八年级数学上册分式通分与约分练习题
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
八年级上册数学分式计算题
八年级上册数学分式计算题
一、分式化简求值
1. 化简并求值:公式,其中公式。
解析:
- 首先对分子分母进行因式分解:
- 对于分子公式;
- 对于分母公式。
- 然后将原式进行化简:
- 原式公式
- 约分后得到:公式。
- 当公式时,代入化简后的式子:
- 把公式代入公式,得到公式。
2. 化简求值:公式,其中公式。
解析:
- 先对分子分母因式分解:
- 分子公式;
- 分母公式。
- 然后化简式子:
- 原式公式。
- 当公式时:
- 代入化简后的式子得:公式。
二、分式的加减运算
1. 计算:公式。
解析:
- 先通分,找到两个分式分母的最简公分母为公式。
- 对两个分式进行通分变形:
- 公式;
- 公式。
- 然后进行减法运算:
- 原式公式。
2. 计算:公式。
解析:
- 先对分母进行因式分解,公式。
- 通分,最简公分母为公式。
- 公式;
- 公式。
- 进行加法运算:
- 原式公式。
三、分式的乘除运算
1. 计算:公式。
解析:
- 先对分子分母因式分解:
- 分子公式; - 分母公式。
- 然后将除法转化为乘法:
- 原式公式。
- 约分得到:
- 原式公式。
2. 计算:公式。
解析:
- 对分子分母因式分解:
- 分子公式; - 分母公式。
- 然后进行乘法运算:
- 原式公式。
初二分数通分练习题
初二分数通分练习题题目一:把下列各分数化为通分分数,填写在横线上。
1. 3/4,5/6,2/32. 1/2,3/4,5/6,7/83. 2/5,3/8,4/5,7/10解题思路:通分是将两个或更多分数的分母改成相同的数,使它们的分数可进行比较或运算。
要想通分,首先需要找到扩大分母的最小公倍数。
解答:1. 3/4,5/6,2/3将3/4通分为9/12,将5/6通分为10/12,将2/3通分为8/122. 1/2,3/4,5/6,7/8将1/2通分为4/8,将3/4通分为6/8,将5/6通分为10/12,将7/8通分为7/83. 2/5,3/8,4/5,7/10将2/5通分为16/40,将3/8通分为15/40,将4/5通分为32/40,将7/10通分为28/40按照题目要求,计算下列分数的和,并写成通分分数形式。
1. 1/3 + 1/42. 2/7 + 3/5 + 4/93. 5/6 + 1/12 + 3/8解题思路:要进行分数的加法运算,首先需要找到它们的通分分母,然后将分子相加即可。
解答:1. 1/3 + 1/4通分分母为12,得到5/122. 2/7 + 3/5 + 4/9通分分母为315,得到162/3153. 5/6 + 1/12 + 3/8通分分母为24,得到15/24题目三:按照题目要求,计算下列分数的差,并写成通分分数形式。
1. 3/4 - 1/23. 5/6 - 2/5解题思路:要进行分数的减法运算,首先需要找到它们的通分分母,然后将分子相减即可。
解答:1. 3/4 - 1/2通分分母为4,得到1/42. 7/8 - 2/3通分分母为24,得到11/243. 5/6 - 2/5通分分母为30,得到13/30题目四:按照题目要求,计算下列分数的积,并写成通分分数形式。
1. 2/3 × 3/42. 1/5 × 4/73. 3/8 × 5/9解题思路:要进行分数的乘法运算,直接将分子相乘得到新的分子,分母相乘得到新的分母。
初中数学分式的约分通分综合练习题(附答案)
初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练题一、单选题1.下列分式中,不论$x$取何值,一定有意义的是()frac{x-1}{x-1}\cdot\frac{x+1}{x-1}$A。
$\frac{x+1}{x}$B。
$x$C。
$\frac{x^2-1}{x}$D。
$\frac{x^2+1}{x}$2.下列代数式中,是分式的为()A。
$\frac{1}{2}$B。
$\frac{x}{3}$C。
$\frac{x}{2}-y$D。
$\frac{5}{x^3}$3.下列各式中,是分式的是()A。
$\frac{2x+1}{x(x-3)}$B。
$2$C。
$\frac{x}{\pi-2}$D。
$\frac{1}{3x^2}$4.当分式$\frac{x}{2x-1}$无意义时,$x$的值是()A。
$2$B。
$-\frac{1}{2}$C。
$0$D。
$1$5.下列各式正确的是()A。
$\frac{b+xa}{b+x}=\frac{a}{b+1}$B。
$\frac{y^2n}{n-ax}=\frac{y}{x^2}$C。
$\frac{n}{ma}=\frac{1}{a}$($a\neq 0$)D。
$m=m-a$6.下列三个分式$\frac{1}{2x^2}$,$\frac{4(m-n)}{3x}$,$\frac{2x+4x^2y}{x^2-1}$,的最简公分母是()A。
$4(m-n)x$B。
$2(m-n)x^2$C。
$\frac{1}{4}x^2(m-n)$D。
$4(m-n)x^2$7.计算$\frac{(x+y)^2-(x-y)^2}{4xy}$的结果为()A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{4}$D。
$0$8.下列分式:$\frac{3x}{-x^2}$,$\frac{x-y}{x^2+y^2}$,$\frac{x+y}{xy+x}$,$\frac{2x+4x^2y}{x^2-1}$,其中是最简分式的有()A。
人教版八年级上册数学分式含答案
第十五章 分式15.1分式专题一 分式有意义的条件、分式的值为0的条件1.使代数式x -1有意义,那么x 的取值范围是( )A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠12.如果分式23273x x --的值为0,则x 的值应为 .3.若分式2299x x x --6+的值为零,求x 的值.专题二 约分4.化简222m mn n m mn -2+-的结果是( )A .2n 2B .m nm - C .m n m n -+ D .m nm +5.约分:29()2727a y x x y --=____________.6.从下列三个代数式中任选两个构成一个分式,并将它化简:4x 2-4xy +y 2,4x 2-y 2,2x -y .状元笔记【知识要点】1.分式的概念一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:A B =CBCA⋅⋅,AB=A CB C÷÷(其中A,B,C是整式,C≠0).3.约分与通分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.【温馨提示】1.分式的值为0受到分母不等于0的限制,“分式的值为0”包含两层意思:一是分式有意义,二是分子的值为0,不要误解为“只要分子的值为0,分式的值就是0”.2.分式的基本性质中的A、B、C表示的都是整式,且C≠0.3.分子、分母必须“同时”乘C(C≠0),不要只乘分子(或分母).4.性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的.但是变形前后分式中字母的取值范围是变化的.【方法技巧】1.分式的符号法则可总结为:一个负号随意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意”(即根据题目要求)跑到分子、分母以及分式本身三者中的任何一个位置上;若分式中出现两个负号,则可以将这两个负号同时去掉.[来源:数理化网]2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适当”的不为零的数,这里的“适当”的数又分两种情况:若分式分子、分母中的系数都是分数时,“适当”的数就是分子、分母中各项系数的所有分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适当的数”就是10n,其中n是分子、分母中各项系数的小数点后最多的位数.最后根据情况需要约分时,则要约分.参考答案:1.D 解析:根据题意得:x ≥0且x -1≠0.解得x ≥0且x ≠1.故选D .2.-3 解析:根据分式值为0,可得⎩⎨⎧≠-=-0302732x x ,解得x =-3. 3.解:∵2299x x x --6+的值为0,∴x 2-9=0且x 2-6x +9≠0.解x 2-9=0,得x =±3.当x =3时,x 2-6x +9=32-6×3+9=0,故x =3舍去.当x =-3时,x 2-6x +9=(-3)2-6×(-3)+9=36.∴当分式2299x x x --6+的值为0时,x =-3.4.B 解析:222m mn n m mn -2+-=2()()m n m m n --=m nm -.故选B .5.3ax ay - 解析:29()2727a y x x y --=29()27()a x y x y --=()3a x y -=3ax ay-.6.解:答案不唯一,如:2222444x xy y x y -+-=2(2)(2)(2)x y x y x y -+-=22xyx y -+.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
八年级上册数学同步练习题库:分式(简答题:全部)
