高一年级上学期期中考试数学试题

合集下载

四川省2023-2024学年高一上学期期中数学试题含解析

四川省2023-2024学年高一上学期期中数学试题含解析

高2023级高一上期期中考试数学试题(答案在最后)本试卷共4页,22小题,满分150分.考试用时120分钟.第I 卷选择题(60分)一.选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“0x ∀>,210x x ++>”的否定是()A.0x ∀≤,210x x ++>B.0x ∃>,210x x ++≤C.0x ∃≤,210x x ++>D.0x ∀>,210x x ++≤【答案】B 【解析】【分析】根据全称命题的否定是特称命题即可求解.【详解】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是“0x ∃>,210x x ++≤”.故选:B .2.已知集合{}1,2,3A =,{},B a b a A b A =-∈∈,则集合B 中元素个数为()A.5B.6C.8D.9【答案】A 【解析】【分析】根据给定条件分析a ,b 取值即可判断作答.【详解】集合{}1,2,3A =,{},B a b a A b A =-∈∈,则当a b =时,有0a b -=,当a b >时,1a b -=或2a b -=,当a b <时,1a b -=-或2a b -=-,所以{2,1,0,1,2}B =--,集合B 有中5个元素.故选:A3.已知集合{{},2,1,0,1,2A xy B ===--∣,则A B = ()A.{}0,1,2 B.{}2,1,0,1-- C.{}1,2 D.{}2,1,0--【答案】B【解析】【分析】求出集合A ,计算与集合B 的交集即可.【详解】由题意可得{}{}101A xx x x =-≥=≤∣∣,则{}2,1,0,1A B ⋂=--.故选:B.4.已知集合{}{}|21,Z ,|21,Z A x x k k B x x k k ==+∈==-∈,则()A.A B ⊆ B.B A⊆ C.A B= D.AB【答案】C 【解析】【分析】由{}{}|21,Z ,|21,Z A x x k k B x x k k ==+∈==-∈,知集合A 与集合B 都是奇数集,利用集合与集合间的关系,即可求出结果.【详解】因为集合{}|21,Z A x x k k ==+∈,集合{}|21,Z B x x k k ==-∈,所以集合A 与集合B 都是奇数集,所以A B =,故选:C.5.13x -<<成立的必要不充分条件可以是()A.24-<<xB.12x -<< C.02x << D.04x <<【答案】A 【解析】【分析】根据必要不充分条件的定义判断求解.【详解】因为{}|13x x -<<是{}|24x x -<<的真子集,所以24-<<x 是13x -<<成立的一个必要不充分条件,A 正确;因为{}|12x x -<<是{}|13x x -<<的真子集,所以12x -<<是13x -<<成立的一个充分不必要条件,B 错误;因为{}|02x x <<是{}|13x x -<<的真子集,所以02x <<是13x -<<成立的一个充分不必要条件,C 错误;因为{}|04x x <<与{}|13x x -<<不存在包含关系,所以04x <<是13x -<<成立的既不充分也不必要条件,D 错误;故选:A.6.已知01x <<,则1441x x+-的最小值为()A.252B.254C.9D.12【答案】B 【解析】【分析】将代数式1441x x +-与()1x x +-相乘,展开后利用基本不等式可求出1441x x+-的最小值.【详解】因为01x <<,则011x <-<,所以,()1117141414144144x x x x x x x x x x -⎛⎫+=+-+=++⎡⎤ ⎪⎣⎦---⎝⎭172544≥+,当且仅当144101xx x x x -⎧=⎪-⎨⎪<<⎩时,即当15x =时,等号成立,故1441x x +-的最小值为254.故选:B.7.若关于x 的不等式20ax bx c ++<的解集是()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭,则关于x 的不等式20cx bx a -+>的解集是()A.()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭B.12,2⎛⎫--⎪⎝⎭C.1,22⎛⎫⎪⎝⎭D.()1,2,2⎛⎫-∞+∞ ⎪⎝⎭【答案】C 【解析】【分析】由题意知12,2--是20ax bx c ++=的两根,得到5,2b a c a ==,代入到20cx bx a -+>中解不等式即可.【详解】解:由不等式20ax bx c ++<的解是<2x -或12x >-,12,2--是20ax bx c ++=的两根,则a<0,且()112,2122b c a a ⎛⎫-=--=-⨯-= ⎪⎝⎭,即5,2b ac a ==,∴不等式20cx bx a -+>可化为:2502ax ax a -+>,即25102x x -+<,化简得()()2120x x --<,解得122x <<,故选:C.【点睛】考查一元二次不等式的解集与相应方程的根之间的关系以及解法,基础题.8.已知定义域为R 的偶函数()f x 在(],0-∞上单调递减,且()20f =,则满足()0xf x ≥的x 取值范围是()A.(][),22,-∞-+∞U B.[]22-,C.[)(]2,00,2-U D.[][)2,02,-⋃+∞【答案】D 【解析】【分析】由函数的单调性与奇偶性直接求解.【详解】∵定义域为R 的偶函数()f x 在(],0-∞上单调递减,且()20f =,(2)0f ∴-=,且在[0,)+∞上单调递增,()0xf x ∴≥,可得0()0x f x >⎧⎨≥⎩或0()0x f x <⎧⎨≤⎩或0x =,即2x ≥或20x -≤<或0x =,即[][)2,02,x ∈-⋃+∞.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各组函数中是同一个函数的是()A.()f x =与()g x = B.()f x x =与()g x =C.()2f x x =与()g x = D.()221f x x x =--与()221g t t t =--【答案】CD【解析】【分析】利用函数相等的概念逐项判断,可得出合适的选项.【详解】对于A 选项,对于函数()f x =,则320x -≥,可得0x ≤,对于函数()g x =20x -≥,可得0x ≤,所以,函数()f x 、()g x 的定义域均为(]0-∞,,()f x ==-A 选项中的两个函数不相等;对于B 选项,函数()f x x =与()g x =R ,但(),0,0x x g x x x x ≥⎧===⎨-<⎩,两个函数的对应关系不相同,所以,B 选项中的两个函数不相等;对于C 选项,函数()2f x x =与()g x =R ,()()2g x x f x ===,C 选项中的两个函数相等;对于D 选项,函数()221f x x x =--与()221g t t t =--的定义域均为R ,且这两个函数的对应关系也相同,D 选项中的两个函数相等.故选:CD.10.关于函数()11f x x =--的性质描述,正确的是()A.()f x 的定义域为[)(]1,00,1-B.()f x 的值域为()1,1-C.()f x 在定义域上是增函数D.()f x 的图象关于原点对称【答案】ABD 【解析】【分析】由被开方式非负和分母不为0,解不等式可得()f x 的定义域,可判断A ;化简()f x ,讨论01x <≤,10x -≤<,分别求得()f x 的范围,求并集可得()f x 的值域,可判断B ;由()()110f f -==,可判断C ;由奇偶性的定义可判断()f x 为奇函数,可判断D ;【详解】对于A ,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得11x -≤≤且0x ≠,可得函数()11f x x =--的定义域为[)(]1,00,1- ,故A 正确;对于B ,由A 可得()f x x =-,即()f x =当01x <≤可得()(]1,0f x =-,当10x -≤<可得()[)0,1f x =,可得函数的值域为()1,1-,故B 正确;对于C ,由()()110f f -==,则()f x 在定义域上不是增函数,故C 错误;对于D ,由()f x =的定义域为[)(]1,00,1- ,关于原点对称,()()f x f x -==-,则()f x 为奇函数,故D 正确;故选:ABD【点睛】本题考查了求函数的定义域、值域、奇偶性、单调性,属于中档题.11.已知二次函数2y ax bx c =++,且不等式2y x >-的解集为()1,3,则()A.a<0B.方程20ax bx c ++=的两个根是1,3C.42b a =-- D.若方程60y a +=有两个相等的根,则实数15a =-【答案】ACD 【解析】【分析】根据一元二次不等式与一元二次方程的关系得1,3为关于x 的二次方程()220ax b x c +++=的两根,进而得a<0,42b a =--,3c a =,再根据于x 的方程60y a +=有两相等的根即可得15a =-.,进而得答案.【详解】解:由于不等式2y x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则a<0.由题意可知,1,3为关于x 的二次方程()220ax b x c +++=的两根,由根与系数的关系得2134b a +-=+=,133ca=⨯=,所以42b a =--,3c a =,所以()2423y ax a x a =-++.由题意知,关于x 的方程60y a +=有两相等的根,即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()224236aa ∆=-+-⎡⎤⎣⎦()()102220a a =+-=,因为a<0,解得15a =-.故选:ACD .【点睛】本题考查一元二次不等式与一元二次方程的关系,考查运算能力,是中档题12.设正实数x ,y 满足2x +y =1,则()A.xy 的最大值是14B.21x y+的最小值为9C.4x 2+y 2最小值为12D.+最大值为2【答案】BC 【解析】【分析】利用基本不等式求xy 的最大值可判断A ;将()21212x y x y x y ⎛⎫+=++ ⎪⎝⎭展开,再利用基本不等式求最值可判断B ;由()222424x y x y xy +=+-结合xy 的最大值可判断C;由22x y +=++结合xy的最大值可求出2的最大值可判断D ,进而可得正确选项.【详解】对于A,21x y +=≥Q ,18xy ∴≤,当且仅当212x y x y+=⎧⎨=⎩即14x =,12y =时等号成立,故A 错误;对于B ,()2121222559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当2221y x x y x y ⎧=⎪⎨⎪+=⎩即13x y ==时等号成立,故B 正确;对于C ,由A 可得18xy ≤,又21x y +=,()222424x y x y xy +=+-11141482xy =-≥-⨯=,当且仅当14x =,12y =时等号成立,故C 正确;对于D ,2212x y +=++≤+=,当且仅当14x =,12y =时等号成立,故D 错误;故选:BC.