微积分发展简史

合集下载

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1. 运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2. 曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3. 有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4. 当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler )、伽利略(Galileo )、费马(Fermat)、笛卡尔(Descartes )、卡瓦列里(Cavalieri )等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)至V质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分的发展史简述(两篇)

微积分的发展史简述(两篇)

引言:微积分是数学中的一个重要分支,对于解决各种实际问题具有重要意义。

本文将继续探讨微积分的发展史,重点关注于17世纪到19世纪初期这段时间内微积分的发展。

通过了解微积分的历史,我们可以更好地理解微积分的概念和应用。

概述:17世纪至19世纪初期是微积分发展的关键时期。

在这个时期,许多数学家和科学家对微积分的理论和应用进行了深度研究。

他们的贡献奠定了现代微积分的基础。

正文:一、近似计算方法的改进1.1泰勒级数的发现1.2泰勒级数在近似计算中的应用1.3拉格朗日中值定理的发展与应用1.4极限的概念的确立二、变分法的兴起2.1最速降线问题的解决2.2欧拉对变分法的贡献2.3欧拉拉格朗日方程的建立2.4变分法在物理学领域的应用三、微分方程的研究3.1微分方程的基本概念与分类3.2欧拉对微分方程理论的贡献3.3柯西与克拉末对微分方程的研究3.4微分方程在物理学和工程学中的应用四、复变函数与积分变换4.1复变函数的引入与发展4.2柯西黎曼方程的建立4.3积分变换的概念与应用4.4拉普拉斯变换的研究与应用五、极限分析的深化5.1极限分析理论的完善5.2庞加莱对极限理论的贡献5.3序列与级数的研究5.4极限分析在数学和物理学中的应用总结:微积分的发展经历了17世纪至19世纪初期的重要阶段。

通过改进近似计算方法、变分法的兴起、微分方程的研究、复变函数与积分变换以及极限分析的深化等方面的努力,微积分的理论和应用得到了极大的发展。

这些成果为现代数学、物理学和工程学的发展奠定了坚实的基础,并在解决实际问题中发挥着重要作用。

了解微积分发展史的过程,有助于我们更好地理解微积分的概念和应用,并能够更加深入地探索微积分在各领域中的应用前景。

微积分的发展史简述引言概述:微积分是数学中的一个重要分支,它是解析几何和数学分析的基础。

从古代到现代,微积分的发展历程经历了众多数学家和科学家的探索和贡献。

本文将以引言概述、五个大点和详细的小点阐述微积分的发展史,并在文末进行总结。

微积分发展简史

微积分发展简史

费马在推导求面积的公式时,发现当 n 为 无穷大时,包含的 1/n 和 1/n2 项可以忽略不计。 卡瓦列里将上面讨论的面积看成无限多个他称 之为不可分量(牛顿称之为终结不可分量)的 总和。这个终结不可分量到底是什么?当时没 有人能将它说清楚。牛顿后来甚至重申他已经 放弃了终结不可分量,而卡瓦列里只是说,把 一块面积分割为越来越小的小矩形时,最终就 会得到终结不可分量,面积就是由这些终结不 可分量组成的。
终结不可分量后来发展为无穷小量。
这里的问题是,当把非均匀变化的问题 看成均匀变化时,能表示为两个量的积的形 式,则此时处理非均匀变化问题,可以采 用 ……???
用什么方法?我们以后再慢慢讲。 它是积分学的问题。
牛顿与莱布尼茨
实际上在牛顿与莱布尼茨作出他们的冲刺之 前,微积分的大量知识已经积累起来了。甚至在巴 罗的一本书里就能看到求切线的方法、两个函数的 积和商的微分定理、x 的幂的微分、求曲线的长度、 定积分中的变量代换、隐函数的微分定理等等。
费马研究的一个问题
假设一个小球正向地面落去,我们想知道下落后 第 4 秒时小球的速度(瞬时速度)。
如果我们考虑用小球下落中时间间隔来代替时 刻,用它在这一段时间间隔内下降的距离除以所用时 间,就得到这一间隔中小球的平均速度。我们可以计 算从第四秒起,间隔为 1/2 秒,1/4 秒,1/8 秒,…… 内的平均速度。显然,时间间隔越短,计算出来的平 均速度就越接近第四秒时的速度。这就是说,我们有 了一个方案:首先计算不同时间间隔内的平均速度, 然后研究当时间间隔越来越小时,它们会趋近于哪一 个数。这个数就是要求的小球在第四秒时第瞬时速 度。
费马推导的问题所在
费马一直没能证明他所做的这些,也 没有把这项工作非常深入地进行下去,但 他坚信最终可以得到一个合理的几何证明。 尽管如此,事实上我们必须承认他是微积 分学的创始人之一。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