分式(简答题:全部)1、若,则x的取值范围是____________.2、若有意义,则的取值范围是___________________.3、已知=0,则分式的值是_____.4、我们把分子为1的分数叫做理想分数,如,,,…,任何一个理想分数都可以写成两个不同理想分数的和,如;;;;﹍根据对上述式子的观察,请你思考:如果理想分数(n是不小于2的整数),那么.(用含n的式子表示).5、计算:.6、计算:.7、计算:()﹣1+|2﹣|+()0﹣(﹣1)2016.8、约分,通分:(1);(2);(3)•.9、计算:;10、已知分式的值为0,求a的值及b的取值范围.11、已知a2﹣3a+1=0,求代数式的值.12、(1)约分:;(2)约分:.13、在给出的三个多项式:x2+4xy+4y2、x2﹣4y2、x2+2xy中,请你任选出两个分别作为分子和分母组成分式,并进行化简运算.14、化简:.15、已知分式的值是正整数,求整数a.16、约分:.17、化简:.18、约分:.19、先化简,再求值.(1),其中m=5.(2),其中m=3,n=4.20、对于任意的实数x,记f(x)=.例如:f(1)==,f(﹣2)==(1)计算f(2),f(-3)的值;(2)试猜想f(x)+f(﹣x)的值,并说明理由;(3)计算f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014).21、(1)计算:(2)22、先化简,再从0,﹣2,2,﹣1,1中选取一个恰当的数作为a的值代入求值.23、通分:(1),(2),.24、x取何值时,下列分式有意义:(1)(2)(3)25、(1)已知分式,x取什么值时,分式的值为零?(2)x为何值时,分式的值为正数?26、利用公式化简分式:27、不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1);(2)28、已知,求的值.29、在三个整式x2-1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再选取一个你认为符合题意的x的值代入求值.30、请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:.(1)将分式化为带分式;(2)当x取哪些整数值时,分式的值也是整数?(3)当x的值变化时,分式的最大值为.31、把下列各式化为最简分式:(1)=_________;(2)=_________.32、约分(1); (2).33、通分:(1),;(2),.34、约分:(1);(2).35、(1)计算:(2)先化简,再求值:,其中x是满足不等式组的最小整数.36、解方程或化简(1)(2)(3)37、已知,求的值。
人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案
人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.根据分式的性质,分式a ab --可变形为( ) A .a a b --- B .a a b + C .a a b -+ D .a a b- 2.下列分式变形从左到右一定成立的是( )A .22a a b b= B .a ac b bc = C .a a b b -=-- D .ac a bc b = 3.使得等式4477m m⨯=⨯成立的m 的取值范围为( ) A .0m =B .1m =C .0m =或1m =D .0m ≠ 4.把分式 2a b ab-的 a ,b 都扩大到原来的 3 倍,则分式的值( ) A .扩大到原来的9倍B .扩大到原来的3倍C .不变D .缩小到原来的 13 5.下列分式中,最简分式是( )A .22x x B .21x x +- C .122x x -- D .211x x +- 6.下列分式中与x y x y -+--的值相等的分式是( ) A .+-x y x y B .x y x y -+ C .-+-x y x y D .-x y x y-+ 7.将分式11134312a b a b -+的分子与分母中的各项系数化为整数,正确的是 ( ) A .3234a b a b -+ B .4334a b a b -+ C .6334a b a b ++ D .6434a b a b-+ 8.下列分式的变形正确的是( )A .11a b a b=---- B .22x y x y x y +=++ C .11a a b b +=+ D .2111a a a -=-+ 9.分式2x21x x - 31x +的最简公分母是( )A.A=3,B=﹣2B.A=2,B=3C.A=3,B=2D.A=﹣2,B=3二、填空题三、解答题(1)比较1S 与2S 的大小,并说明理由:(2)该小区参与“最美小区”评选活动,其中一项评比指标是小区规划绿化区域的绿化覆盖率不低于50%,若6a b =,该区域能否通过该项指标的评比?(绿化覆盖率100%⨯绿地面积=规划绿化区域面积) 参考答案:1.C2.D3.D4.D5.B6.B7.D8.D9.B10.B11.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.25103x y x y-+ 13.2x y x y-+ 14.310x y15.116.(1)3xy -;(2)2221455,3121212y x x x y xy x y==.。
分式的基本性质—数学人教版八年级上册随堂小练
分式的基本性质—数学人教版八年级上册随堂小练1.若把分式3x y xy +中的x 和y 都扩大2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小2倍 D.缩小4倍2.下列分式中,属于最简分式的是()A.42x B.221xx + C.211x x -- D.11xx --A.11a a b b +=+B.()()2211a c abb c +=+C.0.220.122x x x y x y =++ D.x y x y x y x y ++-=---7.将分式2x ,23y ,4xy通分,依次为____________.8.回答下列问题:(1)约分:321218xy x y .(2)约分:22816m m --.(3)通分:223b a 与a bc.答案以及解析1.答案:C 解析:由题意,分式3x y xy +中的x 和y 都扩大2倍,∴3222(3)32242x y x y x y x y xy xy⨯+++==⋅;分式的值是原式的12,即缩小2倍;故选:C.2.答案:B 解析:422x x =,故A 项不符合题意;221x x +是最简分式,故B 项符合题意;21111x x x -=-+,故C 项不符合题意;111x x -=--,故D 项不符合题意.解析:A 、11a a b b +≠+,原变形错误,本选项不符合题意;B 、()()2211a c a b b c +=+,本选项符合题意;C 、0.2220.12202x x x x y x y x y=≠+++,原变形错误,本选项不符合题意;D 、()1x y x y x y x y x y x y+++-=-=≠---+-,原变形错误,本选项不符合题意;故选:B.7.答案:212xy ,212xy ,212xy 解析:分式2y x ,213y ,14xy的最简公分母为212xy ,所以各分式通分后为32612y xy ,2412x xy ,2312y xy.8.答案:(1)原式223x y=(2)原式24m =+(3)2222233b b c a a bc =,3233a a bc a bc=解析:(1)原式22622633xy xy x y x y ⋅==⋅.(2)原式2(4)2(4)(4)4m m m m -==+-+.(3)2222222333b b bc b c a a bc a bc ⋅==⋅,23223333a a a a bc a bc a bc⋅==.。
八年级数学人教版上册同步练习分式的基本性质(解析版)
15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
新人教版八年级(上)数学第十五章分式知识点和典型例习题
新人教版八年级(上)数学第十五章分式知识点和典型例习题新人教版八年级(上)数学第十五章分式知识点和典型练习【知识网络】【思维方式】1。
转变观念转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想本章中常用的数学方法包括:因式分解、一般除法、除法归约、分母去除等。
运用数学知识解决实际问题时,首先要建立简单的数学模型,通过数学模型解决实际问题,并经历了“实际问题-分数阶方程模型-求解-解释解的合理性”的数学过程,了解分数阶方程的模型思想对培养解决实际问题的数学建模思想具有重要意义。
3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一课分数运算【知识要点】1.分式的概念以及基本性质;2.与分数运算相关的算法3分数的减少和评估(一般分数和减少)4幂算法【主要公式】1.同分母加减法则:bcb?ca?a?a?a?0?2.不同分母的加减法则:ba?dc?bcac?daac?bc?daac?a?0,c?0?;3.分式的乘法与除法:ba?dc?bdac,ba?cbdbdd?a?c?ac4.同基幂的加减算法:实际上,它是将相似的5项同基幂的乘法和除法合并;A.m●an=am+n;am÷an=am-n6.产品和功率的功率:(AB)=ambn,(上午)Nm=amn7.负指数幂:a-p=1apa0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2(一)、分式定义及有关题型问题类型1:测试分数的定义1【例1】下列代数式中:x?,12x?y,a?bx2?y2x?ya?b,x?y,x?y,是分式的有:.问题类型2:检查分数的有意义条件【例2】当x有何值时,下列分式有意义(1)x?4x?4(2)3x26?x1x2?2(3)x2?1(4)|x|?3(5)x?1问题类型3:检查分数值为0的条件【例3】当x取何值时,下列分式的值为0.(1)x?1x|?23x?3(2)|x2?4(3)x2?2倍?x2?5倍?六题型四:考查分式的值为正、负的条件[例4](1)当x是什么值时,分数48?x为正;(2)当x为何值时,分式5.x3?(x?1)2为负;(3)当x为何值时,分式十、二x?3是一种非负数练习:1.当x取何值时,下列分式有意义:(1)16|x|?3(2)3?x1(x?1)2?1(3)1.1x2。
