六年级下册奥数试题数的整除特征(二)全国通用(含答案)

合集下载

【机构秘籍】小学奥数题库《数论》整除-整除的基本概念-1星题(含解析)全国通用版

【机构秘籍】小学奥数题库《数论》整除-整除的基本概念-1星题(含解析)全国通用版

数论-整除-整除的基本概念-1星题课程目标学问提要整除的基本概念•定义假如整数a除以整数b(b≠ 0),除得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b∣a.留意:假如除得的结果有余数,我们就说a不能被b整除,也可以说b不能整除a.•整除的性质性质1:假如a、b都能被c整除,那么它们的和与差也能被c整除。

性质2:假如b与c的积能整除a,那么b与c都能整除a。

性质3:假如b、c都能整除a,且b和c互质,那么b与c的积能整除a。

性质4:假如c能整除b,b能整除a,那么c能整除a。

精选例题整除的基本概念1. 再过12天就到2016年了,昊昊感慨地说:我到目前只经过2个闰年,并且我诞生的年份是9的倍数,那么2016年昊昊是岁.【答案】9【分析】依据题意“我到目前只经过2个闰年”可得我的诞生年份在2005 2008,这之间只有2007是9的倍数,则昊昊是2007年诞生,则2016年昊昊是2016−2007=9岁.2. 若六位数201ab7能被11和13整除,则两位数ab=.【答案】48【分析】由11的整除特征可知:(7+a+0)−(2+1+b)=a+4−b=0或11,若a+4−b=11,a−b=7,只有8−1=9−2=7,六位数201817、201927都不能被13整除.若a+4−b=0,则a+4=b,只有0+4=4,1+4=5,2+4=6,3+4=7,4+4=8,5+4=9等状况,构成的六位数201047,201157,201267,201377,201487,201597中只有201487能被13整除,则ab=48.3. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.假如2011年最终一个能被101整除的日子是2011ABCD,那么2011ABCD是多少?【答案】20111221【分析】试除法得出答案:20111231÷101=199121⋯⋯10,31−10=21,所以ABCD=1221.4. 若4b+2c+d=32,试问abcd能否被8整除?请说明理由.【答案】见解析.【分析】由能被8整除的特征知,只要后三位数能被8整除即可.bcd=100b+10c+d,有bcd−(4b+2c+d)=96b+8c=8(12b+c)能被8整除,而4b+2c+d=32也能被8整除,所以abcd能被8整除.。

奥数数的整除讲义、练习含答案(推荐文档)

奥数数的整除讲义、练习含答案(推荐文档)

数的整除(1)性质、特征、奇偶性知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a—b)也能被c整除。

