的面积;(3)在x轴上是否存在一点P,使得AP+PD的值最小?若存在,求出点P;若不存在,请说明理由.一、填空题(每小题4分,共20分)21.(4分)函数中,自变量x的取值范围是.22.(4分)将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为.23.(4分)若x=﹣1,则x3+x2﹣3x+2019的值为.24.(4分)如图,在平面直角坐标系中,直线y=﹣x+6分别与x轴,y轴交于点B,C 且与直线y=x交于点A,点D是直线OA上的点,当△ACD为直角三角形时,则点D 的坐标为.25.(4分)把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n)对应的自然数是二、解答题(共30分)26.(8分)已知A,B两地相距120km,甲,乙两人分别从两地出发相向而行,甲先出发,中途加油休息一段时间,然后以原来的速度继续前进,两人离A地的距离y(km)与甲出发时间x(h)的关系式如图所示,请结合图象解答下列问题:(1)甲行驶过程中的速度是km/h,途中休息的时间为h.(2)求甲加油后y与x的函数关系式,并写出自变量x的取值范围;(3)甲出发多少小时两人恰好相距10km?27.(10分)已知△ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE =AD,连接DE,DC,(1)若点D在线段AB上,且AB=6,AD=2(如图①),求证:DE=DC;并求出此时CD的长;(2)若点D在线段AB的延长线上,(如图②),此时是否仍有DE=DC?请证明你的结论;(3)在(2)的条件下,连接AE,若,求CD:AE的值.28.(12分)如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E(1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD 于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵32=9,∴9算术平方根为3.故选:C.2.【解答】解:点P(2,﹣3)在第四象限.故选:D.3.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.4.【解答】解:∵a>b,c≠0,∴﹣a<﹣b,∴a+c>b+c,故A选项正确;,故C选项正确;c﹣a<c﹣b,故D选项正确;又∵a的符号不确定,∴a2>ab不一定成立,故选:B.5.【解答】解:当x=﹣1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴﹣2x+1>0∴x<∴C选项错误,故选:A.6.【解答】解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选:B.7.【解答】解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.8.【解答】解:∵一次函数y=kx﹣k(k≠0),∴当k>0时,函数图象在第一、三、四象限,故选项A错误,选项D正确,当k<0时,函数图象在第一、二、四象限,故选项C、D错误,故选:D.9.【解答】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动大;故错误;C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误;故选:C.10.【解答】解:由勾股定理得,AC2+BC2=AB2=100,由三角形的面积公式可知,•AC•BC=•AB•CD=20,∴2•AC•BC=80则(AC+BC)2=AC2+BC2+2•AC•BC=180,解得,AC+BC=6,∴Rt△ABC的周长=AC+BC+AB=6+10,故选:D.二、填空题(每小题4分,共16分)11.【解答】解:﹣的相反数是:;8的立方根是:2.故答案为:;2.12.【解答】解:∵点P(﹣1,a)、Q(2,b)在一次函数y=﹣3x+4图象上,∴a=3+4=7,b=﹣6+4=﹣2,∴a>b故答案为:a>b.13.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=3.∴AC=.故答案为:14.【解答】解:由图可知:直线y=ax+b和直线y=cx+d的交点坐标为(﹣2,3);因此方程组的解为:.三、解答题(共54分)15.【解答】解:(1)=2﹣3+=﹣3;(2)=﹣(3﹣)÷+﹣=﹣3++﹣=﹣3+2.16.【解答】解:(1),②×2得:8x+2y=20 ③,①+③,得:11x=33,解得x=3,将x=3代入②,得:12+y=10,解得y=﹣2,所以方程组的解为;(2)解不等式4x﹣12≥5x﹣10,得:x≤﹣2,解不等式2(2x﹣3)﹣3(x+1)≥﹣12,得:x≥﹣3,则不等式组的解集为﹣3≤x≤﹣2,将不等式组的解集表示在数轴上如下:17.【解答】证明:∵AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.18.【解答】解:(1)设甲种商品的标价为每件x元,则乙种商品的标价为每件(170﹣2x)元,根据题意得,25x+26(170﹣2x)=2800,解得x=60,则170﹣2×60=50.答:甲种商品的标价为每件60元,乙种商品的标价为每件50元;(2)由题意,可得w=60a+50(200﹣a),化简得,w=10a+10000.19.【解答】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,抽查的学生劳动时间的众数是1.5小时,中位数是1.5小时,故答案为:1.5,1.5;(2)所有被调查同学的平均劳动时间为:×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均劳动时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×=290(人).20.【解答】解:(1)设直线AC解析式为:y=kx+b,根据题意得:∴k=,b=1∴直线AC解析式为:y=x+1(2)根据题意得:解得:∴点A坐标为(2,2)如图,设直线AB与y轴交点为E,∵直线AB与x轴交于点B,与y轴交于点E,∴点B(4,0),点E(0,4)∴OB=4,OE=4,∵DO=1,∴DE=3,∵S△ADB=S△BEO﹣S△ADE﹣S△BDO,∴S△ADB==3,(3)如图,作点D(0,1)关于x轴的对称点D'(0,﹣1),∵AP+DP=AP+PD',∴当点P在AD'上时,AP+DP的值最小,连接AD'交x轴于点P,设直线AD'的解析式为:y=mx+n,根据题意得:解得:∴直线AD'的解析式为:y=x﹣1当y=0时,x=∴点P坐标为(,0)一、填空题(每小题4分,共20分)21.【解答】解:根据题意得:x+3≥0且x﹣1≠0,解得:x≥﹣3且x≠1.22.【解答】解:如图,延长CD至G,∵AB∥CD,∴∠2=∠BDG=65°,由折叠可得,∠BDE=∠BDG=65°,∴△BDE中,∠BED=180°﹣65°×2=50°,∴∠1=∠BED=50°,故答案为:50°.23.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.24.【解答】解:(1)直线y=﹣x+6,当x=0时,y=6,当y=0时,x=12,则B(12,0),C(0,6),解方程组:得:,则A(6,3),故A(6,3),B(12,0),C(0,6),∵△ACD为直角三角形,∴①当∠ADC=90°,∴CD⊥OA,∴设直线CD的解析式为:y=﹣2x+b,把C(0,6)代入得,b=6,∴直线CD的解析式为:y=﹣2x+6,解得,∴D(,),②当∠ACD=90°,∴DC⊥BC,∴设直线CD的解析式为:y=2x+a,把C(0,6)代入得,a=6,∴直线CD的解析式为:y=2x+6,解得,,∴D(﹣4,﹣2),综上所述:D(,)或(﹣4,﹣2).故答案为:D(,)或(﹣4,﹣2).25.【解答】解:观察图的结构,发现这些数是围成多层正方形,从内到外每条边数依次+2,所有正方形内自然数个数即(每边自然数个数的平方数)都在第四象限的角平分线上(正方形右下角).其规律为(n,﹣n)表示的数为(2n+1)2,而且每条边上有2n+1个数,点(1,4)在第四层正方形边上,该层每边有2×4+1=9个数,右下角(4,﹣4)表示的数是81,所以点(1,4)表示的是第四层从左下角开始顺时针(从81倒数)第21个数,即为81﹣8﹣8﹣5=60,点(n,﹣n)在第n层正方形边上,该层每边有2n+1个数,右下角(n,﹣n)表示的数是(2n+1)2,点(n,n)是正方形右上角的数,是从左下角开始顺时针(从(2n+1)2倒数)第6n个数,即为(2n+1)2﹣6n=4n2﹣2n+1.故答案为:60,4n2﹣2n+1.二、解答题(共30分)26.【解答】解:(1)根据甲的图象可知前1小时走了120﹣60千米,故甲的速度为60 km/h;甲走120千米需要2小时,而他到达终点的时间是2.5小时,故休息了0.5h.故答案为:60;0.5.(2)设甲加油后y=kx+b,将(1.5,60)和(2.5,0)代入解析式,,解得.故y=﹣60x+150(1.5≤x≤2.5).(3)设乙路程y1=k1x+b,将(1,0)和(4,120)代入,解得.故y1=40x﹣40.当x=1.5时,y1=40×1.5﹣40=20,此时两车相距60﹣20=40千米.故相距10km时间段为1.5h~2.5小时之间.依题意得,|(﹣60x+150)﹣(40x﹣40)|=10解得,x=1.8或2故甲出发1.8小时或2小时两车相距10km.27.【解答】解:(1)过点D作DF∥BC交AC于点F,作DM⊥BC于点M,∵△ABC是等边三角形∴∠ABC=∠ACB=∠A=60°,AB=AC=BC=6,∴∠DBE=120°∵DF∥BC∴∠ADF=∠ABC=60°,∠AFD=∠ACB=60°∴△ADF是等边三角形,∠DFC=120°∴AD=AF=DF=2,∴BD=AB﹣AD=4=AC﹣AF=CF∵BE=AD=DF=2,∠DBE=∠DFC=120°,CF=DB∴△DBE≌△CFD(SAS)∴DE=DC又∵DM⊥BC∴CM=EM=EC=(BE+BC)=4∵在Rt△DBM中,BD=4,∠DBM=60°∴BM=2,DM=BM=2∴CD==2(2)DE=DC理由如下:过点D作DF∥BC交AC的延长线于点F,∵BC∥DF∴∠ABC=∠ADF=60°,∠ACB=∠AFD=60°,∴△ADF是等边三角形,∴AD=DF=AC,∴AD﹣AB=AF﹣AC∴BD=CF,且BE=AD=DF,∠EBD=∠ABC=60°=∠AFD∴△EBD≌△DFC(SAS)∴DE=CD(3)如图,过点C作CH⊥AB于点H,过点A作AN⊥BC于点N,∵∴设AB=2x,AD=3x,∴BC=AC=2x,DF=BE=3x,BD=AD﹣AB=x,∵△ABC是等边三角形,AN⊥BC,CH⊥AB∴BN=BH=x,AN=x=CH在Rt△DHC中,DC==x,在Rt△AEN中,AE==x∴CD:AE==28.【解答】解:(1)∵四边形OABC为长方形,点B的坐标为(8,6),∴点A的坐标为(8,0),BC∥x轴.∵直线y=﹣x+b经过点A,∴0=﹣8+b,∴b=8,∴直线AD的解析式为y=﹣x+8.当y=6时,有﹣x+8=6,解得:x=2,∴点D的坐标为(2,6).∵点P是AD的中点,∴点P的坐标为(,),即(5,3),∴直线OP的解析式为y=x.(2)S△ODP=S△ODA﹣S△OP A,=×8×6﹣×8×3,=12.当x=8时,y=x=,∴点E的坐标为(8,).设点N的坐标为(m,﹣m+8).∵S△AEN=S△ODP,∴××|8﹣m|=12,解得:m=3或m=13,∴点N的坐标为(3,5)或(13,﹣5).(3)∵点T的坐标为(t,0)(5<t<8),∴点F的坐标为(t,t),点G的坐标为(t,﹣t+8).分三种情况考虑:①当∠FGQ=90°时,如图1所示.∵△FGQ为等腰直角三角形,∴FG=GQ,即t﹣(﹣t+8)=8﹣t,解得:t=,此时点Q的坐标为(8,);②当∠GFQ=90°时,如图2所示.∵△FGQ为等腰直角三角形,∴FG=FQ,即t﹣(﹣t+8)=8﹣t,解得:t=,此时点Q的坐标为(8,);③当∠FQG=90°时,过点Q作QS⊥FG于点S,如图3所示.∵△FGQ为等腰直角三角形,∴FG=2QS,即t﹣(﹣t+8)=2(8﹣t),解得:t=,此时点F的坐标为(,4),点G的坐标为(,)此时点Q的坐标为(8,),即(8,).综上所述:在线段AE上存在一点Q,使得△FGQ为等腰直角三角形,当t=时点Q 的坐标为(8,)或(8,),当t=时点Q的坐标为(8,).。
四川省成都市天府新区2021-2022学年八年级上学期期末数学试题(含答案)
【8题答案】
【答案】C
【解析】
【分析】根据方差的意义:方差越小数据越稳定求解即可.