(常考题)人教版初中数学八年级数学上册第五单元《分式》检测(含答案解析)(5)
一、选择题1.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠2.化简分式2xy xx+的结果是( ) A .y x B .1y x+ C .1y +D .y xx+ 3.关于代数式221a a+的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a +的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 4.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-5.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=- B .4605801140x x =-- C .4605801x 140x =+- D .4605801140x x -=- 6.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a b a b a b+=++ C .221a b a b a b+=++D .221-=-+a b a b a b7.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( )A .2B .3C .4D .58.下列各式计算正确的是( )A .()23233412a b a b-=-B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=-D .()325339a ba b -=-9.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( )①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0. A .①②都对B .①对②错C .①错②对D .①②都错10.11121n n n x x x x+-+-+等于( )A .11n x+ B .11n x- C .21x D .111.2a ab b a ++-的结果是( ).A .2a-B .4aC .2b a b--D .b a- 12.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a二、填空题13.方程31x xx x -=+的解是______. 14.若关于x 的分式方程233x mx x=---的解为正数,则常数m 的取值范围是______. 15.已知实数a 、b 满足32a b =,则a b a b +-_________.16.计算22111m m m---,的正确结果为_____________. 17.关于x 的方程53244x mxx x++=--无解,则m =________. 18.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.19.已知方程3a 1a a 44a --=--,且关于x 的不等式组x a x b>⎧⎪⎨⎪≤⎩只有4个整数解,那么b 的取值范围是____________. 20.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 三、解答题21.(1)解方程.22510111x x x -+=+--. (2)先化简分式(2241442a a a a ---+-)÷212a a a +-,然后在0,1,2中选一个你认为合适的a 值,代入求值.22.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度; (2)请你判断小强上学是否迟到,并说明理由. 23.计算: (1)202()21)3--;(2)22(1)(21)(21)3(4)m m m m ⎡⎤+-+--÷-⎣⎦;(3)2221121x x x x x x --+-+ 24.列方程解应用题:为了响应绿色环保的倡议,我县教体局提出了每个人都践行“双面打印,节约用纸”的口号.已知打印一份资料,如果用A4厚型纸单面打印,总质量为800克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为320克,已知每页A4薄型纸比A4厚型纸轻0.8克,求A4薄型纸每页的质量(墨的质量忽略不计). 25.(1)解分式方程:23193xx x +=-- (2)先化简代数式+⎛⎫+÷ ⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值.26.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升. ②两次加油,每次只加40升的平均油价为:_______________元/升. (解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可. 【详解】去分母得:m-1=2x-2, 解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠, 故答案为:1m >-且1m ≠ 【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.2.B解析:B 【分析】先把分子因式分解,再约分即可. 【详解】解:22(1)1xy x x y y x x x +++==. 故选:B . 【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.3.D解析:D 【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可; 【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0, 当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确;B 、当a 取互为倒数的值时,即取m 和1m ,则11m m⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3)则22112=424++< 22113=939++ , 故C 正确;D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误; 故选:D . 【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.4.D解析:D 【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可. 【详解】 解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1, 故选:D . 【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.5.B解析:B 【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程. 【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--.故选:B. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.6.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a ba b a b a b--=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.7.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -, ∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<, 解分式方程132211y ay y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.8.A解析:A 【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可. 【详解】A 、()23233412ab a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误; C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误;故选:A . 【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.9.C解析:C 【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0. 【详解】 ∵M =11a b a b +++,N = 1111a b +++,∴M ﹣ N =11a b a b +++﹣( 1111a b +++)=22(1)(1)ab a b -++,①当ab =1时,M ﹣N =0, ∴M =N ,当ab >1时,2ab >2, ∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0, ∴M ﹣N >0或M ﹣N <0, ∴M >N 或M <N ; 故①错误; ②M •N =(11a b a b +++)•( 1111a b +++)=()()()()221111aa b b a b a b +++++++. ∵a +b =0, ∴原式=()()2211aba b +++=224(1)(1)aba b ++.∵a ≠﹣1,b ≠﹣1, ∴(a +1)2(b +1)2>0. ∵a +b =0, ∴ab ≤0,M •N ≤0, 故②对. 故选:C . 