第II 卷非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知集合{}2450A x x x =--=,集合{}210B x x =-=,则A B ⋃=________.【答案】{}1,1,5-【解析】【分析】求出集合A 、B ,利用并集的定义可求出集合A B ⋃.【详解】因为{}{}24501,5A x x x =--==-,{}{}2101,1B x x =-==-,因此,{}1,1,5A B =- .故答案为:{}1,1,5-.14.某年级先后举办了数学、历史、音乐讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座,则听讲座人数为__________.【答案】172【解析】【分析】画出韦恩图求解即可.【详解】687561(17129)6++-+++204386=-+,172=(人).故答案为:17215.函数()2224x f x x =+的值域为__________.【答案】[)0,2【解析】【分析】令2224x y x =+,可得出242y x y =--,由20x ≥可得出关于y 的不等式,解出y 的取值范围,即可得出函数()f x 的值域.【详解】令2224x y x =+,可得2242yx y x +=,可得()224x y y -=-,即242y x y =--,由2402y x y =-≥-,可得02yy ≤-,解得02y ≤<,所以,函数()2224x f x x =+的值域为[)0,2.故答案为:[)0,2.16.已知()()()223f x x xxax b =+++,若对一切实数x ,均有()()2f x f x =-,则()3f =_____.【答案】36-【解析】【分析】分析可得()()2050f f ⎧=⎪⎨=⎪⎩,可得出关于a 、b 的方程组,解出这两个量的值,可得出函数()f x 的解析式,代值计算可得出()3f 的值.【详解】由230x x +=,可得3x =-或0x =,则()()300f f -==,对一切实数x ,均有()()2f x f x =-,则函数()f x 的图象关于直线1x =对称,所以,()()200f f ==,()()530f f =-=,所以,()()()()2104205402550f a b f a b ⎧=++=⎪⎨=++=⎪⎩,解得710a b =-⎧⎨=⎩,所以,()()()()()()223710325f x x xxx x x x x =+-+=+--,则()()()()()()()()()22232225253f x x x x x x x x x f x -=--+----=--+=,合乎题意,因此,()()3312636f =⨯⨯-⨯=-.故答案为:36-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设集合{}{}25,|1|21A x x B x m x m =-≤≤=+≤≤-,(1)若4m =,求A B ⋃;(2)若B A B =I ,求实数m 的取值范围.【答案】(1){}|27A B x x ⋃=-≤≤;(2)(],3-∞.【解析】【分析】(1)根据并集的定义运算即得;(2)由题可得B A ⊆,分类讨论进而可得不等式即得.【小问1详解】当4m =时,{}|57B x x =≤≤,{}{}|25,|27A x x A B x x =-≤≤∴=-≤≤ ;【小问2详解】,B A B B A =∴⊆ ,当B =∅时,满足题意,此时121m m +->,解得2m <;当B ≠∅时,21215121m m m m -≤+⎧⎪-≤⎨⎪+≤-⎩解得23m ≤≤,∴实数m 的取值范围为(],3-∞.18.(1)对任意R x ∈,关于x 的不等式23x ax a ++≥恒成立,求实数a 的取值范围;(2)存在1x <,关于x 的不等式23x ax a ++≤有实数解,求实数a 的取值范围.【答案】(1){}62a a -≤≤(2){}2a a ≥【解析】【分析】(1)根据给定条件借助0∆≤即可求得实数a 的取值范围.(2)根据给定条件分离参数,再利用均值不等式计算即得.【小问1详解】因对任意R x ∈,不等式23x ax a ++≥恒成立,则230x ax a ++-≥对任意R x ∈恒成立,于是得:()2430a a ∆=--≤,解得62a -≤≤,所以实数a 的取值范围是{}62a a -≤≤.【小问2详解】当1x <时,222(1)2(1)443(1)3(1)211x x x ax a a x x a x x x ---+++≤⇔-≥+⇔≥=-+---,因存在1x <,不等式23x ax a ++≤有实数解,则存在1x <,不等式4(1)21a x x ≥-+--成立,当1x <时,10x ->,则4(1)2221x x -+-≥=-,当且仅当411x x -=-,即=1x -时取“=”,于是得2a ≥,所以实数a 的取值范围是{}2a a ≥.19.已知x>0,y>0,且x+4y-2xy=0,求:(1)xy 的最小值;(2)x+y 的最小值.【答案】(1)4;(2)92【解析】【分析】(1)由x+4y-2xy=0,得412x y+=又x>0,y>0,再利用基本不等式求xy 的最小值.(2)由题得x+y=12(41x y+)·(x+y),再利用基本不等式求x+y 的最小值.【详解】(1)由x+4y-2xy=0,得412x y +=又x>0,y>0,则2=41x y +≥2xy≥4,当且仅当x=4,y=1时,等号成立.所以xy 的最小值为4.(2)由(1)知412x y+=则x+y=12(41x y+)·(x+y)=1452x y y x ⎛⎫++ ⎪⎝⎭≥19522⎛+≥ ⎝当且仅当x=4且y=1时等号成立,∴x+y 的最小值为92.【点睛】(1)本题主要考查基本不等式求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是常量代换,即把x y +化成x+y=12(41x y+)·(x+y),再利用基本不等式求函数的最小值.利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.20.已知函数()24ax b f x x +=+是定义在()2,2-上的奇函数,且12217f ⎛⎫= ⎪⎝⎭.(1)求函数()f x 的解析式;(2)证明:函数()f x 在区间()2,2-上单调递增;(3)若()()1120f a f a ++->,求实数a 的取值范围.【答案】(1)()24xf x x =+(2)证明见解析(3)1,12⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用奇函数的性质()()f x f x -=-求得b ,再由12217f ⎛⎫=⎪⎝⎭求得a ,由此可得()f x 的解析式;(2)利用单调性的定义,结合作差法即可证明;(3)利用奇函数的性质得到()()121f a f a +>-,再利用(2)中结论去掉f 即可求解;特别强调,去掉f 时要注意定义域的范围.【小问1详解】由题意可知()()f x f x -=-,2244ax b ax b x x -++∴=-++,即ax b ax b -+=--,0b ∴=,()24ax f x x ∴=+,又12217f ⎛⎫= ⎪⎝⎭ ,即212217142a =⎛⎫+ ⎪⎝⎭,1a ∴=,()24x f x x ∴=+.【小问2详解】()12,2,2x x ∀∈-,且12x x <,有()()()()()()()()()()22122121121212222222121212444444444x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++,1222x x -<<<Q ,21120,40x x x x ∴->-<,()()120f x f x ∴-<,即()()12f x f x <,所以函数()f x 在区间()2,2-上单调递增.【小问3详解】因为()f x 为奇函数,所以由()()1120f a f a ++->,得()()()11221f a f a f a +>--=-,又因为函数()f x 在区间()2,2-上单调递增,所以2122212121a a a a -<+<⎧⎪-<-<⎨⎪+>-⎩,解得3113222a a a -<<⎧⎪⎪-<<⎨⎪<⎪⎩,故112a -<<,所以实数a 的取值范围是1,12⎛⎫- ⎪⎝⎭21.某书商为提高某套丛书的销量,准备举办一场展销会,据某市场调查,当每套丛书的售价定为x 元时,销售量可达到()150.1x -万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分为固定价格和浮动价格两部分.其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.求:(1)每套丛书的售价定为100元时,书商所获得的总利润.(2)每套丛书的售价定为多少元时,单套丛书的利润最大.【答案】(1)340万元;(2)每套丛书售价定为140元时,单套丛书的利润最大,为100元.【解析】【分析】(1)根据给定条件,依次列式计算作答.(2)求出售价x 的范围,再列出单套丛书利润的函数关系,借助均值不等式求解作答.【小问1详解】每套丛书售价定为100元时,销售量为150.11005(-⨯=万套),于是得每套丛书的供货价格为103032(5+=元),所以书商所获得的总利润为()510032340(⨯-=万元).【小问2详解】每套丛书售价定为x 元,由150.100x x ->⎧⎨>⎩得0150x <<,设单套丛书的利润为P 元,则10100100(30)30[(150)]120150.1150150P x x x x x x=-+=--=--++---,120100≤-=,当且仅当100150150x x -=-,即140x =时等号成立,即当140x =时,max 100P =,所以每套丛书售价定为140元时,单套丛书的利润最大,为100元.22.已知函数.(1)求函数f(x)的定义域和值域;(2)设F(x)的最大值的表达式g(m).【答案】,2];(2)g(m)=12,211,22222m mm mmm⎧+>-⎪⎪⎪---<≤-⎨⎪≤-.【解析】【分析】(1)由1010xx+≥⎧⎨-≥⎩解不等式可得函数的定义域,先求得()22f x=+⎡⎤⎣⎦,结合01≤≤,可得()224f x≤≤⎡⎤⎣⎦,结合()0f x≥即可得到函数()f x的值域;(2)令()f x t=,可得()21,22F x mt t m t⎤=+-∈⎦,根据二次函数的图象和性质,利用分类讨论思想即可得到结论.【详解】(1)要使函数f(x)有意义,需满足1010xx+≥⎧⎨-≥⎩得-1≤x≤1.故函数f(x)的定义域是{x|-1≤x≤1}.∵[f(x)]2,且∴2≤[f(x)]2≤4,又∵f(x)≥0,即函数,2].(2)令f(x)=t,则t2t2-1,故F(x)=m(12t2-1)+t=12mt2,2],令h(t)=12mt2+t-m,则函数h(t)的图像的对称轴方程为t=-1m.①当m>0时,-1m<0,函数,2]上递增,∴g(m)=h(2)=m+2.②当m=0时,h(t)=t,g(m)=2;③当m<0时,-1m>0,若0<-1m,即m≤-2时,函数,1m≤2,即-2<m≤-时,g(m)=h(-1m)=-m-12m;若-1m>2,即-12<m<0时,函数,2]上递增,∴g(m)=h(2)=m+2.综上,g(m)=12,211,2222m mm mmm⎧+>-⎪⎪⎪---<≤-⎨⎪⎪≤-⎪⎩【点睛】分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。