【详解】解:∵S甲2=3.2,S乙2=5.1,S丙2=3.1,S丁2=6.9,
∴S丁2>S乙2>S甲2>S丙2,
∴这四个城市年降水量最稳定的是丙.
故选:C.
【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
批发价(元)
零售价(元)
黑色文化衫
25
45
白色文化衫
20
35
(1)学校购进黑.白文化衫各几件?
(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.
20如图,在平面直角坐标系中,直线y=kx过点B(m,6),过点B分别作x轴和y轴的垂线,垂足分别为点A,C,∠AOB=30°.动点P从点O出发,以每秒2个单位长度的速度向点B运动,动点Q从点B出发.以每秒 个单位长度的速度向点C运动.点P,Q同时开始运动,当点P到达点B时,点P,Q同时停止运动,设运动时间为t秒.
28.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标 (﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a),
(1)求直线AB的表示式和点C的坐标:
(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;
(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.
【详解】解:∵BD平分∠ABC,
∴∠1=∠3,
又∵∠1=∠2,
∴∠2=∠3,
四川省成都市成华区2021-2022学年八年级上学期期末考试数学试卷(解析版)
2021-2022学年四川省成都市成华区八年级(上)期末数学试卷答案与解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)9的平方根是()A.±81B.±3C.﹣3D.3【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:B.2.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.3B.4C.5D.7【分析】直接根据勾股定理求解即可.【解答】解:在直角三角形中,勾为3,股为4,∴弦为√32+42=5.故选:C.3.(3分)下列计算正确的是()A.√22=2B.√(−2)2=−2C.√22=±2D.√(−2)2=±2【分析】求出√22=2,√(−2)2=2,再逐个判断即可.【解答】解:A.√22=2,故本选项符合题意;B.√(−2)2=2,故本选项不符合题意;C.√22=2,故本选项不符合题意;D.√(−2)2=2,故本选项不符合题意;故选:A.4.(3分)下列命题是假命题的是()A.两直线平行,内错角相等B.三角形的外角和为360°C.无限不循环小数是无理数D.同旁内角相等,两直线平行【分析】理由平行线的性质、三角形的外角和定理、无理数的定义及平行线的判定分别判断即可确定正确的选项.【解答】解:A、两直线平行,内错角相等,正确,是真命题,不符合题意;B 、三角形的外角和为360°,正确,是真命题,不符合题意;C 、无限不循环小数是无理数,正确,是真命题,不符合题意;D 、同旁内角互补,两直线平行,故原命题错误,是假命题,符合题意. 故选:D .5.(3分)若a =√73,b =√5,c =2,则a ,b ,c 的大小关系为( ) A .b <c <aB .b <a <cC .a <c <bD .a <b <c【分析】根据算术平方根、立方根的意义估算出a 、b 的近似值,再进行比较即可. 【解答】解:∵√13<√73<√83, ∴1<√73<2, 即1<a <2, 又∵2<√5<3, ∴2<b <3, ∴a <c <b , 故选:C .6.(3分)在正比例函数y =kx 中,y 的值随着x 值的增大而减小,则点A (﹣3,k )在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】因为在正比例函数y =kx 中,y 的值随着x 值的增大而减小,所以k <0,所以点A (﹣3,k )在第二象限.【解答】解:∵在正比例函数y =kx 中,y 的值随着x 值的增大而减小, ∴k <0,∴点A (﹣3,k )在第二象限. 故选:B .7.(3分)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是( )时间/小时 7 8 9 10 人数 6 9114A .9,8.5B .9,9C .10,9D .11,8.5【分析】根据中位数、众数的意义求解即可.【解答】解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时, 将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5小时, 故选:A .8.(3分)如图,已知直线m∥n,∠1=40°,∠2=30°,则∠3的度数为()A.80°B.70°C.60°D.50°【分析】由两直线平行,同位角相等得到∠4=40°,再根据三角形的外角性质即可得解.【解答】解:如图,∵直线m∥n,∠1=40°,∴∠4=∠1=40°,∵∠3=∠2+∠4,∠2=30°,∴∠3=30°+40°=70°,故选:B.9.(3分)某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修.如图所示的图象反映了他骑车上学的整个过程,则下列结论正确的是()A.修车花了10分钟B.小明家距离学校1000米C.修好车后花了25分钟到达学校D.修好车后骑行的速度是110米/分钟【分析】根据横坐标,可得时间;根据函数图象的纵坐标,可得路程.【解答】解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项不符合题意;B .由纵坐标看出,小明家离学校的距离2100米,故本选项不合题意;C .由横坐标看出,小明修好车后花了30﹣20=10(分钟)到达学校,故本选项不合题意;D .小明修好车后骑行到学校的平均速度是:(2100﹣1000)÷10=110(米/分钟),故本选项符合题意; 故选:D .10.(3分)如图是用三块正方形纸片设计的“毕达哥拉斯”图案,其中三块正方形围成的三角形是直角三角形.现有若干块正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,则下列选取中,围成的直角三角形面积最大的是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4【分析】根据题意可知,三块正方形的面积中,两个较小的面积之和等于最大的面积,围成的三角形是直角三角形,再根据三角形的面积,分别计算出几个较大的正方形纸片围成的直角三角形的面积,比较大小,即可解答本题. 【解答】解:∵五种正方形纸片,面积分别是1,2,3,4,5, ∴五种正方形纸片的边长分别是1,√2,√3,√4,√5, 由题意可得,三角形各边的平方是对应的各个正方形的面积,当选取的三块纸片的面积分别是1,4,5时,1+4=5,围成的三角形是直角三角形,面积是1×√42=1, 当选取的三块纸片的面积分别是2,3,5时,2+3=5,围成的三角形是直角三角形,面积是√2×√32=√62; 当选取的三块纸片的面积分别是2,2,4时,2+2=4,围成的三角形是直角三角形,面积是√2×√22=1, ∵√62>1, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二.填空题(本大题4个小题,每小题4分,共16分)11.(4分)已知{x =2y =m是方程3x +2y =10的一个解,则m 的值是 2 .【分析】把二元一次方程的解代入到方程中,得到关于m 的一元一次方程,解方程即可. 【解答】解:把{x =2y =m 代入方程得:3×2+2m =10,∴m =2, 故答案为:2.12.(4分)如图,点A (4,0),C (﹣1,0),以点A 为圆心,AC 长为半径画弧,交y 轴的正半轴于点B ,则点B 的坐标为 (0,3) .【分析】根据已知可得AB =AC =5,OA =4.利用勾股定理即可求解. 【解答】解:根据已知可得:AB =AC =5,OA =4. 在Rt △ABO 中,OB =√AB 2−OA 2=3. ∴B (0,3). 故答案为:(0,3).13.(4分)将直线y =﹣6x +2向下平移4个单位,平移后的直线解析式为 y =﹣6x ﹣2 . 【分析】直接根据“上加下减”的平移规律求解即可.【解答】解:将直线y =﹣6x +2向下平移4个单位,平移后的直线解析式为y =﹣6x +2﹣4=﹣6x ﹣2, 故答案为:y =﹣6x ﹣2.14.(4分)《九章算术》中有一题,大意是:甲乙二人,不知其钱包里各有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲持钱数为x ,乙持钱数为y ,则可列二元一次方程组为 {x +12y =5023x +y =50 . 【分析】根据“若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50”,即可得出关于x ,y 的二元一次方程组,此题得解. 【解答】解:∵若乙把自己一半的钱给甲,则甲的钱数为50, ∴x +12y =50;又∵若甲把自己三分之二的钱给乙,则乙的钱数也为50,∴23x +y =50.∴根据题意,可列二元一次方程组为{x +12y =5023x +y =50.故答案为:{x +12y =5023x +y =50.三.解答题(本大题共6个小题,满分54分) 15.(10分)(1)计算:(π﹣3)0+|1−√2|−√8; (2)计算:√32−√24+√65×√45.【分析】(1)先利用零指数幂、绝对值的意义计算,再把√8化简,然后合并即可; (2)先利用二次根式的乘法公式计算,然后化简后合并即可. 【解答】解:(1)原式=1+√2−1﹣2√2 =−√2;(2)原式=√62−2√6+√65×45 =√62−2√6+3√6=3√62.16.(10分)(1)解方程组:{2x +y =3①x −2y =−1②;(2)解方程组:{3x −2y +20=0①2x +15y −3=0②.【分析】(1)由②得出x =﹣1+2y ③,把③代入①得出2(﹣1+2y )+y =3,求出y ,再把y =1代入③求出x 即可;(2)②×3得出6x +45y =9③,①×2得出6x ﹣4y =﹣40④,③﹣④得出﹣49y =﹣49,求出y ,再把y =1代入①求出x 即可. 【解答】解:(1){2x +y =3①x −2y =−1②,由②,得x =﹣1+2y ③,把③代入①,得2(﹣1+2y )+y =3, 解得:y =1,把y =1代入③,得x =﹣1+2×1=1, 所以原方程组的解是{x =1y =1;(2){3x −2y +20=0①2x +15y −3=0②,②×3,得6x +45y =9③, ①×2,得6x ﹣4y =﹣40④, ③﹣④,得﹣49y =﹣49, 解得:y =1,把y =1代入①,得3x ﹣2+20=0, 解得:x =﹣6,所以原方程组的解是{x =−6y =1.17.(6分)已知m +n ﹣5的算术平方根是3,m ﹣n +4的立方根是﹣2,试求√3m −n +22m+1的值.【分析】根据算术平方根和立方根的定义得到m +n ﹣5=9①,m ﹣n +4=﹣8②,解方程组可求m ,n 的值,再代入计算可求√3m −n +22m+1的值.