云南省曲靖市2019-2020学年数学中考模拟试卷(含答案)
2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。
人教版2019-2020学年三年级数学上学期期末模拟试卷 ( 带答案)

2019〜2020学年上学期期期末模拟试卷三年级数学(时间:90分钟 满分:100分)一、细心计算,我能做到!(共26分)1.直接写得数。
(8分)65+35= 86-26= 45×2= 201×3=34+43= 60-32= 800×9= 0×999=85+70= 52-6= 36+54÷6= 250×4-80=3155+= 118-= 1211212-= 131111+=2.用竖式计算下面各题。
(带※的要验算)(14分)※(1)887+265= ※(2)643-57=(3)426 × 5 (4)780-403(5)450 × 6 (6)608 × 53.某商场要购进3个高压锅,900元够吗?(4分)佳佳这样想:因为308=300,308×3≈900(元),所以900元够了。
琳琳这样想:因为308超过300元,308×3一定超过900元,所以900元不够。
(1)我认为( )估的方法比较合理。
A.佳佳B.琳琳(2)( )不合理的原因是:(3)我的建议:在估算钱数够不够时,应当把数估( )(填“大”或“小”)二、我会填!(共23分)1.小浩在看上午10:30〜上午11:20场次的《熊出没之熊心归来》电影,距离电影结束还有15分钟,现在是( )时( )分。
2.在〇里填上或“>”“<”或“=”。
2时○200分 70米〇7千米 454〇999-54658〇38 19○12 1分3〇秒〇90秒3.在( )里填上合适的单位名称。
小明朗诵一首诗大约需要30( );踢一场足球赛约用2( );地铁平均每小时行驶90( );—辆卡车的载质量是2000( )。
4.行2千米需要多长时间?把出行方式和相应的时间连起来。
5.有15根小棒,取出了10根,取出了它的( )( )。
6.小明围着一个正方形花坛走一圈,走了160米,花坛的边长为( )米。
2019年中考数学专题《等腰三角形》复习试卷含答案解析

2019年中考数学总复习等腰三角形专题综合训练题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80° B.75° C.65° D.45°3. 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3 B.4 C.5 D.64. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.6 B.3 C.2.5 D.25. 如图,在△ABC中,AB=AC,AD是∠B AC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.106. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.7. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.8. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC 中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC 的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.9. 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.解析:第(2)题分别以点C,M,N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.10. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,求点F 到直线BC的距离.12. 如图,已知抛物线y =ax 2+bx +c(a ≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)点M 是直线l 上的动点,且△MAC 为等腰三角形,求出所有符合条件的点M 的坐标.13. 如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是∠ABC 的平分线,CE ⊥BD ,垂足是E ,BA 和CE 的延长线交于点F.(1) 在图中找出与△ABD 全等的三角形,并证明你的结论; (2) 证明:BD =2EC.参考答案: 1. C2. D 【解析】∠BCA=12(180°-∠A)=75°,∠BCD =∠BCA-∠DCA=∠BCA-∠A=75°-30°=45°.3. C【解析】作PQ⊥MN 于Q ,由PM =PN 知PQ 垂直平分MN∴MQ=1.∠AOB=60°,OP =12,∴OQ =12OP =6,OM=OQ -MQ =6-1=5. 4. C【解析】 如图,以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C.5. C 【解析】∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD ,∴BD =AB 2-AD 2=4,∴BC =2BD =8,故选C. 6. 20° 【解析】过点A 作AD∥l 1,根据平行线的性质可得∠BAD=∠β.AD∥l 2,从而得到∠DAC=∠α=40°.再根据等边△ABC 可得到∠BAC=60°,∴∠β=∠BAD=∠BAC-∠DAC=60°-40°=20°.7. 12° 【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x.在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.8. 解:(1)画图正确,角度标注正确,如图① (2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图②,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC=90°,如图③,此时y =90°+12(90°-x)=135°-12x.若∠ABD=90°,如图④,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图⑤,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图⑥,此时x =45°,45°<y <90°9. 解:(1)把点A(4,0),B(1,3)代入抛物线y =ax 2+bx 中,得⎩⎪⎨⎪⎧0=16a +4b ,3=a +b ,解得⎩⎪⎨⎪⎧a =-1,b =4,∴抛物线表达式为:y =-x 2+4x (2)点C 的坐标为(3,3),点B 的坐标为(1,3),以点C ,M ,N 为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M 为直角顶点且M 在x 轴上方时,如图2,CM =MN ,∠CMN=90°,则△CBM≌△MHN,∴BC =MH =2,BM =HN =3-2=1,∴M(1,2),N(2,0),由勾股定理得MC =22+12=5,∴S △CMN =12×5×5=52;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴MD =ME =2,EM =CD =5,由勾股定理得CM =22+52=29,∴S △CMN=12×29×29=292;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN =MN ,∠MNC =90°,作辅助线,同理得CN =32+52=34,∴S △CMN =12×34×34=17;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得CN =32+12=10,∴S △CMN =12×10×10=5;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形.综上所述,△CMN 的面积为52或292或17或510. 解:满足条件的所有等腰三角形如下图所示:解析:利用等腰三角形的性质,分别以长度为3的边为等腰三角形的底边和腰长进行分类.11. 解:①如图a ,延长AC ,作FD⊥BC 于点D ,FE ⊥AC 于点E ,易得四边形CDFE 是正方形,则CD =DF=FE =EC.∵在等腰直角△ABC 中,AC =BC =1,AB =AF ,∴AB =AC 2+BC 2=12+12=2,∴AF = 2.在Rt △AEF 中,(1+EC)2+EF 2=AF 2,即 (1+DF)2+DF 2=(2)2,解得DF =3-12;②如图b ,延长BC ,作FD⊥BC 于点D ,延长CA ,作FE⊥CA 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.在Rt △AEF 中,(EC -1)2+EF 2=AF 2,即(FD -1)2+FD 2=(2)2,解得FD =3+12.综上可知,点F 到BC 的距离为3+12或3-1212. 解:(1)将A(-1,0),B(3,0),C(0,-3)代入抛物线y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3,故抛物线的解析式为y =x 2-2x -3 (2)如图,抛物线的对称轴为x =-b 2a=1,设M(1,m),已知A(-1,0),C(0,-3),则MA 2=m 2+4,MC 2=(3+m)2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为 (1,6)(1,-6)(1,-1)(1,0)13. 解:(1)△ABD≌△ACF,证明:∵AB =AC ,∠BAC =90°,∴∠FAC =∠BAC=90°,∵BD ⊥CE ,∠BAC =90°,∠ADB =∠EDC,∴∠ABD =∠ACF,∴△ABD ≌△ACF(ASA)(2)∵△ABD≌△ACF,∴BD =CF ,∵BD ⊥CE ,∴∠BEF =∠BEC,∵BD 是∠ABC 的平分线,∴∠FBE =∠CBE,∵BE =BE ,∴△FBE ≌△CBE(ASA),∴CF =2CE ,∴BD =2CE2019-2020学年数学中考模拟试卷一、选择题1.如图,以边长为a 的等边三角形各定点为圆心,以a 为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a 的圆的周长之比是( )A .1:1B .1:3C .3:1D .1:22.昆明市有关负责人表示,预计年昆明市的地铁修建资金将达到亿元,将亿用科学记数法表示为( )A.B.C. D.3.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点P 在边AB 上,∠CPB 的平分线交边BC 于点D ,DE ⊥CP 于点E ,DF ⊥AB 于点F .当△PED 与△BFD 的面积相等时,BP 的值为( )A. B. C. D.4.下列计算的结果是a 6的为( ) A .a 12÷a 2B .a 7﹣aC .a 2•a 4D .(﹣a 2)35.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )A .12πB .24πC .36πD .48π6.如图,抛物线()()142L y x t x t =---+:(常数0t >),双曲线6(0)y x x=>.设L 与双曲线有个交点的横坐标为0x ,且满足034x <<,在L 位置随t 变化的过程中,t 的取值范围是( )A .322t << B .34t << C .45t << D .57t <<7.如图所示的几何体的俯视图为( )A .B .C .D .8.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,若∠BAC =20°,则∠ADC 的度数是( )A .90°B .100°C .110°D .130°9.如图,一次函数y =kx+b 与y =x+2的图象相交于点P (m ,4),则关于x ,y 的二元一次方程组2kx y by x -=-⎧⎨-=⎩的解是( )A .34x y =⎧⎨=⎩B . 1.84x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D . 2.44x y =⎧⎨=⎩10.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以vcm/s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sinB =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A .①②B .①②④C .①③④D .①②③④11.已知函数6y x -= 与y =﹣x+1的图象的交点坐标是(m ,n ),则11m n+的值为( ) A .﹣16B .16C .﹣6D .612.整数a 满足下列两个条件,使不等式﹣2≤352x +<12a+1恰好只有3个整数解,使得分式方程135-22ax x x x----=1的解为整数,则所有满足条件的a 的和为( )A .2B .3C .5D .6二、填空题13.任意写出一个3的倍数(例如:111),首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M ,它会掉入一个数字“黑洞”.那么最终掉入“黑洞”的那个数M 是______.14.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.15.如图,已知在△ABC 中,AB=AC ,BC=8,D 、E 两点分别在边BC 、AB 上,将△ABC 沿着直线DE 翻折,点B 正好落在边AC 上的点M 处,并且AC=4AM ,设BD=m ,那么∠ACD 的正切值是______(用含m 的代数式表示)16.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在3x轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.17 ______.18.如图,AB是圆O的弦,AB=,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.三、解答题19.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.20.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.21.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数解析式,并求出第几天时销售利润最大.22.已知二次函数y=ax2+4x+c,当x=﹣2时,y=﹣5;当x=1时,y=4(1)求这个二次函数表达式.(2)此函数图象与x轴交于点A,B(A在B的左边),与y轴交于点C,求点A,B,C点的坐标及△ABC的面积.(3)该函数值y能否取到﹣6?为什么?23.某高速铁路位于某省南部,是国家“八纵八横”高速铁路网的重要连接通道,也是某省“三横五纵”高速铁路网的重要组成部分.东起日照,向西贯穿临沂、曲阜、济宁、菏泽,与郑徐客运专线兰考南站接轨.工程有一段在一条河边,且刚好为东西走向.B处是一个高铁维护站,如图①,现在想过B处在河上修一座桥,需要知道河宽,一测量员在河对岸的A处测得B在它的东北方向,测量员从A点开始沿岸边向正东方向前进300米到达点C处,测得B在C的北偏西30度方向上.(1)求所测之处河的宽度;(结果保留的十分位)(2)除(1)的测量方案外,请你再设计一种测量河宽的方案,并在图②中画出图形.24.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD(1)求证:△ABC≌△ADC;(2)若∠BAC =30°,∠BCA =45°,BC =2; ①求∠BAD 所对的弧BD 的长;②直接写出AC 的长.25.解不等式组1531x x x +≤⎧⎨->⎩①②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得_________; (Ⅱ)解不等式②,得_________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.【参考答案】*** 一、选择题二、填空题 13.153 14.1215.316. 17.18.20 三、解答题19.(1)y =﹣x 2+2x+3;(2)点P 的坐标为(97,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似. 【解析】 【分析】(1)根据点B ,C 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A 的坐标,由点B ,C 的坐标可得出直线BC 的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+PA取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出OA OCCD CB=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【详解】(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:9303b cc-++=⎧⎨=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA=5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:-k0 33mk m+=⎧⎨+=⎩,解得:3k434m⎧=⎪⎪⎨⎪=⎪⎩,∴直线AO′的解析式为y =34x+34. 联立直线AO′和直线BC 的解析式成方程组,得:33y 443x y x ⎧=+⎪⎨⎪=-+⎩,解得:9x 7127y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 的坐标为(97,127). (3)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴点D 的坐标为(1,4).又∵点C 的坐标为(0,3),点B 的坐标为(3,0), ∴CD,BC,BD∴CD 2+BC 2=BD 2, ∴∠BCD =90°.∵点A 的坐标(﹣1,0),点C 的坐标为(0,3), ∴OA =1,OC =3, ∴OA OC CD CB ==. 又∵∠AOC =∠DCB =90°, ∴△AOC ∽△DCB ,∴当Q 的坐标为(0,0)时,△AQC ∽△DCB . 如图2,连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q . ∵△ACQ 为直角三角形,CO ⊥AQ , ∴△ACQ ∽△AOC . 又∵△AOC ∽△DCB , ∴△ACQ ∽DCB ,∴AC AQDC DB =AQ=, ∴AQ =10,∴点Q 的坐标为(9,0).综上所述:当Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短确定点P 的位置;(3)分两种情况,利用相似三角形的性质求出点Q 的坐标.20.(1)详见解析;(2)详见解析;(3)⊙O 的半径是2. 【解析】 【分析】(1)根据AC 为⊙O 直径,得到∠ADC =∠CBA =90°,通过全等三角形得到CD =AB ,推出四边形ABCD 是平行四边形,根据矩形的判定定理得到结论; (2)根据直角三角形的性质得到NB =12MF =NF ,根据等腰三角形的性质和余角的性质即可得到NB 是⊙O 的切线;(3)根据垂径定理得到DE =GE =6,根据四边形ABCD 是矩形,得到∠BAD =90°,根据余角的性质得到∠FAE =∠ADE ,推出△AEF ∽△DEA ,根据相似三角形的性质列比例式得到AE =,连接OD ,设⊙O 的半径为r ,根据勾股定理列方程即可得到结论. 【详解】解:(1)∵AC 为⊙O 直径, ∴∠ADC =∠CBA =90°,在Rt △ADC 与Rt △CBA 中,AC ACAD BC =⎧⎨=⎩,∴Rt △ADC ≌Rt △CBA , ∴CD =AB , ∵AD =BC ,∴四边形ABCD 是平行四边形, ∵∠CBA =90°, ∴四边形ABCD 是矩形; (2)连接OB ,∵∠MBF =∠ABC =90°, ∴NB =12MF =NF , ∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∵OB=OA,∴∠5=∠4,∵DG⊥AC,∴∠AEF=90°,∴∠3+∠4=90°,∴∠1+∠5=90°,∴OB⊥NB,∴NB是⊙O的切线;(3)∵AC为⊙O直径,AC⊥DG,∴DE=GE=6,∵F为GE中点,∴EF=GF=3,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠FAE+∠DAE=90°,∵∠ADE+∠DAE=90°,∴∠FAE=∠ADE,∵∠AEF=∠DEA=90°,∴△AEF∽△DEA,∴AE EF DE AE,∴AE=,连接OD,设⊙O的半径为r,∴OA=OD=r,OE=r﹣,∵OE2+DE2=OD2,∴(r﹣)2+62=r2,∴r,∴⊙O的半径是2.【点睛】本题考查了圆周角定理,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理,证得AEF∽△DEA是解决(3)的关键.21.(1)该种水果每次降价的百分率是10%;(2)第10天时销售利润最大;【解析】【分析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价-进价)×销量-费用列函数关系式,并根据增减性求最大值,作对比;【详解】(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,第10天时销售利润最大.【点睛】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大利润.22.(1)y =x 2+4x ﹣1;(3)函数值y 不能取到﹣6;理由见解析. 【解析】 【分析】(1)把x =﹣2时,y =﹣5;x =1时,y =4代入y =ax 2+4x+c ,求得a 、c 的值即可求得;(2)令y =0,解方程求得A 、B 点的坐标,令x =0,求得y =﹣1,得到C 点的坐标,然后根据三角形面积公式即可求得△ABC 的面积;(3)把(1)中求得的解析式化成顶点式,求得函数y 的最小值为﹣5,故函数值y 不能取到﹣6. 