2)如果数a 能被自然数b 整除,自然数b 能被自然数c 整除,则数a 必能被数c 整除。

3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。

2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。

3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3或9)整除。

4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11 整除,则这个数能被11 整除。

5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。

奇数±奇数 =偶数( 2)偶数±偶数 =偶数( 3)奇数±偶奇数X 奇数二奇数(5)偶数X 偶数二偶数(6)奇数X 偶典型例题】 例 1:一个三位数能被 3 整除,去掉它的末尾数后,所得的两位数是17 的倍数,这样的三位数中,最大是几?例2: 1〜200这200个自然数中,能被6或8整除的数共有多少个?奇偶性:(1) 数 =奇数( 4)数=偶数( 7) 奇数一奇数二奇数(8)…例3 :任意取出1998 个连续自然数,它们的总和是奇数还是偶数?例4:有“ 1”,“ 2 ”,“ 3 ”4”四张卡片,每次取出三张组成三位数,其中偶数有多少个?例5如杲41位数5亍-5口99…9能被7整除,那么中间方格内的数字是几? 【精英班】PT'【竞赛班】例6:某市举办小学生数学竞赛,共20道题,评分标准是: 答对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999人参赛,问参赛同学的总分是奇数还是偶数?【课后分层练习】A组:入门级1、判断306371 能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析1.某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【答案】320【解析】方法一:利用整除特征因为这个数能被5整除,所以末位只能是0或5,又能被2整除,所以其末位为偶数,所以只能是0.在满足以上条件的情况下,还能被4整除,那么末两位只能是20、40、60或80.又因为还能同时被9整除,所以这个数的数字和也应该是9的倍数,有,,,的数字和分别为24+A,26+B,28+C,30+D,对应的A、B、C、D只能是3,1,8,6.即末三位可能是320,140,860,680.而只有320,680是8的倍数,再验证只有1993320,1993680中只有1993320是7的倍数.因为有同时能被2,4,5,7,8,9整除的数,一定能同时被2,3,4,5,6,7,8,9这几个数整除,所以1993320为所求的这个数.显然,其末三位依次为3,2,0.方法二:采用试除法一个数能同时被2,3,4,5,6,7,8,9整除,而将这些数一一分解质因数:,所以这个数一定能被23×32×5×7=8×9×5×7=2520整除.用1993000试除,1993000÷2520=790……2200,余2200可以看成不足2520-2200=320,所以在末三位的方格内填入320即可.2.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少?【答案】768768【解析】因为168=23×3×7,所以组成的六位数可以被8、3、7整除.能够被8整除的数的特征是末三位组成的数一定是8的倍数,末两位组成的数一定是4的倍数,末位为偶数.在题中条件下,验证只有688、768是8的倍数,所以末三位只能是688或768,而又要求是7的倍数,由上题知形式的数一定是7、11、13的倍数,所以768768一定是7的倍数,□□□688的□不管怎么填都得不到7的倍数.至于能否被3整除可以不验证,因为整除3的数的规律是数字和为3的倍数,在题中给定的条件下,不管怎么填数字和都是定值,必须满足,不然本题无解.当然验证的确满足.所以768768能被168整除,且验证没有其他满足条件的六位数了.3.有15位同学,每位同学都有编号,他们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.【答案】(1)8、9 (2)60060【解析】(1)列出这14个除数:2、3、4、5、6、7、8、9、10、11、12、13、14、15.注意到如果这个数不能被2整除,那么一定不能被4、6、8、10…等整除,显然超过两个自然数;类似这种情况的还有3~6、9…;4~8、12…;5~10、15…;6~12…;而不能被7整除,那么一定不能被14整除,而这两个自然数不连续;而不能被12整除,那么4和3中至少有一个不能整除1号所说的自然数,而12与3、4均不连续;类似这种情况的还有10(对应2和5);14(对应2和7);15(对应3和5);这样只剩下8、9、11、13,而连续的只有8、9.所以说的不对的两位同学的编号为8、9这两个连续的自然数.(2) 由(1)知,这个五位数能被2,3,4,5,6,7,10,11,12,13,14,15整除.所以[2,3,4,5,6,7,10,11,12,13,14,15]=22×3×5×7×11×13=60060.所以1号写出的五位数为60060.4.试求6个不同的正整数,使得它们中任意两数之积可被这两个数之和整除.【答案】27720,55440,83160,110880,138600及166320.【解析】取六个数1,2,3,4,5,6,并把它们两两相加得到15个和:1+2,1+3,…,5+6.这15个和的最小公倍数是:23×32×5×7×11=27720.把它依次乘所取的六个数得:27720,55440,83160,110880,138600及166320.这六个数就满足题目得要求.5.975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【答案】20【解析】975含有2个质因数5,935含有1个质因数5,972含有2个质因数2.而975×935×972×□的乘积最后4个数都是0.那么,至少需要4个质因数5,4个质因数2.所以,□至少含有1个质因数5,2个质因数2,即最小为5×2×2=20.6.如图,依次排列的5个数是13,12,15,25,20.它们每相邻的两个数相乘得4个数.这4个数每相邻的两个数相乘得3个数.这3个数每相邻的两个数相乘得2个数.这2个数相乘得1个数.请问:最后这个数从个位起向左数,可以连续地数出几个零?【答案】10【解析】如下图,我们在图中标出每个数含有质因数2、5的个数,除第一行外,每个数都是上一行左、右上方两数的乘积,所以每个数含有质因数2、5的个数也都是上一行左、右上方两数含有质因数2、5个数的和.所以,最后一行的一个数含有10个质因数2,15个质因数5.而一个数末尾含有连续0的个数决定于质因数2、5个数的最小值,所以最后一行的一个数末尾含有10个连续的0.7.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【答案】875413【解析】根据11的整除判定特征我们知道六位数的奇数位与偶数位三个数字的和的差要为11的倍数,我们不妨设奇数位上的数和为a,偶数位上的数和为b,那么有a+b=1+3+4+5+7+8=28,同时有a-b=0或a-b=11或a-b=22…等情况,根据奇偶性分析自然数a与b的和为偶数,那么差也必须为偶数,但是a-b不可能为22,所以a-b=0,解得a=b=14,则容易排列出最大数875413.8.从50到100的这51个自然数的乘积的末尾有多少个连续的0?【答案】14【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有个0.9. 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?【答案】45【解析】因为,由于在11个连续的两位数中,至多只能有2个数是7的倍数,所以其中有一个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,所以这连续的11个自然数至少应该含有4个因数5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数中应同时有49和50,且除50外还有两个是5的倍数,只能是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.10.从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是多少?【答案】1331【解析】第一次报数后留下的同学,他们最初编号都是11的倍数;第二次报数后留下的同学,他们最初编号都是的倍数;第三次报数后留下的同学,他们最初编号都是的倍数.因此,第三次报数后留下的同学中,从左边数第一个人的最初编号是11.如果能被6整除,那么也能被6整除.【答案】略【解析】∵∴2|∴2|e∴6|3e∵3|∴3|a+b+c+d+e∴6|2(a+b+c+d+e)∴6|2(a+b+c+d+e)-3e∴6|2(a+b+c+d)-e12.两个四位数和相乘,要使它们的乘积能被72整除,求和.【答案】4【解析】考虑到,而是奇数,所以必为8的倍数,因此可得;四位数2752各位数字之和为不是3的倍数也不是9的倍数,因此必须是9的倍数,其各位数字之和能被9整除,所以.13.一个六位数,如果满足,则称为“迎春数”(如,则就是“迎春数”).请你求出所有“迎春数”的总和.【答案】999999【解析】方法一:显然,不小于4,原等式变形为化简得,当时,,于是为.同理.,6,7,8,9,可以得到为,,,,.所有的和是.方法二:显然,不小于4,若,为末尾数字,所以;为的末2位,所以;为的末3位,所以;为的末4位,所以;为的末5位,所以;于是为.同理.,6,7,8,9,可以得到为,,,,.所有的和是.14.一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【答案】9867【解析】设这个4位数是,则新的4位数是.两个数的和为,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.15.用1,9,8,8这四个数字能排成几个被11除余8的四位数?【答案】1988,1889,8918,8819【解析】现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加3,得另一个和数,如果这两个和数之差能被11整除,那么这个数是被11除余8的数;否则就不是.要把1,9,8,8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作;另外一组作为百位和个位数,它们之和加上3记作.我们要适当分组,使得能被11整除.现在只有下面4种分组法:偶位奇位⑴ 1,8 9,8⑵ 1,9 8,8⑶ 9,8 1,8⑷ 8,8 1,9经过验证,只有第⑴种分组法满足前面的要求:,,能被11整除.其余三种分组都不满足要求.根据判定法则还可以知道,如果一个数被11除余8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换得到的新数被11除也余8.于是,上面第⑴种分组中,1和8任一个可以作为千位数,9和8中任一个可以作为百位数.这样共有4种可能的排法:1988,1889,8918,8819.16.从1,2,3,……,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为多少?【答案】108【解析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66……,其中只要取到两个相邻的,这两个数的差为13;如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能有两个数的差为13,对于任意一条长度为x的序列,都最多能取个数,使得取出的数中没有两个数的差为13,即从第1个数起隔1个取1个.基于以上,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,要使取出的数中没有两个数的差为13,能够被取得的数的个数之差也不会超过1,所以为使57个数中任意两个数的差都不等于13,则这57个数被分配在13条序列中,在每条序列被分配的数的个数差不会超过1,那么13个序列有8个序列分配了4个数,5个序列分配了5个数,则这13个序列中8个长度为8,5个长度为9,那么当n最小为时,可以取出57个数,其中任两个数的差不为13,所以要使任取57个数必有两个数的差为13,那么n的最大值为108.17.某三位数和它的反序数的差被99除,商等于______与______的差;【答案】a-c【解析】本题属于基础型题型。

六年级下册奥数专题练习-数的整除性规律-全国通用

六年级下册奥数专题练习-数的整除性规律-全国通用

数的整除性规律【能被2或5整除的数的特征】(见小学数学课本,此处略)【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=243|24,则3|1248621。

又如,372681各位上的数字之和是3+7+2+6+8+1=279|27,则9|372681。

【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如,173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