【解答】解:根据题意得{m +n −5=9m −n +4=−8.,解得{m =1n =13.,所以3m ﹣n +2=﹣8,2m +1=3, 所以√3m −n +22m+1=−2.18.(8分)如图,在平面直角坐标系xOy 中,△ABC 的顶点坐标分别为A (1,﹣1),B (4,1),C (2,2),CD 为AB 边上的高.(1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1; (2)请填出下列线段的长度:AB = √13 ,BC = √5 ,AC = √10 ,CD =7√1313.【分析】(1)利用轴对称的性质作出A ,B ,C 的对应点A 1,B 1,C 1即可; (2)利用勾股定理以及三角形的面积求解即可. 【解答】解:(1)如图,△A 1B 1C 1即为所求;(2)AB =√22+32=√13,BC =√12+22=√5,AC =√12+32=√10, ∵S △ABC =12×AB ×CD =3×3−12×1×3−12×1×2−12×2×3, ∴CD =7√1313. 故答案为:√13,√5,√10,7√1313.19.(10分)某通讯公司就手机流量套餐推出A ,B ,C 三种方案(如表),三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数图象如图.结合表格和图象解答下列问题:A 方案B 方案C 方案 每月基本费用(元) 2056266每月兔费使用流量(兆) 1024m无限超出后每兆收费(元)nn(1)填空:表中m = 3072 ,n = 0.3 ;(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式;(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?【分析】(1)根据题意可得m =3072,n =(56﹣20)÷(1144﹣1024)=0.3; (2)利用待定系数法解答即可;(3)利用B 方案当每月使用的流量不少于3072兆时的函数关系式即可得到答案. 【解答】解:(1)根据题意,m =3072,n =(56﹣20)÷(1144﹣1024)=0.3; 故答案为:3072,0.3;(2)设在A 方案中,当每月使用的流量不少于1024兆时,每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式为y =kx +b (k ≠0), 把(1024,20),(1144,56)代入,得:{1024k +b =201144k +b =56,解得:{k =0.3b =−287.2,∴y 关于x 的函数关系式为y =0.3x ﹣287.2(x ≥1024); (3)在B 方案中,当每月使用的流量不少于3072兆时, 根据题意得:y =56+0.3(x ﹣3072), 令56+0.3(x ﹣3072)=266, 解得x =3772,由图象得,当每月使用的流量超过3772兆时,选择C 方案最划算.20.(10分)已知:△ABC 中,∠CAB =60°,D 是BC 的中点,延长AB 到点E ,使BE =AC ,连结CE ,AD .(1)如图1,若△ABC 是等边三角形,AD =√3,则CE 的长等于 2√3 ; (2)如图2,过点B 作AC 的平行线交AD 的延长线于点F ,连接EF . ①求证:△BEF 是等边三角形; ②求证:CE =2AD .【分析】(1)由△ABC 是等边三角形,AC =BE ,先证明∠ACE =90°,因为D 是BC 的中点,所以∠ADB =90°,∠BAD =12∠CAB =30°,则BD =12AB ,根据勾股定理可以求出AB 的长,再求出AC 、AE 的长,再根据勾股定理求出CE 的长;(2)①由BE ∥AC 得∠FBE =∠CAB =60°,∠DFB =∠DAC ,再证明△DFB ≌△DAC ,得FB =AC ,则FB =BE ,则△BEF 是等边三角形; ②证明△ACE ≌△EF A ,则CE =F A =2AD .【解答】(1)解:如图1,∵△ABC 是等边三角形,BE =AC , ∴AB =BC =AC =BE ,∠ABC =∠ACB =∠CAB =60°, ∴∠BCE =∠E , ∵∠BCE +∠E =∠ABC , ∴2∠E =60°, ∴∠BCE =∠E =30°, ∴∠ACE =60°+30°=90°, ∵D 是BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =12∠CAB =30°, ∴∠ADB =90°, ∴BD =12AB ,∴AB 2﹣(12AB )2=AD 2=(√3)2,∴AB =2,∴AC =BE =AB =2, ∴AE =AB +BE =4,∴CE =√AE 2−AC 2=√42−22=2√3, 故答案为:2√3.(2)①证明:如图2,∵BE ∥AC , ∴∠FBE =∠CAB =60°,∠DFB =∠DAC , 在△DFB 和△DAC 中,{∠DFB =∠DAC ∠FDB =∠ADC BD =CD,∴△DFB ≌△DAC (AAS ),∴FB =AC ,FD =AD ,∴FB =BE ,∴△BEF 是等边三角形.②证明:如图2,∵∠FEA =60°,∠CAE =60°,∴∠CAE =∠FEA ,∵EF =BE ,BE =AC ,∴AC =EF ,在△ACE 和△EF A 中,{AC =EF ∠CAE =∠FEA AE =EA,∴△ACE ≌△EF A (SAS ),∴CE =F A =2AD .一.填空题(每小题4分,共20分)21.(4分)若x =√2+1,则代数式x 2﹣2x +2的值为 3 .【分析】利用完全平方公式将原式进行变形,然后代入求值.【解答】解:原式=x 2﹣2x +1+1=(x ﹣1)2+1,当x =√2+1时,原式=(√2+1﹣1)2+1=(√2)2+1=2+1=3,故答案为:3.22.(4分)已知△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线交于点O ,则∠BOC 的度数为 120 度.【分析】利用角平分线的性质计算.【解答】解:∵∠A =60°∴∠ABC +∠ACB =120°∴∠BOC =180°−12(∠ABC +∠ACB )=120°.23.(4分)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a ,较短直角边为b ,若ab =8,大正方形的面积为25,则小正方形的边长为 3 .【分析】由题意可知:中间小正方形的边长为:a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为:12ab =12×8=4, ∴4×12ab +(a ﹣b )2=25,∴(a ﹣b )2=25﹣16=9,∴a ﹣b =3,故答案是:324.(4分)如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是 84 .【分析】先分析出点P 在BC 和CA 上运动时BP 的大小变化,再结合函数图象得到相应线段长.【解答】解:由图象分析可得:当点P 在BC 上运动时,BP 不断增大,到达C 点时,BP 达到最大值,此时BP =BC =15;当P 在CA 上运动时,BP 先减小再增大,在此过程中,BP ⊥AC 时,此位置记为P ',BP 有最小值为BP '=12,由勾股定理可得CP '=9,P 点到达C 点时,可得BA =13,由勾股定理可得AP '=5,∴AC =AP '+CP '=5+9=14,∴S △ABC =12×14×12=84. 故答案为84.25.(4分)某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个.其中A 盒中有2个耳机,3个优盘,1个音箱;B 盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C 盒中有1个耳机,3个优盘,2个音箱.经核算,A 盒的价值为145元,B 盒的价值为245元,则C 盒的价值为 155 元.【分析】设1个耳机的价值为x 元,1个优盘的价值为y 元,1个音箱的价值为z 元,B 盒中耳机的数量为3n (n 为正整数)个,则音箱的数量为2n 个,优盘的数量为5n 个,根据A ,B 盒的价值,即可得出关于x ,y ,z 的三元一次方程组,分析两盒价值间的关系可得出n 只能为1,进而可得出方程②为3x +5y +2z =245③,再利用3×③﹣4×②即可求出C 盒的价值.【解答】解:设1个耳机的价值为x 元,1个优盘的价值为y 元,1个音箱的价值为z 元,B 盒中耳机的数量为3n (n 为正整数)个,则音箱的数量为2n 个,优盘的数量为5n 个, 依题意得:{2x +3y +z =145①3nx +5ny +2nz =245②. 若n =2,则B 盒的价值至少是A 盒价值的3倍,∴n =2不合适,∴n 只能为1,∴方程②为3x +5y +2z =245③.3×③﹣4×②得:x +3y +2z =155,即C 盒的价值为155元.故答案为:155.二、解答题(本大题有3个小题,共30分)26.(8分)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A 型消毒液数量不少于30瓶但不超过70瓶.设购进这两种消毒液所需费用为w 元,购进A 型消毒液m 瓶,求w 与m 之间的函数关系式,并求出学校最少所需费用多少元?【分析】(1)设A 型消毒液单价是x 元,B 型消毒液单价是y 元,根据已知得{2x +3y =415x +2y =53,即可解得答案;(2)由已知得w =﹣2m +810(30≤m ≤70),再根据一次函数性质可得答案.【解答】解:(1)设A 型消毒液单价是x 元,B 型消毒液单价是y 元,根据题意得:{2x +3y =415x +2y =53, 解得{x =7y =9, 答:A 型消毒液单价是7元,B 型消毒液单价是9元;(2)根据题意得:w =7m +9(90﹣m )=﹣2m +810(30≤m ≤70),∵﹣2<0,∴w 随m 的增大而减小,∴m =70时,w 最小,w 的最小值是﹣2×70+810=670(元),答:w 与m 之间的函数关系式是w =﹣2m +810,学校最少所需费用670元.27.(10分)如图,在△ABC 中,∠ACB =90°,CA =CB ,点M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接ME ,MF .(1)求证:CE =BF ;(2)求证:△EFM 是等腰直角三角形;(3)试判断线段DE ,DF ,DM 之间有何数量关系?写出你的结论并证明.【分析】(1)由“AAS ”可证△BCF ≌△CAE ,即可得出结论;(2)由“SAS ”可证△BFM ≌△CEM ,得FM =EM ,∠BMF =∠CME ,再证∠EMF =90°,即可得出结论;(3)设AE 与CM 交于点N ,连接DN ,证△BFD ≌△CEN (ASA ),得DF =NE ,BD =CN ,再证△DMN 是等腰直角三角形,得DN 2=DM 2+NM 2=2DM 2,然后在Rt △DEN 中,由勾股定理得DN 2=DE 2+NE 2=DE 2+DF 2,即可得出结论.