【详解】解:(1)把x =﹣2时,y =﹣5;x =1时,y =4代入y =ax 2+4x+c 得48544a c a c -+=-⎧⎨++=⎩,解得11a c =⎧⎨=-⎩,∴这个二次函数表达式为y =x 2+4x ﹣1; (2)令y =0,则x 2+4x ﹣1=0,解得x∴A(﹣20),B(﹣0), 令x =0,则y =﹣1, ∴C(0,﹣1),∴△ABC 的面积:12AB•OC=12(﹣ (3)∵y =x 2+4x ﹣1=(x+2)2﹣5, ∴函数y 的最小值为﹣5, ∴函数值y 不能取到﹣6. 【点睛】本题考查了抛物线和x 轴的交点,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,以及二次函数的性质,二次函数图象上点的坐标适合解析式是解题的关键. 23.(1)所测之处江的宽度为190.5m ;(2)见解析. 【解析】 【分析】解:(1)过点B 作BF ⊥AC 于F ,根据题意得到∠EAB =45°,∠GCB =30°,AC =300m ,求得∠FBA =45°,∠CBF =30°,得到BF =AF ,解直角三角形即可得到结论;(2)构造相似三角形,根据相似三角形的性质得到方程即可得到结论.. 【详解】(1)过点B 作BF ⊥AC 于F ,由题意得:∠EAB =45°,∠GCB =30°,AC =300m , ∴∠FBA =45°,∠CBF =30°,∴FC =300﹣AF =300﹣BF (m ), 在Rt △BFC 中,tan ∠CBF =FCFB, ∴tan30°=300BFBF-,300BFBF-=,解得:BF ﹣150(3m ), 答:所测之处江的宽度为190.5m ;(2)①在河岸取点A ,使B 垂直于河岸,延长BA 至C ,测得AC 做记录, ②从C 沿平行于河岸的方向走到D ,测得CD ,做记录, ③B0与河岸交于E ,测AE ,做记录.根据△BAE ~△BCD , 得到比例线段,从而求出河宽AB .【点睛】此题考查了方向角问题.此题难度适中,注意能构造直角三角形,并能借助于解直角三角形的知识求解是关键,注意数形结合思想与方程思想的应用.24.(1)见解析;(2)①BD ;②AC =【解析】 【分析】(1)由“SSS”可证△ABC ≌△ADC ;(2)①由题意可得AC 垂直平分BD ,可得BE=DE ,AC ⊥BD ,由直角三角形的性质可得,,由等腰三角形的性质可得∠BAD=2∠BAC=60°,由弧长公式可求弧BD 的长;②由AC=AE+CE 可求解. 【详解】证明:(1)由题意可得AB =AD ,BC =CD ,∴△ABC ≌△ADC (SSS ); (2)①∵AB =AD ,BC =CD ∴AC 垂直平分BD ∴BE =DE ,AC ⊥BD ∵∠BCA =45°,BC =2;∴BE =CE ,且∠BAC =30°,AC ⊥BD∴AB =2BE =,AE ∵AB =AD ,AC ⊥BD ∴∠BAD =2∠BAC =60°∴60BD 1803π︒︒⨯⨯==②∵AC =AE+CE∴AC +【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,弧长公式,灵活运用这些性质解决问题是本题的关键. 25.(Ⅰ)4x ≤;(Ⅱ)12x >;(Ⅲ)见解析;(Ⅳ)142x <≤. 【解析】 【分析】(Ⅰ)直接移项即可得出答案;(Ⅱ)移项,两边同时除以2,即可得答案;(Ⅲ)根据解集在数轴上的表示方法表示出①②的解集即可;(Ⅳ)根据数轴找出两个解集的公共部分即可. 【详解】 (Ⅰ)15x +≤ 移项得:x≤4, 故答案为:x≤4 (Ⅱ) 31x x -> 移项得:2x>1,解得:x>12, 故答案为:x>12(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(Ⅳ) 由数轴可得①和②的解集的公共解集为142x<≤,故原不等式的解集为:142x<≤,故答案为:14 2x<≤【点睛】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A.0.96a 元B.0.972a 元C.1.08a 元D.a 元 2.如图,一次函数y=-x 与二次函数y=ax 2+bx+c 的图象相交于点M 、N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确 3.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( )A.2B.3C.5D.12 4.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A.①②③④B.④③①②C.②④③①D.④③②①5.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( )A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)6.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .58o7.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为( )A .1269×108B .1.269×108C .1.269×1010D .1.269×10118.如图,在△ABC 中,AC =BC ,∠C =90°,AD 是∠BAC 的平分线且交BC 于点D ,DE ⊥AB ,垂足为点E ,若AB =8cm ,则△DBE 的周长( )A .B .cmC .8cmD .cm9.如图,在锐角ABC 中,延长BC 到点D ,点O 是AC 边上的一个动点,过点O 作直线MN BC ,MN 分别交ACB ∠、ACD ∠的平分线于E ,F 两点,连接AE 、AF .在下列结论中.①OE OF =;②CE CF =;③若12CE =,5CF =,则OC 的长为6;④当AO CO =时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④ 10.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )A. B. C. D.11.如图,在Rt ABC ∆中,90,6,8ACB AC BC ∠=︒==,则Rt ABC ∆的中线CD 的长为( )A.5B.6C.8D.1012.如果方程x 2﹣8x+15=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为( ) A.34 B.35 C.45 D.34或35二、填空题13.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为_______。
云南省普洱市2019-2020学年中考数学最后模拟卷含解析

云南省普洱市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.162.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.3.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B 的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度4.下列各式计算正确的是()A.a2+2a3=3a5B.a•a2=a3C.a6÷a2=a3D.(a2)3=a55.如图,在△ABC中,cosB=22,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.216.用尺现作图的方法在一个平行四边形内作菱形ABCD,下列作法错误的是()A.B.C.D.7.二次函数y=(2x-1)2+2的顶点的坐标是()A.(1,2)B.(1,-2)C.(12,2)D.(-12,-2)8.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A.B.C.D.9.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 1x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y310.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A .15°B .55°C .65°D .75°11.下列实数中,在2和3之间的是( ) A .πB .2π-C .325D.32812.若实数 a ,b 满足|a|>|b|,则与实数 a ,b 对应的点在数轴上的位置可以是( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π) 14.已知:=,则的值是______.15.9的算术平方根是 . 16.已知654a b c==,且26a b c +-=,则a 的值为__________. 17.函数13x y x -=-自变量x 的取值范围是 _____. 18.已知抛物线y=2112x -,那么抛物线在y 轴右侧部分是_________(填“上升的”或“下降的”). 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE ,OD .(1)如图①,求∠ODE 的大小;(2)如图②,连接OC 交DE 于点F ,若OF=CF ,求∠A 的大小.20.(6分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数. (1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.21.(6分)解不等式组12342x x +>⎧⎨-≤⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_____.22.(8分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.23.(8分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60°,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).24.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?25.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20 (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?26.(12分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF 沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y 与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?27.(12分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI V V V V 、、、都是等边三角形. 所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C . 2.D 【解析】 【分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论. 【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A ,B ,C 中铁片顺序为1,1,5,6,选项D 中铁片顺序为1,5,6,1. 故选D . 【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.3.C【解析】【分析】Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化4.B【解析】【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.a•a2=a3,正确;C.原式=a4,故C不正确;D.原式=a6,故D不正确;故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.5.A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.6.A【解析】【分析】根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD 是菱形,D不符合题意故选A【点睛】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键7.C【解析】试题分析:二次函数y=(2x-1)+2即21222y x⎛⎫=-+⎪⎝⎭的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系8.A【解析】【分析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.9.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.10.D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.11.C【解析】【详解】分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、2<325<3,故本选项符合题意;D、3<328<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键. 12.D【解析】【分析】根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】根据圆柱的侧面积公式,计算即可.【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故答案为:4π.【点睛】题考查了圆柱的侧面积公式应用问题,是基础题.14.–【解析】【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k≠0),故:, 故答案:.【点睛】 此题主要考查比例的性质,a 、b 都用k 表示是解题的关键.15.1.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为1.故答案为1.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.16.1【解析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案. 详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.17.x≥1且x≠1【解析】【分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:10{30 xx-≥-≠,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.18.上升的【解析】【详解】∵抛物线y=12x2-1开口向上,对称轴为x=0 (y 轴),∴在y 轴右侧部分抛物线呈上升趋势.故答案为:上升的.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;(Ⅱ)利用中位线的判定和定理解答即可.详解:(Ⅰ)连接OE,BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.∵E点是BC的中点,∴DE=12BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=18090452︒-︒=︒.点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.20.(1)见解析(2)不公平。
精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

人教版2019-2020学年九年级数学上册期中模拟试卷(二)一.选择题(共8小题,满分6分)1.一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=32.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.(3分)如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°5.在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(2,﹣3)6.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.50°B.80°或50°C.130°D.50°或130°7.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°8.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个二.填空题(共8小题,满分18分)9.(3分)当a=时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程.10.(3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.11.(3分)二次函数y=﹣x2﹣2x+3的最大值是.12.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.13.(3分)已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为.14.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.15.如图,P是⊙O的直径AB延长线上的一点,PC切⊙O于点C,∠APC的平分线交AC于点D.若∠APC=40°,则∠CDP=.16.如图,已知点C是的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.三.解答题(共2小题,满分16分,每小题8分)17.(8分)解方程与不等式:(1)(x﹣3)(x﹣2)+33=(x+9)(x+1)(2)(2x+3)(2x﹣3)<4(x﹣2)(x+3)18.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.四.解答题(共2小题)19.如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画△A'B'C',使△A'B'C'与△ABC关于直线OP成轴对称,点A的对应点是A';(2)画△A''B''C'',使△A''B''C''与△A'B'C'关于点O成中心对称,点A'的对应点是A''.20.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.五.解答题(共2小题,满分20分,每小题10分)21.(10分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.22.(10分)如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D 的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.六.解答题(共2小题,满分20分,每小题10分)23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?七.解答题(共1小题)25.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.八.解答题(共1小题)26.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分6分)1.【解答】解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.2.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.3.【解答】解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.【解答】解:∵CA=CB,∴∠CBA=∠CAB=25°,∵△ABC绕点A顺时针进行旋转,得到△ADE.点B恰好在DE的延长线上,∴∠D=∠ABC=25°,∠DAE=∠BAC=25°,AD=AB,∴∠ABD=25°,∴∠ABD=∠CAB,∴AC∥BD,∴∠D+∠DAC=180°,∴∠EAB=180°﹣25°﹣25°﹣25°=105°.故选:C.5.【解答】解:如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠P AO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=P A=3,BO=OA=2,∴P′(3,﹣2).故选:B.6.【解答】解:当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°﹣∠AOB)=×(360°﹣100°)=130°.故选:D.7.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.8.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.二.填空题(共8小题,满分18分)9.【解答】解:∵(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,∴a﹣3≠0,|a|﹣1=2,解得:a=﹣3,即当a=﹣3时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,故答案为:﹣3.10.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).11.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.12.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.13.【解答】解:设方程的另一个根为x2,则﹣1×x2=﹣3,解得:x2=3,故答案为:3.14.