例如,32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。

3569824的末三位数为824,8|824,则8|3569824。

214813750的末三位数为750,125|750,则125|214813750。

【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。

例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。

又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。

再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。

(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。

(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

重点·难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。

学法指导上面数的整除特征可以结合例子来理解。

例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。

因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。

记忆要理论联系实际。

经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。

一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。

解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p 和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。

六年级奥数 数的整除

六年级奥数              数的整除

预备年级数学竞赛专题训练 数的整除一、整除的性质1、如果n m c a b a ,,,为整数,那么)(nc mb a ±;2、如果,|,|c b b a 那么c a |;3、如果bc a |,且a,b 互质,那么c a |;4、如果,|,|b c b a 且a,c 互质,那么b ac |;5、n 个连续整数的乘积,一定能被n ⨯⨯⨯⨯ 321整除;6、能被2(或5)整除的数的特征:个位数字能被2(或5)整除;7、能被4(或25)整除的数的特征:末两位数能被4(或25)整除;8、能被8(125)整除的数的特征:末三位数能被8(或125)整除;9、能被3(或9)整除的数的特征:各位数字之和能被3(或9)整除; 10、能被11整除的数的特征:奇数位上的数字之和与偶数位上的数字之和的差能被11整除; 11、能被7、13整除的数的特征:奇位千进位数段之和与偶位千进位数段之和的差能被7、13整除;例如:判别34425391能否被7、13整除,先从后往前分节,得34,425,391,奇位千进位数段之和为34+391=425,偶位千进位数段之和为425,两者之差425-425=0,因为0被7、13整除,所以34425391能被7、13整除。

二、练习1、一个五位数983ab 能被11和9整除,这个五位数是______________。

2、除以8和9都余1的所有三位数之和为_______________。

3、用一个两位数去除2003,余数为8,这样的两位数有__________个,其中最大的两位数为_________。

4、若1059、1417、2312分别被自然数x 除时,所得的余数都是y,则y x -的值为______________。

5、求在1000以内,同时被2、4、6、8整除的正整数的个数。

6、一个六位数b a 1233被88整除,则_____________,==b a 。

7、被11与13同时整除的最大的四位数是______________;8、当______________,==y x 时,四位数xy 72同时被2、3、4、5、6、9。

六年级下册数学试题-奥数专练:数的整除之四大方法综合应用(含答案)全国通用

六年级下册数学试题-奥数专练:数的整除之四大方法综合应用(含答案)全国通用

数的整除之四大方法综合应用知识要点一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b…a。

二、数的整除性质:⑴对称性:若甲数能被乙数整除,乙数也能被甲数整除,那么甲、乙两数相等。

记作:a|b,b|a,则a=b。

⑵传递性:若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

记作:若a|b,b|c,则a|c。

⑶若两个数能被一个自然数整除,那么这两个数的和与差都能该自然数整除。

记作:若a|b,a|c,则a|(bc)。

⑷几个数相乘,若其中有一个因子能被某一个数整除,那么它们的积也能被该数整除。

⑸若一个数能被两个互质数中的每一个数整除,那么这个数也能分别被这两个互质数的积整除。

记作:若a|b,c|b,(a,c)=1,则ac|b。

⑹若一个数能被两个互质数的积整除,那么,这个数也能分别被这两个互质数整除。

记作:若ac|b,(a,c)=1,则a|b,c|b。

⑸若一个整数的末位是0或5,则这个数能被5整除。

⑹若一个整数能被2和3整除,则这个数能被6整除。

⑺若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

⑻若a|b,m≠0,则am|bm。

⑼若am|bm,m≠0,则a|b。

⑽若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)三、整除特征⑴1与0的特性:1是任何整数的约数,即对于任何整数a,总有1/a。

0是任何非零整数的倍数,a≠0,a为整数,则a/0。

⑵若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

⑶若一个整数的数字和能被3整除,则这个整数能被3整除。

⑷若一个整数的末尾两位数能被4整除,则这个数能被4整除。

⑸若一个整数的末位是0或5,则这个数能被5整除。

⑹若一个整数能被2和3整除,则这个数能被6整除。

小学奥数 数的整除之四大判断法综合运用(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  数的整除之四大判断法综合运用(二) 精选练习例题 含答案解析(附知识点拨及考点)

