2020内蒙古高考文科数学试题及答案解析【word精校版】
2020年内蒙古自治区赤峰市长胜中学高三数学文测试题含解析
![2020年内蒙古自治区赤峰市长胜中学高三数学文测试题含解析](https://img.taocdn.com/s3/m/2bf960d70066f5335b81211c.png)
2020年内蒙古自治区赤峰市长胜中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知i是虚数单位,复数(其中)是纯虚数,则m= (A)-2 (B)2 (C)(D)参考答案:B略2. 如图是一个算法的程序框图,当输入的值为时,则其输出的结果是( )A.5 B.4 C.3 D.2参考答案:D第一次不满足条件,。
第二次,不满足条件,。
第三次满足条件,此时,输出,选D.3. 已知定义在R的函数对任意的x满足,当,.函数,若函数在[-6,+∞)上有6个零点,则实数a的取值范围是()A.B.C.D.参考答案:C因为,故是周期函数且周期为,如图的图像与的图像在有两个不同的交点,故的图像与在有4个不同的交点,故,解的或,选C.4. 已知由不等式组,确定的平面区域的面积为7,定点M的坐标为,若,O为坐标原点,则的最小值是A. B. C. D.参考答案:B 依题意:画出不等式组所表示的平面区域(如右图所示)可知其围成的区域是等腰直角三角形面积为,由直线恒过点,且原点的坐标恒满足,当时,,此时平面区域的面积为,由于,由此可得.由可得,依题意应有,因此(,舍去)故有,设,故由,可化为,所以当直线过点时,截距最大,即取得最小值,故选B.5. 在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33B.72C.84D.189参考答案:C6. 已知函数,方程有四个实数根,则的取值范(▲ )A. B. C. D.参考答案:D7. 经过抛物线的焦点和双曲线的右焦点的直线方程为A. B. C. D.参考答案:B8. 函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10 B.5 C.﹣1 D.参考答案:D【考点】导数的几何意义.【专题】计算题.【分析】由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,由此求得切线的斜率值,再根据x=1求得切点的坐标,最后结合直线的方程求出切线在x轴上的截距即得.【解答】解:∵f(x)=x3+4x+5,∴f′(x)=3x2+4,∴f′(1)=7,即切线的斜率为7,又f(1)=10,故切点坐标(1,10),∴切线的方程为:y﹣10=7(x﹣1),当y=0时,x=﹣,切线在x轴上的截距为﹣,故选D.【点评】本小题主要考查导数的几何意义、直线方程的概念、直线在坐标轴上的截距等基础知识,属于基础题.9. 某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.参考答案:B【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;空间位置关系与距离.【分析】几何体为同底的三棱柱和三棱锥的组合体,代入体积公式计算即可求出体积.【解答】解:由三视图可知几何体为直三棱柱和三棱锥的组合体,直棱柱的底面为直角三角形,直角边为1,2,棱柱的高为1,三棱锥的底面与棱柱的底面相同,棱锥的高为1.∴几何体的体积V=+=1+=.故选B.【点评】本题考查了常见几何体的三视图和结构特征,体积计算,属于基础题.10. 若不等式的解集为(-1,3),则实数a等于()A. 8B. 2C. -4D. -2参考答案:D【分析】根据绝对值不等式的解法化简,结合其解集的情况求得的值.【详解】由得.当时,无解.当时,,解得,故选D.【点睛】本小题主要考查绝对值不等式的解法,考查分类讨论的数学思想方法,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 已知为的外心,,,为钝角,是边的中点,则的值等于.参考答案:5略12. 已知长方体的三条棱长分别为,,,并且该长方体的八个顶点都在一个球的球面上,则此球的表面积为____________.参考答案:13. 设,在二项式的展开式中,含的项的系数与含的项的系数相等,则的值为.参考答案:1略14. 已知,则.参考答案:试题分析:考点:向量数量积【方法点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cos θ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.15. 已知函数f(x)=,当时, f(x)≥+3恒成立,则=参考答案:-216. 已知函数f(x)=sin2x+cos2x,则f(x)的最小正周期是;如果f (x)的导函数是f′(x),则f′()= .参考答案:π;﹣1.【考点】二倍角的余弦.【专题】三角函数的图像与性质.【分析】由条件利用三角函数的恒等变换求得f(x)的解析式,再利用正弦函数的周期性求得f(x)的最小正周期.求出f′(x),可得f′()的值.【解答】解:函数f(x)=sin2x+cos2x=sin2x+?=sin (2x+)+,故函数f(x)的周期为=π,f(x)的导函数是f′(x)=2cos(2x+),故f′()=2cos=﹣1,故答案为:π;﹣1.【点评】本题主要考查三角函数的恒等变换、正弦函数的周期性、求三角函数的导数,属于基础题.17. 椭圆为定值,且的的左焦点为,直线与椭圆相交于点、两点,的周长的最大值是12,则该椭圆的离心率是______。
2020年内蒙古呼伦贝尔市普通高中第一次统考文科数学(附答案)
![2020年内蒙古呼伦贝尔市普通高中第一次统考文科数学(附答案)](https://img.taocdn.com/s3/m/c66fce6c998fcc22bcd10dd6.png)
2020年呼伦贝尔市普通高中第一次统考文科数学(附答案)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}0,1,2A =,{}(2)0B x x x =-<,则A B =I ( )A .B .C .D .{}1 2.复数( ) A. i B. C. D.3. 下列函数中,值域为R 的偶函数是( )A. 12+=x yB. x x e e y --=C.x y lg =D.2x y =4.已知等差数列{}n a 中,247,15a a ==,则数列{}n a 的前10项和10S =( ) A .100 B.210 C.380 D.4005.已知角θ 的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点P (1,2),则cos2θ=( ) A .-35 B . -45 C. 35 D.456.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到如下折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( )A .1B .2C .3D .47. 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则直线AB 的斜率为( ){}0,1,2{}1,2{}0,1=-+ii221i +1i -i -1A.2±B.2-C.22± D .228.设实数x 、y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .2B .24C .16D .149.在△ABC 中,,,2,AC AB BP PD AP DC BD μλ+=== 则, 则=+μλ ( )A . 31-B .31C .21- D .2110.函数1)(3+=x e x x f 的图象大致是( )11.已知双曲线C :),0,0(12222>>=-b a b ya x以点),0(b P 为圆心,a 为半径作圆,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若∠MPN=90°,则双曲线C 的离心率为( )A.27 B. 25C. 2D. 312.直三棱柱ABC -A 1B 1C 1中,CA =CC 1=2CB ,AC⊥BC ,则直线BC 1与AB 1所成的角的余弦值为( )A.55 B.35 C. 552 D.53 一、填空题:本题共4小题,每小题5分,共20分. 13.已知一个空间几何体的三视图及部分数据如图所示, 则该几何体的体积是14.过圆04222=-++y x y x 的圆心且与直线032=+y x 垂直的直线方程为15.已知)10()4(log )(2≠>+=a a x x f a 且有最小值,且最小值不小于1,则a 的取值范围为________.16.设钝角C ∆AB 的内角A,B,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,则b = 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2020年高考文科数学试卷 全国Ⅰ卷(含答案)
![2020年高考文科数学试卷 全国Ⅰ卷(含答案)](https://img.taocdn.com/s3/m/6563141ea4e9856a561252d380eb6294dd8822c4.png)
2020年高考文科数学试卷全国Ⅰ卷(含答案)2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x^2-3x-4<0\}$,$B=\{-4,1,3,5\}$,则$A$ 为A。
$ \{-4,1\}$B。
$\{1,5\}$C。
$\{3,5\}$D。
$\{1,3\}$2.若 $z=1+2i+i^3$,则 $|z|$ 等于A。
$1$B。
$2$___$D。
$3$3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。
$\dfrac{5-\sqrt{5}}{4}$B。
$\dfrac{1}{2}$C。
$\dfrac{5+\sqrt{5}}{4}$D。
$\dfrac{5+\sqrt{10}}{2}$4.设 $O$ 为正方形 $ABCD$ 的中心,在 $O$,$A$,$B$,$C$,$D$ 中任取 $3$ 点,则取到的 $3$ 点共线的概率为A。
$\dfrac{1}{5}$B。
$\dfrac{2}{5}$C。
$\dfrac{4}{5}$D。
$1$5.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据$(x_i,y_i)(i=1,2,\dots,20)$ 得到下面的散点图:在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。
2020年全国卷Ⅰ高考文科数学试题及答案(完整版)