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).15.【解答】解:如图,连接OC,∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.故答案为:45°.16.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠ACB=125°,∴∠ADB=180°﹣125°=55°,∴∠AOB=110°,故答案为:110.三.解答题(共2小题,满分16分,每小题8分)17.【解答】解:(1)x2﹣5x+6+33=x2+10x+9,x2﹣5x﹣x2﹣10x=9﹣6﹣33,﹣15x=﹣30,x=2;(2)4x2﹣9<4(x2+x﹣6),4x2﹣9<4x2+4x﹣24,4x2﹣4x2﹣4x<﹣24+9,﹣4x<﹣15,x>.18.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.四.解答题(共2小题)19.【解答】解:(1)如图所示,△A'B'C'为所求三角形;(2)如图所示,△A''B''C''为所求三角形.20.【解答】解:∵点A(2,0),点B(0,),∴OA=2,OB=.在Rt△ABO中,由勾股定理得AB=.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==.五.解答题(共2小题,满分20分,每小题10分)21.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.22.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,.∴∠BOD=2∠CDB.∵∠BDF=∠CDB,∴∠BOD=∠CDF,∵∠BOD+∠ODE=90°,∴∠ODE+∠CDF=90°,即∠ODF=90°,∴DF是⊙O的切线;(2)猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴,.∴∠CBA=∠DBA,CB=BD.∵OB=OD,∴∠DBA=∠ODB.∴∠AOD=∠DBA+∠ODB=2∠DBA=∠CBD,∵∠BCG=∠BAG,∴△CBN∽△AOM,∴.∵AO=OD,CB=BD,∴,∴,∵∠ODB=∠MDN,∴△MDN∽△ODB,∴∠DMN=∠DOB,∴MN∥AB.六.解答题(共2小题,满分20分,每小题10分)23.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.24.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.七.解答题(共1小题)25.【解答】解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴△EMF∽△NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC 与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴△MOP∽△ONQ∴i)若S△OMH=2S△ONH,且两三角形都以OH为底∴MP=2NQ=8x∴解得:x=∴CN=ii)若2S△OMH=S△ONH,则MP=NQ=2x∴解得:x=∴CN=综上所述,CN的长为或.八.解答题(共1小题)26.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).。
2019-2020学年度七下数学期中考试试题(含答案解析)

2019-2020学年度七下数学期中考试试题一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,6)B.(﹣2,5)C.(﹣5,﹣3)D.(2,﹣1)3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)在﹣1,14,0.101001000100001L,3,3.14159,,2,这7个数中,无理数共有()A.4个B.3个C.2个D.1个5.(3分)1.下列选项中能由左图平移得到的是()A. B. C. D.6.(3分)若点P在x轴的下方,y轴的右方,到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)7.(3+1的值在哪两个整数之间()A.5和6B.6和7C.7和8D.8和98.(3分)7. 小明同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元和2元的贺卡张数分别为x 张和y 张,则下列方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.822210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩9.(3分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.4810.(3分)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒时,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二.填空题(3×6=18分)11.(3的平方根是.12.(3分)已知3x+2y=1,用含x的代数式表示y:.13.(3b=,则ab=.14.(3分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(3分).已知x3x-2111y y==⎧⎧⎨⎨==⎩⎩或都是ax+by=7的解,则a=_______,b=______.16.(3分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共72分)17.(8分)计算:(1)21(2)--;(2218.(10分)解方程(组):(1)9x2=16(2){2m+3n=1①7m+6n=8②.19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)阅读下列解题过程,然后解答后面的问题.如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数.解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决.(1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大?(2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC(____________)∴∠C=∠DBA(____________)又∵∠C=∠D∴∠DBA=∠D(___________)∴DF∥(_______________)∴∠A=∠F(_____________).22.(10分)如图,CD⊥AB于D,且CD平分∠BCA,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,∠3=80°,CD平分∠BCA(1)证明:∠B=∠ADG;(2)求∠2的度数.23.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如注:获利24.(12分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.2019-2020学年度七下数学期中考试试题(答案解析)一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等【分析】根据命题的定义即可求解.【解答】解:根据命题的定义可以判断A、B、C不是命题,故选:D.【点评】本题考查了命题的定义。
云南省曲靖市罗平县2022-2023学年八年级数学第一学期期末统考模拟试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线 是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三 角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .2.把322m n m n mn ++分解因式正确的是( )A .()22mn m m +B .()221mn m m ++C .()221m n m ++D .()21mn m + 3.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 4.如图,在ABC 中,9AB =, 15BC =,12AC =.沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD .则BDE 的周长是( )A .15B .12C .9D .65.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是( )A .B .C .D .6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1 B .2 C .3 D .47.下列各组数是勾股数的是( )A .6,7,8B .1,2,3C .3,4,5D .5,5,98.现有如图所示的卡片若干张,其中A 类、B 类为正方形卡片,C 类为长方形卡片,若用此三类卡片拼成一个长为2+a b ,宽为+a b 的大长方形,则需要C 类卡片张数为( )A .1B .2C .3D .49.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是( ) 学科数学 语文 英语 考试成绩91 94 88A .88B .90C .91D .92 10.如图,AE 垂直于∠ABC 的平分线交于点D ,交BC 于点E ,CE=13BC ,若△ABC 的面积为2,则△CDE 的面积为( )A .13B .16C .18D .110二、填空题(每小题3分,共24分)11.如图,在Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BE 平分ABC ∠交AC 于E ,交AD 于F ,//FG BC ,//FH AC ,下列结论:①AE AF =;②AF FH =;③AG CE =;④AB FG BC +=,其中正确的结论有____________. (填序号)12.如图①,在矩形ABCD 中,动点P 从A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 面积为y ,如果y 与x 的函数图象如图②所示,则矩形ABCD 的面积为__.13.如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E .若BD +AC =3a ,则AC =_________.(用含a 的式子表示)14.若3a -+(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_________.15.如图,∠MAN 是一个钢架结构,已知∠MAN =15°,在角内部构造钢条BC ,CD ,DE ,……且满足AB =BC =CD =DE =……则这样的钢条最多可以构造________根.16.某个数的平方根分别是a +3和2a +15,则这个数为________.17.如图,已知方格纸中是4个相同的正方形,则123∠+∠+∠=____度.18.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.三、解答题(共66分)19.(10分)请你观察下列等式,再回答问题. 2211111111121112+++-+==; 2211111111232216+++-+==; 2211111111.3433112++=+-=+ (1)根据上面三个等式提供的信息,请猜想2211145++的结果,并进行验证; (2)请按照上面各等式反映的规律,试写出用n(n 为正整数)表示的等式,并加以验证.20.(6分)在△ABC 中,CD ⊥AB 于点D ,DA=DC=4,DB=1,AF ⊥BC 于点F ,交DC 于点E .(1)求线段AE 的长;(1)若点G 是AC 的中点,点M 是线段CD 上一动点,连结GM ,过点G 作GN ⊥GM 交直线AB 于点N ,记△CGM 的面积为S 1,△AGN 的面积为S 1.在点M 的运动过程中,试探究:S 1与S 1的数量关系21.(6分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出P 的坐标.22.(8分)如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF . (1)求证:AD 平分∠BAC .(2)写出AB +AC 与AE 之间的等量关系,并说明理由.23.(8分)我县正准备实施的某项工程接到甲、乙两个工程队的投标书,甲、乙工程队施工一天的工程费用分别为2万元和1.5万元,县招投标中心根据甲、乙两工程队的投标书测算,应有三种施工方案:方案一:甲队单独做这项工程刚好如期完成;方案二:乙队单独做这项工程,要比规定日期多5天;方案三:若甲、乙两队合做4天后,余下的工程由乙队单独做,也正好如期完成. 根据以上方案提供的信息,在确保工期不耽误的情况下,你认为哪种方案最节省工程费用,通过计算说明理由.24.(8分)如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,4,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,并写出点1A 的坐标.(2)画出111A B C ∆关于y 轴对称的222A B C ∆,并写出点2A 的坐标.25.(10分)陈史李农场2012年某特产种植园面积为y 亩,总产量为m 吨,由于工业发展和技术进步,2013年时终止面积减少了10%,平均每亩产量增加了20%,故当年特产的总产量增加了20吨.(1)求2013年这种特产的总产量;(2)该农场2012年有职工a 人.2013年时,由于多种原因较少了30人,故这种特产的人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩.求2012年的职工人数a 与种植面积y .26.(10分)解方程:33122x x x-+=--.参考答案一、选择题(每小题3分,共30分)1、B【解析】通过几个特殊点就大致知道图像了,P 点在AD 段时面积为零,在DC 段先升,在CB 段因为底和高不变所以面积不变,在BA 段下降,故选B2、D【分析】先提取公因式mn ,再对余下的多项式利用完全平方公式继续分解.【详解】322m n m n mn ++=()221mn m m ++=()21mn m +.故选:D .【点睛】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.3、B【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式 =27()a b a b ++ =7a b+.所以答案选B. 【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.4、B【分析】先根据勾股定理的逆定理判断△ABC 是直角三角形,从而可得B 、E 、C 三点共线,然后根据折叠的性质可得AD=ED ,CA=CE ,于是所求的BDE 的周长转化为求AB+BE ,进而可得答案.【详解】解:在ABC 中,∵22222291222515AB AC BC +=+===, ∴ABC 是直角三角形,且∠A =90°,∵沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD , ∴B 、E 、C 三点共线,AD=ED ,CA=CE ,∴BE=BC -CE =15-1=3,∴BDE 的周长=BD+DE+BE=BD+AD +3=AB +3=9+3=1.故选:B .【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键.5、D【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、是轴对称图形;故选:D .【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x =4y 代入即可得.【详解】解:∵原式=223x y y x y-•+ =()()3x y x y y x y +-•+ =33x y y- ∵3x -4y =0,原式=43y y y-=1 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7、C【分析】直接根据勾股数的概念进行排除选项即可.【详解】A 、2226+7=858≠,故不符合题意;B 、2221+2=53≠,故不符合题意;C 、2223+4=25=5,故符合题意;D 、2225+5=509≠,故不符合题意;故选C .【点睛】本题主要考查勾股数,熟练掌握勾股数的概念及勾股定理是解题的关键.8、C【分析】拼成的大长方形的面积是(a+2b )(a+b )=a 2+3ab+2b 2,即需要一个边长为a 的正方形,2个边长为b 的正方形和3个C 类卡片的面积是3ab .【详解】(a+2b)(a+b)=a 2+3ab+2b 2.则需要C 类卡片张数为3张.故选C.【点睛】此题考查多项式乘多项式,解题关键在于掌握运算法则.9、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:()919488391++÷=(分),故小华的三科考试成绩平均分式91分;故选:C .【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.【解析】先证明△ADB≌△EBD,从而可得到AD=DE,然后先求得△AEC的面积,接下来,可得到△CDE的面积.【详解】解:如图∵BD平分∠ABC,∴∠ABD=∠EBD.∵AE⊥BD,∴∠ADB=∠EDB.在△ADB和△EDB中,∠ABD=∠EBD,BD=BD,∠ADB=∠EDB,∴△ADB≌△EBD,∴AD=ED.∵CE=13BC,△ABC的面积为2,∴△AEC的面积为23.又∵AD=ED,∴△CDE的面积=12△AEC的面积=13故选A.【点睛】本题主要考查的是全等三角形的判定,掌握等高的两个三角形的面积比等于底边长度之比是解题的关键.二、填空题(每小题3分,共24分)11、①②③④【分析】只要证明∠AFE=∠AEF,四边形FGCH是平行四边形,△FBA≌△FBH即可解决问题.【详解】∵∠FBD=∠ABF,∠FBD+∠BFD=90°,∠ABF+∠AEB=90°∴∠BFD=∠AEB∴∠AFE=∠AEB∴AF=AE,故①正确∵FG∥BC,FH∥AC∴四边形FGCH是平行四边形∴FH=CG,FG=CH,∠FHD=∠C∵∠BAD+∠DAC=90°,∠DAC+∠C=90°∴∠BAF=∠BHF∵BF=BF,∠FBA=∠FBH∴△FBA≌△FBH(AAS)∴FA=FH,AB=BH,故②正确∵AF=AE,FH=CG∴AE=CG∴AG=CE,故③正确∵BC=BH+HC,BH=BA,CH=FG∴BC=AB+FG,故④正确故答案为:①②③④【点睛】本题主要考查全等三角形的判定和性质,关键是选择恰当的判定条件,同时要注意利用公共边、公共角进行全等三角形的判定.12、1【分析】根据图象②得出AB、BC的长度,再求出面积即可.【详解】解:从图象②和已知可知:AB=4,BC=10-4=6,所以矩形ABCD的面积是4×6=1,故答案为1.【点睛】本题考查了矩形的性质和函数图象,能根据图形得出正确信息是解此题的关键.13、a【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【详解】解:连接AD.∵AB的垂直平分线交BC于D,交AB于E,∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,又∠C=90°,∴AC=12AD=12BD=12(3a-AC),∴AC=a.故答案为:a.【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.14、(-3,-2).3a (b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.15、1【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,然后根据三角形的内角和定理求解即可.【详解】解:解:∵添加的钢管长度都与CD相等,∠MAN=11°,∴∠DBC=∠BDC=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是11°,第二个是30°,第三个是41°,第四个是60°,第五个是71°,第六个是90°就不存在了.所以一共有1个.故答案为1.【点睛】本题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.16、1【解析】∵某个数的平方根分别是a+3和2a+15,∴a+3+2a+15=0,∴a=-6,∴(a+3)2=(-6+3)2=1,故答案为:1.17、135【解析】如图,由已知条件易证△ABC ≌△BED 及△BDF 是等腰直角三角形, ∴∠1=∠EBD,∠2=45°,∵∠3+∠EBD=90°,∴∠1+∠2+∠3=135°.18、﹣1【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n 值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n =﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx (k≠0),是解题关键.三、解答题(共66分)19、(122111114520++=,验证见解析;(222111111(1)1n n n n ++=+-++,验证见解析.【解析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.【详解】(1)22111111114544120+++-+==,验证略. (2)()2211111111n n n n ++=+-++.验证如下: ()()2222222111211111112?n 11111111111111n n n n n n n n n n n n nn n n n n ++⎛⎫⎛⎫⎛⎫++=+-+=-+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭++++⎛⎫=-=-=+- ⎪+++⎝⎭【点睛】本题考查了算术平方根,解题的关键是掌握算是平方根的概念.20、(1)25;(1)S 1+S 1=4,见解析 【分析】(1)先证明△ADE ≌△CDB ,得到DE=DB=1,在Rt △ADE 中,利用勾股定理求出AE .