1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质知识点拨教学目标5-2-2.数的整除之四大判断法综合运用(二)性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯()()()()()=⨯-+⨯++⨯-+⨯++⨯-+⨯110000114199992100118199511171()()11000014999921001899511418275=⨯+⨯+⨯+⨯+⨯+-+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】设原序数为abcd,则反序数为dcba,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()()10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列 【难度】3星 【题型】解答【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+(14210000000018579999993141001)(8575314)=⨯+⨯+⨯+-+- 因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析1.某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【答案】320【解析】方法一:利用整除特征因为这个数能被5整除,所以末位只能是0或5,又能被2整除,所以其末位为偶数,所以只能是0.在满足以上条件的情况下,还能被4整除,那么末两位只能是20、40、60或80.又因为还能同时被9整除,所以这个数的数字和也应该是9的倍数,有,,,的数字和分别为24+A,26+B,28+C,30+D,对应的A、B、C、D只能是3,1,8,6.即末三位可能是320,140,860,680.而只有320,680是8的倍数,再验证只有1993320,1993680中只有1993320是7的倍数.因为有同时能被2,4,5,7,8,9整除的数,一定能同时被2,3,4,5,6,7,8,9这几个数整除,所以1993320为所求的这个数.显然,其末三位依次为3,2,0.方法二:采用试除法一个数能同时被2,3,4,5,6,7,8,9整除,而将这些数一一分解质因数:,所以这个数一定能被23×32×5×7=8×9×5×7=2520整除.用1993000试除,1993000÷2520=790……2200,余2200可以看成不足2520-2200=320,所以在末三位的方格内填入320即可.2.已知四十一位数55…5□99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?【答案】6【解析】我们知道这样的六位数一定能整除7、11、13;下面就可用这个性质来试着求解:由上知的末6位数必定整除7;有=×1000000+999999;于是只用考察:×1000000,又因为1000000,7互质,所以1000000对整除7没有影响,所以要求一定是7的倍数.注意到,实际上我们已经将末尾的6个9除去;这样,我们将数字9、5均6个一组除取,最后剩下的数为,即55□99.我们只用计算55□99当“□”取何值时能被7整除,有□为6时满足.评注:对于含有类似的多位数,考察其整除7、11、13情况时,可以将一组一组的除去,直接考察剩下的数.3.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少?【答案】768768【解析】因为168=23×3×7,所以组成的六位数可以被8、3、7整除.能够被8整除的数的特征是末三位组成的数一定是8的倍数,末两位组成的数一定是4的倍数,末位为偶数.在题中条件下,验证只有688、768是8的倍数,所以末三位只能是688或768,而又要求是7的倍数,由上题知形式的数一定是7、11、13的倍数,所以768768一定是7的倍数,□□□688的□不管怎么填都得不到7的倍数.至于能否被3整除可以不验证,因为整除3的数的规律是数字和为3的倍数,在题中给定的条件下,不管怎么填数字和都是定值,必须满足,不然本题无解.当然验证的确满足.所以768768能被168整除,且验证没有其他满足条件的六位数了.4.将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?【答案】36【解析】因为72=23×32,所以这个数必须是8的倍数,即后三位必须是8的倍数(也一定有后二位为4的倍数,末位为偶数),且数字和是9的倍数.有456,312,516,920,324,728,132,536…均是4的倍数,但是只有456,920,728,536是8的倍数.验证这些数对应的自然数的数字和:456对应123456,数字和为21,920对应123…91011…1920,数字和为102,728对应123…91011…192021…28,数字和为154,536对应123…91011…192021…293031…36,数字和为207,所以在上面这些数中,只有536对应的123…91011…192021…293031…36既是8的倍数,又是9的倍数.所以,满足题意的自然数为36.5.有15位同学,每位同学都有编号,他们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.【答案】(1)8、9 (2)60060【解析】(1)列出这14个除数:2、3、4、5、6、7、8、9、10、11、12、13、14、15.注意到如果这个数不能被2整除,那么一定不能被4、6、8、10…等整除,显然超过两个自然数;类似这种情况的还有3~6、9…;4~8、12…;5~10、15…;6~12…;而不能被7整除,那么一定不能被14整除,而这两个自然数不连续;而不能被12整除,那么4和3中至少有一个不能整除1号所说的自然数,而12与3、4均不连续;类似这种情况的还有10(对应2和5);14(对应2和7);15(对应3和5);这样只剩下8、9、11、13,而连续的只有8、9.所以说的不对的两位同学的编号为8、9这两个连续的自然数.(2) 由(1)知,这个五位数能被2,3,4,5,6,7,10,11,12,13,14,15整除.所以[2,3,4,5,6,7,10,11,12,13,14,15]=22×3×5×7×11×13=60060.所以1号写出的五位数为60060.6.试求6个不同的正整数,使得它们中任意两数之积可被这两个数之和整除.【答案】27720,55440,83160,110880,138600及166320.【解析】取六个数1,2,3,4,5,6,并把它们两两相加得到15个和:1+2,1+3,…,5+6.这15个和的最小公倍数是:23×32×5×7×11=27720.把它依次乘所取的六个数得:27720,55440,83160,110880,138600及166320.这六个数就满足题目得要求.7.六位数能被99整除,是多少?【答案】71【解析】方法一:200008被99除商2020余28,所以能被99整除,商72时,,末两位是28,所以为71;方法二:,能被99整除,所以各位数字之和为9的倍数,所以方框中数字的和只能为8或17;又根据数被11整除的性质,方框中两数字的差为6或5,可得是71.8.一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.【答案】5.11【解析】把□□元作为整数□□分.既然是72本笔记本的总线数,那就一定能被72整除,又因为,(8,9) .所以□□,□□. □□,根据能被8整除的数的特征,8 |79□,通过计算个位的□.又□,根据能被9整除的数的特征,(□),显然前面的□应是3.所以这笔帐笔记本的单价是: (元).9.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【答案】875413【解析】根据11的整除判定特征我们知道六位数的奇数位与偶数位三个数字的和的差要为11的倍数,我们不妨设奇数位上的数和为a,偶数位上的数和为b,那么有a+b=1+3+4+5+7+8=28,同时有a-b=0或a-b=11或a-b=22…等情况,根据奇偶性分析自然数a与b的和为偶数,那么差也必须为偶数,但是a-b不可能为22,所以a-b=0,解得a=b=14,则容易排列出最大数875413.10.张老师带领同学们去种树,学生的人数恰好等分成三组.已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵.问:一共有多少学生?每人种了几棵树?【答案】6【解析】因为总棵数是每人种的棵数和人数乘积,而每个人种的棵数又不超过10所以通过枚举法来解(注意人数是减去1后是3的倍数):,不是3的倍数;,不是3的倍数;,不是3的倍数;,不是3的倍数;,是3的倍数;,不是3的倍数;共有51个学生,每个人种了6棵树.11.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。

六年级下册数学专题练习:6、整除及数字整除特征 全国通用(含解析)

六年级下册数学专题练习:6、整除及数字整除特征 全国通用(含解析)

6、整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

六年级下册数学试题-小升初能力训练:数论综合——整除特征(解析版)全国通用

六年级下册数学试题-小升初能力训练:数论综合——整除特征(解析版)全国通用

第03讲 数论综合——整除特征【一】第一类1、已知道六位数20279□是13的倍数,求□中的数字是几?根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数, 所以知道方格中填1。

2、 一个19位数99777744444⋅⋅⋅⋅⋅⋅1424314243个个能被13整除,求内的数字.∵13|99777744444⋅⋅⋅⋅⋅⋅1424314243个个,∴13|97777444⋅⋅⋅14243,∴13|7777770000000+7770444 ∵13|777777,∴13|7777770000000,∴13|777444,∴13|77-(444+7) ∵451139÷L ,∴777139÷L ,∴6=3、 三位数的百位、十位和个位的数字分别是5,a 和b ,将它连续重复写2008次成为:20095555abab ab ab L L 1442443个.如果此数能被91整除,那么这个三位数5ab 是多少?因为91713=⨯,所以20095555abab ab ab L L 1442443个也是7和13的倍数,因为能被7和13整除的特点是末三位 和前面数字的差是7和13的倍数,由此可知20085200755555555000ab abab ab ab ab ab ab ab -=L L L L 14424431442443个个也是7和 13的倍数,即20075555ab ab ab ab L L 1442443个也是7和13的倍数,依次类推可知20075555abab ab ab L L 1442443个末三位和前面数 字的差即为:20065200555555555000ab ab ab ab ab ab ab ab ab -=L L L L 14424431442443个个也是7和13的倍数,即20055555abab ab ab L L 1442443个也 是7和13的倍数,由此可知5ab 也是7和13的倍数,百位是5能被7和13即91整除的数是: 916546⨯=,所以46ab =.4、 已知九位数2007122□□既是9的倍数,又是11的倍数;那么,这个九位数是多少? 方法一:设原数2007122=a b ,∵9|2007122a b ⇒ 4+=a b 或者13+=a b ,∵11| 2007122a b ⇒ 20+++a 22+- (071+++b )0=或者(071+++b )(2202)-++++a 11=⇒2-=a b或者9-=b a 根据两数和差同奇偶,得:42+=⎧⎨-=⎩a b a b ⇒ 31=⎧⎨=⎩a b 或者139+=⎧⎨-=⎩a b b a ⇒ 211=⎧⎨=⎩a b 不成立. 所以,2007122a b 200731212=.方法二:根据一个数能被99整除的特点知道若想2007122□□能被99整除,则207122++++必能被99整除,列竖式分析得20731212++++才满足,所以答案为2007312125、 用1~9这九个数字组成三个三位数(每个数字都要用),每个数都是4的倍数。