2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题

2024-2025学年上期高一年级期中考试数学试题(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡上相应的位置。

2.作答时,全部答案在答题卡上完成,答在本试卷上无效。

3.考试结束后,只交答题卡,试卷由考生带走。

一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合,集合,,则A ∪(C U B )=( )A .B .C .D .2.“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知,,则( )A .B .C .D .4.已知函数,( )A .B .C .D .15.函数的定义域为( )A .B .C .D .6.为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润(单位:万元)与生产线运转时间(单位:年)满足二次函{}1,2,3,4U ={}1,2A ={}2,3B ={}2{}1,3{}1,2,4{}1,2,302x <<13x -<<0a b >>d c <0ac bd >>ac bd >a c b d +>+0a cb d +>+>211,1()1,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩((2))f f =15-151-()()01f x x =-2,3⎛⎫+∞ ⎪⎝⎭()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭()2,11,3∞⎛⎫⋃+ ⎪⎝⎭2,3⎡⎫+∞⎪⎢⎣⎭s t数关系:,现在要使年平均利润最大,则每条生产线运行的时间t 为( )年.A .7B .8C .9D .107.已知函数,且,则实数的取值范围是( )A .B .C .D .8.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数f (x )={1, x ∈Q0, x ∈C R Q 被称为狄利克雷函数,其中为实数集,为有理数集,以下关于狄利克雷函数的四个结论中,正确的个数是( )个.①函数偶函数;②函数的值域是;③若且为有理数,则对任意的恒成立;④在图象上存在不同的三个点,,,使得∆ABC 为等边角形. A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的有( )A .命题“,”的否定是“,”B .若,则C .命题“,”是假命题D .函数是偶函数,且在上单调递减.10.下列选项中正确的有( )A .已知函数是一次函数,满足,则的解析式可能为B .与表示同一函数C .函数的值域为224098s t t =-+-()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-R Q ()f x ()f x ()f x {}0,10T ≠T ()()f x T f x +=x R ∈()f x A B C 1x ∀>20x x ->1x ∃≤20x x -≤a b >22ac bc ≥Z x ∀∈20x >21y x =()0,∞+()f x ()()98f f x x =+()f x ()34f x x =--||()x f x x =1,0()1,0x g x x >⎧=⎨-≤⎩()2f x x =+(,4]-∞D .定义在上的函数满足,则11.下列命题中正确的是( )A .若,,,则B .已知,,,则的最小值是C .若,则的最小值为4D .若,,,则的最小值为三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.已知集合,若,则实数13.已知函数,则的单调增区间为14.若定义在上的函数同时满足;①为奇函数;②对任意的,,且,都有.则称函数具有性质P .已知函数具有性质P ,则不等式的解集为 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)当时,求,,A ∩(C R B ); (2)若,求实数m 的取值范围.16.已知关于x 的不等式的解集为.(1)求m ,n 的值;(2)正实数a ,b 满足,求的最小值.R ()f x 2()()1f x f x x --=+()13x f x =+0a >0b >21a b +=ab 0a >0b >32a b +=12a b a b+++20ab >4441a b ab ++0a >0b >31132a b a b+=++2+a b 165{}21,2,1A a a a =---1A -∈a =()2f x x x x =-+()f x (,0)(0,)-∞+∞ ()f x ()f x 1x 2(0,)x ∈+∞12x x ≠x f x x f x x x -<-211212()()0()f x ()f x 2(4)(2)2f x f x x --<+{}27|A x x =-<<{}|121B x m x m =+≤≤-4m =A B ⋂A B A B B = 2200x mx --<{}2|x x n -<<2na mb +=115a b+17.已知幂函数为偶函数.(1)求的解析式; (2)若在上是单调函数,求实数的取值范围.18.已知函数.(1)证明:函数是奇函数;(2)用定义证明:函数在上是增函数;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.已知函数(1)证明:,并求函数的值域;(2)已知为非零实数,记函数的最大值为.①求;②求满足的所有实数.()()2157m f x m m x -=-+()f x ()()3g x f x ax =--[]1,3a ()31x f x x x =++()f x ()f x ()0,∞+x ()()2310f ax ax f ax ++-≥x a ()()f x g x ==()()222f x g x =+()f x a ()()()x x h f g x a =-()m a ()m a ()1m a m a ⎛⎫= ⎪⎝⎭a。

浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案

浙江省嘉兴市2024-2025学年高一上学期期中联考数学试题含答案

2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题(答案在最后)考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分(共58分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个合题目要求的.1.设集合{}{}21,2,1,0,1,2A x x B =-<<=--,则A B = ()A .{}1,0-B .{}0C .{}0,1D .{}1,0,1-2.已知1,12是方程20x bx a -+=的两个根,则a 的值为()A .12-B .2C .12D .2-3.“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知幂函数ay x =的图象过点(9,3),则a 等于()A .3B .2C .32D .125.已知0.20.50.23,3,log 5a b c ===,则,,a b c 的大小关系是()A .a b c <<B .c a b <<C .c b a <<D .a c b <<6.方程2ln 50x x +-=的解所在区间为()A .(4,5)B .(3,4)C .(2,3)D .(1,2)7.已知函数()22xf x =-,则函数()y f x =的图象可能是()A .B .C .D .8.已知函数()f x 为定义在R 上的奇函数,且在[0,1)为减函数,在[1,+)∞为增函数,且(2)0f =,则不等式(1)()0x f x +≥的解集为()A .(,2][0,1][2,)-∞-+∞B .(,1][0,1][2,+)-∞-∞C .(,2][1,0][1,)-∞--+∞ D .(,2][1,0][2,)-∞--+∞ 二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列叙述正确的是()A .2,230x R x x ∃∈-->B .命题“,12x R y ∃∈<≤”的否定是“,1x R y ∀∈≤或2y >”C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .命题“2,0x R x ∀∈>”的否定是真命题10.已知集合{}1,2,3A =,集合{},B x y x A y A =-∈∈,则()A .{}1,2,3AB = B .{}1,0,1,2,3A B =-C .0B∈D .1B-∈11.下列说法不正确的是()A .函数1()f x x=在定义域内是减函数B .若函数()g x 是奇函数,则一定有(0)0g =C .已知函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[3,1]--D .若函数()f x 的定义域为[2,2]-,则(21)f x -的定义域为13[,22-非选择题部分(共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.函数22,1()23,1x x f x x x ⎧-≤=⎨+>⎩,则((2))f f -的值是▲.13.计算:0ln 2lg 252lg 2eπ+-+=▲.14.x R ∀∈,用函数()m x 表示函数()f x 、()g x 中的最小者,记为{}()min (),()m x f x g x =.若()min m x ={}21,(1)x x -+--,则()m x 的最大值为▲.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤15.(本题满分13分)已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)当1m =-时,求A B ;(2)若A B ⊆.求实数m 的取值范围.16.(本题满分15分)已知函数2()23()f x x ax a R =-+∈.(1)若函数()f x 在(,2]-∞上是减函数,求a 的取值范围;(2)当[1,1]x ∈-时,讨论函数()f x 的最小值.17.(本题满分15分)已知函数()af x x x=+,且(1)2f =.(1)求a ;(2)根据定义证明函数()f x 在区间(1,)+∞上单调递增;(3)在区间(1,)+∞上,若函数()f x 满足(2)(21)f a f a +>-,求实数a 的取值范围.18.(本题满分17分)已知函数()ln(1)ln(1)f x x x =--+,记集合A 为()f x 的定义域.(1)求集合A ;(2)判断函数()f x 的奇偶性;(3)当x A ∈时,求函数221()(2x xg x +=的值域.19.(本题满分17分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现注意力指数p 与听课时间t 之间的关系满足如图所示的曲线.当(0,14]t ∈时,曲线是二次函数图象的一部分,当[14,45]t ∈时,曲线是函数log (5)83a y t =-+,(0a >且1a ≠)图象的一部分.根据专家研究,当注意力指数p 大于80时听课效果最佳.(1)试求()p f t =的函数关系式;(2)老师在什么时段内讲解核心内容能使学生听课效果最佳?请说明理由.2024学年第一学期嘉兴八校联盟期中联考高一年级数学学科试题答案1234567891011A C A DBCBDABDCDABC12.713.114.015.解:(1)当{}1,22m B x x =-=-<<∵{}13A x x =<<∴{}23A B x x =-<< (2)∵A B⊆2113m m ≤⎧⎨-≥⎩,122m m ⎧≤⎪⎨⎪≤-⎩∴2m ≤-∴(,2]m ∈-∞-16.(1)对称轴:x a =∵为减函数∴2a ≥∴[2,)a ∈+∞(2)①当1a <-时,在[1,1]-,则min ()(1)24f x f a =-=+②当11a -≤≤,在[1,1]-有最低点,2min ()()3f x f a a ==-+③1a >时,在[1,1]-,min ()(1)24f x f a ==-+17.(1)∵(1)2f =∴21a=+∴1a =(2)1()f x x x=+12,(1,)x x ∀∈+∞,且12x x <,则12()()f x f x --121211x x x x =+--211212x x x x x x -=-+12121()(1)x x x x =--∵1212,(1,)x x x x <∈+∞∴121212110,01,10x x x x x x -<<<->∴12()()0f x f x -<,即12()()f x f x <故()f x 在(1,)+∞(3)∵在(1,)+∞,(2)(1)f a f a +>-∴211121a a a a +>⎧⎪->⎨⎪+>-⎩,12a a >-⎧⎪>⎨⎪⎩任意成立∴2a >18.(1)1010x x ->⎧⎨+>⎩,11x x <⎧⎨>-⎩,{}11A x x =-<<(2)1()ln()1xf x x-=+可知定义域关于原点对称111()ln(ln(ln ()111x x xf x f x x x x+---====-+++故()f x 为奇函数.(3)令22t x x =+,对称轴1x =-t 在(1,1)-上,故(1,3)t ∈-又1()2ty =在R 上递减故221()(2x xg x +=的值域是:1(,2)8.19.(1)当(0,14]t ∈,设2()f t at bt c =++代入顶点(12,82)1481(,,)可得:21()[12)824f t t =--+当[14,45]t ∈,由log (5)83(01)a y t a a =-+>≠且代入(14,81),13a =,故:1()log (5)833f t t =-+综上2131(12)82,((0,14])4()log (5)83,([14,45])t t p f t t t ⎧--+∈⎪==⎨-+∈⎪⎩(2)当014t <≤,21()(12)82804f t t =--+>∴1214t -<≤当[14,45]t ∈,13()log (5)8380f t t =-+>∴1432t ≤<∴在(1232)-这段时间安排核心内容效果最佳.。