(1)过点G 作CD ,DA 的垂直线,垂足分别为P ,Q ,证明△MGP ≌△NGQ ,所以S 1+S 1=S △AGQ +S △CGP = S △ACD -S 四边形GQDP ,即可求解.【详解】(1)在△ABC 中,CD ⊥AB ,AF ⊥BC∴∠ADC=∠AFB=90°∵∠AED=∠CEF∴∠EAD=∠BCD在△ADE 和△CDB 中ADE CDB EAD BCD DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CDB∴DE=DB=1∴22222425ED AD +=+=(1)在△ABC中,CD⊥AB,DA=DC=4,点G是AC的中点过点G作CD,DA的垂直线,垂足分别为P,Q.则,GP=GQ=12DA=1∠PGQ=90°=∠GQN=∠GPM∵GN⊥GM∴∠MGN=90°∴∠MGP=∠NGQ∴△MGP≌△NGQS1+S1=S△AGQ+S△CGP= S△ACD-S四边形GQDP =1144224 22AD CD QN PD⨯⨯-⨯=⨯⨯-⨯=故答案为:4【点睛】本题考查了全等三角形的判定和性质,勾股定理解直角三角形,利用三角形中位线性质求线段长度.21、(1)详见解析;(2)图详见解析,P(0,74).【分析】(1)根据轴对称的性质进行作图,即可得到△ABC关于y轴的对称图形△A1B1C1;(2)连接A1C交y轴于P,连接AP,则点P即为所求,再根据C(3,4),A1(-1,1),求得直线A1C解析式为y=34x+74,最后令x=0,求得y的值,即可得到P的坐标.【详解】(1)如图所示,△A1B1C1即为所求;(2)连接A 1C 交y 轴于P ,连接AP ,则点P 即为所求.根据轴对称的性质可得,A 1P =AP ,∵A 1P +CP =A 1C (最短),∴AP +PC +AC 最短,即△PAC 的周长最小,∵C (3,4),A 1(﹣1,1),∴直线A 1C 解析式为y =34x +74, ∴当x =0时,y =74, ∴P (0,74). 【点睛】 本题主要考查了运用轴对称变换进行作图,以及待定系数法求一次函数解析式的运用,解决问题的关键是掌握轴对称的性质.解题时注意:两点之间,线段最短.22、(1)详见解析;(2)AB +AC =2AE ,理由详见解析.【分析】(1)根据相“HL ”定理得出△BDE ≌△CDF ,故可得出DE =DF ,所以AD 平分∠BAC ;(2)由(1)中△BDE ≌△CDE 可知BE =CF ,AD 平分∠BAC ,故可得出△AED ≌△AFD ,所以AE =AF ,故AB +AC =AE ﹣BE +AF +CF =AE +AE =2AE .【详解】证明:(1)∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠E =∠DFC =90°,∴△BDE 与△CDE 均为直角三角形,∵在Rt △BDE 与Rt △CDF 中,,,BD CD BE CF =⎧⎨=⎩∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 平分∠BAC ;(2)AB +AC =2AE .理由:∵BE =CF ,AD 平分∠BAC ,∴∠EAD =∠CAD ,∵∠E =∠AFD =90°,∴∠ADE =∠ADF ,在△AED 与△AFD 中,,,,EAD CAD AD AD ADE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AED ≌△AFD ,∴AE =AF ,∴AB +AC =AE ﹣BE +AF +CF =AE +AE =2AE .【点睛】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.23、方案三最节省工程费用,理由见解析.【分析】设工程如期完成需x 天,则甲工程队单独完成需x 天,乙工程队单独完成需()5+x 天,依题意可列方程,可求x 的值,然后分别算出三种方案的价格进行比较即可.【详解】设工程如期完成需x 天,则甲工程队单独完成需x 天,乙工程队单独完成需()5+x 天,依题意可列方程415x x x +=+或1144()155x x x x -++=++ 解得:20x经检验20x 是方程的根∴工程如期完成需20天,甲工程队单独完成需20天,乙工程队单独完成需25天, 在工期不耽误的情况下,可选择方案一或方案三若选择方案一,需工程款22040⨯=万元若选择方案三,需工程款24 1.52038⨯+⨯=万元故选择方案(3).【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.24、(1)见解析,()12,4A -;(2)见解析,()22,4A -- 【分析】(1)作出各点关于x 轴的对称点,再顺次连接即可;(2)作出各点关于y 轴的对称点,再顺次连接即可.【详解】(1)如图,111A B C ∆即为所求,()12,4A -.(2)如图,222A B C ∆即为所求,点()22,4A --.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.25、 (1) 2013年的总产量270吨;(2)农场2012年有职工570人,种植面积为5700亩.【分析】(1)根据平均每亩产量增加了20%,故当年特产的总产量增加了20吨,列出方程()()20120%110%m m y y ++=-,解方程求出m 的值;(2)根据人均产量比2012年增加了14%,而人均种植面积比2012年减少了0.5亩,列出方程组()()270250114%30110%1302a a y y a a ⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②,解方程组求出结果. 【详解】(1)根据题意得:()()20120%110%m m y y ++=-解得,m=250.∴m +20=270答:2013年的总产量270吨.(2)根据题意得:() ()270250114%30110%1302a ay ya a⎧=+⎪-⎪⎨-⎪=-⎪-⎩①②解①得a=570.检验:当a=570时,a(a-30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人;将a=570代入②式得,()110%15405702y y-=-,解得,y =5700.答:2012年的种植面积为5700亩.考点:分式方程的应用26、1x=.【解析】解分式方程去分母转化成一元一次方程,分式方程一定要检验。
2019-2020学年八年级(上)第一次月考数学试卷(含答案)

2019-2020学年八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,AB=10,AC:BC=3:4,则BC=()A. 4B. 6C. 8D. 102.下列数中,有理数是()A. −√7B. −0.6C. 2πD. 0.151151115…3.已知P(x,y)在第二象限,且x2=4,∣y∣=7,则点P的坐标是()A. (2,−7)B. (−4,7)C. (4,−7)D. (−2,7)4.在下列各式中正确的是()A. √(−2)2=2B. ±√9=3C. √16=8D. √22=±25.若a=√13,则实数a在数轴上对应的点P的大致位置是()A. B.C. D.6.下列说法中:(1)√5是实数;(2)√5是无限不循环小数;(3)√5是无理数;(4)√5的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.(如图)在4×8的方格中,建立直角坐标系E(−1,−2),F(2,−2),则G点坐标()A. (−1,1)B. (−2,−1)C. (−3,1)D. (1,−2)8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数10.在直角坐标系xOy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,−4)B. (−4,2)C. (4,−2)D. (−2,4)二、填空题(本大题共4小题,共16.0分)11.一直角三角形的三边分别为6,8,x,那么以x为边长的正方形的面积为______.12.916的算术平方根是.13.计算:√−83+√9=______.14.若点(a,−4)与点(−3,b)关于x轴对称,则a=________,b=________.三、计算题(本大题共2小题,共14.0分)15.计算12√113+(3√18+15√50−4√12)÷√3216.计算(1)(2x−1)2+(1−2x)(1+2x)(2)(x+2)(x−3)−x(x+1)四、解答题(本大题共5小题,共40.0分)17.求满足下列各式的未知数x(1)27x3+125=0(2)(x+2)2=16.18.如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.19.如图,在海上观察所A处.我边防海警发现正南方向60海里的B处有一可疑船只正以每小时20海里的速度向正东方向C处驶去,海我边防海警即刻从A处派快艇去拦截.若快艇的速度是每小时1003里.问快艇最快几小时拦截住可疑船只?20.求代数式的值:(1)当a=7,b=4,c=0时,求代数式a(2a−b+3c)的值.(2)如图是一个数值转换机的示意图.请观察示意图,理解运算原理,用代数式表示为______ .若输入x的值为3,y的值为−2,输出的结果是多少?21.如图1,在平面直角坐标系中,A(a,0),B(0,2√3)(1)点(k+1,2k−5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E 点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.-------- 答案与解析 --------1.答案:C解析:解:∵∠C=90°,AB=10,AC:BC=3:4,∴BC2+AC2=AB2,AC:BC:AB=3:4:5,∴BC=8;故选:C.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合已知条件,即可得出BC的长.本题考查了勾股定理;熟记勾股定理是解决问题的关键.2.答案:B解析:解:A、−√7是无理数,故选项错误;B、−0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.151151115…是无理数,故选项错误.故选:B.本题考查了实数,根据有理数的定义选出即可.3.答案:D解析:【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据第二象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第二象限,且x2=4,|y|=7,∴x=−2,y=7,∴点P的坐标为(−2,7).故选D.4.答案:A解析:【分析】此题考查了算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.根据算术平方根和平方根的定义分别对每一项进行计算,即可得出答案.【解答】解:A.√(−2)2=√4=2,正确;B.±√9=±3,故本选项错误;C.√16=4,故本选项错误;D.√22=2,故本选项错误;故选A.5.答案:C解析:解:∵3<√13<4,故选:C.根据3<√13<4,即可选出答案本题主要考查了是实数在数轴上的表示,熟悉实数与数轴的关系式解答此题的关键.6.答案:B解析:解:(1)√5是实数,故正确;(2)√5是无限不循环小数,故正确;(3)√5是无理数,故正确;(4)√5的值等于2.236,故错误;故选B.根据实数的分类进行判断即可.本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.答案:C解析:【分析】本题考查了平面直角坐标系,点的坐标的确定,先由E(−1,−2),F(2,−2)确定平面直角坐标系,然后确定G点坐标即可.【解答】解:如图,由E(−1,−2),F(2,−2)可确定平面直角坐标系如下图:∴G点坐标为(−3,1),故选C.8.答案:A解析:【分析】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8−x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长【解答】解:设CN=xcm,则DN=(8−x)cm,BC=4cm,根据题意可知DN=EN,EC=12在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8−x)2=16+x2,整理得16x=48,∴x=3,则CN=3cm.故选A.9.答案:D解析:和数轴上的点一一对应的数是实数,故选:D .熟练掌握实数与数轴上的点是一一对应的关系是解题的关键.10.答案:C解析:解:根据题意,点A 和点B 是关于直线y =1对称的对应点,它们到y =1的距离相等是3个单位长度,所以点B 的坐标是(4,−2).故选:C .根据轴对称的两点到对称轴的距离相等,此题易解.主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.11.答案:100或28解析:解:当较大的数8是直角边时,根据勾股定理,得x 2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x 2=64−36=28.所以以x 为边长的正方形的面积为100或28.故答案为:100或28.以x 为边长的正方形的面积是x 2,所以只需求得x 2即可.但此题应分8为直角边和为斜边两种情况考虑.此题考查勾股定理,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.12.答案:34解析:【分析】此题主要考查了算术平方根的定义,根据算术平方根的定义即可解答.【解答】解:916的算术平方根为34.故答案为34.13.答案:1解析:解:原式=−2+3=1,故答案为:1原式利用平方根与立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.答案:−3;4解析:【分析】本题考查了关于轴x、y轴对称的点的坐标,据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,根据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(a,−4)与点Q(−3,b)关于x轴对称,得a=−3,b+(−4)=0,解得a=−3,b=4,故答案为−3;4.15.答案:解:原式=12×2√3+(9√2+√2−2√2)÷4√23=8√3+2.解析:先化简二次根式,然后根据二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.答案:解:(1)(2x−1)2+(1−2x)(1+2x)=4x2−4x+1+1−4x2=−4x+2;(2)(x+2)(x−3)−x(x+1)=x2−3x+2x−6−x2−x=−2x−6.解析:(1)根据完全平方公式和平方差公式可以解答本题;(2)根据多项式乘多项式和单项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.17.答案:解:(1)27x3+125=0则x3=−12527解得:x=−5;3(2)(x+2)2=16则x+2=±4,解得:x1=−6,x2=2.解析:(1)直接利用立方根的定义化简求出答案;(2)直接利用平方根的定义化简求出答案.此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.答案:解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,则BD⊥AC,理由:由图可知BC=√32+42=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由(1)可得AB=5,BC=5由图得AC=√22+42=2√5,∴△ABC的周长=5+5+2√5=10+2√5.解析:本题考查作图−应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,根据等腰三角形的性质可得BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;19.答案:解:设快艇最快x小时拦截住可疑船只,x,则BC=20x,AC=1003由勾股定理得:AC2=AB2+BC2,x)2=602+(20x)2,即(1003(负值舍去),解得:x=±94∴x=9,4小时拦截住可疑船只.答:快艇最快94解析:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.首先求得线段AC,BC的长,然后利用勾股定理得出方程,解方程即可.20.答案:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2)(2)用代数式表示为12将x=3,y=−2代入(2×3+4)=5.得:原式=12解析:解:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2),(2)由题意可得:12将x=3,y=−2代入得:原式=5.(2x+y2).故答案为:12(1)直接利用已知数据代入代数式求出答案;(2)直接利用已知数值转换机的示意图得出代数式,进而求出答案.此题主要考查了代数式求值,正确列出代数式是解题关键.21.答案:解:(1)∵点(k+1,2k−5)关于x轴的对称点在第一象限,∴点(k+1,2k−5)在第四象限,∴k+1>0,2k−5<0,∴−1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2√3),∴OB=2√3,∴S△AOB=12OA⋅OB=12×2×2√3=2√3;(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2√3,∴OF=OA+AF=2+2√3,∴P(2+2√3,2),②当∠ABP=90°时,同①的方法得,P′(2√3,2√3+2),即:P点坐标为(2+2√3,2)或(2√3,2√3+2);(3)①如图2,∵△OBD和△ABC都是等边三角形,∴BD=OB,AB=BC,∠OBD=∠ABC=60°,∴∠ABD=∠CBO,在△ABD和△CBO中,{BD=OB∠ABD=∠CBO AB=BC,∴△ABD≌△CBO(SAS),∴S△ABD=S△CBO,AD=OC,过点B作BM⊥AD于M,BN⊥OC于N,∴BM=BN,∵BM⊥AD,BN⊥OC,∴BE是∠CED的角平分线;②如图3,作点A关于y轴的对称点A′,∵A(2,0),∴A′(−2,0),连接A′C交y轴于M,过点C作CH⊥OA于H,在Rt△AOB中,OA=2,OB=2√3,∴AB=4,tan∠OAB=OBOA =2√32=√3,∴∠OAB=60°,∵△ABC是等边三角形,∴AC=AB=4,∠BAC=60°,∴∠CAH=60°,在Rt△ACH中,∠ACH=90°−∠CAH=30°,∴AH=2,CH=2√3,∴OH=OA+AH=4,∴点C(4,2√3),∵A′(−2,0),∴直线A′C的解析式为y=√33x+2√33,∴M(0,2√33).解析:(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BM,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A′C的解析式,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。
2019~2020学年度九年级元调数学模拟训练题及答案(2019.12.27)