论述微积分发展简史

论述微积分发展简史

论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。

这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。

在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。

这些都是最早期人类对无穷、极限等概念的原始的描述。

二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。

最后一个阶段是由牛顿、莱布尼茨完成的。

前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。

中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。

中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。

在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。

而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。

这些想法都是积分法的前驱。

在微分方面,十七世纪人类也有很大的突破。

费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。

另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。

由此可见,人类在十七世纪已经掌握了微分的要领。

英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。

微积分发展史简述

微积分发展史简述

微积分发展史简述微积分是数学中的重要分支,广泛应用于自然科学、工程学、经济学等领域。

它的发展历史可以追溯到古希腊时期,但直到17世纪才得到了系统的发展和完善。

本文将简要介绍微积分的发展史。

1. 古希腊时期:微积分的雏形在古希腊时期,数学家们对于几何学有着深入的研究。

亚里士多德和欧几里得等人提出了许多与微积分相关的概念,如无穷小量和极限。

然而,由于当时的数学工具和观念的限制,微积分的发展受到了很大的阻碍。

2. 牛顿和莱布尼茨:微积分的创始人17世纪,牛顿和莱布尼茨几乎同时独立地发展出微积分学。

牛顿创立了微积分的主要思想和方法,他提出了差分和积分的概念,并建立了微分方程和牛顿运动定律等基本理论。

莱布尼茨独立地发展出了微积分的符号表示法,引入了微积分中的极限和导数的概念。

牛顿和莱布尼茨的工作为微积分的发展奠定了基础。

3. 微积分的完善:极限与连续性18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。

欧拉进一步完善了微积分的符号表示法,并提出了欧拉公式等重要结果。

拉格朗日则对微积分中的极限和连续性进行了系统的研究,提出了拉格朗日中值定理和泰勒展开等重要定理。

这些工作使微积分的理论更加严谨和完备。

4. 微积分的应用:物理学和工程学19世纪,微积分的应用开始扩展到物理学和工程学等实际问题中。

拉普拉斯和傅里叶等数学家使用微积分的方法解决了一系列的物理学问题,为微积分的应用奠定了基础。

同时,微积分也在工程学中得到了广泛的应用,如力学、电磁学和流体力学等领域。

微积分的应用使得工程学的发展取得了重大的突破。

5. 微积分的发展与现代数学的关系20世纪,微积分的发展与现代数学的发展密切相关。

在集合论和数理逻辑的基础上,数学家们对微积分的理论进行了深入的研究和推广。

勒贝格和黎曼等数学家提出了测度论和黎曼积分等新的概念和方法,为微积分的发展带来了新的思路和工具。

同时,微积分也成为了现代数学的重要组成部分,在数学的其他分支中得到了广泛的应用。

微积分发展简史范文

微积分发展简史范文

微积分发展简史范文微积分是数学的一个分支,用于研究变化与积分问题。

微积分的发展历史可以追溯到古代希腊和印度,但真正的微积分体系是在17世纪由牛顿和莱布尼茨等数学家建立起来的。

以下将介绍微积分的发展简史。

在古代希腊,数学家们已经研究了一些与微积分相关的概念,例如阿基米德的测量问题和亚历山大的一些近似方法。

然而,直到公元前3世纪的希帕索斯才开始研究曲线的面积和体积问题。

然而,微积分的真正发展是在17世纪。

1642年,法国数学家费马提出了求极值问题的方法,为微积分的发展奠定了基础。

在此之后,其他数学家纷纷加入到微积分的研究中来。

牛顿和莱布尼茨是微积分的两位重要创始人。

1665年,牛顿发明了微积分的基本原理,并在《自然哲学的数学原理》中介绍了微积分的概念和方法。

与此同时,莱布尼茨也在独立地研究微积分,并提出了微积分的符号表示法。

牛顿和莱布尼茨的发现被认为是微积分的巅峰之作。

微积分的发展在18世纪得到了进一步的推动。

欧拉是18世纪微积分发展的中坚人物之一,他提出了欧拉计算法则和欧拉公式,这些在微积分和复变函数等数学领域都有重要应用。

19世纪是微积分发展的丰富时期。

拉格朗日和拉普拉斯等数学家对微积分的推广和发展做出了重要贡献。

拉格朗日提出了拉格朗日乘子法,并建立了微积分的拉格朗日法则。

拉普拉斯则将微积分应用于概率论,并提出了拉普拉斯变换的概念。

20世纪是微积分发展的一个新阶段,微积分开始向更高维度的空间扩展。

韦尔斯特拉斯提出了极限的严格定义,使微积分的基础更加牢固。

在此期间,泛函分析和变分法等新的数学工具也被引入微积分中。

近年来,微积分在科学和工程领域的应用越来越广泛。

微积分被应用于物理学、经济学、生物学、计算机科学等领域的模型建立和问题求解中。

微积分的发展也不断推动着数学理论的深入研究和应用创新。

总结起来,微积分的发展可以追溯到古代希腊和印度,但真正的微积分体系是在17世纪由牛顿和莱布尼茨等数学家建立起来的。

微积分的发展历史

微积分的发展历史

微积分的发展历史微积分是数学中的一个重要分支,它主要研究一些连续变化的函数之间的关系,以及这些函数的一些量的变化规律。

微积分的历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。

以下是微积分的发展历史。

1. 古希腊时期古希腊数学家阿基米德(287 BC - 212 BC)就是微积分的先驱之一。

他发明了一种称为“方法论”的技术,这种技术可以用来求解一些几何问题,例如圆的面积和球体的体积。

这种技术可以用来求解一些连续变化的函数的面积或体积问题。

2. 17世纪初期17世纪初期,数学家牛顿(1643-1727)和莱布尼茨(1646-1716)几乎同时发明了微积分。

他们的发现彻底改变了数学的面貌。

牛顿的微积分是基于几何直觉的发现,而莱布尼茨的微积分则是基于代数记号的发现。

3. 18世纪在18世纪,微积分的研究得到了进一步发展。

法国数学家欧拉(1707-1783)和拉格朗日(1736-1813)在微积分的研究中做出了重要的贡献。

欧拉在微积分中引入了复数,这对微积分的发展具有重要的意义。

拉格朗日发现了微积分中的一些基本定理,例如拉格朗日中值定理和柯西中值定理。

4. 19世纪19世纪是微积分的发展中最重要的一个世纪。

数学家高斯(1777-1855)和魏尔斯特拉斯(1815-1897)在微积分的研究中做出了重要的贡献。

高斯发现了极值问题的解法,魏尔斯特拉斯则首次使用了极限的概念来解决微积分中的一些问题。

5. 20世纪20世纪是微积分发展的最后一个世纪。

在这个世纪里,微积分的研究得到了深入的发展。

数学家费曼(1918-1988)提出了路径积分理论,这个理论对微积分的研究有着重要的意义。

同时,微积分还应用于物理学、工程学和经济学等领域,在这些领域中发挥着至关重要的作用。

微积分的发展历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。

在18世纪和19世纪,微积分得到了进一步的发展,20世纪中期,微积分已经成为了一个重要的数学分支,并被广泛应用于各个领域。

微积分发展简史课件

微积分发展简史课件

实的理论基础。
柯西序列
02 通过柯西序列,解决了实数系连续性的问题,并建立
了极限理论。
布尔查诺-维尔斯特拉斯定理
03
证明了实数系连续性的唯一性,为实数理论的发展提
供了重要的支撑。
泛函分析的兴起
函数空间
研究函数集合的性质和结构,为泛函分析提供了基础 。
傅里叶分析
研究函数的傅里叶级数展开和性质,为泛函分析提供 了重要的工具。
极限理论是微积分的基础,19 世纪之前,数学家们一直在探索 如何用极限的概念来描述函数的
变化趋势。
极限理论的建立经历了漫长的发 展过程,最终由德国数学家魏尔 斯特拉斯、戴德金和康托尔等人
完成。
极限理论的严格定义和证明,为 微积分的进一步发展提供了坚实
的数学基础。
导数与积分的进一步发展
导数和积分是微积分的两个 核心概念,19世纪数学家们 对这两个概念进行了更深入
例如,常微分方程理论的建立,为解决各种 实际问题提供了重要的数学模型。
同时,偏微分方程的发展也取得了 重大进展,例如热传导方程、波动 方程等,这些方程在物理、工程、 化学等领域都有广泛的应用。
03
20世纪微积分的新发展
实数理论的发展
魏尔斯特拉斯的ε-δ定义
01
对实数进行严格的数学定义,为实数连续性提供了坚
描述物体运动规律
微积分可以用来描述物体的运动规律,例如物体的速度、加速度 、位移等。
电磁学研究
在电磁学中,微积分被用来研究电磁场的分布和变化规律。
量子力学
在量子力学中,微积分被用来描述微观粒子的运动规律和分布情 况。
在经济中的应用
01
供需关系
微积分可以用来描述商品的供需 关系,例如价格与销售量的关系 。