【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.10.D解析:D 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案. 【详解】1131112311n n n n n n n x x x x x x x x +-+++++--++==, 故选:D 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.11.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.二、填空题13.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方解析:32-. 【分析】两边同时乘以x(x+1),化分式方程为整式方程求解即可. 【详解】 ∵31x xx x -=+, ∴(x+1)(x-3)= 2x , ∴2x -2x-3= 2x , ∴2x+3=0, ∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.14.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条解析:6m <且3m ≠- 【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可. 【详解】解:∵233x m x x =---, ∴62x x m =--,∴63mx -=, ∵方程的解为正数,则603mx -=>, ∴6m <,∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 16.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键解析:11m - 【分析】 根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】解:22111m m m ---=22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.17.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得, 5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4, ∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.18.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.19.【分析】分式方程去分母转化为整式方程求出整式方程的解得到a 的值经检验确定出分式方程的解根据已知不等式组只有4个整数解即可确定出b 的范围【详解】解:分式方程去分母得:3﹣a ﹣a2+4a =﹣1整理得:a解析:34b ≤<【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,经检验确定出分式方程的解,根据已知不等式组只有4个整数解,即可确定出b 的范围.【详解】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,整理,得:a 2﹣3a ﹣4=0,即(a ﹣4)(a +1)=0,解得:a =4或a =﹣1,经检验a =4是增根,故分式方程的解为a =﹣1,∴原不等式组的解集为﹣1<x ≤b ,∵不等式组只有4个整数解,∴3≤b <4,故答案为:3≤b <4.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键. 20.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.三、解答题21.(1)无解;(2)a ,1.【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)先根据分式的化简步骤将分式化为最简分式,再代入恰当的数值即可.【详解】解:(1)方程的两边都乘以(x +1)(x ﹣1)得,2(1)5(1)10x x --+=-∴2x-2-5x-5=-10解得1x =检验,当x =1时,(x +1)(x ﹣1)=0∴x =1是原方程的增根.∴原分式方程无解.(2)原式=2(2)(2)1(2)(2)21a a a a a a a ⎡⎤-+--⋅⎢⎥--+⎣⎦ =1(2)21a a a a a +-⋅-+ =a ,当a =0,2分式无意义,故当a =1时,原式=1.【点睛】本题主要考察了解分式方程及分式的化简求值,解题的关键是熟练掌握解分式方程的一般步骤及分式化简的一般步骤,注意分式有意义的条件.22.(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解; (2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x 米/分钟,则小强爸骑电瓶车的平均速度为5x 米/分钟,根据题意得:30003000245x x-=, 解得100x =,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟; (2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.(1)0;(2)112m -;(3)x 【分析】(1)根据实数的混合运算的法则计算即可;(2)利用完全平方公式,平方差公式去括号、合并同类项后再计算除法即可; (3)根据分式乘法的法则进行计算即可.【详解】解:(1)原式=23212⎛⎫- ⎪⎝⎭=92314--+ =0.25﹣3+1=-1.75; (2)原式=()()222424134m m m m ++-+-÷- =()()2244m m m -+÷- =22444m m m m-+--=112m -; (3)原式=()()()()2111·11x x x x x x +--+- =x .【点睛】本题考查实数的混合运算、整式的混合运算、完全平方公式,平方差公式,分式的乘法运算,正确计算负整数指数幂、零指数幂、多项式乘法公式和因式分解是解题关键. 24.2克.【分析】设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x+0.8)克, 根据题意,得:80032020.8x x =⨯+, 解得 3.2x =经检验 3.2x =是原分式方程的解,且符合题意.答:例子中的A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验. 25.(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解. (2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.26.【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +.解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.。
八年级分式通分练习题及答案
八年级分式通分练习题及答案一、填空: 1、x?15x?2;?2;2的最简公分母是;x3x6xx?12x?1x?yx?12x?y;的最简公分母是;3、的最简公分母是; ;;3232 x?2x?34x2xy5xy2、4、345的最简公分母是;:x?35、在下列等式中,填写未知的分子或分母3y?4x5xy315x4y8x?y2?? ;;;。
??4x4x22?3x3x2?2x9x5y77x6、如果把分式3x中的x和y的值都扩大5倍,那么分式的值 x?y扩大5倍;缩小5倍;不改变;扩大25倍。
、将5a,236a,通分后最简公分母是a2b4b3324238ab; 4ab;8ab; 4ab二、通分 1、3、、7、yx11112、22;23;,2,.2xz3y4xyxyxyxy4a3c5b234,,,,4、2222225bc10ab?2ac3a?4ab5abx?15x?2x?12x?1;?2;6、;x3x6xx?2x?3 a1xy,2, 、 a?ba?b2ax?yby?x 115.1.2分式的通分作业21、121112、, ,,322322342xyz4xy6xy3、14x?2x2,1x2?45、1xx?12,x2?17、1x2?4,x4?2x8、x?y;2y29x?y2ab5abc4、xax?y,yby?x6、x12,x2?x 、x12x2x?42,6x?3x2,x2?10、a?ba?bb?c,b?cb?cb?a2提高训练1、在a?bx5?xa?b,,,a2??14中,A、1个B、2个C、3个D、4个22、计算的结果是 a2bA.a B.b C.1 D.-b3、一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是1a?b11; C.;D.? a?b2aba?2b4、如果把分式中的a和b都扩大2倍,即分式的值 abA.a+b; B.A、扩大4倍;B、扩大2倍;C、不变;D缩小2倍5、能使分式x?2的值为零的所有x的值是 x2?4x?4A.x?2B.x??C.x?或x??D.x?2或x?16、下列四种说法分式的分子、分母都乘以a?2,分式的值不变;分式38?y的值可以等于零;方程x?x111的解是x??1;2的最小值为零;x?1x?1x?1其中正确的说法有A .1个B.个C. 个 D. 个7. 已知:a?b?2,ab??5,则A. ?8、当x?时,分式B. ?1ab?的值等于 ba192C. ?D. ?51无意义. x?2? a?2?3a?1?。
青岛版八年级数学上册第3章分式复习课件
3.运算法则 分式乘除运算法则
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母;
两个分式相除,把除式的分子分母颠倒位置后, 再与被除式相乘.