2019~2020学年度元月调考九年级数学模拟试卷(一)一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的字母代号涂黑.1.将方程x²+5x=7化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数,常数项分别为( A)A.5,-7 B.5,7 C.-5,7 D.-5,-72.下列图形中,是中心对称图形但不是轴对称图形的是( A)A.B.C.D.3.下列事件中,是随机事件的是( A)A.任意抛一枚图钉,钉尖着地B.任意画一个三角形,其内角和是180°C.通常加热到100℃时,水沸腾D.太阳从东方升起4.抛物线y=x2+1先向左平移2个单位长度,再向下平移5个单位长度所得抛物线的解析式是( B)A.y=(x+2)2+4B.y=(x+2)2-4C.y=(x-2)2+4D.y=(x-2)2-45.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.8,下列说法正确的是( D)A.种植10棵幼树,结果一定是“有8棵幼树成活”B.种植1000棵幼树,结果一定是“800棵幼树成活“和“200棵幼树不成活”C.种植10n棵幼树,恰好有“2n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.86.如图,AB为⊙O 的直径,C、D、E在⊙O上,若∠BCD=110°,则∠AED的度数为( C)A.10° B.15° C.20° D.30°7.平面直角坐标系中,M点坐标为(﹣2,3),以2为半径画⊙M,则以下结论正确的是( D)A.⊙M与x轴相交,与y轴相切B.⊙M与x轴相切,与y轴相离C.⊙M与x轴相离,与y轴相交D.⊙M与x轴相离,与y轴相切8.如图,将△ABC绕顶点C旋转得到△DEC,点A对应点D,点B对应点E,且点B刚好落在DE边上,∠A=24°,∠BCD=48°,则∠ABD等于( C)A.30° B.38° C.36° D.45°9.如图,在⊙O中,=AB AC,BC=6,AC=I是△ABC的内心,则线段OI的值为( C)A.1 B3C.5D10.二次函数y=x2+bx的对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是( C)A.t≥-1 B.-1≤t<3 C.-1≤t<8 D.t<3二.填空题(每题3分,共计18分)11.方程230 4x x--=的判别式的值等于.412. 若点A(m ,7)与点B(﹣4,n)关于原点成中心对称,则m +n=__________.﹣313. 2019女排世界杯于9月14日至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼!则中国队在本届世界杯比赛中连胜_____场.1114. 一个不透明的口袋中装有一红一白两个小球,它们除颜色外完全相同.从口袋中随机摸出1个小球,记下摸出小球的颜色后,放回口袋摇匀;再从口袋中随机摸出1个小球,记下摸出小球颜色后,放回口袋摇匀;第三次从口袋中随机摸出1个小球,则三次摸出的小球恰好颜色相同的概率为________.1415. 如图,正六边形ABCDEF 纸片中,AB=6,分别以B 、E 为圆心,以6为半径画AC 、DF ,小欣把扇形BAC 与扇形EDF 剪下,并把它们粘贴为一个大扇形(B 与E 重合,F 与A 重合),她接着用这个大扇形作一个圆锥的侧面,则这个圆锥的高为__________.16. 如图,△ABC 中,AB=10,AC=6,BC=14,D 为AC 边上一动点(D 不与A 、C 重合),将线段BD 绕D点顺时针旋转90°得到线段ED ,连接CE ,则△CDE 面积的最大值为__________.提示:作BG ⊥AC 于G ,EF ⊥AC 于F ,则△DBG ≌△EDF ,∴EF=DG ,∵AB=10,AC=6,BC=14,由勾股定理可得AG=5,设DC=x ,∴EF=DG=11﹣x ,∴21111==222CDE S CD EF x x ⋅-+△2111121=228x ⎛⎫--+ ⎪⎝⎭,∴当x=112时,△CDE 面积有最大值为1218. 三.解答题(共计8题,共计72分)17. (本题8分)解方程:x 2﹣x ﹣3=0解:∵a =1,b=﹣1,c=﹣3,∴△=b 2﹣4ac =(﹣1)²﹣4×1×(﹣3)=13>0,∴x ==, ∴x 1,x 2 18. (本题8分)如图,A 、B 是⊙O 上的两点,∠AOB=120°,C 是AB 的中点,求证:四边形OACB 是菱形;证明:连接OC ,∵C 是AB 的中点,∴∠AOC=∠BOC=12∠AOB , ∵∠AOB=120°,∴∠AOC=60°,∵OA=OC ,∴△OAC 是等边三角形,∴AC=OA=OC ,同理BC=OB ,∴OA=AC=BC=OB ,∴四边形OACB 是菱形;19. (本题8分)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,球上分别标有数字1、2、3、4. ⑴小萱随机从布袋中摸出一个乒乓球,记下数据后放回布袋里,摇匀后,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方式列出所有可能的结果,并求出“两个乒乓球上的数字之和不小于5”的概率.⑵随机从布袋中一次摸出两个乒乓球,直接写出“两个乒乓球上的数字至少有一个是偶数”的概率为__________.解:⑴列表如下:由表知,共有16个结果,且每种结果是等可能的,其中“两个乒乓球上的数字之和不小于5”(记为事件A)包含10种结果,∴P(A)=105=168.⑵P(“两个乒乓球上的数字至少有一个是偶数”)=56.提示:列表如下:由表知,共有12个结果,且每种结果是等可能的,其中“两个乒乓球上的数字至少有一个是偶数”(记为事件B)包含10种结果,∴P(A)=105= 126.20.(本题8分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P﹣6,0).⑴将△ABC绕点P逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为__________.⑵画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为__________.⑶把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为__________.解:⑴如图,C1的坐标为(﹣3,4).⑵如图,A2的坐标为(2,1).⑶如图,Q的坐标为(3,3).21.(本题8分)如图,AB为⊙O的一条弦,PB切⊙O于B,PA=PB,直线PO交AB于E,交⊙O于点C.⑴求证:PA是⊙O的切线;⑵若CD∥PA,CD交直线AB于点D,交⊙O于另一点F.①求证:AD=CD.②若AB=8,BD=2,求⊙O的半径长.⑴证明:连接OA、OB,∵PB切⊙O于B,∴∠PBO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO,∴∠PAO=∠PBO=90°,∴PA是⊙O的切线.⑵①证明:连接AC,∵△PAO≌△PBO,∴∠APO=∠BPO,∵PA=PB,∴PO⊥AB,即∠PEA=90°,∵∠PAO=90°,∴∠OAE=∠APO,∵CD∥AP,∴∠OCD=∠APO,∴∠OCD=∠OAE,∵OA=OC,∴∠OCA=∠OAC,∴∠DCA=∠DAC,∴AD=CD.②解:设⊙O的半径为r,∵AB=8,PO⊥AB,∴AE=BE=4,∵BD=2,∴CD=AD=10,ED=6,∴EC=8,∴EO=8﹣r,在Rt△EOB中,OE²+EB²=OB²,∴(8﹣r)²+4²=r²,解得:r=5,∴⊙O的半径长为5.22.(本题10分)某网点销售一种儿童玩具,每件进价30元,规定单件销售利润不低于10元,且不高于31元.试销售期间发现,当销售单价定为10元时,每天可售出500件,销售单价每上涨1元,每天销售量减少10件,该网点决定提价销售,设销售单价为x元,每天销售量为y件.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑵当销售单价是多少元时,网店每天获利8960元?⑶网店决定每销售1件玩具,就捐赠a元(2<a≤7)给希望工程,每天扣除捐赠后可获得最大利润为8120元,求a的值.解:⑴y=500﹣10(x﹣40)=﹣10x+900,其中10≤x﹣30≤31,即40≤x≤61.⑵依题意得:8960=(﹣10x+900)(x﹣30),整理得:x²﹣120x+3596=0,解得:x1=58,x2=62,∵45≤x≤61,∴x=58,答:当销售单价是58元时,网店每天获利8960元.⑶设每天扣除捐赠后可获得利润为w元,则w=(﹣10x+900)(x﹣30﹣a)=﹣10x²+(1200+10a)x﹣27000﹣900 a∵﹣10<0,∴抛物线开口向下,且对称轴为直线x=12a+60,∵2<a≤7,∴61<12a+60≤63.5,∵45≤x≤61,∴当x=61时,W有最大值为8120,∴(﹣10×61+900)(61﹣30﹣a)=8120,解得:a=3.23. (本题10分)如图1,△ABC 和△DEC 都是等边三角形,点E 在AC 上.⑴求证:AD =BE ;⑵如图2,当CD AC 时,将△DEC 绕点C 顺时针旋转30°,连接BD 交AC 于点G ,取AB 的中点F ,连接FG .①求证:BE =2FG ;②若△AFG 的周长为9,求BC 的长.⑴证明:∵△ABC 和△DEC 都是等边三角形,∴AC=BC ,∠ACD=∠BCE=60°,CD=CE ,∴△ACD ≌△BCE ,∴AD=BE .⑵①证明:作BT ⊥AC 于T ,∵△ABC 是等边三角形,∴AC=BC ,∠CBT=∠ABT=30°,∴BC=2CT ,∴BT=,∴,∵,∴BT=CD ,∵△DEC 是等边三角形,∴∠ECD=60°,∴∠ACD=90°,∴∠BTC=∠DCG=90°,∵∠BGT=∠DGC ,∴△BGT ≌△DGC ,∴BG=DG ,∵F 为AB 的中点,∴FG=12AD ,∵∠ACB=∠ECD=60°,∴∠BCE=∠ACD ,∵CB=CA ,CE=CD ,∴△BCE ≌△ACD ,∴BE=AD ,∴FG=12BE ,∴BE=2FG . ②解:∵△ABC 是等边三角形,BT ⊥AC ,∴AT=CT,∵△BGT ≌△DGC ,∴GT=GC ,设GC=m ,∴AC=4m =AB=BC ,AC=,AG=3m ,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴,∵BE=2FG ,∴,∵F 是AB 的中点,∴AF=2m ,∵△AFG 的周长是9,∴2m +3m ,∴m=52-,∴BC=4m=10-. 24. (本题12分)如图,抛物线y =a (x 2-2m x -3m 2)(其中a ,m 为常数,且a >0,m >0)与x 轴分别交于点A ,B ,与y 轴交于点C (0,-3),顶点为F ,CD ∥AB 交抛物线于点D .⑴当a =1时,求点D 的坐标;⑵若点E 是第一象限抛物线上的点,满足∠EAB=∠ADC .①求点E 的纵坐标;②试探究:在x 轴上是否存在点P ,使以PF 、AD 、AE 为边构成的三角形是以AE 为斜边的直角三角形?如果存在,请用含m 的代数式表示点P 的横坐标,如果不存在,请说明理由.解:⑴当a =1时,y =x 2-2m x -3m 2,∵与y 轴交于点C (0,-3),﹣3 m 2=-3,∵m >0,∴m=1,∴y =x 2-2x -3,∵CD ∥AB 交抛物线于点D ,∴点D 与点C 关于抛物线的对称轴x =1对称,∴D(2,﹣3). ⑵①对y =a (x 2-2m x -3m 2),令y=0,得x 2-2m x -3m 2=0,解得:x 1=﹣m ,x 2=3m ,∴A(﹣m ,0),B(3m ,0),∵抛物线过点C (0,-3),∴∴-3am 2=-3,am 2=1,∵CD ∥AB 交抛物线于点D ,∴∠ADC=∠BAD ,点D 与点C 关于抛物线的对称轴x=m 对称,∴D(2m ,﹣3),∵∠EAB=∠ADC ,∴∠EAB=∠BAD ,∴x 轴平分∠BAD ,∴点D 关于x 轴的对称点D′(2m ,3)一定在直线AE 上,∴直线AE 的解析式为=+1y x 1m,联立2211(23)⎧=+⎪⎨⎪=--⎩y x my a x mx m ,消去y 整理得:x 2-3mx -4m 2=0,解得:x 1=﹣m ,x 2=4m ,∴点E 的横坐标为4m ,∴=⨯+=1y 4m 15m,∴点E 的纵坐标为5. ②当x =m 时, y =a (m 2-2m ²-3m 2)=﹣4am ²=﹣4,∴F(m ,﹣4),∵E (4m ,5),A (-m ,0),D (2m ,-3), 设P (b ,0),∴PF 2=(m -b )2+16,AD 2=9m 2+9,AE 2=25m 2+25 ,∵PF 2+AD 2=AE 2,∴∴(m -b )2+16+9m 2+9=25m 2+25,解得:b 1=-3m ,b 2=5m ∴P (-3m ,0)或(5m ,0).。
人教版2019-2020学年六年级数学第一学期期中考试试卷(含答案)

人教版2019-2020学年六年级数学第一学期期中考试试卷一.计算题(共3小题,满分28分)1.(10分)直接写出得数×=÷=12.5×3.2=12.56÷3.14=2=75×30%=﹣= 3.14×5= 3.14×4×5﹣=42×=30﹣9÷=8×÷8×=2.(12分)怎样简便就怎样算.(1)[4﹣(﹣)]×(2)3.5×+6.5×0.8(3)×+÷4(4)(+)÷+3.(6分)解方程.x﹣x=6+4x=50=.二.解答题(共9小题,满分21分)4.(4分)12÷=:5==%=0.85.(3分)40吨的是吨;吨的是40吨;比40米多的是米;比多的是60.6.(1分)明明看一本故事书,第一天看了全书的,第二天比第一天多看8页,这时已经看的页数占全书总页数的,明明再看页就可以看完这本故事书.7.(4分)把1.2:化简是,比值是.8.(1分)等腰三角形的两条边长分别是3cm和6cm,则它的周长是.9.(3分)一个三角形三个内角度数之比是1:3:5,这个三角形三个内角的度数分别是、和;按角分是个三角形.10.(2分)城关小学运来两捆树苗,共140棵,准备分给四、五年级栽种,四、五年级栽种的棵数比是3:4.四年级栽树苗棵.11.(2分)一堆沙子运走4.5吨,正好运走了全部的,这堆沙子共重吨,还剩下吨.12.(1分)学校六年级女生人数是男生人数的,男生人数与女生人数的比是,女生人数比男生人数少%.三.判断题(共10小题,满分10分,每小题1分)13.(1分)如果M×N=1,M和N都是倒数.(判断对错)14.(1分)一条彩带,小明用去,小英和小明用去的同样多,现在还剩下这条彩带的.(判断对错)15.(1分)如果a:b=3:5,那么a=3,b=5..(判断对错).16.(1分)3米的等于1米的.(判断对错).17.(1分)教学楼在办公楼的东北方,办公楼就在教学楼的西北方.(判断对错)18.(1分)除以一个数(0除外),等于乘以这个数的倒数.(判断对错)19.(1分)比的前项和后项同时加上同一个不是0的数,比值不变..(判断对错)20.(1分)一个鸭梨第一天吃了,第二天吃了余下的,这时鸭梨恰好吃完.(判断对错)21.(1分)读作:一分之四.(判断对错)22.(1分)一个非零整数的倒数,一定是真分数.(判断对错)四.选择题(共10小题,满分10分,每小题1分)23.(1分)录入一篇书稿,甲单独录完要小时,乙单独录完要小时,甲乙合作()小时能完成.A.B.C.24.(1分)在4:5中,比的前项除以8,要使比值不变,比的后项应()A.加上8B.乘8C.除以825.(1分)挖一条引水渠,第一天挖了全长的,第二天比第一天少挖20米,还有800米没挖完.这条引水渠一共长()A.1003米B.1030米C.780米D.1300米26.(1分)男队与女队人数的比是3:5,那么男队人数比女队人数少()A.B.C.D.27.(1分)如果大圆周长和小圆周长的比是3:1,那么小圆面积和大圆面积的比是()A.6:2B.9:1C.1:9D.2:928.(1分)图书馆购进科技书40本,科技书和文艺书的比是10:9,这两种书共()本.A.70B.74C.76D.7829.(1分)两个数的比值是1.2,如果比的前项扩大2倍,后项缩小两倍,比值是()A.1.2B.2.4C.4.8D.9.630.(1分)一堆圆木,堆成梯形状,下层12根,上层7根,共堆有6层,这堆圆木共有()根.A.57B.50C.76D.4531.(1分)甲数和乙数的比是2:3,乙数和丙数的比是4:5.甲数和丙数的比是()A.2:3B.4:5C.8:15D.5:832.(1分)把4克酒精溶于40克水中,酒精和酒精溶液的比是()A.1:10B.1:11C.5:11五.操作题(共1小题,满分7分,每小题7分)33.(7分)如图,按要求填空与画图.(1)小青家在学校的偏°方向上,距离是m.(2)小亮家在学校的北偏东35方向的1000m处.在图中标出小亮家的位置.(3)小青从家经学校到小华家,他先向偏走m到学校,再向(偏走m到小华家.六.应用题(共8小题,满分24分,每小题3分)34.(3分)为了绿化环境,某小区种植了一些树木.其中是法国梧桐,是松树,已知松树种了24棵,法国梧桐有多少棵?35.(3分)一辆汽车从甲地开往乙地,行了60千米后,还剩全程的,甲地到乙地的公路长是多少千米?36.(3分)张晓雅看一本80页的百科全书第一天看了全书的,第二天看了全书的.她两天一共看了多少页?第三天应该从第几页看起?37.(3分)修路队修一条路,第一天修了全长的,第二天修了全长的,还剩下1200米没有修完,这条路一共长多少米?38.(3分)制作一批零件,王师傅单独做需要12小时完成,李师傅单独做需要8小时完成.两人合作,多少小时可以完成?39.(3分)六(1)班分为甲,乙两个组采集昆虫标本,共采集了35种.已知甲、乙组采集昆虫标本数的比是3:4,两个组各采集昆虫标本多少种?40.(3分)一批化肥,第一次运走了30吨,第二次运走了总数的,剩下的化肥与运走的化肥的质量比是4:5,这批化肥一共有多少吨?41.(3分)人正常的眨眼可以消除眼睛的疲劳,如果眨眼次数过少,对眼睛的健康不利.据统计:人在各种状态下每分钟眨眼的次数如下表:已知人在平常状态下每分钟眨眼的次数比玩电脑游戏多140%;写字时和看书时每分钟眨眼次数的比是6:5.(1)玩电脑游戏时每分钟眨眼多少次?(2)根据以上信息,请你提出用分数、百分数或比的知识解决的问题,并解答.参考答案与试题解析一.计算题(共3小题,满分28分)1.解:×=2÷=12.5×3.2=4012.56÷3.14=42=50.2475×30%=22.5﹣= 3.14×5=15.7 3.14×4×5﹣=42×=3530﹣9÷=158×÷8×=2.解:(1)[4﹣(﹣)]×=[4﹣]×=×=(2)3.5×+6.5×0.8=3.5×0.8+6.5×0.8=(3.5+6.5)×0.8=10×0.8=8(3)×+÷4=×+×=(+)×=1×=(4)(+)÷+=÷+=+=3.解:(1)x﹣x=x=x=x=(2)6+4x=506+4x﹣6=50﹣64x=444x÷4=44÷4x=11(3)=2.4x=64×0.92.4x=57.62.4x÷2.4=57.6÷2.4x=24二.解答题(共9小题,满分21分)4.解:12÷15=4:5==80%=0.8.故答案为:15,4,8,80.5.解:(1)40×=8(吨)(2)40÷=200(吨)(3)40×(1+)=40×=65(米)(4)60÷(1+)=60÷=40答:40吨的是8吨;200吨的是40吨;比40米多的是65米;比40多的是60.故答案为:8,200,65,40.6.解:8÷()=8÷()=8=8×=80(页)80﹣80×=80﹣32=48(页)答:明明再看48页就可以看完这本故事书.故答案为:48.7.解:1.2:=(1.2×):(×)=9:51.2:=1.2÷=故答案为:9:5,.8.解:因为3+3=6,所以3不能是等腰三角形等腰,只能是底边,所以这个等腰三角形的腰是6厘米,底是3厘米,6+6+3=12+3=15(cm)答:则它的周长是15cm.故答案为:15cm.9.解:180×=180×=20°,180×=180×=60°,180×=180×=100°,100°>90°,答:这个三角形三个内角的度数分别是20°、60°和100°;按角分是个钝角三角形.故答案为:20°,60°,100°;钝角.10.解:140×=60(棵)答:四年级栽树苗60棵.故答案为:60.11.解:4.5÷=13.5(吨);13.5﹣4.5=9(吨);答:这堆沙子共重13.5吨,还剩下9吨.故答案为:13.5、9.12.解:(1)1:=4:3,(2)(1﹣)÷1==25%;答:男生人数与女生人数的比是4:3,女生人数比男生人数少25%.故答案为:4:3,25.三.判断题(共10小题,满分10分,每小题1分)13.解:如果M×N=1,那么M和N互为倒数,注意倒数不能单独存在,是相互依存的.故答案为:×.14.解:1﹣﹣=,所以一条彩带,小明用去,小英和小明用去的同样多,现在还剩下这条彩带的,说法正确;故答案为:√.15.解:由分析知:a:b=3:5,那么a=3,b=5,说法错误,因为a的值不确定,所以b的值也不确定;故答案为:错误.16.解:3×=(米)1×=(米)=所以:3米的等于1米的.故答案为:√.17.解:教学楼在办公楼的东北方,办公楼就在教学楼的西南方,所以本题说法错误;故答案为:×.18.解:根据分数除法的计算法则可得,“除以一个不为零的数,等于乘以这个数的倒数.”的说法是正确的;故答案为:√.19.解:比的前项和后项同时加上同一个不是0的数,比值会改变,这种说法不符合比的性质的内容;故答案为:错误.20.解:1﹣(1)×===答:这时还剩下这个鸭梨的.故答案为:×.21.解:读作:四分之一原题的读法错误.故答案为:×.22.解:因为,1的倒数是1,所以,整数(0除外)的倒数一定是真分数.原题说法错误.故答案为:×.四.选择题(共10小题,满分10分,每小题1分)23.解:1÷(1÷+1÷)=1÷(3+4)=1÷7=答:甲乙合作小时能完成.故选:C.24.解:4:5=(4÷8):(5÷8)=0.5:0.625=4:5.答:比的后项应除以8.故选:C.25.解:(800﹣20)÷(1﹣)=780=1300(米)答:这条引水渠一共长1300米.故选:D.26.解:(5﹣3)÷5=2÷5=答:男队人数比女队人数少.故选:B.27.解:大圆周长与小圆周长的比是3:1,则大圆的周长是小圆周长的3倍,则大圆的半径就是小圆的半径的3倍,由此可设设小圆的半径是r,则大圆的半径是3r,则:大圆的面积为:π(3r)2=9πr2;小圆的面积为:πr2,πr2:9πr2=1:9;答:小圆面积和大圆面积的比是1:9.故选:C.28.解:10÷(10+9)=,40=40×=76(本)答:这两种书共76本.故选:C.29.解:如果比的前项扩大2倍,后项缩小两倍,比值会扩大4倍那么现在的比值为:1.2×4=4.8.故选:C.30.解:(12+7)×6÷2,=19×6÷2,=57(根).故选:A.31.解:因为2:3=8:12,4:5=12:15所以甲数和丙数的比是8:15答:甲数和丙数的比是8:15.故选:C.32.解:4:(4+40)=4:44=1:11;答:酒精和酒精溶液的比是1:11.故选:B.五.操作题(共1小题,满分7分,每小题7分)33.解:(1)根据比例尺,先计算实际距离:500×3=1500(米)然后根据图上确定方向的方法,利用量角器,得出:小青家在学校的北偏西60°方向上,距离是150m.•(2)先计算小亮家到学校的图上距离,然后根据图上确定方向的方法,利用量角器画图.1000÷500=2(厘米)小亮家的位置如图所示:(3)先计算小青家到学校及学校到小华家的实际距离:500×3=1500(米)500×4=2000(米)根据图上确定方向的方法,利用量角器测量可得:小青从家经学校到小华家,他先向南偏东60°方向走1500m到学校,再向南偏东30°方向走2000m到小华家.故答案为:北;西;60;1500;南;东60°;1500;南;东;30°;2000.六.应用题(共8小题,满分24分,每小题3分)34.解:24÷×=24×=36(棵)答:法国梧桐有36棵.35.解:60÷(1﹣)=60÷=140(千米)答:甲地到乙地的公路长是140千米.36.解:80×(+)=80×=52(页)52+1=53(页)答:她两天一共看了52页,第三天应该从第53页看起.37.解:1200÷(1﹣﹣)=1200÷()=1200=2000(米)答:这条路一共长2000米.38.解:1÷(+)=1÷=4.8(小时)答:两人合作,4.8小时可以完成.39.解:3+4=7(份)35×=15(种)35×=20(种)答:甲组采集了植物标本15种,乙组采集了植物标本20种.40.解:4+5=930÷(﹣)=30÷=135(吨);答:这批化肥共有135吨.41.解:(1)24÷(1+140%)=24÷2.4=10(次)答:玩电脑游戏时每分钟眨眼10次.(2)设写字时每分钟眨眼x次,根据题意得:x:15=6:55x=15×65x=905x÷5=90÷5x=18答:写字时每分钟眨眼18次.。
2019-2020学年第一学期九年级瑞安六校第一次联考试数学卷(含答案)

23.(本题 12 分)某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政 府给该企业补偿(补偿额=(批发价﹣生产成本价)×销售量).大学生小明投资销售本 市企业生产的一种新型节能灯,调查发现,每月销售量 y(件)与销售单价 x(元)之间 的关系近似满足一次函数:y=﹣10x+500.已知这种节能灯批发价为每件 12 元,设它的 生产成本价为每件 m 元(m<12) (1)当 m=10 时. ①若第一个月的销售单价定为 20 元,则第一个月政府要给该企业补偿多少元? ②设所获得的利润为 w(元),当销售单价定为多少元时,每月可获得最大利润? (2)物价部门规定,这种节能灯的销售单价不得超过 30 元.今年三月小明获得赢利, 此时政府给该企业补偿了 920 元,若 m,x 都是正整数,求 m 的值.