2023-2024学年北京清华大学附属中学昌平学校高一上学期期中数学试题含答案解析

2023-2024学年北京清华大学附属中学昌平学校高一上学期期中数学试题含答案解析

清华附中昌平学校2023—2024第一学期高一年级数学学科期中考试试卷(满分:150分时间:120分钟)考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,1,0,1M =--,{}30N x x =-≤<,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1 C.{}2- D.{}2,1--2.命题“3x ∃≥,2230x x -+<”的否定是()A.3x ∀≥,2230x x -+<B.3x ∀≥,2230x x -+≥C.3x ∀<,2230x x -+≥D.3x ∃<,2230x x -+≥3.ac bc <是a b <的()A.既不充分也不必要条件B.充分不必要条件C.必要不充分条件D.充分必要条件4.下列函数中,在区间()1,+∞上为增函数的是()A.31y x =-- B.2y x= C.12y x =-+ D.245y x x =-+5.函数3()5f x x =-的零点所在的区间是A.(1,2)B.(2,3)C.(3,4)D.(4,5)6.函数()21xf x x =+的图像大致是()A.B.C.D.7.已知0,0x y >>,且822x y+=,则x y +的最小值是()A.9B.12C.15D.188.下列不等式中解集为[]1,3的是()A.103x x -≤- B.103xx-≥- C.21-≤x D.()()130x x --≥9.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个商品的售价应定为()A.95元B.100元C.105元D.110元10.设函数()243,01,0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,给出下列四个结论:①函数()f x 的值域是R ;②()()1212,2,x x x x ∀∈-+∞≠,有()()12120f x f x x x ->-;③00x ∃>,使得()()00f x f x -=;④若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是()3,-+∞.其中,由所有正确结论的序号构成的是()A .①②③B.①③④C.③④D.②③④第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()021y x =-的定义域是____.12.已知()21f x x x +=-,则()f x 的解析式是_____13.若,m n 是方程2310x x +-=的两个实数根,则22m n mn mn +-=______.14.已知1x >,11y x x =+-,则当且仅当x =____时,y 取得最小值____.15.函数()2214112x ax x f x a x x ⎧-+<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,若()f x 是R 上的单调递增函数,则实数a 的取值范围是_________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.集合{}{}15,121A xx B x a x a =-≤≤=+≤≤-∣∣(1)当4a =时,求A B ⋃:(2)若A B B = ,求实数a 的取值范围;17.关于x 的不等式:()210x a a -++<.(1)若2a =,求不等式的解集,(2)求不等式的解集,18.已知()21x f x x+=.(1)判断函数()f x 的奇偶性,并证明;(2)判断函数()f x 在()1,+∞上的单调性,并证明;(3)求函数()f x 在区间[)5,4--上的值域.19.函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求()f x 的解析式:(2)判断()f x 在()1,1-的单调性,并证明;(3)解不等式()()10f t f t -+<20.为响应国家提出的“大众创业,万众创新”的号召,小张同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,每月生产某大型电子产品x 件,每件产品售价为12万元,需投入月固定成本为6万元,另投入流动成本为()C x 万元,且()91,06491336,6x x C x x x x +<≤⎧⎪=⎨+->⎪⎩.经市场分析,生产的产品当月能全部售完.(注:月利润=月销售收入-固定成本-流动成本)(1)写出月利润()P x (万元)关于月产量x (件)的函数解析式;(2)求月产量为多少件时,小张在这一产品的生产中所获利润最大,并计算出最大利润值.21.新定义:若存在0x 满足00(())f f x x =,且00()f x x ≠,则称0x 为函数()f x 的次不动点.已知函数11,0()1(),11x x a af x x a a a⎧-+≤≤⎪⎪=⎨⎪-<≤⎪-⎩,其中01a <<.(1)当12a =时,判断15是否为函数()f x 的次不动点,并说明理由;(2)求出(())f f x 的解析式,并求出函数()f x 在[0,]a 上的次不动点.清华附中昌平学校2023—2024第一学期高一年级数学学科期中考试试卷(满分:150分时间:120分钟)考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,1,0,1M =--,{}30N x x =-≤<,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1 C.{}2- D.{}2,1--【答案】D 【解析】【分析】利用交集的定义可求得集合M N ⋂.【详解】因为集合{}2,1,0,1M =--,{}30N x x =-≤<,则{}2,1M N ⋂=--.故选:D.2.命题“3x ∃≥,2230x x -+<”的否定是()A.3x ∀≥,2230x x -+<B.3x ∀≥,2230x x -+≥C.3x ∀<,2230x x -+≥D.3x ∃<,2230x x -+≥【答案】B 【解析】【分析】利用含有一个量词的命题的否定规律“改量词,否结论”分析判断即可得解.【详解】解:因为命题“3x ∃≥,2230x x -+<”为存在量词命题,所以其否定为“3x ∀≥,2230x x -+≥”.故选:B .3.ac bc <是a b <的()A.既不充分也不必要条件B.充分不必要条件C.必要不充分条件D.充分必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义即可得解.【详解】当2,1,1a b c ===-时,,ac bc a b <>,当1,2,1ab c ===-时,,a b ac bc <>,所以ac bc <是a b <的既不充分也不必要条件.故选:A .4.下列函数中,在区间()1,+∞上为增函数的是()A.31y x =-- B.2y x=C.12y x =-+ D.245y x x =-+【答案】C 【解析】【分析】根据一次函数,反比例函数和二次函数的单调性逐一判断即可.【详解】对于A ,函数31y x =--在()1,+∞上为减函数,故A 不符合;对于B ,函数2y x=在区间()1,+∞上为减函数,故B 不符合;对于C ,当1x >时,函数121y x x =-+=+在区间()1,+∞上为增函数,故C 符合;对于D ,函数()224521y x x x -=+=-+在()1,2上单调递减,在()2,+∞上单调递增,故D 不符合.故选:C.5.函数3()5f x x =-的零点所在的区间是A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】A 【解析】【分析】求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的【详解】由函数()35f x x =-可得()11540f =-=-<,()28530f =-=>,故有()()120f f <,根据函数零点的判定定理可得,函数()f x 的零点所在区间为()1,2,故选A .【点睛】本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.6.函数()21xf x x =+的图像大致是()A. B.C. D.【答案】B 【解析】【分析】根据题意,得到函数()f 为奇函数,且0x >时,()0f x >,结合选项,即可求解.【详解】由函数()21x f x x =+,可得()()()2211x x f x f x x x --==-=-+-+,所以函数()f x 为奇函数,其图象关于原点对称,又由0x >时,()0f x >,所以函数()f x 图象为B 选项.故选:B.7.已知0,0x y >>,且822x y+=,则x y +的最小值是()A .9B.12C.15D.18【答案】A【分析】根据基本不等式中“1”的整体代换计算即可.【详解】因为0,0x y >>,且822x y+=,所以()182182110109222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当82y xx y=,即26x y ==时取等号,所以x y +的最小值是9.故选:A .8.下列不等式中解集为[]1,3的是()A.103x x -≤- B.103xx-≥- C.21-≤x D.()()130x x --≥【答案】C 【解析】【分析】根据分式不等式和一元二次不等式的解法分别求解即可.【详解】对于A ,由103x x -≤-,得()()13030x x x ⎧--≤⎨-≠⎩,解得13x ≤<,所以不等式103x x -≤-的解集为[)1,3,故A 不符;对于B ,由103xx -≥-,得()()13030x x x ⎧--≥⎨-≠⎩,解得3x >或1x ≤,所以不等式103xx-≥-的解集为{3x x >或}1x ≤,故B 不符;对于C ,由21-≤x ,解得13x ≤≤,所以不等式21-≤x 的解集为[]1,3,故C 符合;对于D ,由()()130x x --≥,解得3x ≥或1x ≤,所以不等式()()130x x --≥的解集为{3x x ≥或}1x ≤,故D 不符.9.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个商品的售价应定为()A.95元 B.100元 C.105元D.110元【答案】A 【解析】【分析】假设售价在90元的基础上涨x 元,从而得到销售量,进而可以构建函数关系式,利用二次函数求最值的方法求出函数的最值.【详解】解:设售价在90元的基础上涨x 元因为这种商品每个涨价1元,其销售量就减少20个,所以若涨x 元,则销售量减少20x ,按90元一个能全部售出,则按90x +元售出时,能售出40020x -个,每个的利润是908010x x +-=+元设总利润为y 元,则2(10)(40020)202004000y x x x x =+-=-++,对称轴为5x =所以5x =时,y 有最大值,售价则为95元所以售价定为每个95元时,利润最大.故选:A .函数解析式.10.设函数()243,01,0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,给出下列四个结论:①函数()f x 的值域是R ;②()()1212,2,x x x x ∀∈-+∞≠,有()()12120f x f x x x ->-;③00x ∃>,使得()()00f x f x -=;④若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是()3,-+∞.其中,由所有正确结论的序号构成的是()A.①②③B.①③④C.③④D.②③④【答案】B 【解析】【分析】通过作出函数的简图,即可对①②项进行判断,对于③可以作出抛物线关于y 轴的对称图像与函数在y 轴右侧部分的交点情况判断即可,对于④可以作出符合题意的直线,通过对称性计算得出.【详解】根据函数解析式,作出函数的简图如图.在①中,由图易得函数()f x 的值域是R ,故①正确;在②中,由图易得函数()f x 在(2,0]-上为增函数,在(0,)+∞上为增函数,但在0x =处,图像左高右低,因而不能说函数()f 在()2,-+∞上为增函数,故②错误;③因00x >,故00,x -<于是2000()43f x x x -=-+,其对应的图像与函数1,(0)y x x=->的图像有交点,即00x ∃>,使得()()00f x f x -=,故③正确;④如图作一条与函数()f x 有三个交点且与x 轴平行的直线,不妨假设123x x x ,<<利用对称性知:122(2)4,x x +=⨯-=-而31,x >故必有123 3.x x x ++>-故④正确.