1 b d bd ; 2 b d b c bc .
a c ac
3 ;
2.
a2x y
3
x ay
2
a xy
4
;
3.
y x
x y
2
x y2
yx
;
4.
a7x2
3a x2
2
a2 a2
x2
4
a2
x
2
a
3
.
例3.解方程:
2
3
4
(1) x2 x x2 x x2 1 0
1 x
6
7
(2) 1
x
x2
1
x
1
x
例4.应用题
(1)农机厂职工到距工厂15千米的某地去检修 农机,一部分人骑自车走,过了40分钟,其余的 人乘汽车出发,他们同时到达,已知汽车的速度 是自行车速度的3倍,求两种车的速度。
其中,A叫做分式的分子,B叫做分式的分母。
分式有无意义及值为0
因为零不能作为除数,所以分数的分母不 能是零。
在分式中,分母的值不能是零。分式中的 分母如果是零,则分式没有意义。
在分式中,当分子为零而分母不为零时, 分式的值为零。
2.基本性质
分式的分子与分母都乘(或除以)同一个不等于 零的整式,分式的值不变,用等式表示是:
其中a与d叫做比例外项,b与c叫做比例内项.
注:当比例的两个内项相等,即当a : b b : c或 a b
八年级数学上册分式重点题型及知识点
八年级数学上册分式重点题型及知识点单选题1、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.2、对于实数a,b,定义一种新运算“⊗”为:a⊗b=2a−b2,这里等式右边是通常的实数运算.例如:1⊗3=2 1−32=−14,则方程x⊗(−1)=6x−1−1的解是()A.x=4B.x=5C.x=6D.x=7答案:B解析:已知方程利用题中的新定义化简,计算即可求出解.根据题中的新定义化简得:2x−1=6x−1−1,去分母得:2=6−x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.小提示:此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D解析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、已知1a −1b =12,则ab a−b 的值是( ) A .12B .−12C .2D .-2答案:D解析:先把已知的式子变形为ab =2(b −a),然后整体代入所求式子约分即得答案.解:∵1a −1b =12,∴ab =2(b −a),∴ab a−b =2(b−a)a−b =−2.故选:D.小提示:本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.5、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B解析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.6、如果a2+2a−1=0,那么代数式(a−4a )⋅a2a−2的值是()A.−3B.−1C.1D.3答案:C解析:先将等式变形可得a2+2a=1,然后根据分式各个运算法则化简,最后利用整体代入法求值即可.解:∵a2+2a−1=0∴a2+2a=1(a−4a)⋅a2a−2=a2−4a ⋅a2 a−2=(a−2)(a+2)a ⋅a2 a−2=a(a+2)=a2+2a=1故选C.小提示:此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键.7、我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)=6210x B.6210x−1=3C.3x−1=6210xD.6210x=3答案:A解析:根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.解:由题意得:3(x−1)=6210x,故选A.小提示:本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.8、若数a与其倒数相等,则a2−a−6a−3÷a+3a2+a−6的值是()A.−3B.−2C.−1D.0答案:A解析:先将分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a =±1,进而代入计算即可求得答案.解:原式=(a−3)(a+2)a−3⋅(a+3)(a−2)a+3=(a+2)(a−2)=a2−4,∵数a与其倒数相等,∴a=±1,∴原式=(±1)2−4=1−4=−3,故选:A.小提示:本题考查了分式的除法运算以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键.填空题9、若关于x的分式方程3xx−2−1=m+3x−2有增根,则m的值为_____.答案:3 解析:把分式方程化为整式方程,进而把可能的增根代入,可得m的值.去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.小提示:考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10、方程3x−1+1=0的解为__________.答案:x=−2解析:先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可.解:3x−1+1=03 x−1+x−1x−1=0x+2x−1=0{x+2=0x−1≠0∴x=−2所以答案是:x=−2.小提示:本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键.11、计算:(13)−1−(3.14)0=_____.答案:2解析: 先根据负整数指数幂及零指数幂的意义分别化简,再进行减法运算即可.原式=3-1=2,所以答案是:2.小提示:本题考查负整数指数幂和零指数幂的意义,理解定义是解题关键.12、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.答案:300解析:先设第一次的捐款人数是x 人,根据两次人均捐款额恰好相等列出方程,求出x 的值,再进行检验即可求出答案.解:设第一次的捐款人数是x 人,根据题意得:6600x =7260x+30,解得:x =300,经检验x =300是原方程的解,故答案为300.小提示:此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验.13、计算:(15)-1−√4=_______. 答案:3解析:先计算负整数指数幂和算术平方根,再计算加减即可求解.原式=5﹣2=3,所以答案是:3.小提示:此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键.解答题14、先化简,再求值:(x 2−2x+1x 2−x +x 2−4x 2+2x )÷1x ,且x 为满足﹣3<x <2的整数.答案:-5解析: 根据分式的运算法则即可求出答案.原式=[(x−1)2x(x−1)+(x−2)(x+2)x(x+2)]÷1x =(x−1x +x−2x )•x=x ﹣1+x ﹣2=2x ﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5小提示:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15、(1)当x 为何整数时,分式42x+1的值为正整数?