16.
,
.
三、解答题(本大题有 8 小题,共 80 分)
17.(本小题满分 8 分)
解:(1)
2
求从袋中摸出一个球是红球的概率 P=
.
……3 分
3
(2) 树状图
… ……………6 分
∴ P(两次摸出的球颜色相同)= …………………8 分
18.(本小题满分 8 分) (1)点 C 的坐标为 (2,-1) . …………1 分 坐标系正确 …………………………………3 分 (2)画出过 A、B、C 三点的圆.………………6 分
C,点 A 在 x 轴负半轴上,且 OA= OB,抛物线 y=ax2+bx+4 经过
A,B,C 三点. (1)求抛物线的解析式;
(2)点 P 是第一象限内抛物线上的动点,设点 P 的横坐标为 m,过点 P 作 PD⊥BC,垂足 为 D,用含 m 的代数式表示线段 PD 的长,并求出线段 PD 的最大值. 22. (本题 10 分).现种植 A、B、C 三种树苗一共 480 棵,安排 80 名工人一天正好完成, 已知每名工人只植一种树苗,且每名工人每天可植 A 种树苗 8 棵;或植 B 种树苗 6 棵, 或植 C 种树苗 5 棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示. 设种植 A 种树苗的工人为 x 名,种植 B 种树苗的工人为 y 名. (1)求 y 与 x 之间的函数关系式; (2)若种植的总成本为 5600 元,从植树工人中随机采访一名 工人,求采访到种植 C 种树苗工人的概率.
截面问题(含详细解析)

几何体截面问题①定义:一个几何体和一个平面相交所得到的平面图形(包含它的内部)叫做这个几何体的截面. 截面不唯一,好的截面应包含几何体的主要元素!②画法:常通过“作平行线”或“延长直线找交点”作出完整的截面,作截面是立体几何非常重要的研究课题.③思想:作截面是研究空间几何体的重要方法,它将陌生空问题转化为熟悉的平面问题!技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
1.【云南省昆明市2019-2020学年高三下学期1月月考数学】某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为为4π,则该球的半径是( )A .2B .4C .D .【答案】B【解析】设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即截面圆的周长可得42r ππ=,得2r =,故由题意知(222R r =+,即(222216R=+=,所以4R =,故选:B .2.如图,已知三棱锥V ABC -,点P 是VA 的中点,且2AC =,4VB =,过点P 作一个截面,使截面平行于VB 和AC ,则截面的周长为( )A .12B .10C .8D .6【答案】D 【解析】如图所示,设AB 、BC 、VC 的中点分别为D,E,F ,连接PD,DE,EF,PF. 由题得PD||VB,DE||AC,因为,PD DE ⊆平面DEFP,VB,AC 不在平面DEFP 内, 所以VB||平面DEFP,AC||平面DEFP, 所以截面DEFP 就是所作的平面.由于11||,||,,22PD VB EF VB PD VB EF VB ===, 所以四边形DEFP 是平行四边形, 因为VB=4,AC=2,所以PD=FE=2,DE=PF=1, 所以截面DEFP 的周长为2+2+1+1=6. 故选:D3.【2020届广东省东莞市高三期末调研测试理科数学试题】已知球O 是正四面体A BCD -的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( ) A .89π B .1118πC .512π D .49π 【答案】A【解析】由题,设平面α为过E 的球O 的截面,则当OE ⊥平面α时,截面积最小, 设截面半径为r ,球的半径为R ,则222r R d =-,因为正四面体棱长为a ,设过点A 垂直于平面BCD 的直线交平面BCD 于点M ,则DM =,令AM h =,OM x =,则x h R =-,在Rt AMD V 中,222AM DM AD +=,即222h a ⎫+=⎪⎪⎝⎭,则3h a =,在Rt OMD V 中,222DM OM R +=,即222x R ⎫+=⎪⎪⎝⎭,则22213a R R ⎫+-=⎪⎪⎝⎭,解得R =,则x ==, 在Rt OED △中,222OE OM EM =+,因为点E 在线段BD 上,3BD BE =,设BC 中点为N ,则2DM MN =, 所以211333EM BN BC a ===,在Rt OED △中,222OE OM EM =+,即2222111372d a a ⎫⎛⎫=+=⎪ ⎪⎪⎝⎭⎝⎭,所以22221124729r a a a ⎛⎫=-= ⎪ ⎪⎝⎭,因为2a BC ==, 所以289r =,所以截面面积为289S r ππ==, 故选:A4.【2020届福建省福州市高三适应性练习卷数学理科试题】在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O , 记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =, 则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+.在ABC V 中,取AC 的中点为E ,连接11,O D O E , 则1132O E AB ==,124DE AC ==,所以1O D =在1Rt OO D V 中,OD = 由题意得到当截面与直线OD 垂直时,截面面积最小, 设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2R π, 所以21216R π-π=π,228R =, 球的表面积为2112R 4π=π. 故选:C.5.【2020届重庆南开中学高三第五次教学质量检测考试数学文科试题】正三棱锥P ABC -,Q 为BC 中点, PA =,2AB =,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为( )A .13,45ππ⎡⎤⎢⎥⎣⎦B .12,23ππ⎡⎤⎢⎥⎣⎦C .[],2ππD .3,2ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】因为正三棱锥P ABC -,PB PC PA ===2AC BC AB ===,所以222PB PA AB +=,即PB PA ⊥,同理PB PC ⊥,PC PA ⊥, 因此正三棱锥P ABC -可看作正方体的一角,如图,记正方体的体对角线的中点为O ,由正方体结构特征可得,O 点即是正方体的外接球球心,所以点O 也是正三棱锥P ABC -外接球的球心,记外接球半径为R ,则2R ==,因为球的最大截面圆为过球心的圆, 所以过Q 的平面截三棱锥P ABC -的外接球所得截面的面积最大为2max 32S R ππ==;又Q 为BC 中点,由正方体结构特征可得122OQ PA ==;由球的结构特征可知,当OQ 垂直于过Q 的截面时,截面圆半径最小为1r ==,所以2min S r ππ==.因此,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为3,2ππ⎡⎤⎢⎥⎣⎦.故选:D.6.【2020届湖北省部分重点中学高三第二次联考数学试卷理科试题】如图,已知四面体ABCD 的各条棱长均等于4,E ,F 分别是棱AD 、BC 的中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .B .4C .D .6【答案】B【解析】将正四面体补成正方体如图,可得EF ⊥平面CHBG ,且正方形边长为由于EF α⊥,故截面为平行四边形MNKL ,且4KL KN +=, 又//KL BC ,//KN AD ,且AD BC ⊥, ∴KN KL ⊥, ∴MNKLS KN KL =⋅Y 242KN KL +⎛⎫≤= ⎪⎝⎭,当且仅当2KL KN ==时取等号, 故选:B .7.已知正方体1111ABCD A B C D -的边长为2,边AB 的中点为M ,过M 且垂直1BD 的平面被正方体所截的截面面积为( )A .2B C .D .【答案】A【解析】如图,连结111,,,AC CB AB BC ,易知11CB BC ⊥,111CB D C ⊥,又1111BC D C C ⋂=,则1CB ⊥平面11BC D ,故11CB BD ⊥,同理可证明CA ⊥平面1BDD ,则1CA BD ⊥,又1CA CB C =I ,故1BD ⊥平面1ACB .取BC 的中点E ,1BB 的中点F ,易知平面//MEF 平面1ACB , 所以1BD ⊥平面MEF ,即MEF V 为所求截面.易知MEF V 为正三角形,边长ME ==故12MEF S ==V 故选:A.8.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,设过P ,Q ,R 的截面与面11ADD A ,以及面11ABB A 的交线分别为l ,m ,则l ,m 所成的角为( )A .90︒B .30°C .45︒D .60︒【答案】D【解析】因为,在正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,取11C D ,1DD ,1BB 的中点分别为G ,F ,E ,连接FG , FQ ,QP ,PE ,ER ,RG ,根据正方体的特征,易知,若连接PG ,EF ,RQ ,则这三条线必相交于正方体的中心,又////GR EF QP ,所以P ,Q ,R ,G ,F ,E 六点必共面,即为过P ,Q ,R 的截面;所以EP 即为直线m ,FQ 即为直线l ;连接1AB ,1AD ,11B D ,因为1//EP AB ,1//FQ AD ,所以11B AD ∠即为异面直线EP 与FQ 所成的角,又因为正方体的各面对角线都相等,所以11AB D V 为等边三角形, 因此1160B AD ∠=︒.故选:D.9.【2020届山西省吕梁市高三上学期第一次模拟考试数学(理)试题】如图四面体A BCD -中,2,AD BC AD BC ==⊥,截面四边形EFGH 满足//EF BC ;//FG AD ,则下列结论正确的个数为( ) ①四边形EFGH 的周长为定值 ②四边形EFGH 的面积为定值 ③四边形EFGH 为矩形④四边形EFGH 的面积有最大值1A .0B .1C .2D .3【答案】D【解析】因为//EF BC EF ⊄,平面BCD ,所以//EF 平面BCD ,又平面EFGH I 平面BDC GH =,所以//EF GH .同理//FG EH ,所以四边形EFGH 为平行四边形, 又AD BC ⊥,所以四边形EFGH 为矩形.所以③是正确的;由相似三角形的性质得EF AF FC FGBC AC AC AD==,, 所以EF FG AF FCBC AD AC AC+=+,2BC AD ==,所以2EF FG +=, 所以四边形EFGH 的周长为定值4,所以①是正确的;212EFGHEF FG S EF FG ⨯⎛⎫=⨯≤= ⎪⎝⎭,所以四边形EFGH 的面积有最大值1,所以④是正确的.因为①③④正确.故选:D10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A .4B C .4D 【答案】A【解析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 11.【云南省曲靖市2019-2020学年高三第一次教学质量检测数学文科试题】在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为( ) A .43B .94C .92D .3【答案】B【解析】设截面分别与棱,,,AD BD BC AC 交于点,,,E F G H .由直线//AB 平面EFGH , 且平面ABC I 平面EFGH GH =,平面ABD ⋂平面EFGH EF = 得//GH AB ,//EF AB ,所以//GH EF ,同理可证//EH FG ,所以四边形EFGH 为平行四边形, 又3AB BD AD CD ====,4AC BC ==, 可证得AB CD ⊥,四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,01x <<, 则3FG x =,()31HG x =-,于是2199(1)9,0124EFGH S FG HG x x x x ⎛⎫=⋅=-=--+<< ⎪⎝⎭当12x =时,四边形EFGH 的面积有最大值94. 故选:B. 二、填空题12.【新疆维吾尔自治区乌鲁木齐市2019-2020学年高三第一次诊断性测试数学文试题】 如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别为11,,AB AD B C 的中点,给出下列命题:①异面直线EF 与AG 所成的角的余弦值为6;②过点E 、F 、G 作正方体的截面,所得的截面的面积是③1A C ⊥平面EFG④三棱锥C EFG -的体积为1其中正确的命题是_____________(填写所有正确的序号)【答案】①③④【解析】取11C D 的中点为点H ,连接GH 、AH ,如图1所示,因为//EF GH ,所以AGH ∠就是异面直线EF 与AG 所成的角易知在AGH V 中,3,AG AH GH ===2cos 36AGH ∠==,①正确;图1 图2 图3矩形EFGH 即为过点E 、F 、G 所得正方体的截面,如图2所示,易知EF EG ==所以EFGH S ==分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立如图3所示直角坐标系,则(2,0,2),(2,1,0),A E(1,0,0),(1,2,2)F G ,1(2,2,2),(1,1,0),(1,1,2)AC FE EG =--==-u u u r u u u r u u u r , 因为110,0AC FE AC EG ⋅=⋅=u u u r u u u r u u u r u u u r ,所以11,A C EF A C EG ⊥⊥,又EF ⊂平面EFG , EG ⊂平面EFG 且EF EG E =I ,所以1A C ⊥平面EFG ,故③正确134(111212)22EFC S =-⨯⨯+⨯+⨯=V ,1113G ECF EFC V S C C -=⋅=V ,④正确. 故答案为:①③④13.如图所示,在长方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:①四棱锥11B BED F -的体积恒为定值;②对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得//CG 平面1EBD ; ③O 为底面ABCD 对角线AC 和BD 的交点,在棱1DD 上存在点H ,使//OH 平面1EBD ; ④存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值.其中为真命题的是____________________.(填写所有正确答案的序号)【答案】①③④【解析】①111111112B BED F B BED B BFD B BED V V V V ----=+=,又三棱锥11B BED -为三棱锥11E BB D -,则底面11BB D 不变,且因为1//CC 平面11BB D ,故点E 到底面11BB D 的距离即三棱锥11E BB D -底面的高不变,故三棱锥11E BB D -的体积不变,所以四棱锥11B BED F -的体积不变,恒为定值,故①正确;②当点E 在点C 处时,总有CG 与平面1EBD 相交,故②错误;③由O 为底面ABCD 对角线AC 和BD 的交点,则12DO DB =,设H 为1DD 的中点,则在1D DB V 中1//OH D B ,所以//OH 平面1EBD ,故③正确;④四边形1BED F 的周长为()012C BE ED =+,则分析1BE ED +即可,将矩形11BCC B 沿着1CC 展开使得B 在DC 延长线上时,此时B 的位置设为P ,则线段1D P 与1CC 的交点即为截面平行四边形1BED F 的周长取得最小值时唯一点E ,故④正确;故答案为:①③④14.【2020届河南省驻马店市高三上学期期末数学(文科)试题】 在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______.【答案】【解析】如图,在正方体1111ABCD A B C D -中,记AB 的中点为N ,连接1,,MC CN NA , 则平面1A MCN 即为平面α.证明如下:由正方体的性质可知,1A M NC P ,则1A ,,,M CN N 四点共面, 记1CC 的中点为F ,连接DF ,易证DF MC ⊥.连接EF ,则EF MC ⊥, 所以MC ⊥平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥,NC MC C =I ,则DE ⊥平面1A MCN , 所以平面1A MCN 即平面α,且四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形,其对角线1AC =,MN =12S =⨯=故答案为:。
人教版2019-2020学年小学数学六年级(上)期中模拟试卷(2)

