MC34063实现低成本DC-DC变换电路

合集下载

MC34063实现低成本DC-DC变换电路

MC34063实现低成本DC-DC变换电路

MC34063实现低成本DC-DC变换电路在电源电路中,出于温升、效率以及其它因素的考虑,DC-DC变换应用很多,本文介绍一种低成本的DC-DC变换实现方案,它可以实现降压、升压与电压反转应用,其电路简单、成本低廉、效率高、温升低,这些电路被广泛应用。

电路的核心元件是MC34063,它是一种单片双极型线性集成电路,专用于直流-直流变换器控制部分,片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器驱动器和大电流输出开关,能输出1.5A的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

MC34063的封装形式为塑封双列8引线直插式,内部电路原理框图如图一所示。

MC34063具有以下特点:1、能在3.0 40V的输入电压下工作。

2、带有短路电流限制功能。

3、低静态工作电流。

4、输出开关电流可达1.5A(无外接三极管)。

5、输出电压可调。

6、工作振荡频率从100HZ至100KHZ。

7、可构成升压降压或反向电源变换器工作原理由于内置有大电流的电源开关,MC34063能够控制的开关电流达到1.5A,内部线路包含有参考电压源、振荡器、转换器、逻辑控制线路和开关晶体管。

参考电压源是温度补偿的带隙基准源,振荡器的振荡频率由3脚的外接定时电容决定,开关晶体管由比较器的反向输入端和与振荡器相连的逻辑控制线路置成ON,并由与振荡器输出同步的下一个脉冲置成OFF。

电路原理图一内部框图中所表示的电路解释如下:振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。

充电和放电电流都是恒定的,所以振荡频率仅取决于外接定时电容的容量。

与门的C 输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平,当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通,反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。

MC34063或MC33063接成标准的DC-DC电路(图)

MC34063或MC33063接成标准的DC-DC电路(图)

MC34063或MC33063接成标准的DC-DC电路(图)1:极性反转。

2:升压。

3:降压。

三种典型电路时,外围元件参数的自动计算使用方法:只要在左中部框中输入你想要的参数,然后点击“进行计算并且刷新电路图”按钮,它就可以自动给所有相关的外围元件参数和相对应的标准电路图纸,使设计DC—DC电路实现智能化高效化。

关于警告:如果您输入的参数超过了34063的极限,它会自动弹出警告窗口提醒您更改它们。

特殊输入:要设计极性反转电路请在输入或输出电压数字的前面加上负号,比如-5V。

这是一种用于DC-DC电源变换的集成电路,应用比较广泛,通用廉价易购。

极性反转效率最高65%,升压效率最高90%,降压效率最高80%,变换效率和工作频率滤波电容等成正比。

另外,输出功率达不到要求的时候,比如>250~300MA时,可以通过外接扩功率管的方法扩大电流,双极型或MOS 型扩流管均可,计算公式和其他参数及其含义详见最下部详细介绍即可。

外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R2/R1)Ct(定时电容):决定内部工作频率。

Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc(限流电阻):决定输出电流。

Rsc=0.33/IpkLmin(电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:Vces=1.0V ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vimin:输入电压不稳定时的最小值Vf=1.2V 快速开关二极管正向压降其他手册参数:在实际应用中的注意:1:快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819!2:34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作。

电力电子课程设计---MC34063升压DC-DC变换电路

电力电子课程设计---MC34063升压DC-DC变换电路

目录第一章课程设计内容与要求分析 (1)1.1设计内容 (1)1.2设计方案 (1)第二章方案实现及电器件简介 (2)2.1 MC34063 (2)2.1.1 MC34063概述 (2)2.1.2 MC34063升压原理 (4)2.1.3 MC34063外围元件标称含义及计算公式 (4)2.2 1N5819 (5)2.3方案实现 (6)第三章硬件实现及调试 (7)3.1硬件实现 (7)3.2工具选择及测试方法 (8)第四章设计总结 (10)参考文献 (10)第一章课程设计内容与要求分析1.1设计内容1.设计题目MC340563升压DC-DC变换电路设计2.设计要求1)五个题目任选一个,两人一组自行完成。