![2020年全国卷Ⅰ高考文科数学试题及答案(完整版)](https://img.taocdn.com/s3/m/1663c426854769eae009581b6bd97f192279bf8a.png)
( 一)必考题:共60分. 17.( 12分)某厂接受了一项加工业务,加工出来 产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品 等级,整理如下: 甲分厂产品等级 频数分布表等级 A B C D 频数40202020乙分厂产品等级 频数分布表等级 A B C D 频数28173421( 1)分别估计甲、乙两分厂加工出来 一件产品为A 级品 概率;( 2)分别求甲、乙两分厂加工出来 100件产品 平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 18.( 12分)内角A ,B ,C 对边分别为a ,b ,c .已知B =150°.ABC △( 1)若a =c ,b =2,求 面积; 37ABC △( 2)若sin A +sin C =,求C . 32219.( 12分)如图,为圆锥 顶点,是圆锥底面 圆心,是底面 内接正三角形,为上一点, D O ABC △P DO ∠APC =90°.加油!你一定行!真题在手 何必模拟认真刷题 必过 加油由数据知乙分厂加工出来 100件产品利润 频数分布表为利润 70 30 0 −70 频数 28 17 3421因此乙分厂加工出来 100件产品 平均利润为.70283017034702110100⨯+⨯+⨯-⨯=比较甲乙两分厂加工 产品 平均利润,应选甲分厂承接加工业务. 18.解:( 1)由题设及余弦定理得,22228323cos150c c c =+-⨯⨯︒解得( 舍去),,从而.2c =-2c =23a = 面积为.ABC △1232sin15032⨯⨯⨯︒=( 2)在中,,所以ABC △18030A B C C =︒--=︒-,sin 3sin sin(30)3sin sin(30)A C C C C +=︒-+=︒+故. 2sin(30)2C ︒+=而,所以,故. 030C ︒<<︒3045C ︒+=︒15C =︒19.解:( 1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . ( 2)设圆锥 底面半径为r ,母线长为l . 由题设可得rl =,. 3222l r -=解得r =1,l =,3从而.由( 1)可得,故. 3AB =222PA PB AB +=62PA PB PC ===所以三棱锥P -ABC 体积为.3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=加油!你一定行!真题在手 何必模拟认真刷题 必过 加油所以 方程为.E 2219x y +=( 2)设.1122(,),(,),(6,)C x y D x y P t 若,设直线 方程为,由题意可知. 0t ≠CD x my n =+33n -<<由于直线 方程为,所以.PA (3)9ty x =+11(3)9t y x =+直线 方程为,所以.PB (3)3ty x =-22(3)3t y x =-可得.12213(3)(3)y x y x -=+由于,故,可得, 222219x y +=2222(3)(3)9x x y +-=-121227(3)(3)y y x x =-++即.①221212(27)(3)()(3)0m y y m n y y n ++++++=将代入得.x my n =+2219x y +=222(9)290m y mny n +++-=所以. 212122229,99mn n y y y y m m -+=-=-++代入①式得. 2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=解得( 舍去),. 3n =-32n =故直线 方程为,即直线过定点. CD 32x my =+CD 3(,0)2若,则直线 方程为,过点.0t =CD 0y =3(,0)2综上,直线过定点.CD 3(,0)222.解:当k =1时,消去参数t 得,故曲线是圆心为坐标原点,半径为1 圆.1cos ,:sin ,x t C y t =⎧⎨=⎩221x y +=1C ( 2)当k =4时,消去参数t 得 直角坐标方程为. 414cos ,:sin ,x t C y t ⎧=⎪⎨=⎪⎩1C 1x y += 直角坐标方程为.2C 41630x y -+=由解得.1,41630x y x y ⎧+=⎪⎨-+=⎪⎩1414x y ⎧=⎪⎪⎨⎪=⎪⎩故与 公共点 直角坐标为.1C 2C 11(,)44加油!你一定行!真题在手 何必模拟认真刷题 必过 加油711全卷完1.考试顺利祝福语经典句子 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。
2020年高考文科数学全国卷1试题解析(word版)
![2020年高考文科数学全国卷1试题解析(word版)](https://img.taocdn.com/s3/m/bca9369a43323968001c920e.png)
2020年普通高等学校招生全国统一考试(新课标卷I)文科数学试题解析一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-3x-4≤0},B={-4,1,3,5},且A∩B=( )A.{-4,1} B.{1,5} C.{3,5} D.{1,3}解析:A={x|-1≤x≤4},∴A∩B={1,3},故选D2.若z=1+2i+i3,则|z|=( )A.0 B.1 C2D.2解析:z=1+i,∴|z2 C3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.514B.512C.514D.512解析:设四棱锥的高为h,底面边长为2a,侧面三角形的高为m,依题h2=am,且h2+a2=m2,联立消去h得m2-am -a2=0,152 hm±∴=,舍去负号,故选C. 4.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )A.15B.25C.12D.45解析:任取三点有:O-A-B,C,D,O-B-C,D,O-C-D,A-B-C,D,A-C-D,B-C-D,共有10种。
其中3点共线的有2种,故选A.5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i. y i)(i=1,2,···,20)得到散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y=a+bxB .y=a+bx 2C .y=a+be xD .y=a+b ln x解析:根据散点图可排除A .B .C .故选D.6.已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .4解析:依题圆心为C (3,0),半径r =3,过点A (1,2)的最短弦是垂直AC 的弦. 又AC 2,由勾股关系可得最短弦长=2,故选B. 7.设函数f (x )=cos(ωx +6π)在[-π,π]的图像大致如下图, 则f (x )的最小正周期为( ) A .109πB .76π C .43π D .32π 解析:依图49π-是(-π,0)的一个零点。
2020年呼伦贝尔市普通高中第一次统考文科数学(附答案)
![2020年呼伦贝尔市普通高中第一次统考文科数学(附答案)](https://img.taocdn.com/s3/m/62e3a64189eb172dec63b755.png)
2020年呼伦贝尔市普通高中第一次统考文科数学(附答案)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}0,1,2A =,{}(2)0B x x x =-<,则A B =I ( )A .{}0,1,2B .{}1,2C . {}0,1D .{}1 2.复数=-+ii221( ) A. i B.i +1 C.i - D. i -13. 下列函数中,值域为R 的偶函数是( )A. 12+=x yB. x x e e y --=C.x y lg =D.2x y =4.已知等差数列{}n a 中,247,15a a ==,则数列{}n a 的前10项和10S =( ) A .100 B.210 C.380 D.4005.已知角θ 的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点P (1,2),则cos2θ=( )A .-35B . -45 C. 35 D.456.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到如下折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间[110,120]内; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( )A .1B .2C .3D .47. 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则直线AB 的斜率为( ) A.2± B.2- C.22± D .228.设实数x 、y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .2B .24C .16D .149.在△ABC 中,,,2,AC AB BP PD AP DC BD μλ+=== 则, 则=+μλ ( )A . 31-B .31C .21- D .2110.函数1)(3+=x e x x f 的图象大致是( )11.已知双曲线C :),0,0(12222>>=-b a b ya x以点),0(b P 为圆心,a 为半径作圆,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若∠MPN =90°,则双曲线C 的离心率为( )A.27 B. 25 C. 2 D. 312.直三棱柱ABC -A 1B 1C 1中,CA =CC 1=2CB ,AC ⊥BC,则直线BC 1与AB 1所成的角的余弦值为( )A.55 B.35 C. 552 D.53 一、填空题:本题共4小题,每小题5分,共20分. 13.已知一个空间几何体的三视图及部分数据如图所示, 则该几何体的体积是14.过圆04222=-++y x y x 的圆心且与直线032=+y x 垂直的直线方程为15.已知)10()4(log )(2≠>+=a a x x f a 且有最小值,且最小值不小于1,则a 的取值范围为________.16.设钝角C ∆AB 的内角A,B,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,则b =三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)文科数学+答题卡+答案+全解全析(2020.6.15)