人教版2019-2020学年六年级(上)期中模拟试卷(2)一.填空题1.半圆形桌布如图,全部包花边需要分米,做这个半圆形桌布至少需要长分米,宽分米的长方形花布.2.以半圆为弧的扇形的圆心角是°,圆心角是72°的扇形面积占圆面积的%.3.圆环的面积公式是S=,通过,可以变成S=.4.水族箱里有红、黑两种金鱼共18条.其中黑金鱼的条数是红金鱼的.红金鱼有条,黑金鱼有条.5.一根绳子长8米,先用去了它的,再用去了米,这时还剩下米.6.某人运一批货物,现在运了5次,共运了总数的多一些,少一些,最多一共要运次.7.已知,把A、B、C、D按从大到小的顺序排列是.8.一堆沙子运走4吨,正好运走了全部的,这堆沙子共重吨,还剩下吨.9.把千克白糖平均分装到4个袋子里,每袋装千克,每袋的质量占总数的.10.如图,大小两个三角形均是等边三角形,那么阴影部分的面积占大三角形面积的%.11.在横线上填上“<”、“>”或“=”.1﹣12.千克油菜籽出油千克,1千克油菜籽出油千克,1千克油要用千克油菜籽.13.甲数是乙数的,乙数是丙数的,丙数是丁数的,甲数是丁数的.14.一个环形的外圆半径是5厘米,内圆半径是4厘米,它的面积是平方厘米.二.判断题15.是一个假分数,那么a可能大于b..(判断对错)16.如果a:b=3:5,那么a=3,b=5..(判断对错).17.圆周率π的值是3.14..(判断对错)18.当圆的半径等于2分米时,这个圆的周长和面积相等..(判断对错)19.把10块糖平均分给5个小朋友,每个小朋友分了这些糖的十分之一.(判断对错)三.选择题(共5小题,满分9分)20.一根绳子,先用去,还剩米,剩下的和用去的比较,()A.用去的长B.剩下的长C.一样长D.无法确定21.在下面各比中,和:比值相等的是()A.5:2B.1.5:0.6C.:D.:222.以下符合商不变性质的算式是()A.(96﹣6)÷(12﹣6)B.(96×5)÷(12×5)C.(96÷4)×(12÷4)D.(96÷2)÷(12×2)23.四个数,每次选出三个数算出它们的平均数,用这种方法计算了四次,分别得到四个数:86,92,100,106.那么原来这四个数的平均数是()A.64B.72C.96D.8424.小圆的直径等于大圆的半径,大圆的周长是小圆周长的()A.8倍B.4倍C.3倍D.2倍四.计算题(共3小题,满分22分)25.计算下面各题.(能简算的要简算)×÷15÷×÷(+﹣)÷45×.26.(++)×(++)﹣(+++)×(+)27.解方程.4x﹣14.4=25.60.6x+1.4x=8x÷(16×4)=5x﹣36=12﹣8五.解答题(共2小题)28.如图,大平行四边形的底是30厘米,高是20厘米.小平行四边形的顶点分别是大平行四边形各边的中点.小平行四边形的面积是多少平方厘米.29.求阴影部分的面积.(单位:cm)六.解答题(共5小题)30.货车和客车分别从甲、乙两地同时出发,相向而行,货车每小时行48千米,客车每小时行64千米,当货车行至全程的时,客车距离货车24千米.两车继续行驶,货车还需多少小时到达乙地?31.某工厂二月份烧煤120吨,比原计划节约了,二月份原计划烧煤多少吨?32.一辆小汽车的速度是100千米/时,是一列火车速度的.一架飞机的速度是这列火车的倍.这架飞机的速度是多少?33.小明读一本书,已读和未读的页数比为1:5,如果再读30页,则已读和未读的页数之比为3:5,求这本书共多少页?34.一种药水上把药粉和水按照1:100的比配成的.要配制这种药水4040千克,需求量药粉和水各多少千克?七.解答题(共2小题)35.张、王、李三人共有存款6300元,已知张与王存款的比是5:6,李的存款是王的,张、王、李各有存款多少元?36.挖一条水渠,王伯伯每天挖整条水渠的,李叔叔每天挖整条水渠的.两人合作,几天能挖完?人教版2019-2020学年六年级(上)期中模拟试卷(2)参考答案与试题解析一.填空题(共14小题,满分8分)1.【解答】解:3.14×6÷2+6=9.42+6=15.42(分米)6÷2=3(分米)答:全部包花边需要15.42分米,做这个半圆形桌布至少需要长3分米,宽3分米的长方形花布.故答案为:15.42,6,3.2.【解答】解:360°×=180°72÷360×100%=20%答:以半圆为弧的扇形的圆心角是180°,圆心角是72°的扇形面积占圆面积的20%.故答案为:180,20.3.【解答】解:环的面积公式是S=πR2﹣πr2,通过乘法分配律可得S=π(R2﹣r2);故答案为:πR2﹣πr2;乘法分配律;π(R2﹣r2).4.【解答】解:18×=18×=3(条)18﹣3=15(条)答:红金鱼有15条,黑金鱼有3条.故答案为:15,3.5.【解答】解:8﹣8×﹣=8﹣1.6﹣=6.2(米)答:这时还剩下6.2米.故答案为:6.2.6.【解答】解:假设5次运走这批货物的,那么运完这批货物共要用5÷=8(次),而5次运走的货物比多一些,也就比8少一些,同样可算出运完这批货物需要的次数要比5÷=6多一些,而运货次数只能是整数,比8少,又比6多的整数只有7和8,因此运完这批货物至少一共要运7次,最多要运8次,答:运完这批货物最多一共要运8次,故答案为:8.7.【解答】解:假设=1,即A×B+C÷D﹣因为,所以C<B<D<A.故答案为:C<B<D<A.8.【解答】解:4=16(吨)16﹣4=12(吨)答:这堆沙子共重16吨,还剩下12吨.故答案为:16,12.9.【解答】解:÷4=(千克)1÷4=答:每袋装千克,每袋的质量占总数的.故答案为:,.10.【解答】解:根据上面的图形可得:D、E、F分别是正△ABC的中点,就相当于把大三角形平均分成4份,所以△DEF的面积是△ABC的,即小三角形面积是大三角形的=25%.故答案为:25.11.【解答】解:1>﹣=>故答案为:>,=,>.12.【解答】解:÷=(千克)÷=(千克)答:1千克油菜籽出油千克,1千克油要用千克油菜籽.故答案为:,.13.【解答】解:甲数与乙数的比是5:9,乙数与丙数的比是4:5,丙数与丁数的比是2:3,则甲数:乙数:丙数:丁数=(5×8):(9×8):(5×18):(3×45)=40:72:90:135,所以甲数是丁数的:40÷135=;答:甲数是丁数的.故答案为:.14.【解答】解:3.14×(52﹣42)=3.14×(25﹣16)=3.14×9=28.26(平方厘米)答:它的面积是28.26平方厘米.故答案为:28.26.二.判断题(共5小题,满分5分,每小题1分)15.【解答】解:由假分数的定义知:分子大于或者等于分母的分数叫假分数,可见a还可能等于b.故答案为:√.16.【解答】解:由分析知:a:b=3:5,那么a=3,b=5,说法错误,因为a的值不确定,所以b的值也不确定;故答案为:错误.17.【解答】解:因为π=3.1415926…,3.1415926…>3.14,所以π大于3.14;,它的近似值是3.14;故答案为:×.18.【解答】解:面积与周长的定义不同:圆的表面或围成的圆形表面的大小,叫做圆的面积;围成圆的一周的长度叫做这个圆的周长;所采用的计量单位也不同:此题中,周长的单位是分米,面积的单位是平方分米,计量单位不能统一,所以没法比较它们的大小.所以原题说法错误.故答案为:×.19.【解答】解:把10块糖平均分给5个小朋友,根据分数的意义,每个小朋友分了这些糖的五分之一.所以把10块糖平均分给5个小朋友,每个小朋友分了这些糖的十分之一说法错误.故答案为:×.三.选择题(共5小题,满分9分)20.【解答】解:1﹣=,>,所以剩下的和用去的比较,剩下的长.故选:B.21.【解答】解::=÷=5:2=5÷2=1.5:0.6=1.5÷0.6=2.5:=÷=:2=÷2=所以与:比值相等的是:.故选:C.22.【解答】解:根据商不变的性质可知,A、(96﹣6)÷(12﹣6),被除数和除数同减去6,不符合商不变性质;B、(96×5)÷(12×5),被除数和除数同乘5,符合商不变性质;C、(96÷4)×(12÷4),两个乘数同除以4,不符合商不变性质;D、(96÷2)÷(12×2),被除数除以2,除数乘2,不符合商不变性质;故选:B.23.【解答】解:(86+92+100+106)÷4,=384÷4,=96;答:原来四个数的平均数是96.故选:C.24.【解答】解:设小圆半径为r,则大圆的半径就为2r;C小=2πr;C大=2π(2r)=4πr;C大÷C小=4πr÷2πr=2;答:大圆的周长是小圆周长的2倍.故选:D.四.计算题(共3小题,满分22分)25.【解答】解:(1)×÷=×=(2)15÷×÷=15×××=27××=(3)(+﹣)÷=(+﹣)×24=×24+×24﹣×24=18+10﹣15=13(4)45×=(44+1)×=44×+1×=43+=4326.【解答】解:(++)×(++)﹣(+++)×(+)=(++)×(+)+(++)×﹣(++)×(+)﹣×(+)=×+(+)×﹣×(+)=×=.27.【解答】解:①4x﹣14.4=25.64x﹣14.4+14.4=25.6+14.44x=404x÷4=40÷4x=10②0.6x+1.4x=82x=82x÷2=8÷2x=4③x÷(16×4)=5x÷64=5x÷64×64=5×64x=320④x﹣36=12﹣8x﹣36+36=4+36x=40五.解答题(共2小题)28.【解答】解:根据题干分析可得:30×20÷2=600÷2=300(平方厘米)答:阴影部分的面积是300平方厘米.29.【解答】解:(1)(6+10)×(6÷2)÷2﹣3.14×(6÷2)2÷2,=16×3÷2﹣3.14×9÷2,=24﹣14.13,=9.87(平方厘米);答:阴影部分的面积是9.87平方厘米.(2)(4+8)×4÷2﹣×3.14×42,=12×4÷2﹣3.14×4,=24﹣12.56,=11.44(平方厘米);答:阴影部分的面积是11.44平方厘米.六.解答题(共5小题,满分25分,每小题5分)30.【解答】解:24÷()=24÷()=24÷=480(千米)480×÷48=480×÷48=5.5(小时)答:货车还需5.5小时到达乙地.31.【解答】解:120÷(1﹣),=120×,=135(吨);答:二月份原计划烧煤135吨.32.【解答】解:100÷×=180×=225(千米)答:这架飞机的速度是225千米/时.33.【解答】解:30÷(﹣)=30÷(﹣)=30÷=144(页)答:这本书共144页.34.【解答】解:总份数:1+100=101药粉的千克数:4040×=40(千克)水的千克数:4040﹣40=4000(千克)答:需要药粉40千克;需要水4000千克.七.解答题(共2小题)35.【解答】解:6300÷(1++)=6300÷=2520(元)2520×=2100(元)2520×=1680(元)答:张有存款2100元、王有存款2520元、李有存款1680元.36.【解答】解:1÷(+)=1÷=12(天)答:两人合作,12天能挖完.。
云南省曲靖市2024年数学(高考)统编版质量检测(强化卷)模拟试卷

云南省曲靖市2024年数学(高考)统编版质量检测(强化卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题复数等于A.B.C.D.第(2)题若复数z满足(为虚数单位),则()A.2B.C.2D.4第(3)题已知,,是三条不同的直线,,是两个不同的平面,且,,.设甲:,乙:,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(4)题当时,复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(5)题已知向量,若向量在向量方向上的投影为2,则实数( )A.B.C.4D.+1第(6)题设为抛物线的焦点,点在上,点,若,则的中点到轴的距离是()A.2B.C.3D.第(7)题已知集合,,则()A.B.C.D.第(8)题设集合,,则()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题某市举办了“爱国爱党”知识竞赛.把1000名参赛者的成绩(满分100分,成绩取整数)按,,,分成四组,并整理成如图所示的频率分布直方图,则下列说法错误的为()A.的值为0.035B.估计这组数据的众数为90C.估计这组数据的第70百分位数为89D.估计成绩低于80分的有350人第(2)题设是无穷数列,若存在正整数,使得对任意,均有,则称是间隔递增数列,是的间隔数,下列说法正确的是( )A.公比大于1的等比数列一定是间隔递增数列B.已知,则是间隔递增数列C.已知,则是间隔递增数列且最小间隔数是2D.已知,若是间隔递增数列且最小间隔数是3,则第(3)题若四面体各棱长是1或2且该四面体不是正四面体,则其体积的可能值是()A.B.C.D.三、填空(本题包含3个小题,每小题5分,共15分。
云南省曲靖市宣威市乐丰乡初级中学2022年中考数学模拟试卷

云南省曲靖市宣威市乐丰中学2022年中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共8小题,共24分)1.不等式组{5x−3>24−2x≤0的解集在数轴上表示为()A. B.C. D.2.一个几何体的三视图如图所示,那么这个几何体是()A. B.C. D.3.下列运算中,正确的是()A. √(−2)2=−2B. (−2)−2=4C. (π−3.14)0=0D. √8−√2=√24.下列说法正确的是()A. 为了解某县九年级1500名学生本次数学考试成绩,从中抽取100名学生的数学成绩进行调查,这次调查的样本容量为1500B. 7位同学的演唱比赛成绩分别为9.5,9.7,9.6,9.5,9.6,9.8,9.6,则这7位同学比赛成绩的中位数和平均数都是9.6C. 任意投掷一枚质地均匀的硬币10次,至少有一次正面朝上D. 从一副扑克牌中,随机抽取一张,恰好抽出黑桃A的概率是1545.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%6.关于x的方程(m−2)x2−4x+1=0有实数根,则m的取值范围是()A. m≤6B. m<6C. m≤6且m≠2D. m<6且m≠27.如图,在平面直角坐标系内,O为原点,点A的坐标为(−3,0),经过A、O两点作半径为52的⊙C,交y轴的负半轴于点B.过B点作⊙C的切线交x轴于点D,则D点的坐标为()A. (163,0) B. (5,0) C. (143,0) D. (203,0)8.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A. 3π2B. 10π3C. 6πD. 以上答案都不对二、填空题(本大题共6小题,共18分)9.−2022的倒数是______.10.已知函数y=√2x+1x−2,则自变量x的取值范围是______.11.现今世界上较先进的计算机显卡每秒可绘制出27000000个三角形,且显示逼真,用科学记数法表示这种显卡每秒绘制出三角形______个.12.√13的整数部分为a,则a2−3=______.13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为______.14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是______.三、计算题(本大题共1小题,共6分)第2页,共20页15.先化简,再求值:(1−2x )÷x2−4x+4x2−4,其中x=√2.四、解答题(本大题共8小题,共72分)16.如图,点B在线段AC上,AD//BE,∠ABD=∠E,AD=BC,求证:BD=EC.17.某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)18.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如图的两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有_____人,在扇形统计图中,m的值是_______;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.19.某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?20.如图,一次函数y=kx+b与反比例函数y=m的图象交于A(1,4),B(4,n)两点.x(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<m的解集.x(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.第4页,共20页21.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C(0,−3),点E是抛物线上的一个动点,过点E作EF⊥x轴于点F,已知点A的坐标为(−1,0)(1)求点B的坐标;(2)当点F在OB段时,△BCE的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.22.已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)若OP//BC,且OP=8,BC=2.求⊙O的半径.23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF//AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.第6页,共20页答案和解析1.【答案】A【解析】【分析】本题考查一元一次不等式组的解法,解题的关键是熟练运用一元一次不等式组的解法,本题属于基础题型.根据一元一次不等式组即可求出答案.【解答】解:{5x−3>2 ①4−2x≤0 ②由①得:x>1由②得:x≥2∴不等式组的解集为:x≥2故选A.2.【答案】C【解析】解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;故选:C.由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,即可得出答案.本题考查了由三视图判断几何体,考查学生的空间想象能力,是一道基础题,难度不大.3.【答案】D【解析】解:A、原式=|−2|=2,不符合题意;B、原式=14,不符合题意;C、原式=1,不符合题意;D、原式=2√2−√2=√2,符合题意,故选:D.各式计算得到结果,即可作出判断.此题考查了二次根式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.4.【答案】D【解析】解:A、为了解某县九年级1500名学生本次数学考试成绩,从中抽取100名学生的数学成绩进行调查,这次调查的样本容量为100,故本选项错误;B、把这7位同学的演唱比赛成绩从小到大排列为:9.5,9.5,9.6,9.6,9.6,9.7,9.8,则中位数是9.6,平均数约等于9.61,故本选项错误;C、投掷一枚质地均匀的硬币10次,是随机事件,不一定至少有一次正面朝上,故本选项错误;D、从一副扑克牌中,随机抽取一张,恰好抽出黑桃A的概率是1,正确;54故选:D.根据样本容量、平均数、概率公式和中位数的定义分别对每一项进行分析,即可得出正确答案.此题考查了概率公式、样本容量、平均数和中位数,熟记公式和定义是解题的关键.5.【答案】C【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键,设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】第8页,共20页解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).故该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.6.【答案】A【解析】【分析】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.当m−2=0,关于x的方程(m−2)x2−4x+1=0有一个实数根,当m−2≠0时,列不等式即可得到结论.【解答】解:当m−2=0,即m=2时,关于x的方程(m−2)x2−4x+1=0有一个实数根,当m−2≠0时,∵关于x的方程(m−2)x2−4x+1=0有实数根,∴△=(−4)2−4(m−2)⋅1≥0,解得:m≤6,∴m的取值范围是m≤6,故选:A.7.【答案】A【解析】【分析】本题考查了切线的性质、相似三角形的判定与性质和勾股定理等知识点.先求出OB长,证明△AOB∽△BOD,得比例线段OAOB =OBOD,求出线段OD长,则D点坐标可求.【解答】解:∵点A的坐标为(−3,0),⊙C的半径为52,∴OA=3,AB=5,∴OB=√AB2−OA2=√52−32=4,∵BD是⊙C的切线,∴BD⊥AB,∴∠ABD=90°,∴∠OBD=∠OAB,∴△AOB∽△BOD,∴OAOB =OBOD,∴34=4OD,∴OD=163,∴D(163,0),故选A.8.【答案】B【解析】解:∵△ABC绕点C旋转60°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=60°.∵AB扫过的图形的面积=S扇形ACA′+S△ABC−S扇形BCB′−S△A′B′C,∴AB扫过的图形的面积=S扇形ACA′−S扇形BCB′,∴AB扫过的图形的面积=60π⋅62360−60π⋅42360=103π.故选:B.根据图形可以得出AB扫过的图形的面积=S扇形ACA′+S△ABC−S扇形BCB′−S△A′B′C,由旋转的性质就可以得出S△ABC=S△A′B′C就可以得出AB扫过的图形的面积=S扇形ACA′−S扇形BCB′求出其值即可.本题考查了旋转的性质的运用,全等三角形的性质的运用,扇形的面积公式的运用,解答时根据旋转的性质求解是关键.9.【答案】−12022第10页,共20页【解析】.解:−2022的倒数是:−12022.故答案为:−12022直接利用倒数的定义得出答案.此题主要考查了倒数的定义,正确掌握倒数的定义是解题的关键.10.【答案】x≥−1且x≠22【解析】解:根据题意得,2x+1≥0且x−2≠0,且x≠2.解得x≥−12故答案为:x≥−1且x≠2.2根据被开方数大于等于0,分母不等于0列式进行计算即可得解.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.11.【答案】2.7×107【解析】解:27000000=2.7×107个.