数的整除特征(二)

数的整除特征(二)

【例3】 某个 七位数 1993 □□□能够同时被 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 整除,那么它的最后三位数字依次是多少 ?
胖纸老师总结 数论是小学奥数里逻辑性最接近成人的知识点 出题容易,考察方便,童叟无欺,居家必备! 学习体系要完整,如果有漏洞一定要补 整除特性要牢记,Βιβλιοθήκη 要理解 1数的整除特征(二)
胖纸叨叨 分段做差系 ①能否被 7 ,11 , 13 整除规律是把数从末三位开始, 三位为一段断开,只需看奇数段的和与偶数段的和的 位为 段断开, 需看奇数段的和与偶数段的和的 差是否为 7 ,11 , 13 的倍数,并且奇数段的和减去偶 数段的和的差被 7,11,13 除余几 就代表 这个数除以 这个数除 7,11,13 余几 余 ②能否被 11 整除规律是从右开始数奇数位数字之和与 偶数位数字之和的差是否为 11 的倍数,并且算出的差 的倍数 并且算出的差 除以11 余几就代表这个数除以 11 余几 其他系
【例4】 已知 51 位数 55 55
25个5
99 9 能被 13 整除,
25个9
中间方格内的数字是多少?
判断下面 11 个数的整除性: 23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407. (1)这些数中,有哪些数能被4 ( ) 中,有哪 整除?哪些数能被 除 哪 8 整除? 除 (2)哪些数能被 25 整除?哪些数能被 125 整除? (3)哪些数能被 3 整除?哪些数能被 9 整除? (4)哪些数能被 11 整除?
【例1】 四位偶数 6 4
能被 11 整除,求出所有满足要求的四位数。
【例2】在小于 5000 的自然数中,能被 11 整除,并且数字和为 13 的数, 共有 共有________个. 个

【教师必备】小学奥数5-2-2 数的整除之四大判断法综合运用(二).专项检测及答案解析

【教师必备】小学奥数5-2-2 数的整除之四大判断法综合运用(二).专项检测及答案解析

5-2-2.数的整除之四大判断法综合运用(二).题库 教师版1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).性质2 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a , c ∣b ,那么c ∣a .用同样的方法,我们还可以得出:性质3 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那 么b ∣a ,c ∣a .性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为知识点拨教学目标5-2-2.数的整除之四大判断法综合运用(二)非0整数);性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b |a ,且d |c ,那么bd |ac ;模块一、11系列【例 1】 以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列 【难度】2星 【题型】解答【解析】 略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯110000114199992100118199511171=⨯-+⨯++⨯-+⨯++⨯-+⨯()()()()()11000014999921001899511418275=⨯+⨯+⨯+⨯+⨯+-+-+-()()因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】 试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列 【难度】2星 【题型】解答【解析】 略 【答案】设原序数为abcd ,则反序数为dcba ,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()()10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列 【难度】3星 【题型】解答【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+例题精讲(14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。

【精编】六年级下册奥数试题 数的整除特征(一) 全国通用(含答案)