![2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)文科数学+答题卡+答案+全解全析(2020.6.15)](https://img.taocdn.com/s3/m/989d267fed630b1c59eeb5cd.png)
线
封
﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍
学校__________________班级__________________姓名__________________准考证号__________________
全国名校 2020 年高三 6 月大联考(新课标Ⅰ卷) 文科数学·答题卡
x2 a2
−
y2 b2
= 1(a
> 0,b > 0) 的左、右焦点,若直线 x
=c
与双曲线
C
的
两条渐近线分别交于点 M,N,且 ∠MF1N = 60° ,则双曲线 C
的离心率为__________.
16.石雕工艺承载着几千年的中国石雕文化,随着科技的发展,
机器雕刻产品越来越多.某石雕厂计划利用一个圆柱形的石 材(如图 1)雕刻制作一件工艺品(如图 2),该作品的上方
3.请按题号顺序在各题目的答题区域内作答,超出 区域书写的答案无效;在草稿纸、试题卷上答题
无效。 4.保持卡面清洁,不要折叠、不要弄破。 5.正确填涂
贴条形码区
缺考 此栏考生禁填
标记
18.(12 分)
一、选择题(每小题 5 分,共 60 分)
1 [A] [B] [C] [D] 2 [A] [B] [C] [D] 3 [A] [B] [C] [D] 4 [A] [B] [C] [D]
π 12
个单位长度后所得函数的图象关于原点对称
D.函数
f
(x)
在区间
(π 3
,
5π ) 6
上单调递减
10.设各项均为正数的数列{an } 的前 n 项和为 Sn ,若数列{an } 满足 a1 = 2 , anan+1 = 4Sn − 2(n ∈ N* ) , 则
2020年高考文科数学(1卷):答案详细解析(最新版)
![2020年高考文科数学(1卷):答案详细解析(最新版)](https://img.taocdn.com/s3/m/28b88d47f18583d0496459e0.png)
2020年普通高等学校招生全国统一考试文科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. (集合)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B. {}1,5C. {}3,5D. {}1,3【解析】∵{}14A x x =-<<,∴{1,3}A B =. 【答案】D2.(复数)若312z i i =++,则z = A.0 B.1C.D. 2【解析】∵3i i =-,∴1z i =+,∴z 【答案】C3. (立体几何)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.B.C.D.【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令mt a=,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4. (概率统计)设O 为正方形ABCD 的中心,在O, A ,B, C, D 中任取3点,则取到的3点共线的概率为 A.15B.25C.12D.45【解析】如图A4所示,从O, A ,B, C, D 中任取3点的所有情况数为35C =10,取到的3点共线的情况有:AOC 、BOD ,共2种情况,所以所求的概率为51102==P .图A4【答案】A5. (概率统计)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A. y a bx =+B. 2y a bx =+C. x y a be =+D. ln y a b x =+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6. (解析几何)已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A. 1B. 2C. 3D. 4【解析】222(3)3x y -+=,设直线方程为2(1)y k x -=-,∴20kx y k -+-=,∴圆心(3, 0)到该直线的距离为d ==∴2max 8d =,故弦的长度的最小值为2==.【答案】B7. (三角函数)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x的最小正周期为 A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT . 【答案】C8. (函数)设3log 42a =,则4a - A.116B.19C.18D.16【解析】∵33log 4log 42a a ==,∴2439a ==,∴11449a a -==. 【答案】B9.(算法框图)执行右面的程序框图,则输出的n = A. 17B. 19C. 21D. 23【解析】① 输入10n S ==,,得1S S n =+=,100S ≤成立,继续; ② 输入31n S ==,,得4S S n =+=,100S ≤成立,继续; ③ 输入54n S ==,,得9S S n =+=,100S ≤成立,继续; ……由上述规律可以看出,S 是一个以a 1=1为首项,d =2为公差的等差数列的前m 项和,且21n m =-,故有21(1)2m m m S ma d m -=+=. 当2100m S m =>,即11n >时,程序退出循环,此时2121n m =-=.【答案】C10. (数列)设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a += A. 12B. 24C. 30D. 32【解析】设{}n a 的公比为q ,∵234123(+)2a a a q a a a ++=+=,∴2q =,∴55678123+(+)232a a a q a a a +=+==.【答案】D11. (解析几何)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP | =2,则∆12PF F 的面积为A.72B. 3C.52D. 2【解析】由题可知1,2a b c ===,12(2,0),(2,0)F F -,解法一:设(,)P m n ,∵||2OP =,故有224m n +=,又∵点P 在C 上,故有2213n m -=,联立方程2222413m n n m ⎧+=⎪⎨-=⎪⎩,解得3||2n =,故∆12PF F 的面积为12113||||43222n F F ⋅=⨯⨯=.解法二:∵||2OP =,故点P 在以F 1、F 2为直径的圆上,故PF 1⊥PF 2,则22212||||(2)16PF PF c +==,又∵12||||22PF PF a -==,即222121212||||||||2||||4PF PF PF PF PF PF -=+-=,∴12||||6PF PF =, ∴∆12PF F 的面积为1211||||6322PF PF =⨯=.图A11【答案】B12. (立体几何)已知A ,B ,C 为球O 的球面上的三个点,1O 为∴ABC 的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64πB .48πC .36πD .32π【解析】由题意可知,1O 为的半径r =2,由正弦定理可知,2sin =ABr C,则12sin 2sin6023====OO AB r C r ∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A12【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)
![2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)](https://img.taocdn.com/s3/m/b23e0968dd36a32d737581ce.png)
2020年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)32-(B)-12 (C)12(D) 32 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a =====g(5)43(1)(1)x x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(1)1464133x x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PFPF +-()()2222121212121212222221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:120220121260113cot 1cot 3sin 6022222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A )23 (B )33 (C )23(D )63【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,111136cos 1/2O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得32y ≤--322y ≥-+故min ()322PA PB •=-+u u u v u u u v.此时21x =-【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v PABO2222221sin12sincos22212sin2sin sin22θθθθθθ⎛⎫⎛⎫--⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭换元:2sin,012x xθ=<≤,()()112123223x xPA PB xx x--•==+-≥-u u u v u u u v(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C) 23 (D)83312.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323V h h=⨯⨯⨯⨯=四面体,当直径通过AB与CD的中点时,22max22123h=-=,故max433V=.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