2) 设计结束学生应撰写报告一份,完成答辩。

3)格式应符合要求。

1.2设计方案1. 设计DC5V输入,输出+6V~+15V可调的DC-DC升压变换电路,电路设计采用MC34063集成电源控制芯片为核心进行设计;2. 输出电压调节范围:+6V~+15V,电流:500mA~100mA范围第二章方案实现及电器件简介2.1 MC340632.1.1 MC34063概述它是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。

片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A 的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

MC34063主要特性输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制MC34063引脚图功能1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz 范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV 时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。

MC34063组成的DC电源或隔离电路

MC34063组成的DC电源或隔离电路

MC34063组成的DC电源或隔离电路MC34063A(MC33063)芯片器件简介该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。

它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。

该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。

主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。

MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器主要参数:MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。

工作过程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。

其中,输出电压U。

=1.25(1+ R2/R1)由公式可知输出电压。

仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。

若R1、R2阻值稳定,U。

亦稳定。

2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。

当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co 充电以提高U。

,达到自动控制U。

稳定的作用。

3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。

4. 振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。

5. 脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。

MC34063组成的DC电源或隔离电路

MC34063组成的DC电源或隔离电路

MC34063组成的DC电源或隔离电路MC34063A(MC33063)芯片器件简介该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。

它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。

该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。

主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。

MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器主要参数:MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。

工作过程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。

其中,输出电压U。

=1.25(1+ R2/R1)由公式可知输出电压。

仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。

若R1、R2阻值稳定,U。

亦稳定。

2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。

当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co 充电以提高U。

,达到自动控制U。

稳定的作用。

3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。

4. 振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。

5. 脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。

基于MC34063芯片DC-DC(20-5)降压型变换电路

基于MC34063芯片DC-DC(20-5)降压型变换电路

目录基于MC34063芯片的DC-DC(20/5)降压型变换电路 (2)1 引言 (3)2 设计要求及分析 (4)2.1、设计要求 (4)2.2、设计分析 (4)3 MC34063芯片介绍 (5)3.1、MC34063的引脚图及引脚介绍 (5)3.2、MC34063内部组成及示意图 (5)3.3、MC4063芯片特点 (6)4 系统整体方案的论证与选择 (6)4.1、外接开关管方案 (6)4.2、不外接开关管方案 (8)5 基于MC34063变换电路的工作原理 (9)5.1、DC-DC开关电源的电路组成及工作原理 (9)5.2、基于MC34063降压变换电路原理 (11)6 电路仿真 (20)6.1、proteus仿真软件介绍 (20)6.2、仿真电路及测试图 (20)7 实物测试及结论分析................................................................................. 错误!未定义书签。

7.1、实物及测试结果............................................................................ 错误!未定义书签。

7.2、结果分析........................................................................................ 错误!未定义书签。

参考文献.. (22)附录 .............................................................................................................. 错误!未定义书签。

致谢 ............................................................................................................ 错误!未定义书签。

MC34063芯片原理与应用技巧(车充)

MC34063芯片原理与应用技巧(车充)

MC34063芯片原理与应用技巧(车充)1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器。

它能使用很少的外接元件构成开关式升压变换器、降压变换器和电源反向器。

特点:价格廉价0.2元,电路简单,且效率满足一般要求*能在3-40V的输入电压下工作; *低静态电流;*电流限制;*输出电压可调*输出开关电流峰值可达1.5A〔平均0.8A〕〔无外接三极管时〕*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图MC34063 电路原理振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡。

充电和放电电流都是恒定的,振荡频率仅取决于③脚外接的定时电容。

与门的C 输入端在定时电容充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。

当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器定时电容〔③脚上〕在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。