微积分发展简史

微积分发展简史
第8页/共32页
积分思想 阿基米德对抛物弓形的面积、球和球冠面积、
螺线下面积和旋转双曲体体积的研究。 开普勒用无穷小微元来确定曲边形的面积和体积。
第9页/共32页
2.微积分的发展
十七世纪中叶,由于自然科学的急速发展,其他学 科给数学提出如下四种亟待解决的问题:
第一类是求瞬时速度的问题。
第二类是求曲线切线的问题。
第14页/共32页
牛顿在1665年11月发明“正流数术”(微分法),
次年5月又建立了“反流数术”(积分法).1666年10
月,牛顿将前两年的研究成果整理成一篇总结性论
文,但他没有拿去发表。
牛顿将自古希腊以来求解无限小问题的各种
特殊技巧统一为两类普遍的算法——正、反流数
术亦即微分与积分,并证明了二者的互逆关系,
第17页/共32页
微积分诞生以后,数学迎来了一次空前的繁荣时 期。18世纪被称为数学史上的英雄世纪。数学家们把微 积分应用于天文学、力学、光学、热学等各个领域,获 得了丰硕的成果;在数学本身,他们把微积分作为工具, 又发展出微分方程、微分几何、无穷级数等理论分支, 大大扩展了数学研究的范围。
第18页/共32页
第20页/共32页
由于严格的极限理论的建立,无穷小量可用极限的语言清楚地加以描述,至此才解决 了有关的逻辑困难。而且由于ε −δ语言的建立,微积分的发展如虎添翼。
第21页/共32页
实数理论
第一次数学危机之无理数的解决方案 魏尔斯特拉斯的无限十进小数表示法 戴德金分割 康托尔的柯西列方法 实数的完备性 确界存在定理---单调有界定理----区间套定理-----有限覆盖定理----聚点定理-----柯西收敛准则
09级计算机科学与技术师范班ቤተ መጻሕፍቲ ባይዱ

微积分理论发展的历史沿革

微积分理论发展的历史沿革

微积分理论发展的历史沿革
微积分的发展始于古希腊时代,早在公元前600-300年,古希腊数
学家几何学家艾萨克·欧几里得发明了曲线,把几何学和数学联系在一起,开创了微积分的几何学基础。

欧几里得以著名的《几何原本》首次提出运动曲线及其边对应的形状
面积计算,从几何学角度探讨了计算曲线面积的方法。

与此同时,他
也隐��地引入了积分概念,奠定了数学界的微积分理论发展的基础。

在十七世纪,英国数学家斯托克斯将欧几里得概念发展成功地应用与
一元函数上,并首次证明了此方法的可行性和有效性,此为推动了微
积分理论发展的重要转折点。

在十八世纪,微积分理论再次得到发展,德国数学家勃兰特提出了一
个叫做微积分的理论方法,在他的协助下,一元函数微积分理论逐渐
完善,多元函数微积分理论也得到发展。

在十九世纪,几个主要数学家发展出了外积分和内积分等术语,使微
积分理论更加完整和成熟。

此外,数学家们还发现了微分方程的概念,大大提高了微积分的应用,可以研究的问题更多了。

二十世纪,有着两个著名的微积分运动发起人:瑞士数学家冯·诺伊曼
和德国数学家尤金·布洛佛,使微积分理论提高到一个新层次,奠定了
现代微积分权威的地位。

(以上叙述并不完全准确,这仅仅是大致的历史沿革)。

微积分发展史

微积分发展史

微积分发展史微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。

着眼于微积分的整个发展历史,在此分为四个时期:1.早期萌芽时期。

2.建立成型时期。

3.成熟完善时期。

4.现代发展时期。

早期萌芽时期:1、古西方萌芽时期:公元前七世纪,泰勒斯对图形的面积、体积与的长度的研究就含有早期微积分的思想,尽管不是很明显。

公元前三世纪,伟大的全能科学家阿基米德利用穷竭法推算出了抛物线弓形、螺线、圆的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的公式,其穷竭法就类似于现在的微积分中的求极限。

此外,他还计算出Π的近似值,阿基米德对于微积分的发展起到了一定的引导作用。

2、古中国萌芽时期:三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。

”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。

另外在南朝时期杰出的祖氏父子更将圆周率计算到小数点后七位数,他们的精神值得我们学习。

此外祖暅之提出了祖暅原理:“幂势即同,则积不容异”,即界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等,比欧洲的卡瓦列利原理早十个世纪。

祖暅之利用牟合方盖(牟合方盖与其内切球的体积比为4:Π)计算出了球的体积,纠正了刘徽的《九章算术注》中的错误的球体积公式。

建立成型时期:1.十七世纪上半叶:这一时期,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。

天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。

意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理(一个平面图形绕某一轴旋转所得立体图形体积等于该平面图形的重心所形成的圆的周长与平面图形面积的乘积。