【解答】(1)证明:∵∠ACB =90°,∴∠BCF +∠ACE =90°,∵AE ⊥CD ,BF ⊥CD ,∴∠CEA =∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ACE =∠CBF ,又∵AC =CB ,∴△CAE≌△BCF(AAS),∴CE=BF;(2)证明:∵△CAE≌△BCF,∴AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,∴∠CMB=90°,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∴∠BMF+∠DME=∠CME+∠DME=∠BMC=90°,即∠EMF=90°,∴△EFM为等腰直角三角形;(3)解:DE2+DF2=2DM2,理由如下:设AE与CM交于点N,连接DN,∵∠BFD=∠CMD=90°,∠BDF=∠CDM,∴∠DBF=∠NCE,又∵BF=CE,∠BFD=∠CEN=90°,∴△BFD≌△CEN(ASA),∴DF=NE,BD=CN,∵CM=BM,∴CM﹣CN=BM﹣BD,即DM=NM,∴△DMN是等腰直角三角形,∴DN2=DM2+NM2=2DM2,∵AE⊥CD,∴∠AED=90°,在Rt△DEN中,由勾股定理得:DN2=DE2+NE2,∴DN2=DE2+DF2,∴DE2+DF2=2DM2.28.(12分)如图,在平面直角坐标系中,一次函数y =kx +b 经过A (a ,0),B (0,b )两点,且a ,b 满足(a +8)2+√b +6=0,∠ABO 的平分线交x 轴于点E .(1)求直线AB 的表达式;(2)求直线BE 的表达式;(3)点B 关于x 轴的对称点为点C ,过点A 作y 轴的平行线交直线BE 于点D ,点M 是线段AD 上一动点,点P 是直线BE 上一动点,则△CPM 能否为不以点C 为直角顶点的等腰直角三角形?若能,请直接写出点P 的坐标;若不能,说明理由.【分析】(1)求出点A 与点B 的坐标,再由待定系数法求直线AB 的解析式即可;(2)过点E 作EH ⊥AB 于点H ,求出点E 的坐标,再由再由待定系数法求直线BE 的解析式即可;(3)①当∠MPC =90°时,P 点在C 点下,过点P 作GH ⊥y 轴交AD 于点G ,交y 轴于点H ,证明△PMG ≌△CPH (AAS ),可得8+t =2t +12,求出t 即可求P (﹣4,2);②当∠MPC =90°,P 点在C 点上时,由①得8+t =﹣2t ﹣12,求出t 即可求P (﹣,223);③当∠PMC =90°时,过点M 作KL ⊥y 轴交y 轴于点L ,过P 点作PK ⊥KL 交于K ,证明△PKM ≌△MLC (AAS ),由8=﹣2t ﹣6﹣(14+t ),求出t =−283,即可求P (−283,383). 【解答】解:(1)∵(a +8)2+√b +6=0,∴a =﹣8,b =﹣6,∴A (﹣8,0),B (0,﹣6),∵一次函数y =+b 经过A (﹣8,0),B (0,﹣6), ∴{0=−8k +b b =−6, ∴{k =−34b =−6, ∴直线AB 的表达式y =−34x ﹣6;(2)∵A (﹣8,0),B (0,﹣6),∴OA =8,OB =6,∴在Rt △AOB 中AB =10,过点E 作EH ⊥AB 于点H ,∵∠ABO 的平分线交x 轴于点E ,∴EH =EO ,AE =8﹣EO ,AH =10﹣6=4,在Rt △AEH 中,(8﹣EO )2=42+EO 2,解得:EO =3,∴E (﹣3,0),设直线BE 的表达式为y =k 1x +b 1,∴{0=−3k 1+b 1b 1=−6, ∴{k 1=−2b 1=−6, ∴直线BE 的表达式为y =﹣2x ﹣6;(3)设P (t ,﹣2t ﹣6),①如图1,当∠MPC =90°时,P 点在C 点下,过点P 作GH ⊥y 轴交AD 于点G ,交y 轴于点H ,∵∠MPC =90°,∴∠MPG +∠CPH =90°,∵∠MPG +∠GMP =90°,∴∠CPH =∠GMP ,∵PM =PC ,∴△PMG ≌△CPH (AAS ),∴MG =PH ,CH =GP ,∵PH =﹣t ,CH =6﹣(﹣2t ﹣6)=2t +12,∴GP =8﹣(﹣t )=8+t =2t +12,∴t =﹣4,∴P (﹣4,2);②如图2,当∠MPC =90°,P 点在C 点上时,由①得,HC =﹣2t ﹣6﹣6=﹣2t ﹣12,GP =8﹣(﹣t )=8+t , ∴8+t =﹣2t ﹣12,∴t =−203,∴P (﹣,223);③如图3,当∠PMC =90°时,过点M 作KL ⊥y 轴交y 轴于点L ,过P 点作PK ⊥KL 交于K , ∵∠PMC =90°,∴∠PMK +∠CML =90°,∵∠PMK +∠MPK =90°,∴∠CML =∠MPK ,∵PM =CM ,∴△PKM ≌△MLC (AAS ),∴KM =CL ,PK =ML ,∴ML =PK =8,CL =KM =﹣8﹣t ,∴LO =6﹣(﹣8﹣t )=14+t ,∴PK =8=﹣2t ﹣6﹣(14+t ),∴t =−283, ∴P (−283,383); 综上所述:点P 的坐标为:(﹣4,2)或(−203,223)或(−283,383).。
四川省成都市武侯区2023-2024学年八年级上学期期末数学试题(解析版)
2023-2024学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1. 若正比例函数的图象经过点,则k 的值为( )A. B. C. 2 D. 3【答案】A【解析】【分析】本题主要考查了正比例函数图象上的点,将点的坐标代入函数关系式,即可求出答案.【详解】因为正比例函数的图象经过点,所以,解得.故选:A .2. 下列四个数中,最小的数是( )A. ﹣πB. ﹣2C.D. 【答案】D【解析】【分析】本题主要考查了实数的大小比较,先确定各数的值,再比较得出答案.,,可知,所以故选:D .3. 在某校八年级举办的数学“讲题比赛”中,有9名选手进入决赛,他们的成绩各不相同,其中一名选手想知道自己能否进入前5名,除了知道自己的成绩外,他还需要了解这9名选手成绩的( )A. 平均数B. 中位数C. 方差D. 极差【答案】B【解析】【分析】本题考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟知这些概念的解题的关键.9名选手的中位数是第5名的成绩,想要知道自己的成绩是否能进入前5名,只需知道自己的成绩和全部成绩的中位数即可解答.【详解】解:由于总共有9个人,且他们的决赛成绩各不相同,第5名的成绩是中位数,要判断是否进入y kx =(3,2)2332y kx =(3,2)32k =23k =3=-4=-234π-<-<-<-前5名,故应知道9名学生成绩的中位数.故选:B .4. 在平面直角坐标系中,画出一次函数的图象,其中正确的是( )A. B.C. D.【答案】C【解析】【分析】本题主要考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质,一次函数,当直线经过一、三象限,当直线经过二、四象限,当直线与y 轴正半轴有交点,直线与y 轴负半轴有交点.根据一次函数的性质进行判断即可.【详解】解:∵中,,∴函数图象经过一、三、四象限,且与x 轴的交点坐标为,与y 轴的交点为.故选:C .5. 若点P 在第二象限内,且到x 轴的距离为6,到y 轴的距离为2,那么点P 的坐标是( )A. B. C. D. 【答案】B【解析】【分析】此题考查了坐标系中点坐标特点,点到对坐标轴的距离,正确掌握点到x 轴的距离是点纵坐标的绝对值,到y 轴的距离是点横坐标的绝对值是解题的关键.【详解】∵点P 在第二象限内,∴点P 的横坐标为负数,纵坐标为正数,∵点P 到x 轴的距离为6,到y 轴的距离为2,xOy 1y x =-()0y kx b k =+≠0k >0k <0b >0b <1y x =-10k =>10b =-<()1,0()0,1-()2,6()2,6-()6,2--()6,2-∴点P 纵坐标为6,横坐标为,∴点P 的坐标是,故选:B .6. 下列说法是真命题的是( )A. 若,则点一定在第一象限内B. 作线段C. 三角形的一个外角等于和它不相邻的两个内角的和D. 立方根等于本身的数是0和1【答案】C【解析】【分析】此题考查真命题:正确的命题是真命题,正确掌握象限内坐标特点,命题的定义,三角形外角性质,立方根的性质是解题的关键,据此依次判断即可.【详解】A.若,则或,故点在第一象限或第三象限,故不符合题意;B.作线段是作图,没有做出判断,不是命题,故不符合题意;C.三角形的一个外角等于和它不相邻的两个内角的和,正确,是真命题,故符合题意;D.立方根等于本身的数是0和,不是真命题,故不符合题意;故选:C .7. 如图,在数轴上,点O 是原点,点A 表示的数是2,在数轴上方以为边作长方形,以点C 为圆心,的长为半径画弧,在原点右侧交该数轴于点P ,则点P 表示的数是( )A. 1B. C. D. 【答案】D【解析】【分析】此题考查勾股定理,根据长方形的性质得到,由此,利用勾股定理求出长度即可.【详解】连接,2-()2,6-0mn >(),H m n AB CD=0mn >0,0m n >>0,0m n <<(),H m n AB CD =1±OA 1OABC AB =,CB 321,2OC AB BC OA ====2CP =OP CP∵长方形,,∴,∴,∴,∴点P故选:D .8. 我国明代《算法统宗》书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x 尺,绳索长y 尺,根据题意可列方程组为( )A. B. C. D. 【答案】A【解析】【分析】设竿长x 尺,绳索长y 尺,根据第一次用绳索去量竿,绳索比竿长5尺,第二次将绳索对折去量竿,就比竿短5尺,则可得方程组.【详解】解:由题意可得:,故选:A .【点睛】本题考查了二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意前后两次绳和杆的数量关系.二、填空题(本大题共5个小题,每小题4分,共20分)9. 比较大小:.(选填“>”、“=”、“<”)【答案】>【解析】OABC 1,2AB OA ==1,2OC AB BC OA ====2CP =OP ===552x y y x +=⎧⎪⎨-=⎪⎩525x y x y +=⎧⎨-=⎩552x y y x =+⎧⎪⎨-=⎪⎩552x y x y+=⎧⎨-=⎩552x y y x +=⎧⎪⎨-=⎪⎩【分析】将两数分别平方进行比较即可【详解】解:,,∵12>11,∴.故答案为:>.【点睛】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.两个正无理数比较,被开方数大的比被开方数小的大;一个有理数与一个开方开不尽的数比较,常通过比较它们的平方(或立方)的大小来比较或都化成带根号的数比较被开方数的大小.10. 点关于原点的对称点的坐标是 _____.【答案】【解析】【分析】此题考查关于原点对称的点的坐标特征:横纵坐标都互为相反数,熟记此特点是解题的关键.【详解】点关于原点的对称点的坐标是,故答案为:11. 如图,已知,,则的度数为 _____.【答案】【解析】【分析】由,可得,再由两直线平行,同旁内角互补,即可求出的度数,本题考查了平行线的性质和判定,解题的关键是:熟练掌握相关定理.【详解】,(内错角相等,两直线平行),(两直线平行,同旁内角互补),,,故答案为:.(212=211=()53A -,()53-,()5,3A -()53-,()53-,12∠=∠72A ∠=︒ADC ∠108︒12∠=∠AB CD ∥ADC ∠12∠=∠ AB CD ∴∥180A ADC ∴∠+∠=︒72A ∠=︒ 180********ADC A ∴∠=︒-∠=︒-︒=︒108︒12. 若直线与的交点的坐标为,则方程的解为 _____.