精品解析:2020年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版)
![精品解析:2020年全国统一高考数学试卷(文科)(新课标Ⅲ)(原卷版)](https://img.taocdn.com/s3/m/be82e0fca300a6c30d229fce.png)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2B. 3C. 4D. 52.若()11+=-z i i ,则z =( ) A. 1–iB. 1+iC. –iD. i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A. 0.01B. 0.1C. 1D. 104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3)A .60B. 63C. 66D. 695.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( ) A.12B.3C.23D.26.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆B. 椭圆C. 抛物线D. 直线7.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)8.点(0,﹣1)到直线()1y k x =+距离的最大值为( ) A. 1D. 29.下图为某几何体的三视图,则该几何体的表面积是( )2 23310.设3log 2a =,5log 3b =,23c =,则( ) A. a c b << B. a b c <<C. b c a <<D. c a b <<11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( ) 555512.已知函数f (x )=sin x +1sin x,则( ) A. f (x )的最小值为2B. f (x )的图像关于y 轴对称C. f (x )的图像关于直线x π=对称D. f (x )的图像关于直线2x π=对称二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.15.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }前n 项和.若13m m m S S S +++=,求m .18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,19.如图,长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内. 20.已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性; (2)若()f x 有三个零点,求k的取值范围.21.已知椭圆222:1(05)25x y C m m +=<<15,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.[选修4-5:不等式选讲]23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }34.。
2020年内蒙古呼和浩特市高考数学二调试卷(文科) (含解析)
![2020年内蒙古呼和浩特市高考数学二调试卷(文科) (含解析)](https://img.taocdn.com/s3/m/f0b27d1926fff705cd170a5d.png)
2020年内蒙古呼和浩特市高考数学二调试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知i为虚数单位,若复数z满足z+z⋅i=2,则z的虚部为()A. iB. 1C. −iD. −12.设U={−1,0,1,2},集合A={x|x2<1,x∈U},则C U A=()A. {0,1,2}B. {−1,1,2}C. {−1,0,2}D. {−1,0,1}3.cos(−103π)=()A. −√32B. −12C. 12D. √324.椭圆x225+y2169=1的焦点坐标为()A. (5,0),(−5,0)B. (0,5),(0,−5)C. (0,12),(0,−12)D. (12,0),(−12,0)5.在△ABC中,BN=14BC,设AB⃗⃗⃗⃗⃗ =a⃗,AC⃗⃗⃗⃗⃗ =b⃗ ,则AN⃗⃗⃗⃗⃗⃗ =()A. 14a⃗−34b⃗ B. 34a⃗−14b⃗ C. 14a⃗+34b⃗ D. 34a⃗+14b⃗6.某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.图是该校2013年至2018年纸质书人均阅读量的折线图,则下列结论中错误的是()A. 从2013年至2016年,该校纸质书人均阅读量逐年增加B. 从2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C. 从2013年至2018年,该校纸质书人均阅读量的极差是45.3本D. 从2013年至2018年,该校纸质书人均阅读量后三年的总和是前三年总和的2倍7.在同一直角坐标系中,函数f(x)=x a(x≥0),f(x)=log a x的图像可能是()A. B.C. D.8.设m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,则“m⊥n”是“α⊥β”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.设f(x)是定义在(−∞,0)∪(0,+∞)上的函数,f′(x)为其导函数,已知f(1−2x)=f(2x−1),f(−2)=0,当x>0时,−xf′(x)<f(x),则使得f(x)>0成立的x的取值范围是()A. (−2,0)∪(0,2)B. (−∞,−2)∪(2,+∞)C. (−∞,−2)∪(0,2)D. (0,2)∪(2,+∞)10.函数f(x)=sinx+cosx的最小正周期是()A. 4πB. 2πC. πD. π211.已知数列√2,√5,2√2,…,则2√5是该数列的()A. 第5项B. 第6项C. 第7项D. 第8项12.已知F1、F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F1且与双曲线实轴垂直的直线与双曲线的两条渐近线相交于A、B两点,当△F2AB为等腰直角三角形时,此双曲线的离心率为()A. √2B. √3C. 2D. √5二、填空题(本大题共4小题,共20.0分)13.设x,y满足约束条件{x−2≥0y+2≥0x+2y−6≤0,则z=x+y的最小值是________.14.从5名同学中任选3人担任上海进博会志愿者,则“甲被选中,乙没有被选中”的概率是______.15.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=________m.16.若正方体的棱长为√2,则以该正方体各个面的中心为顶点的凸多面体的体积为___.三、解答题(本大题共7小题,共82.0分)17.已知{a n}是等差数列,其前n项和为S n,已知a5=5,S5=15.(1)求数列{a n}的通项公式;(2)设a n=log2b n,求数列{b n}的前n项和T n.18.如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,AC⊥BC,AC=BC=CC1=2,点D为AB的中点.(1)证明:AC1//平面B1CD;(2)求三棱锥A1−CDB1的体积.19.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.(1)请你列出抽到的10个样本的评分数据;(2)计算所抽到的10个样本的均值x和方差s2;(3)在(2)条件下,若用户的满意度评分在(x−s,x+s)之间,则满意度等级为“A级”.试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“A级”的用户所占的百分比是多少?(参考数据:√30≈5.48,√33≈5.74,√35≈5.92)20.已知平面内一动点M到点F(1,0)距离比到直线x=−3的距离小2.设动点M的轨迹为C.(1)求曲线C的方程;(2)若过点F的直线l与曲线C交于A、B两点,过点B作直线:x=−1的垂线,垂足为D,设A(x1,y1),B(x2,y2).求证:①x1⋅x2=1,y1⋅y2=−4;②A、O、D三点共线(O为坐标原点).21.已知函数f(x)=e x(e x−a)−a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.22. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =4t,y =4t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的极坐标方程与C 2的直角坐标方程;(2)已知射线θ=α(0<α<π2)与C 1交于O ,P 两点,与C 2交于O ,Q 两点,且Q 为OP 的中点,求α.23. (1)已知a >0,b >0,比较a+b 2,2ab a+b两数的大小.(2)设a ,b ,c ∈R ,证明:a 2+b 2+c 2≥ab +ac +bc .-------- 答案与解析 --------1.答案:D解析:解:复数z满足z+z⋅i=2,可得z=21+i=1−i.则z的虚部为−1.故选:D.利用复数的除法的运算法则化简求解即可.本题考查复数的除法的运算法则,复数的基本概念,是基础题.2.答案:B解析:本题考查了集合的化简与运算问题,是基础题目.化简集合A,求出A的补集即可.解:设U={−1,0,1,2},集合A={x|x2<1,x∈U}={0},∴C U A={−1,1,2},故选B.3.答案:B解析:解:cos(−103π)=cos(−103π+4π)=cos2π3=−cosπ3=−12,故选:B.由条件利用诱导公式化简所给式子的值,可得结果.本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.4.答案:C解析:本题考查椭圆的标准方程,注意先分析椭圆的焦点位置.根据题意,由椭圆的方程分析可得焦点位置以及a 、b 的值,计算可得c 的值,即可得答案. 解:根据题意,椭圆的方程为x 225+y 2169=1,其焦点在y 轴上, 且其中a =√169=13,b =√25=5,则c =√169−25=12, 则焦点坐标为(0,12)或(0,−12). 故选C .5.答案:D解析:本题主要考查了向量的加法,减法,数乘运算,属于基础题.