【精编】六年级下册奥数试题  数的整除特征(一)   全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析1.有若干个(非零)自然数,它们的平均数为11.如果去掉一个最大的自然数,那么它们的平均数为l0;如果去掉一个最小的自然数,那么它们的平均数为12.请问:这些自然数最多有多少个?此时其中最大的自然数是多少?【答案】21【解析】设共有n个数,则n个数的总和为11n;去掉最大的自然数,剩下数的总和为10×(n-1);去掉最小的自然数,剩下数的总和为12×(n-1),于是有最小的自然数为11n-[12×(n-1)]=12-n,而非零自然数最小为1,所以n最大为11,此时最大的自然数为11n-[10×(n-1)]=n+10=11+10=21.即这些自然数最多有11个,此时其中最大的自然数为21.2.整除1.173□是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,1l,6整除.”问:数学老师先后填入的3个数字的和是多少?【答案】19【解析】方法一:利用整除特征注意能被9,11,6整除的数的特征:能被9整除的数,其数字和是9的倍数;能被11整除的数,其奇数位数字和与偶数位数字和的差为11的倍数;或将其后三位与前隔开,将新组成的两个数作差,将是11的倍数;能被6整除的数,其数字和是3的倍数,且末位为0,2,4,6,8的其中之一.1+7+3=11,当□内填入7时,1735的数字和为18,为9的倍数,所以当□内填7所组成的数为9的倍数;173□的奇数位数字和位7+□,偶位数数字和为1+3=4,所以当□内填11+4-7=8时,奇数位数字和与偶数位数字和的差为11,所组成的数为11的倍数;1+7+3=11,当□内填入1,4,7时,为3的倍数,但只有4为偶数,所以当□内填入4组成的数为6的倍数.所以,这三种情况下填入□内的数字的和为7+8+4=19.方法二:采用试除法用1730试除,1730÷9=192……2,1730÷11=157……3,1730÷6=288……2.所以依次添上(9-2=)7、(11-3=)8、(6-2=)4后得到的1737、1738、1734依次能被9、11、6整除.所以,这三种情况下填入□内的数字的和为7+8+4=19.3.在六位数11□□11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【答案】53【解析】方法一:采用试除法如果一个数能同时被17和19整除,那么一定能被323整除.110011÷323=340……191,余191也可以看成不足(323-191=)132.所以当132+323n是100的倍数时,才能保证在只改动110011的千位、百位数字,而得到323的倍数.所以有323n的末位只能是10-2=8,所以n只能是6,16,26,…验证有n=16时,132+323×16=5300,所以原题的方框中填入53得到的115311满足题意.方法二:视为数字谜因为[17,19]=323,所以有:注意,第3行的个位数字为1,于是乘数的个位数字只能为7,所以第3行为323×7=2261;于是有,所以第4行的末位为(10+)1-6=5,所以乘数的十位数字只能为5,于是第4行为323×5=1615;于是有,所以第5行在(110011-16150-2261=)91600~(119911-16150-2261=)101500之间,又是323×100的倍数,所以只能为32300×3=96900;于是最终有.所以题中的方框内应填入5,3这两个数字.4.将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?【答案】36【解析】因为72=23×32,所以这个数必须是8的倍数,即后三位必须是8的倍数(也一定有后二位为4的倍数,末位为偶数),且数字和是9的倍数.有456,312,516,920,324,728,132,536…均是4的倍数,但是只有456,920,728,536是8的倍数.验证这些数对应的自然数的数字和:456对应123456,数字和为21,920对应123…91011…1920,数字和为102,728对应123…91011…192021…28,数字和为154,536对应123…91011…192021…293031…36,数字和为207,所以在上面这些数中,只有536对应的123…91011…192021…293031…36既是8的倍数,又是9的倍数.所以,满足题意的自然数为36.5.1~9九个数字按下图所示的次序排成一个圆圈,请在某两个数之间剪开,分别按顺时针和逆时针次序形成两个九位数.如果要求剪开后所得到的两个九位数的差能被396整除,那么应在何处剪开?【答案】5,7【解析】在解这道题之前我们先看一个规律:(如:12365为原序数,那么它对应的反序数为56321,它们的差43956是99的倍数.对于上面的规律想想为什么?)那么互为反序的两个九位数的差,一定能被99整除.而396=99×4,所以我们只用考察它能否能被4整除.于是只用观察原序数、反序数的末两位数字的差能否被4整除,显然只有当剪开处两个数的奇偶性相同时才有可能.注意图中的具体数字,有(3,8)处、(8,1)处、(1,6)处、(9,4)处、(2,9)处、(2,5)处、(3,8)处的两个数字奇偶性均不相同,所以一定不满足.而(6,4)处、(5,7)处、(7,3)处奇偶性相同,有可能满足.进一步验证,有(6,4)处剪开的末两位数字之差为94-16=78,不是4的倍数,不满足.(5,7)处剪开则有末两位数字之差为37-25=12,是4的倍数,满足.(7,3)处剪开则有末两位数字之差为83-57=26,不是4的倍数,不满足.所以只能从5、7处剪开,所得的两个互为反序的九位数的差才是396的倍数.6.找出4个不同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除.如果要求这4个数中最大的数与最小的数的和尽可能的小,那么这4个数里中间两个数的和是多少?【答案】7【解析】我们设这四个数中最小的一个数为a,要求4个数中最大的数与最小的数的和尽可能小,则先尽量让a最小.当a=1,设4个数中另外三个数中某个数为b,有必须为整数,而=1+,则2能被(b-1)整除,显然(b-1)只能为2或1,对应b只能是3或2,但是题中要求a至少能与三个数存在差能被和整除的关系,所以不满足.当a=2,设4个数中另外三个数中某个数为c,有必须为整数,而=1+,则4能被(c-2)整除,有(c-2)可以为4、2、1,对应c可以为6、4或3.验证6、4、3、2是满足条件的数组,它们的中间两个数的和为4+3=7即为题中条件下的和.7.试求6个不同的正整数,使得它们中任意两数之积可被这两个数之和整除.【答案】27720,55440,83160,110880,138600及166320.【解析】取六个数1,2,3,4,5,6,并把它们两两相加得到15个和:1+2,1+3,…,5+6.这15个和的最小公倍数是:23×32×5×7×11=27720.把它依次乘所取的六个数得:27720,55440,83160,110880,138600及166320.这六个数就满足题目得要求.8.把若干个自然数l,2,3,…乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【答案】55【解析】要求乘积的末十三位均是0,那么这个乘积至少含有13个质因数2,13个质因数5.连续的自然数中2的倍数的个数远大于5的倍数的个数.所以只用考虑质因数5的个数,有:13×5=65,而1~65中,25、50均含有2个质因数5.所以只需连乘到(13-2)×5=55即可.也就是说1×2×3×…的积的末十三位均是0,那么最后出现的自然数最小应是55.解法二:我们分段考虑质因数5的出现的情况:在1至9中,有5本身,出现1次因数5;在10至19中,有10、15,出现2次因数5;在20至29中,有20、25,由于25=5×5,5出现了2次,所以共出现3次因数5;在30至39、40至49中,各出现2次5的因子,至此共出现了1+2+3+2+2=10次5的因子.在50至59中,有50、55、50=2×5×5出现了两次5的次因子,所以这里共有3个5的因子.所以到55为止,共出现13次5的因子,55为出现的最小自然数,使得2乘到它的结果中末尾有13个0.9.975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【答案】20【解析】975含有2个质因数5,935含有1个质因数5,972含有2个质因数2.而975×935×972×□的乘积最后4个数都是0.那么,至少需要4个质因数5,4个质因数2.所以,□至少含有1个质因数5,2个质因数2,即最小为5×2×2=20.10.六位数能被99整除,是多少?【答案】71【解析】方法一:200008被99除商2020余28,所以能被99整除,商72时,,末两位是28,所以为71;方法二:,能被99整除,所以各位数字之和为9的倍数,所以方框中数字的和只能为8或17;又根据数被11整除的性质,方框中两数字的差为6或5,可得是71.11.要使能被36整除,而且所得的商最小,那么分别是多少?【答案】a=0,b=1,c=5【解析】分解为互质的几个数的乘积,分别考虑所以能被4整除,从而只可能是1,3,5,7,9.要使商最小,应尽可能小,先取,又,所以是9的倍数所以,时,取得最小值.12.请求出最大的七位数,使得它能被3、5、7、11、13整除,且各位数字互不相同,这个七位数是多少?【答案】7402395【解析】解法一:因为7×11×13=1001,999×1001=999999不是七位数,这个七位数是1001×abcd=abcd000+abcd,如果c不是9,那么b就会重复,所以c=9,因为是5的倍数,所以d=5,要使最大,先假设a=8时,b取8,5,2都不符合要求,当a=7时,b取9,6,3,0中3符合要求,所以最大的是7402395分析题意知,这个七位数是7×11×13=1001的倍数,根据1001的特点,解法二:假设这个七位数是abcdefg,满足abcd-efg=n00n,很容易得出c=0,f=9,b和e相差1,如果g=0,那么a=d,所以g=5。