电流限制通过检测连接在VCC〔即6脚〕和7 脚之间安全电阻〔Rsc〕上的压降来实现,当检测到电阻上的电压降接近超过0.3V 时,电流限制电路开始工作,这时通过CT 管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。

如⑧②两脚直接连到电源的正负极上,那么, T2上将承受很高的压降:为防T2因承压→发热过大,应在⑧或②外接电阻|电感等负载★。

线性稳压电源效率低,通常不适合于大电流或输入、输出压差大的情况。

开关电源的效率相对较高,按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。

MC34063属于低成本斩波型硬开关。

有一个车用充电器〔车充〕,芯片是MC34063,MicroUSB接口。

MC340631. MC34063实现的低端车充方案优点::低成本,接驳灵活缺点:(1) 可靠性差,功能单一;没有过温度保护,短路保护等安全性措施;(2) 输出虽然是直流电压,但控制输出恒流充电电流的方式为电流峰值限制,精度不够高;(3) 由于34063开关电流PWM+PFM模式〔PWM是利用波脉冲宽度控制输出,PFM是利用脉冲的有无控制输出〕,其车充方案输出电压纹波较大,不够纯洁;输出电流能力也非常有限;〔常见于300ma~600ma之间的低端车充方案中〕2. MC34063应用电路图:2.1 MC34063基本降压变换器电路〔图中安全电阻Rsc=0.3Ω故电流峰值被限在0.3V/0.3Ω=1A,设50%占空比,则平均0.5A★〕。

低成本DCDC转换器34063的应用(图)

低成本DCDC转换器34063的应用(图)

低成本DC/DC转换器34063的应用(图)斩波型开关电源斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。

降压型开关电源电路通常如图1所示。

图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。

当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。

设电感的初始电流为iL0,则流过电感的电流与时间t的关系为: iLt= iL1+(Vi-Vo-Vs)t/L,Vs为T的导通电压。

当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系:iLt=iL1-(Vo+Vf)t/L,Vf为D1的正向饱和电压。

图1降压型开关电源基本电路34063的特殊应用● 扩展输出电流的应用DC/DC转换器34063开关管允许的峰值电流为1.5A,超过这个值可能会造成34063永久损坏。

由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。

如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。

例如,输入电压为9V,输出电压为 3.3V,采用220μH的电感,输出平均电流达到900mA,峰值电流为1200mA。

单纯依赖34063内部的开关管实现比900mA更高的输出电流不是不可以做到,但可靠性会受影响。

要想达到更大的输出电流,必须借助外加开关管。

图2和图3是外接开关管降压电路和升压电路。

图2升压型达林顿及非达林顿接法图3 降压型达林顿及非达林顿接法采用非达林顿接法,外接三极管可以达到饱和,当达到深度饱和时,由于基区存储了相当的电荷,所以三极管关断的延时就比较长,这就延长了开关导通时间,影响开关频率。

达林顿接法虽然不会饱和,但开关导通时压降较大,所以效率也会降低。

可以采用抗饱和驱动技术,图4所示,此驱动电路可以将Q1的 Vce保持在 0.7V以上,使其导通在弱饱和状态。

DC--DC转换器34063的应用

DC--DC转换器34063的应用

DC/DC转换器34063的应用34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。

在ADSL 应用中,34063的开关频率对传输速率有很大影响,在器件选择及PCB设计时需要仔细考虑。

线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。

开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。

开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。

斩波型开关电源斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。

降压型开关电源电路通常如图1所示。

图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。

当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。

设电感的初始电流为iL0,则流过电感的电流与时间t的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs为T的导通电压。

当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系:iLt=iL1-(V o+Vf)t/L,Vf为D1的正向饱和电压。

图1降压型开关电源基本电路34063的特殊应用●扩展输出电流的应用DC/DC转换器34063开关管允许的峰值电流为1.5A,超过这个值可能会造成34063永久损坏。