微积分发展简史

微积分发展简史

微积分发展简史微积分是近代数学中最伟大的成就,对它的重要性无论作怎样的估计都不会过分.- 冯·诺依曼287 年: 阿基米德的"逼近法""给我一个支点,我可以撬动地球."对数学和物理学的影响极为深远,被视为古希腊最杰出的科学家. 他与牛顿和高斯被西方世界评价为有史以来最伟大的三位数学家.他利用“逼近法”算出球表面积、球体积、抛物线、椭圆面积,后世的数学家依据这种方法加以发展成近代的“微积分”.1620年费地的布面油画《沉思的阿基米德》263 年: 刘徽注释《九章算术》东方古代数学泰斗用割圆术计算圆周率, "割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣".求得圆周率的近似值为3.14, 这种极限思想和无穷可分甚至是古希腊数学不能比拟的.1088 年: 沈括著《梦溪笔谈》中国科学史上的重要文献北宋的沈括所著百科全书式的著作, 因为写于润州(今镇江)梦溪园而得名,收录了沈括一生的所见所闻和见解. 内容涉及天文、数学、物理、化学、生物、地质、地理、气象、医学、工程技术、文学、史事、美术及音乐等学科. 书中开创了“垛积术”(高阶等差级数求和), “会圆术”(求出弧长的方法). "棋局都数"的研究则暗用了组合方法和指数定律.1629 年: 费马“我发现了一个美妙的证明,但由于空白太小而没有写下来.”皮埃尔·德·费马法国律师和业余数学家(不过在数学上的成就不比职业数学家差). 费马引理给出了一个求出. 可微函数的最大值和最小值的方法。

因此,利用费马引理,求函数的极值的问题便化为解方程的问题.费马及费马最后定理1637 年: 笛卡尔"我思故我在. "勒内·笛卡尔, 法国著名哲学家、数学家、物理学家. 对数学最重要的贡献是创立了解析几何. 笛卡尔成功地将当时完全分开的代数和几何学联系到了一起, 他向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质, 为后人在微积分上的工作提供了坚实的基础.约 1150 : 婆什迦罗印度数学的最高成就婆什迦罗, 印度古代和中世纪最伟大的数学家, 天文学家. 对数学主要贡献: 比牛顿和莱布尼茨早五个世纪就构想了微积分; 采用缩写文字和符号来表示未知数和运算; 他广泛使用了无理数, 并在运算时和有理数不加区别.婆什迦罗及他设计的永动机1665 年: 牛顿与《广义二项式定义》"如果我比别人看得更远,那是因为我站在巨人的肩上. "艾萨克·牛顿, 英格兰物理学家, 数学家, 天文学家, 在老师巴罗的指导下, 1665年发表广义二项式定理,并开始发展一套新的数学理论,也就是后来为世人所熟知的微积分学, 牛顿称之为"流数术".1670 年: 伊萨克·巴罗《几何学讲义》"一个爱书的人,他必定不致缺少一个忠实的朋友,一个良好的老师,一个可爱的伴侣,一个优婉的安慰者."英国著名数学家, 1670 年发布的《几何学讲义》包含了他对无穷小分析的卓越贡献,特别是其中“通过计算求切线的方法”,十分接近微积分基本定理,微积分的最终制定后来由其学生艾萨克·牛顿完成.伊萨克·巴罗(1630年-1677年)1684 年: 莱布尼茨关于微分学的第一篇论文"世界上没有两片完全相同的树叶."戈特弗里德·威廉·莱布尼茨, 德意志哲学家、数学家, 获誉为十七世纪的亚里士多德.在数学上,他从几何角度和牛顿先后独立发明了微积分,1684年发表了第一篇微分学论文《一种求极大值、极小值和切线的新方法, 它也适用于有理量与无理量以及这种新方法的奇妙类型的计算》 , 他所发明了微积分的数学符号 dx, dy 和∫ 被更广泛的使用.莱布尼茨 1646~17161691 年: 约翰.伯努利著世界上第一本关于微积分的教科书瑞士的伯努利家族是世界颇负盛名的数学世家雅各布和弟弟约翰·伯努利是莱布尼茨的朋友,他们不但迅速掌握了莱布尼茨的微积分并加以发扬光大, 而且是最先应用微积分于各种问题的数学家.洛必达法则纠纷有一段时间,伯努利被洛必达聘请为私人数学老师。

微积分发展简史(借鉴类别)

微积分发展简史(借鉴类别)