由向量的三角形法则以及数乘运算,向量的减法得出AN ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BN ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),即可求解.解:AN ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BN ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ =34a ⃗ +14b⃗ 故选D .6.答案:D解析:本题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键. 利用折线统计图结合相应数据,分别分析得出符合题意的答案.解:A 、从2013年到2016年,该校纸质书人均阅读量逐年增,故A 正确; B 、2013年至2018年,该校纸质书人均阅读量的中位数是43.3+50.12=46.7本,故B 正确;C 、2013年至2018年,该校纸质书人均阅读量的极差是60.8−15.5=45.3本,故C 正确;D 、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的60.8+50.1+58.443.3+38.5+15.5≈1.74≠2倍,故D 错误.故选D .7.答案:D解析:本题考查幂函数、对数函数的图象和性质.对于对数函数,当底大于1时,图象单调递增,当0<a<1时,图象单调递减,而当a>0时,幂函数在(0,+∞)都是增函数.解:当a>1时,幂函数和对数函数都递增,但幂函数图象下凸,没有符合的;当0<a<1时,D符合,故选D.8.答案:C解析:本题考查了空间线面关系及充分必要条件,属于基础题.由空间线面关系及充分必要条件得:因为m⊥α,n⊥β,则“m⊥n”⇔“α⊥β”,即“m⊥n”是“α⊥β”的充要条件,得解.解:因为m⊥α,n⊥β,则“m⊥n”⇔“α⊥β”,即“m⊥n”是“α⊥β”的充要条件,故选:C.9.答案:B解析:本题主要考查利用导数研究函数的单调性,考查逻辑推理能力,属于中档题.由f(1−2x)=f(2x−1)可判断函数的奇偶性,构造函数g(x)=xf(x),利用g(x)的导数判断函数g(x)的单调性,根据函数的单调性以及奇偶性求出不等式的解集即可.解:由f(1−2x)=f(2x−1),可知f(x)为偶函数,构造新函数g(x)=xf(x),则g′(x)=xf′(x)+f(x),当x>0时g′(x)>0.所以g(x)=xf(x)在(0,+∞)上单调递增,又f(2)=0,即g(2)=0.。
2020年全国统一高考数学试卷(文科)(新课标I)(有详细解析)
![2020年全国统一高考数学试卷(文科)(新课标I)(有详细解析)](https://img.taocdn.com/s3/m/8c0f2d7fccbff121dc368300.png)
2020年全国统一高考数学试卷(文科)(新课标I)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2−3x−4<0},B={−4,1,3,5},则A⋂B=A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位: ∘C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ∘C至40 ∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2−6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 47.设函数f(x)=cos (ωx+π6)在的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4−a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为▵ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y−2≤0x−y−1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(−1)n a n=3n−1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共80.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.▵ABC的内角A,B,C的对边分别为a,b,c,已知B=150∘.(1)若a=√3c,b=2√7,求▵ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,▵ABC是底面的内接正三角形,P为DO上一点,∠APC=90∘.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P−ABC的体积.20.已知函数f(x)=e x−a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcos θ−16ρsin θ+ 3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│−2│x−1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.答案和解析1.D解:由不等式x2−3x−4<0,解得−1<x<4,所以A∩B={1,3},2.C解:z=1+2i−i=1+i,则|z|=√12+12=√2,3.C解:设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为ℎ′,则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a)2−2(ℎ′a)−1=0,ℎ′a>0,解得ℎ′a =√5+14.4.A解:如图,从5点中随机选取3个点,共有10种情况,AOB,AOD,BOC,DOC,ABC,ADC,DBC,DAB,AOC,BOD,其中三点共线的有两种情况:AOC和BOD,则p=210=15.5.D用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.6.B解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3−1)2+(0−2)2=√8,弦长2√r2−OA2=2,7.C解:由图可知f(−4π9)=cos (−4π9ω+π6)=0,所以−4π9ω+π6=π2+kπ(k∈Z),化简可得ω=−3+9k4(k∈Z),又因为T<2π<2T,即2π|ω|<2π<4π|ω|,所以1<|ω|<2,则当且仅当k=−1时,1<|ω|<2,所以|ω|=32,故最小正周期T=2π|ω|=4π3.8.B解:由alog34=log34a=2,可得4a=32=9,∴4−a=(4a)−1=9−1=1,99.C解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S=S+n=1+3+5=9,S⩽100,n=n+2=7,S=S+n=1+3+5+7=16,S⩽100,n=n+2=9,根据等差数列求和可得,S=1+3+5+⋯+19=100⩽100,n=19+2=21,输出n=21.10.D解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,11.B解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(−2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|−|PF2||=2a=2,所以||PF1|−|PF2||2=|PF1|2+|PF2|2−2|PF1|⋅|PF2|=4,所以|PF1|⋅|PF2|=6,所以三角形PF1F2面积为12|PF1|⋅|PF2|=3,12.B解:由圆O1的面积为4π=πr2,故圆O1的半径r=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,13.1解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,14.5解:∵a⃗⊥b⃗ ,所以a⃗⋅b⃗ =0,因为a⃗=(1,−1),b⃗ =(m+1,2m−4),所以m+1−(2m−4)=0,故m=5.15.2x−y=0解:∵y=lnx+x+1,∴y′=1x+1设切点坐标为(x0,y0),因为切线斜率为2,所以1x+1=2,故x0=1,此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y−2=2(x−1)所以切线方程为2x−y=0.16.7解:因为a n+2+(−1)n a n=3n−1,当n=2,6,10,14时,a2+a4=5,a6+a8=17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540−(5+17+ 29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2−a n=3n−1,所以a3−a1=2,a5−a3=8,a7−a5=14⋯a n+2−a n=3n−1,累加得an+2−a1=2+8+14+⋯3n−1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13=102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.17.解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90−25)+0.2×(50−25)+0.2×(20−25)+0.2×(−50−25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90−20)+0.17×(50−20)+0.34×(20−20)+0.21×(−50−20)=10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.18.解:(1)由余弦定理得b2=a2+c2−2accosB,即28=3c2+c2−2√3c2cos150∘,解得c=2,所以a=2√3,所以S△ABC=12acsin B=12×2√3×2×12=√3.(2)因为A=180∘−B−C=30∘−C,所以sinA+√3sinC=sin(30∘−C)+√3sinC=12cosC+√32sinC=sin(30∘+C)=√22,因为A>0°,C>0°,所以0°<C<30°,所以30°<30°+C<60°,所以30°+C=45°,所以C=15°.19.