由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。

如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。

例如,输入电压为9V,输出电压为3.3V,采用220μH的电感,输出平均电流达到900mA,峰值电流为1200mA。

单纯依赖34063内部的开关管实现比900mA更高的输出电流不是不可以做到,但可靠性会受影响。

DCDC转换器34063的常用电路

DCDC转换器34063的常用电路

DC/DC转换器34063的常用电路34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。

以下列出几种常用的电路形式供参考。

1、升压型达林顿及非达林顿接法2、降压型达林顿及非达林顿接法3、输出3路电压的34063电路+VO的输出电压峰值可达2倍V_IN,-VO的输出电压可达-V_IN。

需要注意的是,3路的峰值电路不能超过1.5A,同时两路附加电源的输出功率和必须小于V_IN·I·(1-D),其中I为主输出的电流,D为占空比。

在此两路输出电流不大的情况下,此电路可以很好地降低实现升压和负压电源的成本。

4、具有关断功能的34063电路34063本身不具有关断功能,但可以利用它的过流饱和功能,增加几个器件就可以实现关断功能,同时还可以实现延时启动。

具有关断功能的34063电路,R4取510Ω,R6取3.9kΩ。

当控制端加一个高电平,则34063的输出就变成0V,同时不影响它的过流保护功能的正常工作。

5、将以上电路稍加改动,就可以得到具有延时启动功能的34063电路,如下图:取C11为1μF,R10为510Ω,就可以达到200~500ms的启动延时(延时时间和输入电压有关)。

这个电路的缺点就是当峰值电流过流时无法起到保护作用,只能对平均电流过流起保护作用。

6、恒流恒压充电电路恒压恒流充电电路如图8所示,可用于给蓄电池进行充电,先以500mA电流恒流充电,充到13.8V后变为恒压充电,充电电流逐渐减小。

34063的局限性由34063构成的开关电源虽然价格便宜、应用广泛,但它的局限性也是显而易见的。

主要有以下几点:(1)效率偏低。

对于降压应用,效率一般只有70%左右,输出电压低时效率更低。

这就使它不能用在某些对功耗要求严格的场合,比如USB提供电源的应用。

(2)占空比范围偏小,约在15%~80%,这就限制了它的动态范围,某些输入电压变化较大的应用场合则不适用。

采用MC34063芯片的DCDC电源变换控制器设计

采用MC34063芯片的DCDC电源变换控制器设计

采用MC34063芯片的DC-DC电源变换控制器设计摘要:本文介绍了一种采用MC34063芯片的DC-DC电源变换控制器的电源电路设计。

它提供的直流输出不仅与供电电源共地,而且有两组与供电电源隔离。

实验室长期试运行表明,各项指标均可满足数字与模拟混合电路对电源的要求,没有跳码现象,检测精度不低于0.1%。

关键词:电源电路;DC-DC 变换;隔离电源在工业生产过程测控场合,出于安全的考虑,很多安装于现场的测量控制装置或测控网络的底层节点设备都采用低压直流供电。

这些装置或设备内部的硬件电路常常是基于微处理器的模拟电路与数字电路的混合硬件电路系统,需要多组直流电源为其数字电路部分与模拟电路部分分别供电。

为了取得良好的系统稳定性与测量精度,一般要求数字与模拟电路的供电电源相互隔离或一点连接。

使用多路输出电源是解决这一问题的有效途径。

早期制作多路输出电源,人们总是把几个不同的DC-DC变换器组装起来,这种方式的电路设计简单,但会加大成本,增加供电系统的体积、重量,并且有难以克服的拍频干扰,在输出电压上出现各种振荡频率之差的纹波电压。

因此开关电源的多路输出技术越来越受到人们的关注,因为它只用一个DC-DC变换器,输出电压的纹波具有相同的频率,不会发生拍频干扰。

目前多路输出变换器有3种常用的电路形式:独立滤波电感的多绕组DC-DC变换器,耦合电感的多绕组DC-DC变换器,磁放大器二次稳压的多绕组DC-DC变换器。

虽然使用多路输出变换器模块比组装几个不同DC-DC变换器电路效率高,成本降低,但是对于小型、小功率、低压控制模块来说还不是最佳选择。

本文基于多路输出变换技术,采用MC34063 控制芯片,使用少量的外围元件,设计了一种新型、简单、实用的多路输出电路,能为数字电路和模拟电路同时供电,并使两者相互隔离。