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。

微积分发展简史介绍

微积分发展简史介绍

微积分发展简史介绍牛顿(1642-1727)出生在一个农民的家庭,是早产的遗腹子,勉强存活。

17岁母亲召他从中学回田庄务农,由他舅父及中学校长劝说,他母亲在9个月之后才允许他返校学习。

中学校长对他母亲说:“在繁杂的农务中埋没这样的天才,对世界来说将是多么巨大的损失“成了伟大的预言。

1661年入剑桥大学,受教于barrow (第一任卢卡斯教授)。

1665年8月因瘟疫剑桥关闭,回家2年,这期间,他制定了研究与发现微积分、万有引力及光学的蓝图。

他的这三项伟大贡献中的任何一项,都足以使他名垂青史。

牛顿研究微积分与1664年,1665年5月发明了微分,1666年5月发明积分,1666年10月写了《流数简论》文未发表,是历史上第一篇系统的微积分文献。

微积分诞生,当然还不成熟。

又花了20多年的时间不断改进与完善他的学说。

他的成果发表于1687年,1704年及1736。

莱布尼茨(1646-1716)出生在德国的一个教授家庭,在莱比锡大学学习法律,1667年获阿尔特多夫大学法学博士学位,之后一生从政。

1673-1676年,其成果发表于1684及1686年。

牛顿(1642-1727)从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。

莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。

莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。

因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。

1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。

牛顿和莱布尼兹都是科学巨人。

除了微积分,牛顿还在代数方程论、几何、数值分析、几何概率等都有杰出的贡献。

莱布尼兹对数学、力学、机械、地质逻辑甚至哲学、法律、外交、神学和语言都做出了杰出的贡献。

在数学上,除微积分外,他还是数理逻辑的奠基人,二进记数制的发明人,制造计算机的先驱,行列式发现者之一等等。

微积分学发展简史

微积分学发展简史

附录I 微积分学简史概念:微积分学分为微分学和积分学,是专指运用无穷小或无穷大等极限过程分析处理计算问题的学问.发展简史:1、荫芽阶段:(1)古希腊,欧多克斯(前408~前355)提出了穷竭法:一个量如减去大于其一半的量,再从余下的量中减去大于余量一半的量,这样一直下去,总可使某一余下的量小于已知的任何量.(2)阿里士多德(前384~332)严格区分实无限和潜无限,且只承认潜无限.(3)庄子(前355~前275)《天下篇》:“一尺之棰,日取其半,万世不竭”。

(4)阿基米德(前287~212)在《抛物求积法》中用穷竭法求出抛物线弓形的面积。

即,逐次作出与该弓形同底等高的三角形(如图),然后将这些三角形面积加起来. 第n 步时,这些三角形面积之和为: A(1+41+241+…+1-n 41),A 为第一个三角形的面积. 又指出:A(1+41+241+…+1-n 41+1-n 4131 )=34A. 最后用穷竭法和反证法证明,抛物线弓形面积不能大于或小于34A. 标志着积分学的萌芽.(5)263年,刘徽为《九章算术》作注时提出“割圆术”用正多边形逼近圆周。

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合作而无所失矣”。

(6)1328年英国大主教布兰德瓦丁在牛津发表的著作中提到类似于均匀变化率和非均匀变化率的概念.2、酝酿阶段:(1)1615年开普勒在出版《新空间几何》中发展了阿基米德求面积和体积的方法,给出了92个阿基米德未讨论过的体积问题,并研究了酒桶的最佳比例。