解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32−1=√22,所以三棱锥P−ABC的体积V=13SΔABC⋅PO=13×12×√3×√3×√32×√22=√68.20.解:(1)当a=1时,f(x)=e x−(x+2),则f′(x)=e x−1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(−∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x−a(x+2)=0,显然x≠−2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<−2或−2<x<−1时,g′(x)<0,g(x)单调递减;当x >−1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(−1)=1e ,当x <−2时,g(x)<0,当x >−2时,g(x)>0,所以当a >1e 时,y =a 与g(x)的图象有两个交点, 所以a 的取值范围为(1e ,+∞).21. 解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y =m 9(x +3)x 29+y 2=1⇒(9+m 2)x 2+6m 2x +9m 2−81=0,由韦达定理−3x C =9m 2−819+m 2⇒x C =−3m 2+279+m 2,代入直线PA 的方程y =m9(x +3)得,y C =6m9+m ,即C(−3m 2+279+m ,6m9+m ),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).22.(1)当k=1时,曲线C1的参数方程为{x=costy=sint,化为直角坐标方程为x2+y2=1,表示以原点为圆心,半径为1的圆.(2)当k=4时,曲线C1的参数方程为{x=cos 4ty=sin4t,化为直角坐标方程为√x+√y=1,曲线C2化为直角坐标方程为4x−16y+3=0,联立{√x+√y=14x−16y+3=0,解得{x=14y=14,所以曲线C1与曲线C2的公共点的直角坐标为(14,14 ).23. (1)函数f(x)=|3x +1|−2|x −1|={x +3,x >15x −1,−13≤x ≤1−x −3,x <−13,图象如图所示:(2)函数f(x +1)的图象即将函数f(x)的图象向左平移一个单位所得,如图, 联立{y =−x −3y =5x +4可得交点横坐标为x =−76, 所以f(x)>f(x +1)的解集为{x|x <−76}.。
2020年内蒙古高考文科数学试题及答案
![2020年内蒙古高考文科数学试题及答案](https://img.taocdn.com/s3/m/5cd8836300f69e3143323968011ca300a6c3f6a3.png)
2021年内蒙古高考文科数学试题及答案考前须知:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,在选涂其它答案标号框。
答复非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
一、选择题:此题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},那么A∩B=A. B.{–3,–2,2,3〕C.{–2,0,2} D.{–2,2}2.〔1–i〕4=A.–4 B.4C.–4i D.4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.假设k–j=3且j–i=4,那么称a i,a j,a k为原位大三和弦;假设k–j=4且j–i=3,那么称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5 B.8 C.10 D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,那么至少需要志愿者A.10名B.18名C.24名D.32名5.单位向量a,b的夹角为60°,那么在以下向量中,与b垂直的是A.a+2b B.2a+b C.a–2b D.2a–b6.记S n 为等比数列{a n }的前n 项和.假设a 5–a 3=12,a 6–a 4=24,那么nnS a = A .2n –1B .2–21–nC .2–2n –1D .21–n –17.执行右面的程序框图,假设输入的k =0,a =0,那么输出的k 为A .2B .3C .4D .58.假设过点(2,1)的圆与两坐标轴都相切,那么圆心到直线2x -y -3=0的间隔 为 A 5B 25C 35D 459.设O 为坐标原点,直线x =a 与双曲线C :2222 x y a b=l(a >0,b >0)的两条渐近线分别交于D ,E 两点.假设△ODE 的面积为8,那么C 的焦距的最小值为 A .4B .8C .16D .3210.设函数f (x )=x3-31x,那么f (x ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减11.△ABC 93O 的球面上.假设球O 的外表积为16π,那么O 到平面ABC 的间隔 为 A 3B .32C .1D 3 12.假设2x-2y<3−x-3−y,那么A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln ∣x -y ∣>0D .ln ∣x -y ∣<0二、填空题:此题共4小题,每题5分,共20分。
2020年全国统一高考数学试卷(文科)(新课标I)【含详答】
![2020年全国统一高考数学试卷(文科)(新课标I)【含详答】](https://img.taocdn.com/s3/m/95bba49bfc0a79563c1ec5da50e2524de518d0c9.png)
2020年全国统一高考数学试卷(文科)(新课标I)【含详答】2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)1.已知合集A={x|x2?3x?4<0},B={?4,1,3,5},则A?B=A. {?4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5?14B. √5?12C. √5+14D. √5+124.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 455.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:?°C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,yi)(i=1,2,…,20)得到下面的散点图:由此散点图,在10?°C至40?°C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx6.已知圆x2+y2?6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2D. 47.设函数f(x)=cos(ωx+π6)在[?π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π28.设alog34=2,则4?a=()A. 116B. 19C. 18D. 169.执行下面的程序框图,则输出的n=()B. 19C. 21D. 2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 3211.设F1,F2是双曲线C:x2?y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 212.已知A,B,C为球O的球面上的三个点,⊙O1为?ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件{2x+y?2≤0x?y?1≥0y+1≥0,则z=x+7y的最大值为_____.14.设向量a?=(1,?1),b? =(m+1,2m?4),若a?⊥b? ,则m=______.15.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.16.数列{a n}满足a n+2+(?1)n a n=3n?1,前16项和为540,则a1=____.三、解答题(本大题共7小题,共82.0分)17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?18.?ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=√3c,b=2√7,求?ABC的面积;(2)若sinA+√3sinC=√2,求C.219.如图,D为圆锥的顶点,O是圆锥底面的圆心,?ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P?ABC的体积.20.已知函数f(x)=e x?a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.21.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E 的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.22.[选修4?4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ?16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.23.[选修4—5:不等式选讲]已知函数f(x)=│3x+1│?2│x?1│.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.2020年全国统一高考数学试卷(文科)(新课标I)一、选择题(本大题共12小题,共60.0分)已知合集A={x|x2?3x?4<0},B={?4,1,3,5},则A?B=A. {?4,1}B. {1,5}C. {3,5}D. {1,3}【答案】D【解析】【分析】本题主要考查集合的交集运算和解一元二次不等式,属于基础题.【解答】解:由不等式x2?3x?4<0,解得?1<x<4,< p="">所以A∩B={1,3},故选D.24.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 2【答案】C【解析】【分析】本题主要考查复数的运算,求复数的模,属于基础题.【解答】解:z=1+2i?i=1+i,则|z|=√12+12=√2,故选C.25.