在笔者所查阅的文献中还没有看见类似的设计方法。

MC34063 性能简介电路的核心元件是MC34063 ,它是一种单片双极型线性集成电路,专用于DC-DC直流/直流变换器控制部分,片内包含有温度补偿带隙基准源、一个占空比可控的振荡器和大电流输出开关,能输出1.5A的开关电流。

MC3406芯片DC_DC转换升压电路

MC3406芯片DC_DC转换升压电路

电子技术课程设计报告设计课题:MC3406芯片DC/DC转换升压电路专业班级:学生姓名:指导教师:设计时间:2011.10.15-2011.12.15目录1 设计任务与要求 (3)2 集成稳压电源和开关电源的区别 (3)2.1 集成稳压器的组成 (3)2.2 开关电源的组成 (4)3 开关电源的分类 (5)4 常见开关电源的介绍 (6)4.1基本电路 (6)4.2 单端反激式开关电源 (7)4.3单端正激式开关电源 (7)4.4自激式开关稳压电源 (8)4.5 推挽式开关电源 (9)4.6 降压式开关电源 (9)4.7 升压式开关电源 (10)4.8 反转式开关电源 (10)5设计升压开关电源并计算参数 (11)5.1 MC34063的介绍 (11)5.2MC34063组成的升压电路原理 (12)5.3电路的参数设计计算 (14)6 性能测试结果分析 (17)7.结论与心得 (18)8.参考文献 (18)9.附录 (19)基于MC34063的稳压电源设计一、设计任务与要求1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。

2.掌握mc34063的非隔离开关电源的设计、组装与调试方法。

3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。

具体要求如下:①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。

②掌握开关电源的工作原理。

③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。

主要技术指标直流输入电压:5~12V;输出电压:28V;输出电流:0.3A;效率:≥90%。

二、集成稳压电源和开关电源的区别:(1)、集成稳压器的组成电路内部包括了串联型直流稳压电路的各个组成部分,另外加上保电路和启动电路。

1. 调整管在W7800系列三端集成稳压电路中,调整管为由两个三极管组成的复合管。

这种结构要求放大电路用较小的电流即可驱动调整管发射极回路中较大的输出电流,而且提高了调整管的输入电阻。

MC34063应用电路

MC34063应用电路

1. MC34063 DC/DC变换器控制电路简介:
MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。

片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

特点:
*能在3.0-40V的输入电压下工作
*短路电流限制
*低静态电流
*输出开关电流可达1.5A(无外接三极管)
*输出电压可调
*工作振荡频率从100HZ到100KHZ
2.MC34063引脚图及原理框图
3 MC34063应用电路图:
3.1 MC34063大电流降压变换器电路
3.2 MC34063大电流升压变换器电路
3.3 MC34063反向变换器电路
3.4 MC34063降压变换器电路
3.5 MC34063升压变换器电路。

MC34063 中文资料及应用电路

MC34063 中文资料及应用电路

MC34063 中文资料及应用电路1. MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。

片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图3 MC34063应用电路图:3.1 MC34063大电流降压变换器电路、3.2 MC34063大电流升压变换器电路3.3 MC34063反向变换器电路3.4 MC34063降压变换器电路3.5 MC34063升压变换器电路3.5 MC34063升压变换器电路MC34063芯片设计的计算公式及应用讲解在论坛经常看到有人在应用MC34063的时候会遇到这样那样的问题,特别的电路中的参数计算上很是不太明了,我会陆续贴上一些相关的计算公式及相关应用数据,欢迎大家参与讨论。