在天文学研究中得到公式:⎰θinθs dθ=1-cosθ.(2)1635年卡伐列利出版了《不可分量几何学》,将面积的不可分量比作织成一块布的线,体积的不可分量比作一册书的各页,而不可分量的个数为无穷多,且没有厚薄和宽窄,已到达了积分学的边缘,且发现公式:⎰anx dx=1na1n++,n为正整数.(3)法国数学家帕斯卡(1623~1662)借助了略去高次项(即略去高阶无穷小)的方未能证明体积公式,并且注意到很小的弧和切线是可以相互代替的.(4)法国数学家费马(1601~1665)在求极大极小值上取得了非凡的成功,为微积分开辟了道路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量和函数角度出发给出极限的动态定义,从而把微积
分的基础严格地奠定在极限概念之上。
德国数学家魏尔斯特拉斯则用静态的ε -δ 语言来 刻画柯西动态的极限概念,使极限的定义达到了最清 晰最严密的程度,直到如今人们仍然在使用他的定义。
由于严格的极限理论的建立,无穷小量可用极限的
语言清楚地加以描述,至此才解决了有关的逻辑困难。
第二类是求曲线切线的问题。
第三类是求函数最大值和最小值的问题。
第四类是求曲线长、曲线围成的面积、曲面围 成的体积、物体的重心、两个非质点间的 引力问题。
微分思想
曲线的切线问题(第二类问题)
函数的极大极小值问题(第三类问题)
费尔马在这两个问题上做出了主要贡献,他先对 自变量取增量,再让增量趋于零,这就是微分学的本 质所在。
庄子的 “一尺之棰,日取其半,万世不竭”(战国时期)
积分思想 阿基米德对抛物弓形的面积、球和球冠面积、 螺线下面积和旋转双曲体体积的研究。 开普勒用无穷小微元来确定曲边形的面积和体积。
2.微积分的发展
十七世纪中叶,由于自然科学的急速发展,其他学 科给数学提出如下四种亟待解决的问题:
第一类是求瞬时速度的问题。
牛顿在1665年11月发明“正流数术”(微分法),
次年5月又建立了“反流数术”(积分法).1666年10
月,牛顿将前两年的研究成果整理成一篇总结性论 文,但他没有拿去发表。 牛顿将自古希腊以来求解无限小问题的各种 特殊技巧统一为两类普遍的算法——正、反流数 术亦即微分与积分,并证明了二者的互逆关系, 从而将这两类运算统一成整体。这是他超越前人 的功绩,正是在这样的意义下,我们说牛顿发明 了微积分。
莱布尼茨在1684年发表了第一篇微分学论文《一种求
极大值与极小值以及求切线的新方法》,在这文章中他给
出了微分记号dx和一些微分运算法则,并讨论了微分学的
一些应用。 1686年,莱布尼茨又发表了他的第一篇积分学论
文,在这篇论文他给出了积分符号∫,初步论述了积分
与微分的互逆关系。
莱布尼茨深刻认识到∫同d的互逆关系,他断言:
纪念牛顿在经典力学方面的杰出成就,“牛
顿”后来成为衡量力的大小的物理单位。
莱 布 尼 茨
莱布尼茨(Gottfried Wilhelm Leibniz),德国哲学家、数学 家。涉及的领域及法学、力学、 光学、语言学等40多个范畴, 被誉为十七世纪的亚里士多德。 和牛顿并称为微积分的创立者。
微积分学是微分学(Differential Calculs)和积 分学(Integral Calculs)统称,英文简称Calculs,意为 计算。这是因为早期微积分主要用于天文、力学、几
所体现的。从而微分学和积分学形成了一门统一的学科:
微积分学。
目录 微积分的萌芽
微积分的发展
微积分的建立
微积分的严格化 牛顿和莱布尼茨之争
1.微积分的萌芽
极限思想
欧多克索斯的穷竭法(古希腊时期) 一个量如果减去大于其一半的量,再从余下的量中 减去大于该余量一半的量,这样一直下去,总可使某 一余下的量小于已知的任何量。
微积分诞生以后,数学迎来了一次空前的繁荣时
期。18世纪被称为数学史上的英雄世纪。数学家们把微
积分应用于天文学、力学、光学、热学等各个领域,获
得了丰硕的成果;在数学本身,他们把微积分作为工具, 又发展出微分方程、微分几何、无穷级数等理论分支, 大大扩展了数学研究的范围。
4.微积分的严格化
微积分建立以后,出现了两个极不协调的情景: 一方面是微积分广泛应用于各个领域,取得了辉煌 的成就;另一方面是人们对于微积分基本概念的合