【答案】【解析】【分析】本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质,由交点坐标就是该方程的解可得答案.【详解】关于x 的方程的解,即直线与的交点横坐标,所以方程的解为,故答案为.13. 如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是 _____m .【答案】2.5【解析】【分析】设绳索AD 的长为x m ,则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,再由勾股定理得出方程,解方程即可.【详解】解:∵BF ⊥EF ,AE ⊥EF ,BC ⊥AE ,由平行线间距离处处相等可得:CE =BF =1m ,∴CD =CE -DE =1-0.5=0.5(m ),而设绳索AD 的长为x m , 则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,在Rt △ABC 中,由勾股定理得:AC 2+BC 2=AB 2,即(x -0.5)2+1.52=x 2, 解得:x =2.5(m ),即绳索AD 的长是2.5m ,故答案为:2.5.5y ax =+2y x b =+()2,352ax x b +=+2x =52ax x b +=+5y ax =+2y x b =+2x =2x =90,CEF EFB FBC BCE ACB ∴∠=∠=∠=∠=∠=︒,,BC EF CE BF ∴ 1.5,BC =【点睛】本题主要考查了勾股定理的应用,正确理解题意,由勾股定理得出方程是解题的关键.三、解答题(本大题共5个小题,共48分)14. (1)计算:(2)解方程组:.【答案】(1)10;(2)【解析】【分析】本题主要考查了二次根式混合运算,解二元一次方程组,解题的关键是熟练掌握运算法则,准确计算.(1)根据二次根式混合运算法则进行计算即可;(2)用加减消元法解二元一次方程组即可.【详解】解:(1);(2)把①代入②得:,整理得:,得:,解得:,得:,解得:,6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②82xy=⎧⎨=⎩==122=-10=6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②272x y++=10x y+=③①+③216x=8x=③-①24y=2y=∴方程组的解为:.15. 如图,在平面直角坐标系中,已知点P 的坐标为,点P 关于y 轴的对称点为,现将先向右平移1个单位长度,再向下平移3个单位长度,得到点.(1)请在图中画出点,,连接,,,则点的坐标为 ,点的坐标为 ;(2)试判断的形状,并说明理由.【答案】(1)图见解析;;(2)是等腰直角三角形;理由见解析【解析】【分析】本题主要考查了轴对称作图,平移作图,勾股定理及其逆定理,解题的关键是数形结合,熟练掌握平移和轴对称的性质.(1)根据轴对称的性质和平移特点作出点,,然后再连接,,,写出点,的坐标即可;(2)根据勾股定理和逆定理进行解答即可.【小问1详解】解:如图,点,即为所求作的点,,.82x y =⎧⎨=⎩xOy ()12-,1P 1P 2P 1P 2P 12PP 1OP2OP 1P 2P 12POP △()1,2()2,1-12POP △1P 2P 12PP 1OP2OP 1P 2P 1P 2P ()11,2P ()22,1P -故答案为:;.【小问2详解】解:是等腰直角三角形,理由如下:∵,,又∵,∴是等腰直角三角形.16. 在杭州第十九届亚运会射击比赛中,中国射击队以16金9银4铜排在射击金牌榜和奖牌榜首位,并刷新三项世界纪录.某射击队要从甲、乙两名射击运动员中挑选一人参加一项比赛,在最近的10次射击选拔赛中,他们的成绩(单位:环)如下.甲运动员10次射击成绩如图:乙运动员10次射击成绩如表:成绩/环678910出现次数12223分析上述数据,得到下表:平均数众数方差甲运动员10次射击成绩a ()1,2()2,1-12POP△12OP OP ===12PP ==2221212OP OP PP +=12POP △8.40.84乙运动员10次射击成绩b c 根据以上信息,回答下列问题:(1)填空: , , ;(2)若从甲、乙两名运动员中选取一名参加比赛,你认为选择谁更合适?请说明理由.【答案】(1)9;;10(2)选择甲更合适;理由见解析【解析】【分析】本题主要考查了平均数、众数的定义,解题的关键是熟练掌握定义.(1)根据平均数、众数的定义进行求解即可;(2)根据平均数、众数和方差进行解答即可.【小问1详解】解:平均数为:,甲运动员10次射击成绩出现次数最多的是9环,乙运动员10次射击成绩出现次数最多的是10环,∴甲运动员的射击成绩的众数是,乙运动员的射击成绩的众数是.故答案为:9;;10.【小问2详解】解:从甲、乙两名运动员中选取一名参加比赛,选择甲更合适;因为甲、乙运动员射击成绩的平均数相同,但甲成绩的方差比乙成绩的方差较小,甲的成绩比较稳定,所以选择甲更合适.17. 如图,直线l :交x 轴于点,将直线l 向下平移4个单位长度,得到的直线分别交x 轴,y 轴于点B ,C .(1)求a 的值及B ,C 两点的坐标;(2)点M 为线段上一点,连接并延长,交直线l 于点N ,若是等腰三角形,求点M 的坐标. 1.84=a b =c =8.467282921038.410b +⨯+⨯+⨯+⨯==9a =10c =8.43y ax =+()6,0A AB CM AMN【答案】(1), (2)点M 的坐标为或或【解析】【分析】(1)将点代入,求出a 的值得到直线l 的解析式,及平移后的直线解析式,再求出与坐标轴交点即可;(2)分三种情况讨论:若时,时,时,分别求出点M 的坐标.【小问1详解】将点代入,得,∴,∴直线l 的解析式为,将直线l 向下平移4个单位长度,得到的直线为,当时,;当时,,∴;【小问2详解】当时,则,∵∴,∴,∴,∵,∴,12a =-()()2,0,0,1B C --()2,0)2,03,04⎛⎫- ⎪⎝⎭()6,0A 3y ax =+MN AN =AM AN =AM MN =()6,0A 3y ax =+630a +=12a =-132y x =-+1134122y x x =-+-=--0x =1y =-0y =2x =-()()2,0,0,1B C --MN AN =AMN MAN ∠=∠AN BC∥MAN MBC ∠=∠MBC BM С∠=∠BC СМ=CO BM ⊥2ОМОВ==∴;当时,则,∵,∴,∵,∴,∴,∵,∴∴,∴;当时,则,∵,∴,,∴,∴,∴,即,∴,∴综上,点M 的坐标为或或.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴的交点,等腰三角形的性质,平行线()2,0M AM AN =AMN ANM ∠=∠AN BC ∥ANM ВCM ∠=∠AMN BMC ∠=∠ВCM BM С∠=∠BC BM =()()2,0,0,1B C --BC ==2OM =-)2,0M -AM MN =MAN ANM ∠=∠AN BC ∥MAN МВС∠=∠MC ВMNA ∠=∠MBC MC В∠=∠CM BM =222CM OM OC =+()22221OM OM -=+34OM =3,04M ⎛⎫- ⎪⎝⎭()2,0)2,03,04⎛⎫- ⎪⎝⎭的性质,勾股定理的应用等,分类讨论是解题的关键.18. 在四边形中,,,点E 是边上一点,连接,将沿直线翻折得到,射线交边于点G .(1)如图1,求证:;(2)当时.(i )如图2,若四边形面积为24,且当点G 与D 重合时,,求的长;(ⅱ)在边上取一点H ,连接,使得,若的面积是的面积的2倍,求的长.【答案】(1)见解析(2)(i );(ⅱ)【解析】【分析】(1)根据折叠得出,根据平行线性质得出,证明,根据等腰三角形的判定得出;(2)(i )根据四边形的面积为24得出,求出,设,则,,根据勾股定理得出,即,求出即可得出答案.(ⅱ)证明,得出,根据面积是的面积的2倍,,,得出,设,则,分两种情况:当点H 在点E 的左侧时,当点H 在点E 的右侧时,画出图形,求出结果即可.【小问1详解】证明:根据折叠可知,,∵,∴,∴,的的的ABCD AD BC ∥90B Ð=°BC AE ABE AE AFE △EF AD AG EG =4AB =ABCD BC FG =AD BC AH AH AG =AFG AEH △BE 203AD =BE =AEG AEB ∠=∠GAE AEB ∠=∠GAE AEG ∠=∠AG EG =ABCD 2ABCD AD BC S AB +=⨯四边形12AD BC +=AD x =12BC x =-12FG BC x ==-222AD AF FG =+()222412x x =+-203x =()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =AEG AEB ∠=∠AD BC ∥GAE AEB ∠=∠GAE AEG ∠=∠∴;【小问2详解】解:(i )∵,∴,∵,∴,即,∴,设,则,∴,根据折叠可知,,,∴,在中,根据勾股定理得:,即,解得:,∴.(ⅱ)根据题意得:,,,由(1)得:,∵,∴,在和中,∴,∴,∵的面积是的面积的2倍,,,∴,设,则,AG EG =90B Ð=°AB BC ⊥AD BC ∥2ABCD AD BC S AB +=⨯四边形4242AD BC +⨯=12AD BC +=AD x =12BC x =-12FG BC x ==-4AF AB ==90AFE B ∠=∠=︒1809090AFD =︒-︒=︒∠Rt AGF △222AD AF FG =+()222412x x =+-203x =203AD =AF AB =AB BC ⊥AF EG ⊥AG EG =AH AG =AH EG =Rt ABH △Rt AFG △AB AF AH AG =⎧⎨=⎩()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =当点H 在点E 的左侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,解得:∴当点H 在点E 的右侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,2BH FG a ==3BE BH HE a =+=3BE EF a ==5AG EG EF FG a ==+=222AG AF FG =+()()222542a a =+a =3BE a ==2BH FG a ==BE BH EH a =-=BE EF a ==3AG EG EF FG a ==+=222AG AF FG =+()()222342a a =+解得:,负值舍去,∴综上分析可知,当的面积是的面积的2倍时,【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,三角形全等的判定和性质,平行线的性质,折叠的性质,解题的关键是熟练掌握相关的判定和性质,注意分类讨论.一、填空题(本大题共5个小题,每小题4分,共20分)19. 若,则代数式的值的平方根为 _____.【答案】【解析】【分析】利用完全平方公式分解,代入x 的值计算得到的值,再根据平方根定义求出答案.【详解】∵∴,∴代数式的值的平方根为,故答案为.20. 如图,在平面直角坐标系中,点M ,N 在直线上,过点M ,N 分别向x 轴,y 轴作垂线,交两坐标轴于点A ,B ,C ,D ,若,,则k 的值为 _____.