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|< 10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】6【解析】第12页,共20页解:∵√13的整数部分为a ,3<√13<4, ∴a =3,∴a 2−3=9−3=6. 故答案为:6.因为3<√13<4,由此求得整数部分,可得a ,再代入计算即可求解. 此题考查无理数的估算,注意找出最接近的整数范围是解决本题的关键.13.【答案】9【解析】解:设四边形BCED 的面积为x ,则S △ADE =12−x , ∵点D 、E 分别是边AB 、AC 的中点, ∴DE 是△ABC 的中位线, ∴DE//BC ,且DE =12BC , ∴△ADE∽△ABC , 则S △ADES△ABC=(DE BC )2,即12−x 12=14, 解得:x =9,即四边形BCED 的面积为9, 故答案为:9.设四边形BCED 的面积为x ,则S △ADE =12−x ,由题意知DE//BC 且DE =12BC ,从而得S △ADE S △ABC=(DEBC )2,据此建立关于x 的方程,解之可得.本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.14.【答案】60【解析】解:设小矩形的宽是x ,长是y , {5x =3y 2x −y =2, 解得:{x =6y =10.小矩形的面积为:6×10=60.故答案为:60.设小矩形的宽是x,长是y,根据图1可得到长和宽的一个方程,根据图2也可得到一个方程,从而可列出方程组求解.本题考查看图的能力,分别从图中找到矩形的长和宽的关系式,从而可列出方程组求解.15.【答案】解:(1−2x )÷x2−4x+4x2−4=x−2x⋅(x+2)(x−2)(x−2)2=x+2x,当x=√2时,原式=√2+22=1+√2.【解析】先计算括号内的减法,然后把分式的除法转换为乘法的形式,通过约分将分式化为最简形式后,再把x的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.【答案】证明:∵AD//BE,∴∠A=∠EBC,∵∠ABD=∠E,∠A=∠EBC,AD=BC,∴△ABD≌△BEC(AAS),∴BD=EC.【解析】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.由平行线的性质可得∠A=∠EBC,由“AAS”可证△ABD≌△BEC,可得BD=EC.17.【答案】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠FAB=60°,AB=20,=10.∴AF=ABcos∠FAB=20×12在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BCcos∠EBC=40×√2=20√2.2在矩形BEDF中,FD=BE=20√2,∴AD=AF+FD=10+20√2.答:AD的长为(10+20√2)米.【解析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.本题考查了解直角三角形的应用−方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18.【答案】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),条形统计图补充如下:;(3)∵5−2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,第14页,共20页男1男2男3女1女2男1---男2男1男3男1女1男1女2男1男2男1男2---男3男2女1男2女2男2男3男1男3男2男3---女1男3女2男3女1男1女1男2女1男3女1---女2女1女2男1女2男2女2男3女2女1女2---则P(一男一女)=1220=35.【解析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.此题考查了列表法与树状图法,条形统计图,扇形统计图,弄清题中的数据是解本题的关键.19.【答案】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.900 x+30=600x,解得x=60,经检验:x=60是原分式方程的解,∴x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200−m)件.90m+60(200−m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,∴m=90.答:最多购进A种零件90件.【解析】第16页,共20页本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.(1)设B 种零件的单价为x 元,则A 零件的单价为(x +30)元,根据用900元购买A 种零件的数量和用600元购买B 种零件的数量相等,列方程求解;(2)设购进A 种零件m 件,则购进B 种零件(200−m)件,根据工厂购买两种零件的总费用不超过14700元,列不等式求出m 的取值范围,然后求出工厂最多购买A 种零件多少件.20.【答案】解:(1)把A(1,4)代入y =mx ,得:m =4, ∴反比例函数的解析式为y =4x ; 把B(4,n)代入y =4x ,得:n =1, ∴B(4,1),把A(1,4)、(4,1)代入y =kx +b , 得:{k +b =44k +b =1,解得:{k =−1b =5,∴一次函数的解析式为y =−x +5;(2)根据图象得当0<x <1或x >4,一次函数y =−x +5的图象在反比例函数y =4x 的下方; ∴当x >0时,kx +b <mx 的解集为0<x <1或x >4;(3)如图,作B 关于x 轴的对称点B′,连接AB′,交x 轴于P ,此时PA +PB =AB′最小, ∵B(4,1), ∴B′(4,−1),设直线AB′的解析式为y =px +q , ∴{p +q =44p +q =−1, 解得{p =−53q =173,∴直线AB′的解析式为y =−53x +173,令y =0,得−53x +173=0,解得x =175,∴点P 的坐标为(175,0). 【解析】本题主要考查反比例函数和一次函数的交点及待定系数法求函数解析式、轴对称−最短路线问题,掌握图象的交点的坐标满足两个函数解析式是解题的关键.(1)将点A(1,4)代入y =mx 可得m 的值,求得反比例函数的解析式;根据反比例函数解析式求得点B 坐标,再由A 、B 两点的坐标可得一次函数的解析式; (2)根据图象得出不等式kx +b <mx 的解集即可;(3)作B 关于x 轴的对称点B′,连接AB′,交x 轴于P ,此时PA +PB =AB′最小,根据B 的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x 轴的交点P 即可.21.【答案】解:(1)将点C(0,−3),A(−1,0)代入y =x 2+bx +c 中得: {c =−31−b +c =0, 解得:{b =−2c =−3,∴y =x 2−2x −3, 令y =0,得x =−1或3, ∴点B 的坐标为(3,0);(2)设点F(x,0)(0<x <3),则点E(x,x 2−2x −3),∵B(3,0),C(0,−3), ∴直线BC :y =x −3, ∴H(x,x −3),第18页,共20页∴△BCE 的面积=△CEH 的面积+△BEH 的面积=12x ×|x −3−(x 2−2x −3)|+12(3−x)×|x −3−(x 2−2x −3)|=12×3×[x −3−(x 2−2x −3)]=−32(x −32)2+278,∴△BCE 的面积=−32(x −32)2+278(0<x <3),∴当x =32时,△BCE 的面积取最大值,最大值为278. 【解析】(1)将点C(0,−3),A(−1,0)代入y =x 2+bx +c 中求出二次函数解析式,从而求出点B 的坐标;(2)设点F(x,0)(0<x <3),则点E(x,x 2−2x −3),根据三角形面积公式可用含x 的代数式表示出△BCE 的面积,再利用配方法即可求出最值.本题考查了二次函数的应用,正确使用割补法表示出三角形的面积是解题的关键.22.【答案】(1)证明:连接OB , ∵AC 是⊙O 直径, ∴∠ABC =90°, ∵OC =OB , ∴∠OBC =∠ACB , ∵∠PBA =∠ACB , ∴∠PBA =∠OBC ,即∠PBA +∠OBA =∠OBC +∠ABO =∠ABC =90°, ∴OB ⊥PB , ∵OB 为半径, ∴PB 是⊙O 的切线;(2)解:设⊙O 的半径为r ,则AC =2r ,OB =r , ∵OP//BC ,∠OBC =∠OCB , ∴∠POB =∠OBC =∠OCB , ∵∠PBO =∠ABC =90°, ∴△PBO∽△ABC , ∴OPAC =OBBC , ∴82r =r 2,r=2√2,即⊙O的半径为2√2.【解析】(1)连接OB,求出∠ABC=90°,∠PBA=∠OBC=∠OCB,推出∠PBO=90°,根据切线的判定推出即可;(2)证△PBO和△ABC相似,得出比例式,代入求出即可.本题考查了等腰三角形性质,平行线性质,相似三角形的性质和判定,切线的判定等知识点的应用,主要考查学生的推理能力,用了方程思想.23.【答案】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF//AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE=√CE2−CD2=4cm,∴AE=AD−DE=5cm−4cm=1cm;在Rt△APE中,AE=1,AP=3−PB=3−PE,∴EP2=12+(3−EP)2,cm,解得:EP=53cm;∴菱形BFEP的边长为53②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【解析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD−DE=cm即可;1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=53②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.第20页,共20页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省曲靖市2019-2020学年数学中考模拟试卷(含答案)一、单选题1.某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A. 490<x<510B. 490≤x≤510C. 490<x≤510D. 490≤x<510【答案】B【考点】有理数的加法2.下列各式计算正确的是()A. a+2a=3a2B. (﹣a3)2=a6C. a3a2=a6D. (a+b)2=a2+b2【答案】B【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,幂的乘方3.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A. 主视图B. 俯视图C. 左视图D. 一样大【答案】C【考点】简单组合体的三视图4.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D. 6→15【答案】 D【考点】轴对称图形,中心对称及中心对称图形5.2017年底我市有绿化面积300公顷,为响应“退耕还林”的号召,计划到2019年底绿化面积增加到363公顷.设绿化面积平均每年的增长率为x,由题意可列方程为()A. 300(1+x)=363B. 300(1+x)2=363C. 300(1+2x)=363D. 300(1﹣x)2=363【答案】B【考点】一元二次方程的实际应用-百分率问题6.不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【考点】在数轴上表示不等式(组)的解集7.已知△ABC如图1,嘉淇同学进行如下作图(如图2):( 1 )分别以点B,C为圆心,AC,AB长为半径作弧,两弧相交于P点;(2)作直线AP,AP与BC交于D点,则线段AD就是△ABC的()A. 中线B. 角平分线C. 高线D. 中位线【答案】A【考点】三角形的角平分线、中线和高,作图—基本作图8.函数y= 的自变量x的取值范围是________.【答案】x≥﹣且x≠3【考点】分式有意义的条件,二次根式有意义的条件二、填空题9.某种计算机每秒运算次数是4.66亿次,4.66亿次精确到________位,4.66亿次用科学记数法可以表示为________次.【答案】百万;4.66×108【考点】近似数及有效数字,科学记数法—表示绝对值较大的数10.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是________.【答案】3【考点】作图—基本作图,一次函数图像与坐标轴交点问题11.同一个圆的内接正方形和正三角形的边心距的比为________.【答案】:1【考点】正多边形和圆,锐角三角函数的定义12.如果关于x的一元二次方程x2+2x﹣a=0没有实数根,那么a的取值范围是________.【答案】a<﹣1【考点】一元二次方程根的判别式及应用13.有一个数值转换器,原理如图所示,若开始输入x的值是3,可发现第1次输出的结果是10,第2次输出的结果是5,第3次输出的结果是16,第4次输出的结果是8,依次继续下去…,第2018次输出的结果是________.【答案】4【考点】代数式求值,探索数与式的规律,有理数的乘法三、解答题14.计算:(1)()2﹣﹣(2)(3)|﹣3|+(π+1)0(4)()× .【答案】(1)解:原式=4+3﹣10=﹣3(2)解:原式= +2 ﹣6 =﹣3(3)解:原式=3+1﹣3+2=3(4)解:原式= + ﹣2 =4 +3 ﹣2 =4 +【考点】实数的运算,二次根式的加减法,二次根式的混合运算15.某校为更好的开展“春季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳绳、实心球、50m、拔河共四类),并将统计结果绘制成如下不完整的频数分布表(如图所示)根据以上信息回答下列问题:最喜爱的趣味运动项目类型频数分布表:(1)直接写出a=________,b=________;(2)将图中的扇形统计图补充完整(注明项目、百分比);(3)若全校共有学生1200名,估计该校最喜爱50m和拔河的学生共约有多少人?【答案】(1)0.25;40(2)解:如图,实心球所占百分比为50m所占百分比为0.4=40%,拔河所占百分比为0.15=15%,补全扇形图如下:(3)解:1200×(0.4+0.15)=660(人),答:全校共有学生1200名,估计该校最喜爱50m和拔河的学生的学生大约有660人.【考点】用样本估计总体,频数(率)分布表,扇形统计图16.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?【答案】解:设原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得:.解得x=60,经检验x=60是原分式方程的解.答:原计划每天铺设60米长的管道.【考点】分式方程的实际应用17.如图,已知点A(1,a)是反比例函数y1= 的图象上一点,直线y2=﹣与反比例函数y1= 的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【答案】解:(I)∵B(3,﹣1)在反比例函数的图象上,∴-1= ,∴m=-3,∴反比例函数的解析式为;(II),∴= ,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y= ,∴D(-2,);y1>y2时x的取值范围是-2<x<0或x> ;(III)∵A(1,a)是反比例函数的图象上一点,∴a=-3,∴A(1,-3),设直线AB为y=kx+b,,∴,∴直线AB为y=x-4,令y=0,则x=4,∴P(4,0)【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,反比例函数的实际应用18.一个不透明的口袋里装有分别标有汉字“书”、“ 香”、“ 历”、“ 城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为________.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“历城”的概率.【答案】(1)(2)解:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“历城”的结果数为2,所以取出的两个球上的汉字能组成“历城”的概率【考点】列表法与树状图法,简单事件概率的计算19.已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:四边形AGBD为平行四边形;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论.【答案】(1)证明:∵平行四边形ABCD中,AD∥BC,∴AD∥BG,又∵AG∥BD,∴四边形AGBD是平行四边形(2)解:四边形DEBF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD的中点,∴BE= AB,DF= CD,∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∵四边形AGBD是矩形,E为AB的中点,∴AE=BE=DE,∴平行四边形DEBF是菱形.【考点】三角形中位线定理,平行四边形的判定与性质,菱形的判定20.如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.【答案】(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)解:连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF= .【考点】三角形中位线定理,切线的判定,相似三角形的判定与性质,锐角三角函数的定义21.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【答案】(1)解:∵直线l:y= x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y= x﹣1,∵直线l:y= x﹣1经过点C(4,n),∴n= ×4﹣1=2,∵抛物线y= x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y= x2﹣x﹣1;(2)解:令y=0,则x﹣1=0,解得x= ,∴点A的坐标为(,0),∴OA= ,在Rt△OAB中,OB=1,∴AB= ,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE• ,DF=DE•sin∠DEF=DE• ,∴p=2(DF+EF)=2(,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p= ×(﹣t2+2t)=﹣t2+ t,∵p=﹣(t﹣2)2+ ,且﹣<0,∴当t=2时,p有最大值;(3)解:∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1= (x+1)2﹣(x+1)﹣1,解得x= ,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1= (x+1)2﹣(x+1)﹣1+ ,解得x=﹣,综上所述,点A1的横坐标为或﹣.【考点】待定系数法求二次函数解析式,勾股定理,解直角三角形的应用,二次函数的实际应用-动态几何问题11 / 11。