小升初必考专题:整除(二)(讲义)-2020-2021学年数学六年级下册(含答案)全国通用

小升初必考专题:整除(二)(讲义)-2020-2021学年数学六年级下册(含答案)全国通用

例4求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除。

例3将自然数1,2,3,…依次写下去组成一个数:12345678910111213…。

如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?例2用数字6,7,8各两个,组成一个六位数,使它能被168整除。

这个六位数是多少?例1在下面的方框中各填入一个数字,使六位数11□□11能被17和19整除,那么方框中的两位数是_____。

测试题1.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____。

2.所有数字都是2且能被66……6整除的最小自然数是_____位数。

∵100666个…=2×3×100111个…3.找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?4.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?5.500名士兵排成一列横队。

第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?6.试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明。

例6在100至200之间,有三个连续的自然数,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,写出这样的三个连续自然数。

例5有15位同学,每位同学都有编号,他们是l 号到15号。

1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除。

六年级下册数学试题-奥数专题:第3讲 数论(2)全国通用

六年级下册数学试题-奥数专题:第3讲 数论(2)全国通用

六年级下册数学试题-奥数专题:第3讲数论(2)全国通用数论这门学科最初是从研究整数开始的,所以叫做整数论。

后来整数论又进一步发展,就叫做数论了。

确切的说,数论就是一门研究整数性质的学科。

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。

这个“皇冠”上历史上出现了许多闪闪发亮的明珠:哥德巴赫猜想,孪生素数猜想,斐波那契数列,梅森素数,费马大定理,黎曼猜想等等数论是华杯赛的必考点之一,也常常被放在压轴题的位置。

本讲继续针对数论模块的高频考点和难点,进行讲解巩固。

考察难度数论题作为华杯赛的必考点之一,整体难度大,一般情况下在 3★以上,部分涉及构造或代数运算的题目会达到 5★。

备考建议孩子在复习的时候,约倍、质合、整除的特征和性质这些基本概念要非常熟悉,但这些知识基础还远远不够,进一步要把重点放在相关应用上,此外分解质因数也是常用分析问题的方式之一,更高阶的需要掌握分类讨论的思想和代数构造的能力。

课前预习1)在下边的算式中,每个汉字代表0 至9 这十个数字中的一个,相同的汉字代表相同数字、不同汉字代表不同数字.则“数学竞赛”所代表的四位数是.(第19届华杯复赛)2)设n是小于50的自然数,使得3n+5和5n+4有大于1的公因数的所有的n有个.(第18 届华杯复赛)模块一数字谜要点复习1.数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2.数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3.解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意:⑴⑵⑶数字谜中的文字,字母或其它符号,只取0~9 中的某个数字;要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷数字谜解出之后,最好验算一遍.例11)在图中的加法竖式中,如果不同的汉字可以代表相同的数字,使得算式成立,则四位数华杯决赛的最小值为.(第16 届华杯复赛)兔六决年届赛十+华杯20112)用“学”和“习”代表两个不同的数字,四位数“ 学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“ 学习”所能代表的两位数共有个.(第18 届华杯复赛)3)如图的加法竖式中,不同的汉字可以代表相同的数字,满足要求的不同算式共有种。

六年级整除奥数题及答案

六年级整除奥数题及答案

六年级整除奥数题及答案
六年级整除奥数题及答案1
如果多位数能被7整除,那么○内的数字是().
考点:数的整除特征.
分析:通过计算可知,222222即6个2刚好被7整除,999999即6个9也刚好被7整除,20xx÷6=334…5.所以多位数
可简化为22222○99999,其它的刚好被7整除,即22222○99999能被7整除,则这个多位数就能被7整除,由此进行验证即可.
解答:解:由于222222即6个2刚好被7整除,999999即6个9也刚好被7整除,
20xx÷6=334…5.
所以这个多位数可简化为22222○99999,
经验证,22222499999=3174642857,
即○内的.数字是4.
故答案为:4.
点评:根据6个2刚好被7整除,6个9也刚好被7整除的特点将这多位数化简是完成本题的关键.
六年级整除奥数题及答案2
题目:
用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?
整除问题答案:
∵被除数=除数×商+余数,
即被除数=除数×40+16。

由题意可知:被除数+除数=933-40-16=877,
∴(除数×40+16)+除数=877,
∴除数×41=877-16,
除数=861÷41,
除数=21,
∴被除数=21×40+16=856。

答:被除数是856,除数是21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。

(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。

(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

重点·难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。

学法指导上面数的整除特征可以结合例子来理解。

例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。

因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。

记忆要理论联系实际。

经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。

一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。

解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p 和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。

如果一个数被11除余8,那么在奇位的任意两介数字互换,或者在偶位的任意两个数字互换,得到的新数被11除也余8,因此除1988外,还有1889、8918与8819共四个被11除余8的四位数。

[例2]如果下面这个41位数□能被7整除,那中间方格内的数字是几?思路剖析对于数555555,由于555–555=0是7的倍数,根据能被7整除的数的特征,555555也能被7整除;同理999999也能被7整除,所以和也能被7整除,所以我们可以把这个41位数分成几个数的和,其中部分能被7整除。

解答□=+55□99,上式等号右边的三个加数中,第一个和第三个加数都能被7整除,由此可推出55□99能被7整除,所以55□99能被7整除。

根据能被7整除的数的特征,□99-55=□44也能被7整除,可推理得□内应为6。

[例3]有一堆苹果,要装在46个箱子里,其中有45个大箱子和一个小箱子,而小箱子装的苹果只相当于大箱装的数量的一半,现有个苹果,如果规定按箱子大小平均分装苹果数是否能办到?思路剖析由于大小箱子装的苹果的数量不一致,不便于解题,所以我们可以统一成小箱子,则应有2×45+1=91个小箱子,那么是否恰好装完,并符合要求,关键是看总苹果数能否被91整除,由于91=7×13,所以由整除的性质,只需要考虑7、13是否能整除总苹果数。

由于13整除4979,而7整除497949794979,那么必定有91整除497949794979,因为99÷3=33,所以容易推出91整除,所以能把苹果按规定装入箱子中。

解答2×45+1=91(个),7×13=91,因为13整除4979,7整除497949794979,所以91整除497949794979,则91整除。

答:可以做到按箱子大小平均分装苹果。

[例4]求能被26整除的六位数。

思路剖析因为26=2×13,所以由整除的性质得能分别被2和13整除。

所以解此题可以从2整除入手。

解答因为2整除,所以y可能取0、2、4、6、8。

又因为13整除,所以13能整除与的差。

当y=0时,由于13整除910,而13又要整除与910之差,所以13整除。

又因为=100x+19=(7×13+9)x+19=7×13x+9x+13+6,所以根据数的整除性质得13整除9x+6,经试验可知,只有当x=8时,13整除9x+6,所以当y=0时,符合题意的六位数是819910。