【答案】【解析】【分析】本题主要考查了求一次函数解析,解题的关键是熟练掌握一次函数性质,设点M 的坐标为,a =BE a ==AFG AEH△BE =3x =269x x -+()22693x x x -+=-269x x -+3x =+()22693x x x -+=-()2233=+=269x x -+xOy y kx b =+1AB = 1.5CD =1.5-(),M M x y则点N 的坐标为,把M ,N 的坐标代替直线,求出k 的值即可.【详解】解:设点M 的坐标为,则点N 的坐标为,∵点M ,N 在直线上,∴,得:,故答案为:.21. 已知关于x ,y 的方程组的解中的x ,y 的值分别为等腰直角三角形的一条直角边和斜边的长,则_____.【答案】【解析】【分析】本题考查勾股定理、解二元一次方程组等知识,解题关键是理解题意,灵活运用所学知识解决问题.求出方程组的解,利用勾股定理构建方程即可解决问题.【详解】解:由,解得 ,∵,∴n 为直角边长,为斜边长,由题意:,解得:(舍去)故答案为:.22. 如图,在中,,平分交边于点D ,.在边上取一点E ,连接,将线段平移后得到线段,连接,则线段的长的最小值是 _____.()1, 1.5M M x y +-y kx b =+(),M M x y ()1, 1.5M M x y +-y kx b =+()1 1.5M M M M kx b y k x b y +=⎧⎪⎨++=-⎪⎩①②②-① 1.5k =-1.5-2321x y n y x +=+⎧⎨-=⎩n =11+2321x y n y x +=+⎧⎨-=⎩1x n y n =⎧⎨=+⎩1n n <+1n +()2221n n n +=+1n =+1-1+ABC AB =60ABC BD ∠=︒,ABC ∠AC 23AD CD =BC DE DE BF AF AF【答案】【解析】【分析】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,求出的值,可得结论.【详解】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,∵平分,,,∴,∴,∵,∴,∵∴,∵,,∴,485DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF AG FT ,DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF BD ABC ∠DM BC ⊥DN AB ⊥DM DN =1212ABD BCD AB DN S AD S CD BC DM ⋅⋅==⋅⋅ 23AD CD =23=AB BC AB =BC =AG BC ⊥60ABG ∠=︒30BAG ∠=︒∴,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵∴的最小值为,故答案为【点睛】本题考查平移性质,角平分线的性质定理,勾股定理,直角三角形30度角的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最值问题.23. 在平面直角坐标系中,给出如下定义:对于以为底边的等腰及外一点C ,若,直线中,其中一条经过点O ,另一条与的腰垂直,则称点C 是的“关联点”.如图,已知点,,,则点就是的“关联点”.若点是的“关联点”,则线段的长是 _____.12BG AB ==6AG ==111222ABC S BC AG AB DN BC DM =⋅=⋅+⋅ 185DM DN ===,DE BF DE BF =∥DEB EBF ∠=∠BE EB =()SAS BED EBF ≌,DM BE FT BE ⊥⊥185FT DM ==1848655AF AG GF AG FT ≤+≤+=+=AF 485485xOy AB AOB AOB 1OA =CA CB ,AOB AOB ()10A '-,B '()11C '-,C 'A OB ''△()03E ,POQ △PQ【解析】【分析】此题考查了勾股定理,过点Q 作轴于点A ,利用勾股定理求出,利用面积法求出的长,勾股定理求出,得到,再根据勾股定理求出线段的长.【详解】如图,过点Q 作轴于点A ,∵是的“关联点”, ,,∴,∴∵,∴,∴,∴,∴..二、解答题(本大题共3个小题,共30分)24. 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华QA y ⊥QE AQ AO AP PQ QA y ⊥()03E ,POQ △1OP OQ ==EQ OQ ⊥90OQE ∠=︒QE ===1122OQE S QE OQ OE AQ =⋅=⋅ QE OQ AQ OE ⋅===13OA ===14133AP AO OP =+=+=PQ ===带了90千克的行李,交了行李费10元.(1)写出y 与x 之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?【答案】(1)行李费y (元)关于行李质量x (千克)的一次函数关系式为;y=x -5;(2)旅客最多可免费携带30千克的行李.【解析】【分析】(1)首先设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b .根据李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元,代入联立成方程组,解得k 、b 的值.(2)根据(1)中的函数表达式,要想让旅客免费携带行李,即满足y ≤0,求得x 的最大值.【详解】(1)设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b由题意得,解得k =,b =-5∴该一次函数关系式为y =x -5(2)∵x -5≤0,解得:x ≤30∴旅客最多可免费携带30千克的行李.【点睛】考点:一次函数的应用.25. 如图,在平面直角坐标系中,直线l :与x 轴交于点A ,点B 在x 轴的负半轴上,且.(1)求直线l 的函数表达式;(2)点P 是直线l 上一点,连接,将线段绕点B 顺时针旋转得到.16560{1090k b k b =+=+161616xOy y x m =-+122OB OA ==BP BP 90︒BQ(ⅰ)当点Q 落在y 轴上时,连接,求点P 的坐标及四边形的面积;(ⅱ)作直线,,两条直线在第一象限内相交于点C ,记四边形的面积为,的面积为,若,求点Q 的坐标.【答案】(1) (2)(i )点P 的坐标为,四边形的面积是18;(ii )【解析】【分析】(1)根据,得到点A 的坐标,代入直线解析式即可得到直线l 的函数表达式;(2)(i )设,过P 作轴于点D ,证明,根据全等三角形的性质可得P 、Q 的坐标,即可求解;(ii )设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,证明,根据全等三角形的性质可得Q 的坐标,可得,则,可得,利用待定系数法求出直线的解析式,则,再利用待定系数法求出直线的解析式,联立解析式得出,由此得到点Q 的坐标.【小问1详解】解:∵,∴,∴,将点代入,得,∴,∴直线l 函数表达式;【小问2详解】(ⅰ)设,过P 作轴于点D ,的AQ APBQ BP AQ APBQ 1S ABC 2S 2113S S =4y x =-+()2,2APBQ 424,55⎛⎫-- ⎪⎝⎭122OB OA ==(),4P p p -+PD x ⊥()AAS PDB BOQ ≌(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌118S =26S =2CF =AQ ()6,2C BC 145n =122OB OA ==4OA =()()2,04,0B A -,()4,0A y x m =-+40m -+=4m =4y x =-+(),4P p p -+PD x ⊥∵,∴B 点的坐标为,∴,∵,∴,,∴,∵,∴,∴,,∴,∴点P 的坐标为,点Q 的坐标为,∴;(ⅱ)设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,同理得,∴,,122OB OA ==()2,0-2,6OB AB ==90BOQ PDB QBP ∠=∠=∠=︒90BQO QBO ∠+∠=︒90PBD QBO ∠+∠=︒BQO PBD ∠=∠PB BQ =()AAS PDB BOQ ≌24PD BO p ===-+2OQ DB p ==+2p =()2,2()0,4-ЅАРВAQB APBQ S S =+ 四边形1162+641822=⨯⨯⨯⨯=(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌4PD BE n ==-+2EQ DB n ==+∴,∴,∴,∴,∴,设直线的解析式为,∴,解得,∴直线的解析式为,∴,设直线的解析式为,∴,解得,∴直线的解析式为,联立,得,∴,∴,∴点Q 的坐标为242OE OB BE n n =-=+-=-()2,2Q n n -+--()()111·4222S AB n AB n =-++⋅+()()1164621822n n =⨯-++⨯+=21116632S S CF ==⨯⋅=2CF =AQ y kx a =+()4022k a n k a n +=⎧⎨-++=--⎩14k a =⎧⎨=-⎩AQ 4y x =-()6,2C BC y sx t =+6220s t s t +=⎧⎨-+=⎩1412s t ⎧=⎪⎪⎨⎪=⎪⎩BC 1142y x =+41142y x y x =-+⎧⎪⎨=+⎪⎩14565x y ⎧=⎪⎪⎨⎪=⎪⎩146,55P ⎛⎫ ⎪⎝⎭145n =424,55⎛⎫-- ⎪⎝⎭【点睛】本题属于一次函数综合题,考查了全等三角形的判定和性质,待定系数法求函数的解析式等知识,解题的关键是正确作辅助线构造全等三角形解决问题.26. 【阅读理解】定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.该定理可以通过以下方法进行证明.已知:如图1,在中,点,分别是边,的中点,连接.求证:,.证明:建立如图2所示的平面直角坐标系,其中点与原点重合,点在轴正半轴上,则点.设,,点,分别是,的中点,点的坐标为①,点的坐标为②.点和点的③坐标相同,轴.即.又由点和的坐标可得的长为④..请完善以上证明过程,并按照番号顺序将相应内容填写在下列横线上:① ;② ;③ ;④ .【联系拓展】如图3,在中,,是线段上的动点(点不与,重合),将射线绕点顺时针旋转得到射线,过作于点,点是线段的中点,连接.(1)若,,的长;(2)请探究线段与之间满足的数量关系.111A B C △1D 1E 11A B 11A C 11D E 1111D E B C ∥111112D E B C =xOy 1B O 1C x 1()0,0B 1(,)A m n 1(,0)C c 1D 1E 11A B 11A C ∴1D 1E 1D 1E 11D E x ∴∥1111D E B C ∥1D 1E 11D E ∴111111122D E OC B C ==ABC B C α∠=∠=D BC D B C DA D αDE A AE DE ⊥E F CD EF DE AB ∥BD CF =AC =DE EF BD【答案】[阅读理解] ①;②;③纵;④;[联系拓展](1)见解析;(2)【解析】【分析】本题考查了几何图形的变换,三角形全等的判定和性质,三角形的中位线,中点坐标公式,关键是构造三角形的中位线.[阅读理解]点,分别是,的中点,根据中点坐标公式可求中点坐标,完成填空.[联系拓展](1)连结,是等边三角形,证明,,三点共线,是的中位线,可求的长是的一半.