外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R1/R2 )Ct( 定时电容):决定内部工作频率。

Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc( 限流电阻):决定输出电流。

Rsc=0.33/IpkLmin (电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vces=1.0VVimin:输入电压范围的最小值Vf=1.2V 快速开关二极管正向压降在实际应用中的注意:1、快速开关二极管可以选用IN4148,在要求高效率的场合必须使用 IN5819(贴片为SS14);2、34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作;3、输出功率达不到要求的时候,比如>1A时,可以通过外接扩功率管的方法扩大输出电流,三极管、双极型或MOS管均可,一般的芯片PDF资料上都会有典型扩流电路介绍;。

MC34063升压电路

MC34063升压电路

1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。

片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

特点:*能在的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZMC34063 电路原理振荡器通过恒流源对外接在C T管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。

充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。

与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。

当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。

电流限制通过检测连接在V CC和5 脚之间电阻上的压降来完成功能。

当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过C T管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。

引脚图及原理框图3 MC34063应用电路图:MC34063大电流降压变换器电路MC34063大电流升压变换器电路MC34063反向变换器电路MC34063降压变换器电路MC34063升压变换器电路MC34063集成电路主要特性:输入电压范围:~40V输出电压可调范围:~40V输出电流可达:工作频率:最高可达180kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的基本结构及引脚图功能1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。

MC34063或MC33063 接成标准DC-DC电路元件参数的自动计算

MC34063或MC33063 接成标准DC-DC电路元件参数的自动计算

MC34063或MC33063 接成标准DC-DC电路元件参数的自动计算上一篇/ 下一篇 2010-10-01 08:02:26查看( 8 ) / 评论( 0 ) / 评分( 0 / 0 ) MC34063或IRM03A接成标准的DC—DC1:极性反转。

2:升压。

3:降压。

三种典型电路时,外围元件参数的自动计算使用方法:只要在左中部框中输入你想要的参数,然后点击“进行计算并且刷新电路图”按钮,它就可以自动给所有相关的外围元件参数和相对应的标准电路图纸,使设计DC—DC电路实现智能化高效化。

关于警告:如果您输入的参数超过了34063的极限,它会自动弹出警告窗口提醒您更改它们。

特殊输入:要设计极性反转电路请在输入或输出电压数字的前面加上负号,比如-5V。

MC34063或MC33063是一种用于DC-DC电源变换的集成电路,应用比较广泛,通用廉价易购。

极性反转效率最高65%,升压效率最高90%,降压效率最高80%,变换效率和工作频率滤波电容等成正比。

另外,输出功率达不到要求的时候,比如>250~300MA时,可以通过外接扩功率管的方法扩大电流,双极型或MOS型扩流管均可,计算公式和其他参数及其含义详见最下部详细介绍即可。

输入电压V输出电压V输出电流mA输出电压波纹系mV(pp)数工作频率kHz外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R1/R2)Ct(定时电容):决定内部工作频率。

Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc(限流电阻):决定输出电流。

Rsc=0.33/IpkLmin(电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:Vces=1.0V ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vimin:输入电压不稳定时的最小值Vf=1.2V 快速开关二极管正向压降其他手册参数:在实际应用中要注意:1:快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819!2:34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作。