(2)已知函数y =2x−3x−2自变量取值范围为整数,求y 的最大、最小值.答案:(1)x =0;(2)y 最大为3,最小为1解析:(1)根据题意2x +1=1或2或4时,分式42x+1的值为正整数,再取x 为整数时即可;(2)把函数整理成y =2+1x−2的形式,要使函数y 的值为整数,则x −2=±1,据此即可求解.(1)要使分式42x+1的值为正整数,则2x +1=1或2或4,解得:x =0或12或32,∵x 为整数,∴x =0,即x =0时,分式42x+1的值为正整数;(2)y =2x−3x−2=2(x−2)+1x−2=2+1x−2,且自变量取值范围为x −2≠0, 要使函数y 的值为整数,则x −2=±1,∴当x =3时,函数y 的最大值为3,当x =1时,函数y 的最小值为1.小提示:本题考查了分式有意义的条件,求分式的值,函数自变量的取值范围问题等知识,解答本题的关键是明确题意,找出所求问题需要的条件.。
公因数、公倍数、约分和通分习题精选[1]
公因数、公倍数、约分和通分习题精选一、填空1、( )的分数,叫做最简分数.2、一个最简分数,它的分子和分母的积是24,这个分数是( )或( )3、分母是8的所有最简真分数的和是( ).4、一个最简分数,把它的分子扩大3倍,分母缩小2倍,是412,原分数是( ),它的分数单位是( ).5、2430 的分子、分母的最大公约数是( ),约成最简分数是( ).6、通分时选用的公分母一般是原来几个分母的( ).;7. 在下图的 填上适当的数,直线上面填假分数,下面填带分数。
8. 54的分子加上12,要使分数的大小不变,分母应该加上( )。
9、如果自然数A 除以自然数B 商是17,那么A 与B 的最大公因数是( ),最小公倍数是( )。
10、最小质数与最小合数的最大公因数是( ),最小公倍数是( )。
二、判断(对的打“√”,错的打“×” )—1、分子、分母都是偶数的分数,一定不是最简分数.( )2、分子、分母都是奇数的分数,一定是最简分数.( )3、约分时,每个分数越约越小;通分时,每个分数的值越来越大.( )4、异分母分数不容易直接比较大小,因为它们的分母不同,分数单位不同.()5、约分是每个分数单独进行的,通分是在几个分数中进行的.()6、带分数通分时,要先化成假分数.()三、选择题1、分子和分母都是合数的分数,()最简分数.?①一定是②一定不是③不一定是2、分母是5的所有最简真分数的和是().①2②③1④3、两个分数通分后的新分母是原来两个分母的乘积.原来的两个分母一定().①都是质数③是相邻的自然数③是互质数4、小于而大于的分数().①有1个②有2个③有无数个5、通分的作用在于使().…①分母统一,规格相同,不容易写错.②分母统一,分数单位相同,便于比较和计算.③分子和分母有公约数,便于约分6、分母分别是15和20,比较它们的最简真分数的个数的结果为()①分母是15的最简真分数的个数多.②分母是20的最简真分数的个数多.③它们的最简真分数的个数一样多.7、把化成分数部分是最简真分数的带分数的方法应该是()①先约简再化成带分数.②先化成带分数再把分数部分约简.?③都可以,结果一样.8、一个最简真分数,分子与分母的和是15,这样的分数一共有()①1个②2个③3个④4个三、求下列各组数的最大公因数和最小公倍数1、用短除法求几个数的最大公因数12和30 24和36 39和78 72和84 36和60{45和60 45和75 45和60 42、105和56 24、36和482、用短除法求几个数的最小公倍数。
数学综合算式专项练习题约分与通分的运算
数学综合算式专项练习题约分与通分的运算数学综合算式专项练习题 - 约分与通分的运算在数学运算中,约分和通分是常见的操作。
约分是将一个分数进行化简,使分子和分母互质;通分则是将两个或多个分数的分母相同,从而使它们能够进行加减乘除等运算。
本文将对约分和通分的运算进行详细讲解,并提供一些练习题帮助读者更好地理解和掌握这两个概念。
一、约分的运算约分即将一个分数的分子和分母进行化简,使它们没有公因数,达到分数的最简形式。
下面通过一些例子来说明如何进行约分的运算。
例1:将分数28/35约分为最简形式。
解:首先,观察28和35是否存在公因数。
显然,它们都可以被7整除。
因此,我们可以将28/35写成(28÷7)/(35÷7) = 4/5。
这就是28/35的最简形式。
例2:将分数16/24约分为最简形式。
解:我们可以观察到16和24都可以被2整除。
因此,我们可以将16/24写成(16÷2)/(24÷2) = 8/12。
然后,8和12又都可以被2整除。
因此,我们可以继续将8/12写成(8÷2)/(12÷2) = 4/6。
最后,4和6又都可以被2整除,所以我们可以得到最简形式2/3。
因此,16/24约分为2/3。
通过以上例子,我们可以发现约分的关键是找到分子和分母的最大公因数,并将分子和分母同时除以这个最大公因数,直到它们不能再被除尽为止。
请你练习以下约分题目:1. 将36/48化为最简形式。
2. 将15/25化为最简形式。
3. 将20/30化为最简形式。
二、通分的运算通分是将两个或多个分数的分母调整为相同的值,以便进行加减乘除等运算。
例3:将分数1/3和2/7通分为相同分母的分数。
解:为了将1/3和2/7通分,我们可以找到它们的最小公倍数来作为它们的通分分母。
3和7的最小公倍数是21,因此我们需要将1/3和2/7的分子和分母同时乘以适当的倍数,使得它们的分母变为21。
人教版八年级上册 2021.1 最简公分母与通分 同步测试
第 1 页最简公分母与通分测试题(时间:60分钟 总分:100)1. 分式6ca 2b 与c3ab 2的最简公分母是( )A. abB. 3abC. 3a 2b 2D. 3a 2b 62. 以下各题中,所求的最简公分母,错误的选项是( )A. 13x 与a6x 2最简公分母是6x 2B. 1m+n 与1m−n 的最简公分母是(m +n)(m −n) C. 13a 2b 3与13a 2b 3c 最简公分母是3a 2b 3cD. 1a(x−y)与1b(y−x)的最简公分母是ab(x −y)(y −x)3. 以下各题中,所求的最简公分母,错误的选项是( )A. 13x 与a6x 2最简公分母是6x 2 B. 13a 2b 3与13a 2b 3c 最简公分母是3a 2b 3c C. 1m+n 与1m−n 的最简公分母是(m +n)(m −n) D. 1a(x−y)与1b(y−x)的最简公分母是ab(x −y)(y −x)4. 对分式12(a −9),34(a +6a+9)通分时,最简公分母是( )A. 4(a −3)(a +3)2B. 4(a 2−9)(a 2+6a +9)C. 8(a 2−9)(a 2+6a +9)D. 4(a −3)2(a +3)25. 分式1x 2−x ,1x 2+x 的最简公分母是( )A. (x +1)(x −1)B. x(x +1)(x −1)C. x 2(x +1)(x −1)D. x(x −1)2 6. 以下结论正确的选项是( )A. 