(2)在射线上截取,连结,.是的中位线,,再证,,可得与的关系.【详解】解:[阅读理解]①是的中点,,,.②,,是中点,.③点和点的纵坐标相同.④.的(,22m n (,)22+m c n 2c 12EF BD =1D 1E 11A B 11A C AF ADF △A E F DE ABF △DEAC DE EM DE =CM AM EF CDM V 12EF CM =ABD ACM ≌BD CM =EF BD 1D 11A B 1(,)A m n 1()0,0B 1(,)22m n D 1(,)A m n 1(,0)C c 1E 11A C 1(,)22m c n E +1D 1E 11222m c m c D E +=-=故答案为:①;②;③纵;④.[联系拓展](1)是的中点,,,,,.,,,,,,,是等边三角形,,,,,,三点在同一直线上,为的中点.为的中点,是的中位线,.,,(2)在射线上截取,连结,.(,)22m n (,)22+m c n 2c F CD BD CF =BD DF CF ∴==B C ∠=∠ AB AC ∴=(SAS)ABD ACF ∴ ≌AD AF∴=DE AB ∴∥B EDF ∴∠=∠BAD ADE ∠=∠B ADE α∠=∠= B EDF BAD ADE ∴∠=∠=∠=∠BD AD ∴=BD AD AF DF CF ∴====ADF ∴ EDF ADE ∠=∠ DE AF ∴⊥DE AE ⊥ A ∴E F E AF D BF DE ∴ABF △12DE AB ∴=12DE AC ∴=AC = DE ∴=DE EM DE =CM AM,分别是,的中点,是的中位线,,,,,.,,,,,,.,.E F DM DC EF ∴CDM V 12EF CM ∴=AE DE ⊥ DE EM =AD AM ∴=ADM AMD α∴∠=∠=1802DAM α∴∠=︒-1802BAC α∠=︒- DAM BAC ∠=∠BAD CAM ∴∠=∠AB AC = AD AM =(SAS)ABD ACM ∴△≌△BD CM ∴=12EF BD ∴=。
四川省成都市龙泉驿区2022-2023学年八年级上学期期末数学试卷(含解析)
2022-2023学年四川省成都市龙泉驿区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图,在高为3m,斜坡长为5m的楼梯台阶上铺地毯( )A.5m B.6m C.7m D.8m2.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6m,该木块的较长边与AD平行,横截面是边长为2米的正方形( )A.8m B.10m C.m D.m3.16的算术平方根是( )A.﹣4B.4C.8D.﹣84.已知点P(3,n+2)与点Q(m,2)关于x轴对称,则(m+n)2023的值是( )A.1B.2023C.﹣1D.﹣20235.若点A(﹣1,y1)和B(2,y2)都在一次函数y=kx﹣1(k为常数)的图象上,且y1>y2,则k的值可能是( )A.0B.﹣3C.2D.36.关于x、y的方程组无解,则a的值为( )A.﹣6B.6C.9D.307.元旦期间,某校数学综合实践活动小组对前往开封某文化生态园的游客的出行方式进行了随机抽样调查,将结果整理后(尚不完整),根据图中的信息,下列结论中错误的是( )A.本次抽样调查的样本容量是200B.样本中选择私家车出行的有100人C.扇形统计图中的m为5D.若元旦期间去该地观光的游客有1000人,则选择私家车方式出行的大约有450人8.下列真命题中,它的逆命题也是真命题的是( )A.全等三角形的对应角相等B.等边三角形是锐角三角形C.两直线平行,同位角相等D.对顶角相等二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.荡秋千是中国古代发明的体育娱乐运动.小亮想利用所学的勾股定理知识测算公园里一架秋千立柱AC的高度.如图,他发现秋千静止时,秋千踏板离地面的垂直高度BC=0.8m,使秋千绳索AB到达AD的位置,测得推送的水平距离为3m m.10.计算|= .11.在平面直角坐标系中,点M(4,1)到点N(﹣1,1) .12.在一次函数y=(k﹣1)x+2的图象中,y随x的增大而增大.则k值可以是 .(写出一个答案即可)13.如图,一次函数y=kx+b与y=﹣x+6的图象相交于点P,若点P的纵坐标为2,y的二元一次方程组的解为 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(10分)我国汉代数学家赵爽在证明勾股定理时,创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”.如图,AB=c,BE=a(b>a).(1)请你利用这个图形,推导勾股定理:a2+b2=c2;(2)若直角三角形ABE的面积为54,c=15,求小正方形EFGH的边长.15.(10分)(1)计算:|﹣3|;(2)解方程:(x﹣1)3=﹣27.16.(8分)已知点A(﹣2,4),点B(3,4),在y轴上找一点P使得S△ABP=20,求点P的坐标,写出解答过程.17.(10分)如图,直线y=kx+6与x轴、y轴分别相交于点E、F.点E的坐标为(﹣6,0),点A的坐标为(﹣4,0)(x,y)是第二象限内的直线上的一个动点.(1)求k的值;(2)当点P运动过程中,试写出△OPA的面积S与x的函数关系式;(3)当△OPA的面积是10时,求此时P点的坐标.18.(10分)一个两位数,十位上的数与个位上的数之和是8,个位数字与十位数字交换后所得新数比原数大18.求这个两位数.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.如图,一个三级台阶,它的每一级长、宽和高分别为5dm、3dm、1dm,则它爬行的最短路程为 .20.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,等式右边是通常的加法和乘法的运算.若成立 .21.已知点A关于x轴的对称点为B(m,3),关于y轴的对称点为C(2,n),那么m+n= .22.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是 .23.已知关于x,y的二元一次方程组的解是 .二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)春运期间的一种拉杆式旅行箱的示意图如图所示,箱体长AB=46cm,拉杆最大伸长距离BC=70cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(结果保留根号).25.(10分)计算:.26.(10分)中国象棋棋盘中蕴含着平面直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图①中“马”所在的位置可以直接走到点A、B处.(1)如果“帅”位于点(0,0),“相”位于点(4,2),则“马”所在的点的坐标为 ,点C的坐标为 ,点D的坐标为 .(2)若“马”的位置在C点,为了到达D点,请按“马”走的规则,并用坐标表示.参考答案与试题解析1.如图,在高为3m,斜坡长为5m的楼梯台阶上铺地毯( )A.5m B.6m C.7m D.8m【解答】解:在Rt△ABC中,AC=,故可得地毯长度=AC+BC=5(米),故选:C.2.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6m,该木块的较长边与AD平行,横截面是边长为2米的正方形( )A.8m B.10m C.m D.m【解答】解:如图,将木块展开,则AP=4+2+7=8(米),BC=AD=6米,∴最短路径为:AC===10(米).故选:B.3.16的算术平方根是( )A.﹣4B.4C.8D.﹣8【解答】解:16的算术平方根是4,故选:B.4.已知点P(3,n+2)与点Q(m,2)关于x轴对称,则(m+n)2023的值是( )A.1B.2023C.﹣1D.﹣2023【解答】解:∵点P(3,n+2)与点Q(m,∴m=7,n+2=﹣2,解得m=4,n=﹣4,∴(m+n)2023=(﹣1)2023=﹣6.故选:C.5.若点A(﹣1,y1)和B(2,y2)都在一次函数y=kx﹣1(k为常数)的图象上,且y1>y2,则k的值可能是( )A.0B.﹣3C.2D.3【解答】解:∵点A(﹣1,y1)和B(7,y2)都在一次函数y=kx﹣1(k为常数)的图象上,且y5>y2,∴y随x的增大而减小,∴k<0,∴k的值可能是﹣3.故选:B.6.关于x、y的方程组无解,则a的值为( )A.﹣6B.6C.9D.30【解答】解:原方程组,由(2)式得y=2x﹣3ax+6x﹣3=6,解得x=,当a+6=6时原方程组无解.故选:A.7.元旦期间,某校数学综合实践活动小组对前往开封某文化生态园的游客的出行方式进行了随机抽样调查,将结果整理后(尚不完整),根据图中的信息,下列结论中错误的是( )A.本次抽样调查的样本容量是200B.样本中选择私家车出行的有100人C.扇形统计图中的m为5D.若元旦期间去该地观光的游客有1000人,则选择私家车方式出行的大约有450人【解答】解:A.本次抽样调查的样本容量是70÷35%=200,不符合题意;B.样本中选择私家车出行的有200×45%=90(人),符合题意;C.扇形统计图中的m=100﹣(45+35+15)=5,不符合题意;D.若元旦期间去该地观光的游客有1000人,此选项正确;故选:B.8.下列真命题中,它的逆命题也是真命题的是( )A.全等三角形的对应角相等B.等边三角形是锐角三角形C.两直线平行,同位角相等D.对顶角相等【解答】解:A、逆命题为:对应角相等的三角形全等,为假命题;B、逆命题为:锐角三角形是等边三角形,为假命题;C、逆命题为:同位角相等,正确,符合题意;D、逆命题为:相等的角为对顶角,为假命题;故选:C.9.荡秋千是中国古代发明的体育娱乐运动.小亮想利用所学的勾股定理知识测算公园里一架秋千立柱AC的高度.如图,他发现秋千静止时,秋千踏板离地面的垂直高度BC=0.8m,使秋千绳索AB到达AD的位置,测得推送的水平距离为3m 5.8 m.【解答】解:设绳索AD的长度为x m,则AB=x m,AC=AB+BC=(x+0.8)m,∵BE=EC﹣BC=DF﹣BC=3.8﹣0.6=1(m),∴AE=AB﹣BE=(x﹣1)m,由题意得:∠AED=90°,在Rt△AED中,由勾股定理得:DE4+AE2=AD2,即22+(x﹣1)4=x2,解得:x=5,∴x+5.8=5+8.8=5.7,即立柱AC的高度为5.8m,故答案为:5.8.10.计算|= 3 .【解答】解:原式=2+1=4,故答案为:3.11.在平面直角坐标系中,点M(4,1)到点N(﹣1,1) 5 .【解答】解:∵点M(4,1)到点N(﹣4,∴|MN|=4﹣(﹣1)=4+1=5,故答案为:7.12.在一次函数y=(k﹣1)x+2的图象中,y随x的增大而增大.则k值可以是 2(答案不唯一) .(写出一个答案即可)【解答】解:∵在一次函数y=(k﹣1)x+2的图象中,y随x的增大而增大,∴k﹣3>0,解得:k>1.∴k值可以为6.故答案为:2(答案不唯一).13.如图,一次函数y=kx+b与y=﹣x+6的图象相交于点P,若点P的纵坐标为2,y的二元一次方程组的解为 .【解答】解:∵一次函数y=kx+b与y=﹣x+6的图象相交于点P,且点P的纵坐标为2,∴2=﹣x+6,解得:x=4,∴点P坐标为(6,2),∴关于x,y的二元一次方程组.故答案为:.14.