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5?14B. √5?12C. √5+14D. √5+12【答案】C【解析】【分析】根据题意列出a,?′,?的关系式,化简即可得到答案.本题考查了立体几何中的比例关系,属于基础题.【解析】如图,设正四棱锥的高为h,底面边长为a,侧面三角形底边上的高为?′,则由题意可得{2=12a?′2=(?′)2?(a2)2,故(?′)2?(a2)2=12a?′,化简可得4(?′a)2?2(?′a)?1=0,解得?′a =√5+14.故答案选C.26.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. 15B. 25C. 12D. 45【答案】A【解析】【分析】本题主要考查概率的知识,属于基础题.【解答】解:如图,从5点中随机选取3个点,共有10种情况,其中三点共线的有两种情况:AOC和BOD,则p=210=15.故选A.27.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:?°C)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10?°C至40?°C之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是()A. y=a+bxB. y=a+bx2C. y=a+be xD. y=a+blnx 【答案】D【解析】【分析】本题考查函数模型的应用,属于基础题.连接各点,判断图象的大致走向,可判断函数为对数模型.【解析】用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+blnx.故答案选D.28.已知圆x2+y2?6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题考查圆的方程、直线方程以及求弦长,属于较易题.【解答】解:由可得,则圆心,半径,已知定点,则当直线与OA垂直时,弦长最小,OA=√(3?1)2+(0?2)2=√8弦长,故选B.29.设函数f(x)=cos(ωx+π6)在[?π,π]的图像大致如下图,则f(x)的最小正周期为()A. 10π9B. 7π6C. 4π3D. 3π2【答案】C【解析】【分析】本题考查了余弦函数的图象与性质,属于中档题.先利用f(?4π9)=0得到w =?3+9k 4(k ∈Z),由T <2π<2T ,可得,由w =3+9k 4(k ∈Z)可得k 的值,w 的值可得,即可求解.【解析】解:由图可知f(?4π9)=cos(?4π9w +π6)=0,所以?4π9w +π6=π2+kπ(k ∈Z),化简可得w =?3+9k 4(k ∈Z),又因为T <2π<2T ,即2π|w |<2π<4π|w |,所以,当且仅当k =?1时,所以w =32,最小正周期T =2π|w |=4π3.故答案选C .30. 设alog 34=2,则4?a =( )A. 116B. 19C. 18D. 16【答案】B【解析】【分析】本题主要考查指对数的运算,属于基础题.【解答】解:由alog 34=log 34a =2,可得4a =32=9,∴4?a =(4a )?1=9?1=19,故选B .31. 执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】本题以程序框图为载体,考查了等差数列求和,属于中档题.【解答】解:输入n=1,S=0,则S=S+n=1,S?100,n=n+2=3,S=S+n=1+3=4,S?100,n=n+2=5,S=S+n=1+3+5=9,S?100,n=n+2=7,S=S+n=1+3+5+7=16,S?100,n=n+2=9,根据等差数列求和可得,S=1+3+5+?+19=100?100,n=19+2=21,输出n=21.故选C.32.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A. 12B. 24C. 30D. 32【答案】D【解析】【分析】本题主要考查等比数列的通项公式,属基础题.根据a1+a2+a3=1,a2+a3+a4=2,结合等比数列的通项公式可求得等比数列的公比q,因为a6+a7+a8=q5(a1+a2+a3),从而得到答案.【解答】解:∵a1+a2+a3=1,a2+a3+a4=2,∴q(a1+a2+a3)=2,所以q=2,∵a6+a7+a8=q5(a1+a2+a3),所以a6+a7+a8=32,故选D33.设F1,F2是双曲线C:x2?y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 2【答案】B【解析】【分析】本题主要考查双曲线的定义、双曲线的简单几何性质、圆的性质,属一般题.根据双曲线的标准方程得到其焦点坐标,结合|OP|=2,可确定点P在以F1F2为直径的圆上,得到|PF1|2+|PF2|2=16,结合双曲线的定义可得|PF1|?|PF2|的值,从而得到答案.【解答】解:由双曲线的标准方程可得a=1,b=√3,c=2,所以焦点坐标为F1(?2,0),F2(2,0),因为|OP|=2,所以点P在以F1F2为直径的圆上,∴|PF1|2+|PF2|2=16,∵||PF1|?|PF2||=2a=2,所以||PF1|?|PF2||2=|PF1|2+|PF2|2?2|PF1|?|PF2|= 4,所以|PF1|?|PF2|=6,所以三角形PF1F2面积为3,故选B.34.已知A,B,C为球O的球面上的三个点,⊙O1为?ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A. 64πB. 48πC. 36πD. 32π【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60°=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.二、填空题(本大题共4小题,共20.0分)35.若x,y满足约束条件{2x+y?2≤0x?y?1≥0y+1≥0,则z=x+7y的最大值为_____.【答案】1【解析】【分析】本题考查利用线性规划求最值问题,属基础题.【解答】解:根据约束条件画出可行域为:由z=x+7y得y=?17x+17z,平移直线y=?17x,要使z最大,则y=?17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,故答案为1.36.设向量a?=(1,?1),b? =(m+1,2m?4),若a?⊥b? ,则m=______.【答案】5【解析】【分析】本题主要考查平面向量垂直的充要条件,平面向量数量积的坐标运算,属基础题.由a?⊥b? 可得a??b? =0,再把两向量坐标代入运算可得答案.【解答】解:∵a?⊥b? ,所以a??b? =0,因为a?=(1,?1),b? =(m+1,2m?4),所以m+1?(2m?4)=0,故m=5.故答案为:537.曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为____.【答案】2x?y=0【解析】【分析】本题主要考查导数的几何意义,属基础题.根据导数的几何意义确定切点坐标,再根据直线的点斜式得到切线方程.【解答】+1解:∵y=lnx+x+1,∴y′=1x+1=2,故x0=1,设切点坐标为(x0,y0),因为切线斜率为2,所以1x此时,y0=ln1+2=2,所以切点坐标为(1,2),∴y?2=2(x?1)所以切线方程为2x?y=0.故答案为:2x?y=0.38.数列{a n}满足a n+2+(?1)n a n=3n?1,前16项和为540,则a1=____.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题.对n取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(?1)n a n=3n?1,当n=2,6,10,14时,a2+a4=5,a6+a8= 17,a10+a12=29,a14+a16=41因为前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540?(5+17+29+41),所以a1+a3+a5+a7+a9+a11+a13+a15=448,当n为奇数时,a n+2?a n=3n?1,所以a3?a1=2,a5?a3=8,a7?a5=14?a n+2?a n=3n?1,累加得an+2?a1=2+8+14+?3n?1=(2+3n?1)?n+122,∴a n+2=(3n+1)?(n+1)4+a1,∴a3=2+a1,a5=10+a1,a7=24+a1,a9=44+a1,a11=70+a1,a13= 102+a1,a15=140+a1,因为a1+a3+a5+a7+a9+a11+a13+a15=448,所以8a1+392=448,所以a1=7.故答案为7.三、解答题(本大题共7小题,共82.0分)39.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级,加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应该选哪个分厂承接加工业务?【答案】解:(1)根据频数分布表可知甲、乙分厂加工出来的一件产品为A级品的频数分别为40,28,所以频率分别为40100=0.4,28100=0.28,用频率估计概率可得甲、乙两分厂加工出来的一件产品为A级品的概率分别为0.4和0.28.(2)甲分厂四个等级的频率分别为:0.4,0.2,0.2,0.2,故甲分厂的平均利润为:0.4×(90?25)+0.2×(50?25)+0.2×(20?25)+0.2×(?50?25)=15(元),乙分厂四个等级的频率分别为:0.28,0.17,0.34,0.21,故乙分厂的平均利润为:0.28×(90?20)+0.17×(50?20)+0.34×(20?20)+0.21×(?50?20)= 10(元),因为甲分厂平均利润大于乙厂的平均利润,故选甲分厂承接加工业务.【解析】本题主要考查频率的算法,平均数的概念及其意义,属基础题.(1)根据图表信息可得甲乙分厂的频数,从而得到答案.(2)根据图表信息可得甲乙分厂的四个等级的频率,再根据平均数的定义求得答案,比较两厂的平均数得到最终答案即可.40.?ABC的内角A,B,C的对边分别为a,b,c,已知B=150°.(1)若a=√3c,b=2√7,求?ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得b2=a2+c2?2accosB,即28=3c2+c2?2√3c2cos150°,解得c=4,所以a=4√3,所以S△ABC=12acsinB=12×4√3×4×12=4√3.