分式1x(x−1)有意义的条件是x ≠0或x ≠1 B. x−y2x+2y 与xy x 2−y 2的最简公分母是2(x −y)(x 2−y 2) C. −0.000 0064用科学记数法表示为−6.4×10−6 D. 等式(x 2−9)0=1成立的条件是x =±37. 张萌将分式3x2x+2y 和7y4x−4y 进展通分,那么这两个分式的最简公分母为( )A. 2(x +y)(x −y)B. 4(x +y)(x −y)C. (x +y)(x −y)D. 4(x +y)2 8. 以下各选项中,所求的最简公分母错误的选项是( )A. 13x 与16x 的最简公分母是6x B. 13a 2b 3与13a 2b 3c 最简公分母是3a 2b 3cC. 1a(x−y)与1b(y−x)的最简公分母是ab(x −y)(y −x) D. 1m+n 与1m−n 的最简公分母是m 2−n 29. 把1x−2,1(x−2)(x+3),2(x+3)2通分过程中,不正确的选项是( )A. 最简公分母是(x −2)(x +3)2B. 1x−2=(x+3)2(x−2)(x+3)2 C. 1(x−2)(x+3)=x+3(x−2)(x+3)2D. 2(x+3)2=2x−2(x−2)(x+3)210. 分式−56x 2y 和24xyz 的最简公分母是( )A. 12xyzB. 12x 2yzC. 24xyzD. 24x 2yz二、填空题〔本大题共10小题,共分〕11. 分式32x−2,1x 2+x ,xx 2−1的最简公分母是______. 12. 分式1ab ,b2a 3c 的最简公分母是______.13. 分式x6ab 2,y9a 2bc 最简公分母是______ ;分式1x 2−3x ,1x 2−9最简公分母是______ . 14. 分式52x 和45x 2y 的最简公分母是______ . 15. 分式1x 2−2x+1,1x 2−3x+2的最简公分母是______ . 16. 分式12x 3,16x 2(x−y)的最简公分母是______ . 17. 分式12x 3y 2、13x 2y 的最简公分母是______. 18. 分式−16x 2y 和12xyz 最简公分母是______ . 19.1xy,−y2x 3,15xyz 的最简公分母是______ . 20. 分式2x 2−3x 与4xx 2−9的最简公分母是______ . 三、计算题〔本大题共4小题,共分〕 21. (1)通分:xac ,ybc ;(2)通分:2xx 2−9,x2x+6.第 3 页22.1a +1b =√5(a ≠b),求ab(a−b)−ba(a−b)的值.23. 先化简(2xx−3−xx+3)÷x9−x 2,再选取一个既使原式有意义,又是你喜欢的数代入求值.24.1a+1b =√5(a ≠b),求ab(a−b)−ba(a−b)的值.四、解答题〔本大题共2小题,共分〕 25. 通分:(1)x6ab 2,y9a 2bc ; (2)1x 2−16,12x−8. 26. 约分:1−a 2a 2+2a+1.答案和解析【答案】1. C2. D3. D4. A5. B6. C7. B8. C9. D10. B11. 2x(x+1)(x−1)12. 2a3bc13. 18a2b2c;x(x−3)(x+3)14. 10x2y15. (x−1)2(x−2)16. 6x3(x−y)17. 6x3y218. 6x2yz19. 10x3yz20. x(x+3)(x−3)21. 解:(1)xac =xbabc,ybc=yaabc;(2)2xx2−9=4x2(x+3)(x−3),x2x+6=x(x−3)2(x+3)(x−3).22. 解:∵1a +1b=√5,∴a+bab=√5,∴ab(a−b)−ba(a−b),=a2ab(a−b)−b2ab(a−b),=a2−b2ab(a−b),=(a+b)(a−b)ab(a−b),=a+bab,=√5.23. 解:(2xx−3−xx+3)÷x9−x2=2x(x+3)−x(x−3)(x+3)(x−3)⋅−(x+3)(x−3)x=x(x+9)(x+3)(x−3)⋅−(x+3)(x−3)x=−x−9,∵x−3≠0,x+3≠0,x≠0,∴x取1,代入得:原式=−1−9=−10.24. 解:∵1a +1b=√5,∴a+bab=√5,∴ab(a−b)−ba(a−b),第 5 页=a 2ab(a−b)−b 2ab(a−b), =a 2−b 2ab(a−b), =(a+b)(a−b)ab(a−b),=a+b ab,=√5.25. 解:(1)最简公分母为:18a 2b 2c ,∴x 6ab 2×3ac 3ac =3acx 18a 2b 2c y 9a 2bc ×2b 2b =2by18a 2b 2c(2)两分式的分母为:(x +4)(x −4)、2(x −4) ∴最简公分母为:2(x +4)(x −4)∴1(x−4)(x+4)×22=22(x+4)(x−4),12(x−4)×x+4x+4=x+42(x+4)(x−4)26. 解:原式=(1+a)(1−a)(a+1)2=1−aa+1【解析】1. 解:分式6c a 2b 与c3ab 2的最简公分母是3a 2b 2,应选C .先找系数的最小公倍数3,再找字母的最高次幂.此题考察了最简公分母,掌握最简公分母的求法是解题的关键.2. 解:D 、1a(x−y)与1b(y−x)的最简公分母是ab(x −y),应选D求几个分式的最简公分母时,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母.此题考察最简公分母问题,求几个分式的最简公分母时,应注意将分母转化为最简式后再进展相乘.3. 解:选项D 中1a(x−y)与1b(y−x)中字母最高次幂的积为一次,所以最简公分母是ab(x −y); 应选D .求几个分式的最简公分母时,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母.此题考察了最简公分母.求几个分式的最简公分母时,应注意将分母转化为最简式后再进展相乘.4. 解:分式12(a 2−9)与34(a 2+6a+9)的最简公分母是4(a −3)(a +3)2,应选A .确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.第 7 页母,确定最简公分母的方法一定要掌握.5. 解:分式1x 2−x ,1x 2+x 的分母分别是x 2−x =x(x −1)、x 2+x =x(x +1),故最简公分母是x(x −1)(x +1). 应选B .确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 此题考察了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.6. 解:A 、由x(x −1)≠0,得x ≠0且x ≠1,故A 错误,不符合题意, B 、x−y2x+2y 与xyx 2−y 2的最简公分母是2(x −y)(x +y),故B 错误,不符合题意, C 、−0.0000064用科学记数法表示为−6.4×10−6,故C 正确,符合题意, D 、等式(x 2−9)0=1成立的条件是x =±3,故D 错误,不符合题意, 应选C .根据分式有意义的条件、科学记数法、最简公分母以及零指数幂成立的条件进展计算即可.此题考察了最简公分母、科学记数法以及分式有意义的条件、零指数幂成立的条件,掌握运算法那么是解题的关键.7. 