故选:B.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()021y x =-的定义域是____.【答案】2132x x x ⎧⎫<≠⎨⎩⎭且【解析】【分析】根据已知函数即可求出函数的定义域.【详解】由题意,在()021y x =-中,230210x x ->⎧⎨-≠⎩,解得:23x <且12x ≠-,故答案为:2132x x x ⎧⎫<≠⎨⎩⎭且.12.已知()21f x x x +=-,则()f x 的解析式是_____【答案】()232f x x x =-+【解析】【分析】利用换元法计算可得.【详解】因为()21f x x x +=-,令1t x =+,则1x t =-,所以()()()221132f t t t t t =---=-+,所以()232f x x x =-+.故答案为:()232f x x x =-+13.若,m n 是方程2310x x +-=的两个实数根,则22m n mn mn +-=______.【答案】4【解析】【分析】根据题意结合韦达定理运算求解.【详解】若,m n 是方程2310x x +-=的两个实数根,则31m n mn +=-⎧⎨=-⎩,所以()2214+-=+-=m n mn mn mn m n .故答案为:4.14.已知1x >,11y x x =+-,则当且仅当x =____时,y 取得最小值____.【答案】①.2②.3【解析】【分析】由基本不等式可得答案.【详解】由题,11111311y x x x x =+=-++≥+=--.当且仅当111x x -=-,即2x =时取等号.故答案为:2;315.函数()2214112x ax x f x a x x ⎧-+<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,若()f x 是R 上的单调递增函数,则实数a 的取值范围是_________.【答案】81,5⎡⎤⎢⎥⎣⎦.【解析】【分析】分段函数在R 上的单调递增,只需要保证第一段和第二段都是递增的,而且在临界值时左端要小于或等于右端;即要保证:二次函数在1x <时递增则对称轴大于等于1:即1a >,一次函数递增则要求402a->;再需要保证当1x =时12412a a -+≤--便可求出a 的范围.【详解】因为()f x 是(),-∞+∞上的增函数,所以14021232a a a a ⎧⎪≥⎪⎪->⎨⎪⎪-+≤-⎪⎩,解得1885a a a ⎧⎪≥⎪<⎨⎪⎪≤⎩,取交集得a 的取值范围是81,5⎡⎤⎢⎥⎣⎦.故答案为:81,5⎡⎤⎢⎥⎣⎦.【点睛】本题主要考查函数的单调性的性质,函数在R 上的函数单调性,特别要注意临界位置的大小关系,很多学生容易忽略这点.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.集合{}{}15,121A xx B x a x a =-≤≤=+≤≤-∣∣(1)当4a =时,求A B ⋃:(2)若A B B = ,求实数a 的取值范围;【答案】(1){}|17⋃=-≤≤A B x x (2){}|3a a ≤【解析】【分析】(1)根据并集运算求解;(2)由题意可得B A ⊆,分B =∅和B ≠∅两种情况,结合包含关系运算求解.【小问1详解】若4a =,则{}57=≤≤∣B xx ,所以{}|17⋃=-≤≤A B x x .【小问2详解】若A B B = ,则B A ⊆,当B =∅,则121a a +>-,解得2a <,符合题意;当B ≠∅,则12111215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23a ≤≤;综上所述:实数a 的取值范围{}|3a a ≤.17.关于x 的不等式:()210x a x a -++<.(1)若2a =,求不等式的解集,(2)求不等式的解集,【答案】(1){}12x x <<(2)答案见解析【解析】【分析】(1)根据一元二次不等式的解法计算即可;(2)分1a =,1a >和1a <三种情况讨论即可.【小问1详解】若2a =,则2320x x -+<,解得12x <<,所以不等式的解集为{}12x x <<;【小问2详解】由()210x a x a -++<,得()()10x a x --<,对应方程的根为12,1x a x ==,当1a =时,不等式的解集为∅;当1a >时,不等式的解集为{}1x x a <<;当1a <时,不等式的解集为{}1x a x <<.18.已知()21x f x x+=.(1)判断函数()f x 的奇偶性,并证明;(2)判断函数()f x 在()1,+∞上的单调性,并证明;(3)求函数()f x 在区间[)5,4--上的值域.【答案】(1)奇函数,证明见解析(2)增函数,证明见解析(3)2617,54⎡⎫--⎪⎢⎣⎭【解析】【分析】(1)根据函数奇偶性的定义判断即可;(2)利用作差法求证即可;(3)根据函数的单调性即可得解.【小问1详解】函数()21x f x x +=的定义域为{}0x x ≠,关于原点对称,因为()()21x f x f x x+-==--,所以函数()f x 为奇函数;【小问2详解】函数()f x 在()1,+∞上是增函数,()211x f x x x x+==+,任取121x x <<,则()()21212111f x f x x x x x ⎛⎫-=+-+ ⎪⎝⎭()()2121212121212121111x x x x x x x x x x x x x x x x ---=-+-=--=,因为121x x <<,所以2121210,1,10x x x x x x ->>->,所以()()210f x f x ->,即()()21f x f x >,所以函数()f x 在()1,+∞上是增函数;【小问3详解】因为函数()f x 在()1,+∞上单调递增,且函数()f x 为奇函数,所以函数()f x 在(),1-∞-上单调递增,即函数()f x 在[)5,4--上是增函数,所以()()()54f f x f -≤<-,即()261754f x -≤<-,所以函数()f x 在区间[)5,4--上的值域为2617,54⎡⎫--⎪⎢⎣⎭.19.函数()21ax bf x x+=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求()f x 的解析式:(2)判断()f x 在()1,1-的单调性,并证明;(3)解不等式()()10f t f t -+<【答案】(1)()21xf x x =+,()1,1x ∈-(2)单调递增,理由见解析(3)10,2⎛⎫ ⎪⎝⎭【解析】【分析】(1)由()00f =和1225f ⎛⎫= ⎪⎝⎭求出答案;(2)利用定义法证明函数单调性;(3)根据函数奇偶性和单调性,结合定义域得到不等式,求出解集.【小问1详解】由题意得()20010bf ==+,解得0b =,112212514af ⎛⎫== ⎪⎝⎭+,解得1a =,故()21xf x x=+,()1,1x ∈-;【小问2详解】()f x 在()1,1-的单调递增,利用见解析()12,1,1x x ∀∈-,且12x x <,则()()()()()()()()221212121211222112222222121212111111x x x x x x x x x x x x x x f x f x x x x x x x ---+---=-==++++++()()()()12122212111x x x x x x --=++,因为()12,1,1x x ∀∈-且12x x <,所以120x x -<,1210x x ->,故()()()()()()12121222121011x x x x f x f x x x ---=<++,所以()()12f x f x <,故()f x 在()1,1-的单调递增;【小问3详解】因为()21xf x x=+是定义在()1,1-上的奇函数,故()()()()()101f t f t f t f t f t -+<⇒-<-=-,由(2)可知,()f x 在()1,1-的单调递增,故111111t t t t -<-⎧⎪-<-<⎨⎪-<<⎩,解得102t <<,不等式的解集为10,2⎛⎫ ⎪⎝⎭20.为响应国家提出的“大众创业,万众创新”的号召,小张同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,每月生产某大型电子产品x 件,每件产品售价为12万元,需投入月固定成本为6万元,另投入流动成本为()C x 万元,且()91,06491336,6x x C x x x x +<≤⎧⎪=⎨+->⎪⎩.经市场分析,生产的产品当月能全部售完.(注:月利润=月销售收入-固定成本-流动成本)(1)写出月利润()P x (万元)关于月产量x (件)的函数解析式;(2)求月产量为多少件时,小张在这一产品的生产中所获利润最大,并计算出最大利润值.【答案】(1)()37,064930,6x x P x x x x -<≤⎧⎪=⎨--+>⎪⎩(2)月产量为7件时,获利润最大,利润最大为16(万元)【解析】【分析】(1)由题意可得()()126P x x C x =--,进而可得出答案;(2)分06x <≤和6x >两种情况讨论,结合基本不等式即可得解.【小问1详解】由题意可得()()126P x x C x =--,所以()37,064930,6x x P x x x x -<≤⎧⎪=⎨--+>⎪⎩;【小问2详解】当06x <≤时,()()max 611P x P ==(万元),当6x >时,()49303016P x x x =--+≤-+=(万元),当且仅当49x x=,即7x =时,取等号,综上所述,月产量为7件时,获利润最大,利润最大为16(万元).21.新定义:若存在0x 满足00(())f f x x =,且00()f x x ≠,则称0x 为函数()f x 的次不动点.已知函数11,0()1(),11x x a af x x a a x a ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪-⎩,其中01a <<.(1)当12a =时,判断15是否为函数()f x 的次不动点,并说明理由;(2)求出(())f f x 的解析式,并求出函数()f x 在[0,]a 上的次不动点.【答案】(1)15是函数()f x 的次不动点,理由见解析(2)()()()()2222222211,0111,11,21,21(1)1x x a a a ax a a x a a a f f x x a a x a a a a a x a a a x a a ⎧+≤<-⎪-⎪⎪-+-≤≤⎪⎪=⎨⎪-+<≤--⎪⎪---<≤⎪--⎪⎩,次不动点为221a a a a -+-.【解析】【分析】写出函数解析式,利用新定义,建立方程,可得答案.【小问1详解】当12a =时,()121,02121,12x x f x x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩,则11321555f ⎛⎫=-⨯+= ⎪⎝⎭,因为131555f f f ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,131555f ⎛⎫=≠ ⎪⎝⎭,所以15是函数()f x 的次不动点.【小问2详解】由101x a a ≤-+≤得2a a x a -≤≤,此时()()1111f f x x a a ⎛⎫=--++ ⎪⎝⎭;由111a x a <-+≤得20x a a ≤<-,此时()()1111f f x x a a a ⎛⎫=-+- ⎪-⎝⎭;由()101x a a a ≤-≤-得22a x a a ≤≤-,此时()()()1111f f x x a a a ⎛⎫=--+ ⎪-⎝⎭;由()111a x a a <-≤-得221a a x -<≤,此时()()()1111f f x x a a a a ⎛⎫=-- ⎪--⎝⎭;所以()()()()2222222211,0111,121,21(1)1x x a a a ax a a x a a a f f x x a a x a a a a ax a a a x a a ⎧+≤<-⎪-⎪⎪-+-≤≤⎪⎪=⎨⎪-+<≤--⎪⎪---<≤⎪--⎪⎩当20x a a ≤<-时,由()()211f f x x x a a =+=-得221a a x a a-=+-,此时2222222111a a a a a a f a a a aa a ⎛⎫---=≠ ⎪+-+-+-⎝⎭,所以221a a x a a -=+-是函数()f x 的次不动点;当2a a x a -≤≤时,由()()2111f f x x x a a =-+=得1ax a=+,此时11a a f a a ⎛⎫=⎪++⎝⎭,所以1a x a =+不是函数()f x 的次不动点;综上可知函数()f x 在[]0,a 上的次不动点为221a a a a-+-.。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