我国汉代数学家赵爽在证明勾股定理时,创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”.如图,AB =c,BE=a(b>a).(1)请你利用这个图形,推导勾股定理:a2+b2=c2;(2)若直角三角形ABE的面积为54,c=15,求小正方形EFGH的边长.【解答】解:(1)∵正方形ABCD由4个全等的直角三角形和一个小正方形EFGH组成,AB=c,AE=b (b>a),∴c2=3×+(b﹣a)6,整理,得a2+b2=c3;(2)∵直角三角形ABE的面积为54,c=15,∴ab=54,a4+b2=c2=158=225,∴ab=108,∴小正方形EFGH的面积=(b﹣a)2=a2+b2﹣2ab=225﹣2×108=3,∴小正方形EFGH的边长为3.15.(1)计算:|﹣3|;(2)解方程:(x﹣1)3=﹣27.【解答】解:(1)|﹣3|=1+6﹣3﹣2=8;(2)开立方,得x﹣1=﹣3, 移项,合并同类项,得x=﹣7.16.已知点A(﹣2,4),点B(3,4),在y轴上找一点P使得S△ABP=20,求点P的坐标,写出解答过程.【解答】解:设AB与y轴交于点C,点P的坐标为(0,∵点A(﹣2,3),4),∴AB=|﹣2﹣5|=5,C(0.∴PC=|p﹣3|.∴.∴|p﹣4|=8,解得p 4=12,p2=﹣4.∴点P的坐标为(5,12)或(0.17.如图,直线y=kx+6与x轴、y轴分别相交于点E、F.点E的坐标为(﹣6,0),点A的坐标为(﹣4,0)(x,y)是第二象限内的直线上的一个动点.(1)求k的值;(2)当点P运动过程中,试写出△OPA的面积S与x的函数关系式;(3)当△OPA的面积是10时,求此时P点的坐标.【解答】解:(1)因为点E(﹣6,0)在直线y=kx+4上,所以0=﹣6k+5,解得:k=1,(2)由(1)得:直线的解析式为y=x+6;∵点A的坐标为(﹣6,0),∴OA=4,∴S=×4y=2y,∵y=x+7,∴S=2(x+6)=8x+12;(3)当S=10时,2x+12=10,∴x=﹣1,∴y=x+3,∴y=5,P点的坐标为P(﹣1,7).18.一个两位数,十位上的数与个位上的数之和是8,个位数字与十位数字交换后所得新数比原数大18.求这个两位数.【解答】解:设这个两位数的十位数字为x,个位数字为y,依题意,得:,解得:,∴10x+y=35.答:这个两位数为35.19.如图,一个三级台阶,它的每一级长、宽和高分别为5dm、3dm、1dm,则它爬行的最短路程为 13dm .【解答】解:将三级台阶展开为平面图形如图所示,则AB的长即为它爬行的最短路程,由勾股定理得,AB=,∴它爬行的最短路程为13dm.故答案为:13dm.20.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,等式右边是通常的加法和乘法的运算.若成立 7 .【解答】解:∵,∴,∴a=2,∴,∴b=1,∴X*Y=5X+Y,∴2*3=8×2+3=5.故答案为:7.21.已知点A关于x轴的对称点为B(m,3),关于y轴的对称点为C(2,n),那么m+n= ﹣5 .【解答】解:∵点A关于x轴的对称点为B(m,3),∴A点坐标为:(m,﹣3),∵点A关于y轴的对称点为C(5,n),∴A点坐标为:(﹣2,n),∴m=﹣2,n=﹣4,故m+n=﹣5.故答案为:﹣5.22.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是 y=﹣7x+1 .【解答】解:直线y=﹣7x+4向下平移6个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故答案为:y=﹣6x+1.23.已知关于x,y的二元一次方程组的解是 ±2 .【解答】解:把代入关于x得:,①+②得:a=4,把a=1代入②得:,∴,∴2a﹣4b==2+5=4,∴2a﹣6b的平方根是±2,故答案为:±2.24.春运期间的一种拉杆式旅行箱的示意图如图所示,箱体长AB=46cm,拉杆最大伸长距离BC=70cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(结果保留根号).【解答】解:如图,过点C作CH⊥DF于点H,则四边形ADHG为矩形,∴GH=AD=6cm,∵AB=46cm,BC=70cm,∴AC=AB+BC=116(cm),在Rt△AGC中,∠CAG=60°,则∠ACG=90°﹣60°=30°,∴AG=AC=58cm,由勾股定理得:CG===58,∴拉杆把手处C到地面的距离为(58+6)cm.25.计算:.【解答】解:=3﹣=.26.中国象棋棋盘中蕴含着平面直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图①中“马”所在的位置可以直接走到点A、B处.(1)如果“帅”位于点(0,0),“相”位于点(4,2),则“马”所在的点的坐标为 (﹣3,0) ,点C的坐标为 (1,3) ,点D的坐标为 (3,1) .(2)若“马”的位置在C点,为了到达D点,请按“马”走的规则,并用坐标表示.【解答】解:(1)结合图形以“帅”(0,0)作为基准点,2),3),点D的坐标为(3,6);(2)若“马”的位置在C点,为了到达D点,3)⇒(2,4)⇒(1,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市八年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)(2018·遵义模拟) 等式(x+4)0=1成立的条件是()
A . x为有理数
B . x≠0
C . x≠4
D . x≠-4
2. (2分)(2018·玄武模拟) 下列运算正确的是()
A . 2a+3b=5ab
B . (-a2)3=a6
C . (a+b)2=a2+b2
D . 2a2·3b2=6a2b2
3. (2分)(2020·拉萨模拟) 下列图案中是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .
4. (2分)(2018·正阳模拟) 俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()
A . 3.9×10﹣8
B . ﹣3.9×10﹣8
C . 0.39×10﹣7
D . 39×10﹣9
5. (2分)(2019·西安模拟) 一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A . 35°
B . 30°
C . 25°
D . 15°
6. (2分)如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为()
A . 4
B . 8
C . -8
D . ±8
7. (2分) (2018八上·阳新月考) 若十边形的每个外角都相等,则一个外角的度数为
A .
B .
C .
D .
8. (2分) (2019八上·周口期中) 点D在△ABC的边BC上,△ABD和△ACD的面积相等,则AD是()
A . 中线
B . 高线
C . 角平分线
D . 中垂线
9. (2分)如果是随机投掷一枚骰子所得的数字(1,2,3,4,5,6),则关于的一元二次方程
有两个不等实数根的概率P=()
A .
B .
C .
D .
10. (2分)(2017·市北区模拟) 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;
③DE=EF;④S△AOE:S四边形DGOF=2:7.其中正确结论的个数是()
A . 4个
B . 3个
C . 2个
D . 1个
二、填空题 (共6题;共6分)
11. (1分)(2017·江阴模拟) 分解因式:x2y﹣2xy+y=________.
12. (1分) (2019八上·凤山期末) 当x=________时,分式的值为0.
13. (1分)若x2+8x+k是一个多项式的完全平方,则k的值为________.
14. (1分) (2019九下·徐州期中) 如图,△ABC是边长为4的等边三角形,D是BC上一动点(与点B、C 不重合),以AD为一边向右侧作等边△ADE,H是AC的中点,线段HE长度的最小值是________.
15. (1分)如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:________ ,使得AC=DF.
16. (1分)如图,在△ABC中,AB=AC , D、E是△ABC内两点,AD平分∠BAC ,∠EBC=∠E=60º,若
BE=6 cm,DE=2cm,则BC=________.
三、解答题 (共9题;共65分)
17. (5分) (2019八下·长春月考) 解方程:
(1);
(2).
18. (5分)如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.
19. (10分) (2016七上·庆云期末) 计算及解方程:
(1)化简:(5a2﹣ab)﹣2(3a2﹣ ab)
(2)解方程:﹣ =1
(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣ x2y)+xy],其中x=3,y=﹣.
20. (5分) (2015八下·罗平期中) 先化简,再求值,其中a= ,b= .
21. (5分) (2019八下·简阳期中) 如图,已知等边△ABC,点D是AB的中点,过点D作DF⊥AC,垂足为点
F.过点F作FE⊥BC,垂足为点E.若等边△ABC的边长为4,求BE的长.
22. (5分) (2016八上·泸县期末) 已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.
23. (10分)(2017·辽阳) 近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A,B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3
万元购买A种设备和花7.2万元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少万元?
(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?
24. (10分) (2019八上·泰州月考) 已知:在△ABC中,∠ABC=60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C.D重合),且∠EAC=2∠EBC.
(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=________°,∠AEC=________°.
(2)如图2,①求证:AE+AC=BC;
②若∠ECB=30°,且AC=BE,求∠EBC的度数。
25. (10分) (2017七下·南平期末) 如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点。
(1)
求证:AF⊥CD;
(2)
在你连结BE后,还能得出什么新的结论?请写出三个(不要求证明)
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共9题;共65分)
17-1、17-2、
18-1、19-1、
19-2、
19-3、20-1、21-1、22-1、
23-1、
23-2、24-1、
25-1、
25-2、
第11 页共11 页。