解:分式3x 2x+2y 和7y4x−4y 的分母分别是2x +2y =2(x +y)、4x −4y =4(x −y),故最简公分母是4(x +y)(x −y). 应选B .确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①假如各分母都是单项式,那么最简公分母就是各系数的最小公倍数,一样字母的最高次幂,所有不同字母都写在积里.②假如各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.8. 解:A 、13x 与16x 的最简公分母是6x ,此选项正确;B 、13a 2b 3与13a 2b 3c 最简公分母是3a 2b 3c ,此选项正确;C 、1a(x−y)与1b(y−x)的最简公分母是ab(x −y)或ab(y −x),此选项错误; D 、1m+n 与1m−n 的最简公分母是m 2−n 2,此选项正确;应选:C .根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.据此可得.定最简公分母的方法一定要掌握.9. 解:A 、最简公分母为最简公分母是(x −2)(x +3)2,正确; B 、1x−2=(x+3)2(x−2)(x+3)2,通分正确; C 、1(x−2)(x+3)=x+3(x−2)(x+3)2,通分正确;D 、通分不正确,分子应为2×(x −2)=2x −4; 应选:D .按照通分的方法依次验证各个选项,找出不正确的答案. 根据分数的根本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分保证(1)各分式与原分式相等;(2)各分式分母相等.10. 解:分式−56x 2y 和24xyz 的分母分别是6x 2y 、4xyz ,所以最简公分母为:12x 2yz . 应选B .确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握. 11. 解:∵2x −2=2(x −1), x 2+x =x(x +1),x 2−1=(x +1)(x −1),∴分式32x−2,1x 2+x ,xx −1的最简公分母是2x(x +1)(x −1), 故答案为2x(x +1)(x −1).先把分母因式分解,再找出最简分母即可.此题考察了最简公分母,掌握因式分解是解题的关键.12. 解:题中两分式的最简公分母即求两分式分母的最小公倍数,即为2a 3bc .故答案为2a 3bc .根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题主要考察了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.13. 解:分式x 6ab 2,y9a 2bc 最简公母为:18a 2b 2c ,分式1x 2−3x ,1x 2−9可化为:1x(x−3),1(x−3)(x+3),∴最简公分母为:x(x −3)(x +3) 故答案为:18a 2b 2c ,x(x −3)(x +3)分母是多项式的先因式分解,然后再找出最简公分母.此题考察最简公分母,涉及因式分解,分式的根本性质,此题属于根底题型.14. 解:分式52x 和45x 2y 的最简公分母是10x 2y ,故答案为:10x 2y ,第 9 页求几个分式的最简公分母时,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母.此题考察最简公分母问题,求几个分式的最简公分母时,应注意将分母转化为最简式后再进展相乘.15. 解:分式1x 2−2x+1,1x 2−3x+2的最简公分母是(x −1)2(x −2),故答案为(x −1)2(x −2).先把分母分解因式,再根据最简公分母的定义进展填空即可. 此题考察了最简公分母,系数的最小公倍数以及字母的最高次幂.16. 解:分式12x 3,16x 2(x−y)的分母分别是2x 3、6x 2(x −y),故最简公分母是6x 3(x −y);故答案为6x 3(x −y).确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①假如各分母都是单项式,那么最简公分母就是各系数的最小公倍数,一样字母的最高次幂,所有不同字母都写在积里.②假如各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.17. 解:分式12x y 、13x y 的最简公分母是6x 3y 2,故答案为6x 3y 2.确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母的求法,注意:找最简公分母的方法:系数找最小公倍数,一样的幂找最高次幂.18. 解:分式−16x 2y 和12xyz 的最简公分母是6x 2yz ,故答案为:6x 2yz .确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.19. 解:∵1xy ,−y 2x 3,15xyz 的分母分别是xy 、2x 3、5xyz ,∴它们的最简公分母是10x 3yz . 故答案为:10x 3yz .确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.20. 解:分式2x 2−3x 与4xx 2−9的最简公分母是x(x +3)(x −3);故答案为:x(x +3)(x −3). 确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.此题考察了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①假如各分母都是单项式,那么最简公分母就是各系数的最小公倍数,一样字母的最高次幂,所有不同字母都写在积里.②假如各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.21. 找出最简公分母,根据分式的通分法那么计算即可.此题考察的是分式的通分、约分,掌握分式的根本性质是解题的关键.22. 求出a+bab =√5,通分得出a 2ab(a−b)−b 2ab(a−b),推出a 2−b 2ab(a−b),化简得出a+bab ,代入求出即可.此题考察了通分,约分,分式的加减的应用,能纯熟地运用分式的加减法那么进展计算是解此题的关键,用了整体代入的方法(即把a+bab 当作一个整体进展代入).23. 先进展括号里面的减法计算,再把除法转化成乘法,分解因式后进展约分即可.此题主要考察对分式的根本性质,约分、通分,分式的加减、乘除,最简分式,最简公分母,分式的化简求值等知识点的理解和掌握,能纯熟地进展化简是解此题的关键.24. 求出a+bab =√5,通分得出a 2ab(a−b)−b 2ab(a−b),推出a 2−b 2ab(a−b),化简得出a+bab ,代入求出即可.25. (1)找出两分母的最简公分母即可(2)先将分母进展因式分解,然后再找出最简公分母.此题考察通分,解题的关键是找出各分母的最简公分母,此题属于根底题型. 26. 先将原式的分子分母进展因式分解,然后约去公因式 此题考察分式的根本性质,解题的关键是将分子分母进展因式分解,此题属于根底题型.。