当y=2时,因为13整除,所以13整除与912之差,而912=910+2,所以13整除与2之差;与前面的相仿,=7×13x+13+9x+6,所以13整除9x+6-2,即13整除9x+4。

经试验可得,只有当x=1时,13整除9x+4。

所以当y=2时,符合题意的六位数是119912。

同理,当y=4时,13整除9x+6-4,即13整除9x+2,经试验可知,当x=7时,13整除9x+2,所以当y=4时,符合题意的六位数是719914。

同理,当y=6时,13整除9x+6-6,即13整除9x。

经试验可知,x无解(因为x是的最高位数码,所以x≠0)。

所以当y=6时,找不到符合题意的六位数。

同理,当y=8时,13整除9x+6—8,即13整除9x—2。

经试验得,只有当x=6时,13整除9x—2。

所以当y=8时,符合题意的六位数是619918。

答:满足本题意条件的六位数共有819910、119912、719914和619918四个。

[例5]从0、1、2、3、4、5、6、7、8、9这十个数中选出5个不同的数,组成一个五位数,使它能被3、5、7、13同时整除,这个数最大是多少?思路剖析这道题如果从10个数字中选出5个不同的数,组成一个五位数,再逐个判断每个五位数能否同时被3、5、7、13整除,那是非常麻烦的。

可以先从整体上考虑,因为3、5、7、13这四个数两两互质,且3×5×7×13=1365,那么我们要找的数就是在五位数中能被1365整除的最大的那个数。

那我们只需用一个自然数去与1365相乘,使积尽可能大且是一个五位数即可(注意,五位数中不能出现相同数字)。

解答设1365×a(a是自然数)的积是要求的五位数,可知:1365×a<100000,则a≤73。

当a=73时,这个五位数是1365×73=99645,数字重复了,舍去;当a=72时,这个五位数是1365×72=98280,数字重复;当a=71时,这个五位数是1365×71=96915,数字重复;当a=70时,这个五位数是95550,数字重复;当a=69时,这个五位数是94185,符合题目条件。

所以,这个数是94185。

点津这道题从整体入手,先用3、5、7、13相乘得1365,在五位数中通过找1365的最大倍数得到解答。

最后用枚举的方法时,虽然要计算1365与73、72、71、70、69的积,但比起漫无边际地去找这样的五位数要简便得多。

[例6]求能被26整除的六位数。

思路剖析由于26=2×13,所以原数能被26整除,转化为原数既能被2整除,又能被13整除。

解答因为要求的数能被2整除,所以个位数字只能是0、2、4、6、8。

(1)当B=0时,数能被13整除。

根据能被13整除的数的特征,必有(930-=□11)是13的倍数。

试算知13×47=611。

所以差数是611,逆推出A=3。

(2)当B=2时,数能被13整除,必有(932—A19=□13)是13的倍数。

试算知13×1=13,所以差数为13,逆推出A=9。

(3)当B=4时,数能被13整除,必有(934—A19=□15)是13的倍数。

试算知13×55=715,所以差为715,逆推出A=2。

(4)当B=6时,数能被13整除,必有(936—A19=□17)是13的倍数。

试算知117是13的倍数,逆推出A=8。

(5)当B=8时,数能被13整除,必有(938—A19=□19)是13的倍数,试算知819是13的倍数,从而推出A=1。

所以,所求的六位数共有五个,即:319930,919932,219934,819936,119938。

[例7]用数字6、7、8各两个组成一个六位数,使它被168整除。

这个六位数是多少?思路剖析168=3×56,3与56互质。

因为6+6+7+7+8+8=42,42是3的倍数,所以用6、7、8各两个组成的所有六位数都能被3整除。

问题转化为使组成的六位数能被56整除。

因为56=7×8,7与8互质,所以只要组成的数能被7整除,又能被8整除即可。

要能被8整除,只要看末三位数,如果能仅用6、7、8各一个数组成能被8整除的三位数,那么把它连写两遍得到的六位数就合乎要求。

而用6、7、8各一个数不难组成被8整除的三位数。

解答768能被8整除,768768也就能被8整除,它又能被7整除,而7与8互质,所以它能被7与8的积56整除。

7+6+8+7+6+8=42,3整除42,所以768768能被3整除,由于3与56也互质,因此,768768就能被3与56的积168整除。

点津本题初看无处下手,但是我们应用整除性质“一个数能被互质的两个自然数整除,就一定能被这两个互质数的积整除”,把问题逐步转化,实现了化难为易的目的。

[例8]甲、乙两人进行了下面的游戏。

两人先约定一个整数N,然后由甲开始,轮流用0、1、2、3、4、5、6、7、8、9这十个数字之一组成一个六位数的一位,数字可重复。

如果这个六位数能被N 整除,就算乙胜;如果这个六位数不能被N整除,就算甲胜。

设N小于15,那么当N取哪几个数时,乙才能取胜?思路剖析我们列出乙不能获胜的N的取值情况。

N取偶数,甲可以在最右边方格里填一个奇数(六位数的个位),就能使六位数不能被N整除,乙不能获胜。

N=5,甲可以在六位数的个位填一个不是0或5的数,甲就获胜。

解答如果N=1,很明显乙必获胜。

如果N=3或9,那么乙在填最后一全数时,总是把六位数字之和凑成3的整倍数或9的整倍数。

因此乙必获胜。

当N=7、11、13时是本题最困难的情况。

注意到1001=7×11×13,乙就有一种必胜的办法。

我们从左到右数这六位数,把第一位与第四位,第二位与第五位,第三位与第六位配对,甲在一对数位的一位上填上某一个数字后,乙就在这一对数位的另一位上填同样的数字,这就保证所填成的六位数能被1001整除,因为若按我们的方法得到的六位数是,由于。

这个六位数就能被7、11或13整除,所以乙就能获胜。

综合起来,使乙获胜的N是1、3、7、9、11、13。

[例9]四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)拿到这个数的最左边一位数字的左边得到一个新的六位数,然后与原六位数相加,它们的得数分别是172536、568741、620708、845267,结果其中哪一个可能是正确的,为什么?思路剖析初看时,觉得困难,因为是任意写的六位数,不好找正确的一个结果。

相关文档
最新文档