浙江省台州市台州十校2024-2025学年高一上学期11月期中联考数学试题(含答案)

浙江省台州市台州十校2024-2025学年高一上学期11月期中联考数学试题(含答案)

浙江省台州市台州十校2024-2025学年高一上学期11月期中联考数学试题考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,集合,则集合()A. B. C. D.2.命题“”的否定是()A. B. C. D.3.函数的定义域为()A. B. C. D.4.已知a,b为实数,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.函数的图像是()A. B. C. D.6.已知,则取最大值时的值为()A. B. C. D.7.不等式的解集是,则的解集是()A. B. C. D.{3,5}A={1,2,4,5}B=A B⋃={1,2,3,4,5,5}{1,2,3,4,5}{2,3,4,5}{5}20,0x x∀>>20,0x x∀><20,0x x∀>≤20,0x x∃><20,0x x∃>≤y={1}x x≥∣{1}x x>∣{1}x x≤∣{1}x x<∣1a b>>(1)(1)0a b-->||()xf x xx=+01x<<(1)x x-x1234232520x ax b--<{23}x x<<∣210ax bx-+<{23}x x<<∣115x x⎧<<⎫⎨⎬⎩⎭1123x x⎧⎫⎨-<-⎩<⎬⎭115x x⎧⎫⎨-<-⎩<⎬⎭8.已知“不小于的最小的整数”所确定的函数通常记为,例如:,则方程的正实数根的个数是( )A.1个B.2个C.3个D.无数个二、多选题(本大题共3小题,每小题6分,共18分.每小题各有四个选项,有多个选项正确)9.设x ,y 为实数,满足,则下列结论正确的是( )A. B. C. D.10.下列各组函数中,两个函数为同一函数的是( )A.和 B.和C.和 D.和11.定义在R 上的函数满足,当时,,则下列说法正确的是( )A. B.为奇函数C.在区间[m ,n ]上有最大值D.的解集为非选择题部分三、填空题(本大题共3小题,每小题5分,共15分)12.已知函数则_____________.13.已知正数x ,y 满足:,则的最小值为_____________.14.已知函数,若对任意的,总存在,使成立,则实数的取值范围是_____________.四、解答题(共5小题,共77分.解答题应写出文字说明,证明过程或演算步骤)15.(13分)已知集合(1)若,求;(2)若,求实数的取值范围.16.(15分)设函数,其图像过点(1)求出的解析式;x ()[]f x x =[1.2]2=31[]42x x =+14,12x y ≤≤<≤26x y <+≤02x y <-≤18xy <≤2xy≥()||f x x =()g x =3()1f x x =+3()1g t t =+()31f x x =+()32g x x =-2()3x f x x=-()3g x x =-()f x ()()()f x y f x f y +=+0x <()0f x >(0)0f =()f x ()f x ()f n ()2(1)10f x f x -+->{21}x x -<<∣2,1,()1,1x x f x x x >⎧=⎨+≤⎩(2)f =112x y+=4x y +2()43,()52f x x x g x mx m =-+=+-1[1,4]x ∈2[1,4]x ∈()()12f x g x =m {24},{}A x x B x x a =-<<=<∣∣3a =R C B A B A ⋂=a ()kf x x=(1,4)()f x(2)判断函数在上的单调性,并用定义证明.17.(15分)某租赁公司,购买了一辆小型挖掘机进行租赁.据市场分析,该小型挖掘机的租赁利润(单位:万元)与租赁年数的关系为.(1)该挖掘机租赁到哪几年时,租赁的利润超过9万元?(2)该挖掘机租赁到哪一年时,租赁的年平均利润最大?18.(17分)函数是定义在上的奇函数,当时,(1)在坐标系里画出函数的图象,并写出函数的单调递减区间;(2)求函数在上的解析式;(3)当时,恒成立,求的取值范围.19.(17分)已知函数(1)若,判断的奇偶性,求的最大值;(2)若的最大值为,求的最小值.()f x (0,)+∞y ()*Nx x ∈21436y xx =-+-()f x R 0x ≥2()24f x x x=-+()f x ()f x R 0x ≥()2f x m x ≤+m 2()4||2f x x x a a =-+-+0a =()f x ()f x ()f x ()g a ()g a2024学年第一学期台州十校联盟期中联考高一年级数学参考答案一、单选题:BDAACADB 二、多选题9.AC10.AB11.ABD三、填空题:12.213.14.四、解答题:15.解:(1)因为,所以;………………………………………………………………………………6分(2)因为,所以,所以实数的取值范围为………………………………………………………………13分16.解:(1)将点坐标代入解析式,,得.……………………………………………………………………………………………4分(2)在上的是减函数.…………………………………………………………6分证明:,且则,即………………………………………15分17.解:(1)由题意得,……………………………………………………….2分整理得,解得,………………………………………………………5分,则92(,3][6,)-∞-⋃+∞{3}B x x =<∣{3}R B xx =≥∣ðA B ⊆4a ≥a {4}a a ≥∣14k=4k =4()f x x=4()f x x =(0,)+∞12,(0,)x x ∀∈+∞12x x <()()121244f x f x x x -=-()21124x x x x -=12122112,(0,),0,0x x x x x x x x ∈+∞<∴->> ()()()21121240x x f x f x x x -∴-=>()()12f x f x >214369x x -+->214450x x -+<59x <<*N x ∈ 6,7,8x =故该挖掘机租赁到第6,7,8年时,租赁的利润超过9万元……………………………………7分(2)租赁的年平均利润为…………………………………………………10分,因为,所以当且仅当时,即时,,故该挖掘机租赁到第6年时,租赁的年平均利润最大…………………………………………15分18.解:(1)函数的图象为:……………………………………………………3分由图象可得,函数的单调递减区间为:.……………………………………5分(2)函数是定义在上的奇函数,当时,有,,.…………………………………………………………………10分(3)当时,恒成立,,设,则当时,,21436y x x x x-+-=3614x x ⎛⎫=-++ ⎪⎝⎭3612x x +≥=36x x =6x =max12142y x ⎛⎫=-+= ⎪⎝⎭(,1),(1,)-∞-+∞ ()f x R 0x <20,()2()4x f x x x ->-=---2()()24f x f x x x ∴=--=+2224,0()24,0x x x f x x x x ⎧-+≥∴=⎨+<⎩ 0x ≥()2f x m x ≤+222m x x ∴≥-+2()22g x x x =-+12x =max 1()2g x =……………………………………………………………………………………17分19(1)由题意得,当时,,因为,所以是偶函数,故的最大值为4.………………………………………………………………………5分(2)由题意得,…………………7分①若,则当时,在上单调递增,,当时,.因为,所以.………………………………………………………………10分②若,则当时,,当时,.因为,所以当时,,当时,.…………………………………………………13分③若,则当时,,当时,在上单调递减,.因为,所以.……………16分综上所述,当时,,当时,.故的最小值为4.……………………………………………………………………………17分12m ∴≥2()4||f x x x =-+0x ≥22()4(2)44f x x x x =-+=--+≤()()f x f x =-()f x ()f x 222246(2)46,()42(2)42,x x a x a x af x x x a x a x a⎧--+=-+++<=⎨-+-=--+-≥⎩2a ≤-x a <()f x (,)a -∞2()()2f x f a a a <=-+x a ≥()(2)42f x f a ≤=-()222(42)244(2)0a a a a a a ---+=-+=-≥max ()()42f x g a a ==-22a -<<x a <()(2)46f x f a ≤-=+x a ≥()(2)42f x f a ≤=-(46)(42)8a a a +--=20a -<<max ()()42f x g a a ==-02a ≤<max ()()46f x g a a ==+2a ≥x a <()(2)46f x f a ≤-=+x a ≥()f x [,)a +∞2()()2f x f a a a ≤=-+()22(46)2(2)0a a a a +--+=+≥max ()()46f x g a a ==+0a <()424g a a =->0a ≥()464g a a =+≥()g a。