(2)因为A=180°?B?C=30°?C,所以sinA+√3sinC=sin(30°?C)+√3sinC=12cosC+√32sinC=sin(30°+C)=√22,因为A>0°,C>0°,所以0°<c<30°,所以30°<30°+c<60°,< p="">所以30°+C=45°,所以C=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.41.如图,D为圆锥的顶点,O是圆锥底面的圆心,?ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=√2,圆锥的侧面积为√3π,求三棱锥P?ABC的体积.【答案】解:(1)由已知条件得PA=PB=PC,因为∠APC=90°,所以PA⊥PC,所以AP2+PC2=AC2,又因为△ABC是等边三角形,所以AC=AB=BC,所以PA2+PB2=AB2,PB2+PC2=BC2,所以PB⊥PA,PB⊥PC,因为PA∩PC=P,所以PB⊥平面PAC,因为PB?平面PAB,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l,由题意得{2+r2=l2,πrl=√3π,解得l=√3,r=1,所以等边三角形ABC的边长为√3,从而PA=PB=PC=√62,所以PO=√32?1=√22,所以三棱锥P?ABC的体积V=13SΔABC?PO=13×12×√3×√3×√32×√228.【解析】【解析】本题考查线面位置关系的判定,圆锥的侧面积公式,棱锥的体积公式的应用,考查空间想象能力与运算能力,属于中档题.(1)由题意证得PB⊥PA,PB⊥PC,从而得到PB⊥平面PAC,根据面面垂直的判定定理即可证明;(2)由圆锥的性质可求得底面半径与母线长,从而可求得△ABC的边长,从而可求得三棱锥P?ABC的高,从而可求得体积.42.已知函数f(x)=e x?a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【答案】解:(1)当a=1时,f(x)=e x?(x+2),则f′(x)=e x?1,令f′(x)>0,得x>0;令f′(x)<0,得x<0,从而f(x)在(?∞,0)单调递减;在(0,+∞)单调递增.(2)f(x)=e x?a(x+2)=0,显然x≠?2,所以a=e xx+2,令g(x)=e xx+2,问题转化为y=a与g(x)的图象有两个交点,所以g′(x)=e x(x+1)(x+2)2,当x<?2或?2<x<?1时,g′(x)?1时,g′(x)>0,g(x)单调递增,所以g(x)的极小值为g(?1)=1e当x <?2时,g(x)?2时,g(x)>0,所以当a >1e 时,y =a 与g(x)的图象有两个交点,所以a 的取值范围为(1e ,+∞).【解析】【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,有一定难度. (1)先求导,可直接得出函数的单调性;(2)先分离参数得a =e x x+2,再构造函数,利用导数研究函数的性质,即可得出a 的取值范围.43. 已知A ,B 分别为椭圆E:+=1(a >1)的左、右顶点,G 为E 的上顶点,=8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D , (1)求E 的方程;(2)证明:直线CD 过定点.【答案】解:由题意A (?a,0),B (a,0),G (0,1),AG =(a,1),GB =(a,?1), AGGB =a 2?1=8?a 2=9?a =3,∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (?3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y=m9(x+3)x29+y2=1(9+m2)x2+6m2x+9m2?81=0, 由韦达定理?3x C=9m2?819+m2?x C=?3m2+279+m2,代入直线PA的方程y=m9(x+3)得,y C=6m9+m2,即C(?3m2+279+m2,6m9+m2),直线PB的方程为y=m3(x?3),联立{y=m3(x?3)x29+y2=1(1+m2)x2?6m2x+9m2?9=0, 由韦达定理3x D=9m2?91+m2?x D=3m2?31+m2,代入直线PA的方程y=m 3(x?3)得,y D=2m 1+m2,即D(3m2?3 1+m2,?2m1+m2),∴直线CD的斜率k CD= 6m9+m22m1+m23m2+279+m23m2?31+m2=4m3(3?m2),∴直线CD的方程为y??2m 1+m2=4m3(3?m2)(x?3m2?31+m2),整理得y=4m3(3?m2)(x?32),∴直线CD过定点(32,0).【解析】本题考查直线于椭圆的位置关系,定点问题,属于较难题;(1)求出各点坐标,表示出向量;(2)求出C,D两点坐标,进而求出直线CD,即可证明.44.[选修4?4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为{x=cos k ty=sin k t,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ?16ρcosθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.</c<30°,所以30°<30°+c<60°,<></x<4,<>。
2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
![2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)](https://img.taocdn.com/s3/m/1871bc60326c1eb91a37f111f18583d049640f75.png)
2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.52.(5分)若(1+i)=1﹣i,则z=()A.1﹣i B.1+i C.﹣i D.i3.(5分)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.104.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)已知sinθ+sin(θ+)=1,则sin(θ+)=()A .B .C .D .6.(5分)在平面内,A,B是两个定点,C 是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线7.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)8.(5分)点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1B .C .D.29.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+210.(5分)设a=log32,b=log53,c =,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(5分)在△ABC中,cos C =,AC=4,BC=3,则tan B=()A .B.2C.4D.812.(5分)已知函数f(x)=sin x +,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x =对称二、填空题:本题共4小题,每小题5分,共20分。
2020年高考真题数学(文)(全国卷II)含答案 (甘肃青海黑龙江吉林辽宁宁夏新疆内蒙古陕西重庆)
![2020年高考真题数学(文)(全国卷II)含答案 (甘肃青海黑龙江吉林辽宁宁夏新疆内蒙古陕西重庆)](https://img.taocdn.com/s3/m/dfda637850e2524de4187e62.png)
2020年全国统一高考数学试卷(文科)(全国新课标II)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|x|<3,x ∈Z},B ={x||x|>1,x ∈Z},则A ∩B = A.∅ B.{-3,-2,2,3} C.{-2,0,2} D.{-2,2}2.(1-i)4=A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为a 1,a 2,…a 12,设1≤i ≤j ≤k ≤12。
若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦。
用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a ,b 的夹角为60°,则下列向量中,与b 垂直的是 A.a +2b B.2a +b C.a -2b D.2a -b6.记S n 为等比数列{a n }的前n 项和,若a 5-a 3=12,a 6-a 4=24,则nnS a = A.2n -1 B.2-21-n C.2-2n -1 D.21-n -1 7.执行右面的程序框图,若输入k =0,a =0,则输出的k 为A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为 525 35 459.设O 为坐标原点,直线x =a 与双曲线C :22221(0,0)x y a b a b-=>>的两条渐近线分别交于D ,E 两点。
2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
![2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)](https://img.taocdn.com/s3/m/9279728ad0f34693daef5ef7ba0d4a7302766ce9.png)
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则A∩B中元素的个数为()
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
采用列举法列举出 中元素的即可.
【详解】由题意, ,故 中元素的个数为3.
故选:B
【点晴】本题主要考查集合 交集运算,考查学生对交集定义的理解,是一道容易题.
【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中 ,且点M为BC边上的中点,
设内切圆的圆心为 ,
由于 ,故 ,
设内切圆半径为 ,则:
,
解得: ,其体积: .
故答案为: .
【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
【分析】
先利用除法运算求得 ,再利用共轭复数的概念得到 即可.
【详解】因为 ,所以 .