据说这一状告正好告到了牛顿手上。后来,由 于牛顿的导演和亲自出马、匿名运作,形成势不两 立的两派。以英国为一派包括英国著名数学家泰勒 和麦克劳林都认为莱布尼兹是抄袭者。另一派是欧 洲大陆的 数学家,包括著名数学家约翰· 伯努利等 为一派认为牛顿是抄袭者。争论双方停止学了术交
流,不仅影响了数学的正常发展,也波及整个自然
积分学—微分学—微积分学—极限理论—实数理论 但从数学分析课程来看,它的理论体系应该是: 实数理论—极限理论—微分学—积分学—微积分学
5.牛顿与莱布尼茨之争
莱布尼茨发表第一篇微积分论文的时间是1684
年,比牛顿早三年(牛顿的《自然哲学之数学原理》 出版于1687年),但牛顿早在六十年代就发明了微积 分,而莱布尼茨曾于1673年访问过伦敦,并和牛顿 及一些知道牛顿工作的人通过信.于是就发生了莱 布尼茨是否独立取得微积分成果的问题.
并补充说︰“若干年前我曾出借过一份包含这些定 理
(微积分)的原稿,之後就见到一些从那篇当中抄出来
的东西,所以我现在公开发表这份原稿。”这话的意
思就暗指他的手稿曾经被莱布尼兹看到过,而莱布尼
兹 的论文就是从他的手稿中抄来的。
1711 年3月4日,伦敦皇家学会的秘书斯洛 ( Hans Sloane)收到莱布尼兹寄来的一封信,信 中抱怨其成员开尔(John Keill)指责莱布尼兹把 牛顿的微积分改变了少量的符号,伪装为自己的原 创发表,并且声明这不是事实,要求学会给以公正 的裁决。
而且由于ε −δ 语言的建立,微积分的发展如虎添翼。
实数理论 第一次数学危机之无理数的解决方案 魏尔斯特拉斯的无限十进小数表示法 戴德金分割 康托尔的柯西列方法 实数的完备性
确界存在定理---单调有界定理----区间套定理-----有限覆盖定理----聚点定理-----柯西收敛准则
从以上介绍,可以知道微积分发展的历史轨迹是
科学领域,以致发展到 英德两国之间的政治摩擦。
这场由牛顿导演捍卫牛顿的战斗,使英国人 吃了大亏,一百年多年间在数学上大大落后于欧 洲。而莱布尼兹生命中的最后7年则在这场大争
论中痛苦地度过的。
总之,两个人都很受伤!
无疑,牛顿创立了微积分。虽然莱布尼茨曾
收到过牛顿关于微积分工作的信件,但是他的工
作与牛顿的工作有明显的不同之处,并且有其突
费尔马也在积分学方面做了许多工),但可惜的
是,他没有发现微分学和积分学这两类问题之间的
基本联系。
巴罗(牛顿的老师)在《光学和几何学讲义》一 书中,已经把求曲线的切线与求曲线下区域的面积问 题联系了起来,也就是说他把微分学和积分学的两个
基本问题联系起来,但可惜的是他没有从一般概念意
出之处。牛顿的出发点是力学,莱布尼茨的 出发
点是几何学;牛顿的符号凌乱,除了他本人以外,
其他人甚难接受,莱布尼茨的符号系统明了,今
日我们仍然沿用他当时的记号。 公平地说,在微积分创立方面,牛顿与莱布 尼茨功绩相当。牛顿应与莱布尼茨分享创立微积 分的荣誉。
作为求和过程的积分是微分的逆.这一思想的产生是
莱布尼茨创立微积分的标志.
牛顿和莱布尼茨发现了微积分基本定理,并建立 起一套有效的微分和积分算法;他们把微积分作为一种 适用于一般函数的普遍方法;把微积分从几何形式中解 脱出来,采用了代数方法和记号,从而扩展了它的 应 用范围;把面积、体积及以前作为和来处理的问题归结 到反微分(积分).这样,十七世纪其他学科提出的四个 主要问题——速度、切线、极值、求和,便全部归结为 微分和积分。
1684 年莱布尼兹发表了他的微积分的论文。
3年后,牛顿在1687年出版的《原理》书的初版中 对莱布尼兹的贡献表示认同,但是却说:“和我 的几乎没什么不同,只不过表达的用字和符号不
一样。”
牛顿的流数理论到莱布尼兹发表论文二十年后,
即1704年作为他的著作《光学》的附录中正式发表,
附录的序言中,牛顿提到他1676年给莱布尼兹的信,
定质点的瞬时速度,或者根据瞬时速度去求质点
走过的路程。 在几何上,人们希望找到求一般曲线的切线 的方法,并计算一般曲线所围图形的面积。
令人惊讶的是,不同领域的问题却归结为相同
模式的数学问题:
求因变量在某一时刻对自变量的变化率;
求因变量在一定时间过程中所积累的变化。 前者导致了微分的概念;后者导致了积分的概念。 更令人惊讶的是,这二者之间竟然有着密切的联系:它 们是互逆的两种运算,这个性质是由微积分学基本定理
微积分发展简史