mc34063工作原理

mc34063工作原理

MC34063工作原理解析1. 引言MC34063是一种非常常见的集成电路芯片,广泛应用于各种电力转换和调节电路中。

它具有体积小、成本低、效率高等优点,因此在电子设备中得到了广泛的应用。

本文将详细解释MC34063的工作原理,包括其基本原理和关键部件的功能。

2. MC34063概述MC34063是一种具有开关调制特性的DC-DC升压、降压和反相变换器。

它可以通过控制开关管的导通时间来实现输入电压的变换。

MC34063芯片内部集成了开关管、比较器、误差放大器等关键组件,以及一些外部元件(如电感、电容等)。

3. 基本原理MC34063通过周期性地切换开关管来实现输入电压的转换。

其基本工作原理如下:步骤1:充放电周期1.输入电压Vin被加到一个分压网络中,并与内部参考电压进行比较。

2.如果Vin大于参考电压,比较器输出高电平;如果小于参考电压,则输出低电平。

3.当比较器输出高电平时,开关管导通,电感L存储能量,同时电容C放电。

4.当比较器输出低电平时,开关管截止,电感L释放能量,同时电容C充电。

步骤2:升压1.在步骤1中的充放电周期中,当开关管导通时,电感L储存来自输入电源的能量。

2.在开关管截止时,存储在电感中的能量被释放到负载上。

3.通过控制开关管导通时间和截止时间的比例,可以调节输出电压的大小。

步骤3:降压1.在步骤1中的充放电周期中,当开关管截止时,负载上的能量通过二极管D回流到输入端。

2.在开关管导通时,输入端提供额外的能量来满足负载需求。

3.通过控制开关管导通时间和截止时间的比例以及二极管D的反向恢复时间,可以调节输出电压的大小。

4. 关键部件功能4.1 开关管MC34063芯片内部集成了一个功率MOSFET作为开关管。

它具有低导通压降和高耐压特性。

在升压转换器中,开关管导通时,电感L储存能量;截止时,电感L释放能量。

在降压转换器中,开关管截止时,负载上的能量通过二极管D回流到输入端;导通时,输入端提供额外的能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在电源电路中,出于温升、效率以及其它因素的考虑,DC-DC变换应用很多,本文介绍一种低成本的DC-DC变换实现方案,它可以实现降压、升压与电压反转应用,其电路简单、成本低廉、效率高、温升低,这些电路被广泛应用。

电路的核心元件是MC34063,它是一种单片双极型线性集成电路,专用于直流-直流变换器控制部分,片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器驱动器和大电流输出开关,能输出1.5A的开关电流。

它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

MC34063的封装形式为塑封双列8引线直插式,内部电路原理框图如图一所示。

MC34063具有以下特点:
1、能在3.040V的输入电压下工作。

2、带有短路电流限制功能。

3、低静态工作电流。

4、输出开关电流可达1.5A(无外接三极管)。

5、输出电压可调。

6、工作振荡频率从100HZ至100KHZ。

7、可构成升压降压或反向电源变换器
由于内置有大电流的电源开关,MC34063能够控制的开关电流达到1.5A,内部线路包含有参考电压源、振荡器、转换器、逻辑控制线路和开关晶体管。

参考电压源是温度补偿的带隙基准源,振荡器的振荡频率由3脚的外接定时电容决定,开关晶体管由比较器的反向输入端和与振荡器相连的逻辑控制线路置成ON,并由与振荡器输出同步的下一个脉冲置成OFF。

电路原理
图一内部框图中所表示的电路解释如下:
振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。

充电和放电电流都是恒定的,所以振荡频率仅取决于外接定时电容的容量。

与门的C输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平,当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通,反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。

电流限制SI检测端(5脚)通过检测连接在V+和5 脚之间电阻上的压降来完成功能。

当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。

典型应用:
图二是进行降压式的DC-DC转换应用。

其输出电压值可通过改变R4、R5
电阻值来进行调整,其输出电压符合以下公式:Vout=(1+R4/R5)*1.25V电路中限流电阻取值为0.15Ω,因此输入电流被限流在0.3V/0.15Ω=2A。

改变限流电阻即可改变限流值。

(注:下同)
图三是进行升压式的DC-DC转换应用。

其输出电压值也是通过改变R4、R5电阻值来进行调整,其输出电压符合以下公式:Vout=(1+R4/R5)*1.25V
图四是反转式的DC-DC转换应用。

其输出电压值也是通过改变R2、R3电阻值来进行调整,其输出电压符合以下公式:Vout=(1+R3/R2)*1.25V
电路中限流电阻取值为0.3Ω,因此输入电流被限流在0.3V/0.3Ω=1A。

电路中限流电阻取值为0.3Ω,因此输入电流被限流在0.3V/0.3Ω=1A。

相关文档
最新文档