艾萨克· 牛顿(Isaac Newton)是英国伟
大的数学家、物理学家、天文学家和自然哲
学家,其研究领域包括了物理学、数学、天 文学、神学、自然哲学和炼金术。 牛顿的主要贡献有发明了微积分,发现 了万有引力定律和经典力学,设计并实际制 造了第一架反射式望远镜等等,被誉为人类 历史上最伟大,最有影响力的科学家。为了
义下进一步深入研究他们。
除了费尔马和巴罗,十七世纪的许多著名的数 学家、天文学家、物理学家也为解决上述问题作了 大量的研究工作,这些先驱性的工作,沿着不同的 方向向微积分的大门逼近,但所有这些努力还不足 以标志微积分作为一门独立科学的诞生。
3.微积分的建立
终于十七世纪后半叶,牛顿和莱布尼兹,在不 同的国家,几乎在同时总结前人研究成果的基础上, 各自独立的创建了划时代的微积分。
何中的计算问题。后来人们也将微积分学称为分析学
或无穷小分析。
在微积分产生之前,数学发展处于初等数学时期。 人类只能研究常量,而对于变量则束手无策。在几何上 只能讨论三角形和圆,而对于一般曲线则无能为力。到
了17世纪中叶,由于科学技术发展的需要,人们开始关
注变量与一般曲线的研究。
在力学上,人们关心如何根据路程函数去确
理性提出了强烈的质疑。19世纪以前,无穷小量概
念始终缺少一个严格的数学定义,因此导致了相当
严重的混乱。
特别地,1734年英国哲学家、红衣主教贝克莱对
微积分基础的可靠性提出的强烈质疑,引发了第二次
数学危机。微积分的严格化势在必行。
极限理论的建立
法国数学家达朗贝尔用极限方法取代无穷小量方法; 法国数学家柯西在达朗贝尔通俗的极限基础上,从
相关文档
最新文档