福建省漳州市十校联盟2024-2025学年高一上学期期中质量检测联考数学试题含答案

福建省漳州市十校联盟2024-2025学年高一上学期期中质量检测联考数学试题含答案

福建省漳州市十校联盟2024-2025学年高一上学期期中质量检测联考数学试题(答案在最后)满分150分,考试时间120分钟一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.设全集U 是实数集{}{}R,15,2M x x N x x =-≤≤=≥∣∣,则阴影部分所表示的集合是()A.{12}x x -≤<∣B.{25}xx ≤≤∣C.{12}xx -<≤∣ D.{12}xx -≤≤∣【答案】A 【解析】【分析】由阴影部分表示的集合U M N I ð求解.【详解】解:阴影部分表示的集合为:{12}U M xx N ≤⋂=-<∣ð,故选:A 2.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D3.下列不等式中,可以作为“30x -<”的一个必要不充分条件是()A.14x <<B.4x <C.1x <D.02x <<【答案】B 【解析】【分析】由必要不充分条件的概念逐项判断即可.【详解】对于A:14x <<为30x -<既不充分也不必要条件;对于B :4x <为30x -<的必要不充分条件;对于C:1x <为30x -<的充分不必要条件;对于D :02x <<为30x -<的充分不必要条件;故选:B4.若336a b +=,则a b +的取值范围是()A.(1,2]-B.[]0,2C .(2,)+∞ D.(,2]-∞【答案】D 【解析】【分析】根据基本不等式的应用可得3≥2a b +≤.【详解】易知30,30a b >>,所以336a b +=≥=,即可得3≥2393a b +≤=,所以2a b +≤,当且仅当1a b ==时,等号成立.故选:D5.幂函数()223()1m m f x m m x +-=--在(0,)+∞上是增函数,则实数m 的值为()A.2或1-B.1-C.2D.2-或1-【答案】C 【解析】【分析】根据幂函数的定义及幂函数的单调性,可得221130m m m m ⎧--=⎨+->⎩,进而求解即可.【详解】由题意得,221130m m m m ⎧--=⎨+->⎩,解得2m =.故选:C.6.若命题“2R,20x ax ax ∃∈-+≤”是假命题,则实数a 的取值范围是()A.{04}aa <<∣ B.{}08aa ≤≤∣C.{08}aa ≤<∣ D.{04}aa ≤<∣【答案】C 【解析】【分析】转化为x ∀∈R ,220ax ax -+>为真命题,分类讨论,结合判别式符号列不等式求解即可.【详解】命题:p x ∃∈R ,220ax ax -+≤为假命题,即x ∀∈R ,220ax ax -+>为真命题.当0a =时:20>恒成立;当0a ≠时:满足2Δ80a a a >⎧⎨=-<⎩,解得08a <<.综上,实数a 的取值范围是[)0,8,故选:C7.已知函数()16,2,2x x a x f x ax -⎧-≤=⎨>⎩在定义域上是单调递减函数,求实数a 的取值范围为()A.2,15⎡⎫⎪⎢⎣⎭ B.1,13⎛⎫ ⎪⎝⎭C.1,13⎡⎫⎪⎢⎣⎭ D.2,15⎛⎫⎪⎝⎭【答案】A 【解析】【分析】分段函数是减函数,各个函数在对应区间上单调递减,且(],2-∞对应函数右端点函数值大于或等于()2,+∞对应函数的左端点函数值,建立不等式后解得a 的取值范围.【详解】由题意可知:()6g x x a =-在(],2-∞上单调递减,又∵()6g x x a =-关于直线6x a =对称,∴()g x 在(],6a -∞上单调递减,∴62a ≥,∴13a ≥;()1x h x a -=在()2,+∞上单调递减,∴01a <<;且()()22g h ≥即26a a -≥,∴27a ≥或25a ≤,∴215a ≤<.故选:A.8.已知函数()f x 为定义在R 上的偶函数,12,(,0)x x ∀∈-∞,且()()12211221,4x f x x f x x x x x -<>-,且(2)4,(0)0f f -=-=,求不等式()4f x <-的解集为()A.[2,2]-B.(2,0)(0,2)-C.(2,0)(2,)-+∞D.(2,2)-【答案】B 【解析】【分析】构造函数()4()+=f x g x x,由已知条件确定它的奇偶性与单调性,然后利用其性质分类讨论解不等式.【详解】12,(,0)x x ∀∈-∞,且()()12211221,4x f x x f x x x x x --,则()()12212140x f x x f x x x -->-,()()122121[4][4]0x f x x f x x x +-+>-,所以212121()4()4f x f x x x x x ++->-,设()4()+=f xg x x,则2121(0)()g x x x g x ->-,21()()g x g x >,因此(,0)x -∞时,()g x 是增函数,又因为()f x 是偶函数,所以()4()4()()f x f x g x g x x x-++-==-=--,所以()g x 是奇函数,因此()g x 在(0,)+∞上也是增函数,(2)4(2)02f g -+-==-,则(2)(2)0=--=g g ,()4f x <-,()40f x +<,0x <时,()40f x x +>,即()0g x >,所以20x -<<,0x >时,()40f x x+<,即()0g x <,所以0<<2,综上,不等式的解集为()()2,00,2-⋃,故选:B .【点睛】方法点睛:本题考查函数的奇偶性与单调性解不等式,解题时主要要构造新函数()4()+=f xg x x,利用它的性质求解.在题中出现1221()()x f x x f x -时,构造新函数需要通过提取(或分子分母同除以或不等式两边同除以)21x x 得出2121()()f x f x x x -,当然本题中不等式右边不为0,因此需先移项变形,再确定构造的函数.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错或不选的得0分.9.中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”现有如下表示:已知{}*32,N A xx n n ==+∈∣,{}*53,N B x x n n ==+∈∣,{}*72,N C x x n n ==+∈∣,若()a A B C ∈⋂⋂,则下列选项中符合题意的整数a 为()A.23B.68C.128D.233【答案】ACD 【解析】【分析】依题意可知整数a 除以3余数为2,除以5余数为3,除以7余数为2;对选项逐一验证即可得出结论.【详解】根据题意可知,A B C ⋂⋂代表的是除以3余数为2,除以5余数为3,除以7余数为2的整数;对于A ,可知23372,23543,23732÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅,即A 正确;对于B ,可得683222,685133,68795÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅,不合题意,即B 错误;对于C ,可得1283422,1285253,1287182÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅,即C 正确;对于D ,易知2333742,2335463,2337332÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅÷=⋅⋅⋅⋅⋅⋅.可知D 正确.故选:ACD10.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的a ,b 恒成立的是()A.222a b ab +≤B.222a b +≥C.+≤ D.112a b+≥【答案】ABD 【解析】【分析】A 选项,222b a a a b b +=,利用基本不等式求出最大值;B 选项,由基本不等式得()()22224a b a b +≥+=,求出222a b +≥;C 选项,()224a b ≤+=2≤,C 错误;D 选项,利用基本不等式“1”的妙用求出最小值.【详解】A 选项,()()222222ab a b b a a b a b ab ++≤+===,当且仅当1a b ==时,等号成立,故A 正确;B 选项,()()22222224a bab ab a b +≥++=+=,故222a b +≥,当且仅当1a b ==时,等号成立,B 正确;C 选项,()224=+++=a b a b 2≤,当且仅当1a b ==时,等号成立,C 错误;D 选项,()11111111122222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当b aa b=,即1a b ==时,等号成立,D 正确.故选:ABD11.已知函数()f x 的定义域为R ,且满足2()()e e x x f x f x ---=+,则下列命题正确的是()A.函数()f x 的图像关于(0,0)对称B.函数()f x 的图像关于y 轴对称C.函数()f x 的最小值2D.()()0.10.123f f >-【答案】BC 【解析】【分析】依题意求出函数()f x 的解析式,可得其为偶函数,判断出A 错误,B 正确;再由基本不等式可得C 正确,利用奇偶性和单调性可得D 错误.【详解】由2()()e e x x f x f x ---=+可得2()()e e x x f x f x ---=+;两式联立可得()e e x x f x -=+,易知函数()f x 满足()()e e xxf x f x -=+=-,可知()f x 为偶函数,即可得A 错误,B 正确;易知e 0x >,所以()1e 2e x x f x =+≥=,当且仅当0x =时,等号成立,可得C 正确;当[)0,x ∈+∞时,根据对勾函数以及偶函数性质可得,()f x 为单调递增;易知()()0.10.133f f -=,且0.10.123<,所以()()()0.10.10.1233f f f <=-,即D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.计算:314316(0.125)(1181-⎛⎫-+-= ⎪⎝⎭___________.【答案】1927-【解析】【分析】根据分数指数幂运算法则计算可得结果.【详解】易知原式()()()314343132278190.510.512172323--⎛⎫⎛⎫⎛⎫=-+=-+=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;故答案为:1927-13.定义运算,,a a ba b b a b≤⎧⊗=⎨>⎩,已知函数()(132)3x f x x =-⊗,则()f x 的最大值为___________.【答案】9【解析】【分析】根据a b ⊗的含义及函数132y x =-与函数3x y =的单调性可得分段函数()f x 的解析式及单调性,可得最大值.【详解】由题意得,a b ⊗表示a 与b 的最小值,∵132y x =-在R 上单调递减,3x y =在R 上单调递增,且2x =时,1323x x -=,∴当2x ≤时,3132x x ≤-,当2x >时,3132x x >-,∴op =3,≤213−2s >2,∴()f x 在(,2)-∞上单调递增,在(2,)+∞上单调递减,∴max ()(2)9f x f ==.故答案为:9.14.若函数2231()3ax x f x ++⎛⎫= ⎪⎝⎭的值域是10,9⎛⎤ ⎥⎝⎦,则f (x )的单调递增区间是________.【答案】(,1]-∞-【解析】【分析】令g (x )=ax 2+2x +3,由f (x )的值域确定g (x )的值域,从而求出a 值,利用复合函数单调性的性质可得答案.【详解】令g (x )=ax 2+2x +3,由于f (x )的值域是10,9⎛⎤ ⎥⎝⎦,所以g (x )的值域是[2,+∞).因此有0,12424a a a>⎧⎪-⎨=⎪⎩解得a =1,这时g (x )=x 2+2x +3,2231()3x x f x ++⎛⎫= ⎪⎝⎭,由于g (x )的单调递减区间是(-∞,-1],所以f (x )的单调递增区间是(-∞,-1].故答案为:(,1]-∞-【点睛】本题考查复合函数的单调性,考查指数函数性质的应用,属于基础题.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知集合|A x y ⎧==⎨⎩,103|2B x x x ⎧⎫=⎨⎬⎩⎭+>-.(1)求()R A B ⋃ð;(2)若{6}C xa x a =-≤≤∣,且A C A = ,求实数a 的取值范围.【答案】(1)()1A ,(0,)2R B ⎛⎤⋃=-∞-⋃+∞ ⎥⎝⎦ð(2)[4,6]【解析】【分析】(1)先化简集合A ,B ,再利用集合的并集和补集运算求解;(2)由A C A = ,得到A C ⊆求解.【小问1详解】解:由040x x >⎧⎨-≥⎩,得04x <≤.所以A (0,4]=,由2103x x +>-,得:2110,332x x x +<∴-<<-.所以1,32B ⎛⎫=-⎪⎝⎭,1,[3,)2R B ⎛⎤=-∞-⋃+∞ ⎥⎝⎦ð.所以,()1A ,(0,)2R B ⎛⎤⋃=-∞-⋃+∞ ⎥⎝⎦ð;【小问2详解】由A C A = ,得A C ⊆,所以604a a -≤⎧⎨≥⎩,解得64a a ≤⎧⎨≥⎩即46a ≤≤.所以实数a 的取值范围[4,6].16.已知2()(2)(,)f x ax a x b a b R =-++∈(1)若不等式()0f x <的解集为(1,3)-,求a ,b 的值;(2)若b =2,且0a >求关于x 的不等式()0f x >的解集.【答案】(1)2,6a b ==-(2)答案见解析【解析】【分析】(1)由不等式的解集得相应一元二次方程的解,结合韦达定理求解;(2)不等式变形为2(1)0x x a ⎛⎫--> ⎪⎝⎭,再根据2a与1的大小分类讨论得出不等式的解集.【小问1详解】因为()0f x <的解集为(1,3)-,所以0a >,且1-和3是方程2(2)0ax a x b -++=的两个实数根.2(1)3,(1)3a ba a+∴-+=-⨯=,解得:2,6a b ==-.【小问2详解】当2b =时,2()(2)2(2)(1)f x ax a x ax x =-++=--()0f x >等价于(2)(1)0ax x -->因为0a >,得2(1)0x x a ⎛⎫--> ⎪⎝⎭当21a =,即2a =时,不等式为2(1)0x ->,得1x ≠,当21a <,即2a >时,解不等式得2x a <或1x >,当21>a,即02a <<时,解不等式得1x <或2x a >,综上,当2a =时,不等式的解集为(,1)(1,)-∞⋃+∞.当2a >时,不等式的解集为2,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭.当02a <<时,不等式的解集为2(,1),a ⎛⎫-∞+∞ ⎪⎝⎭.17.漳州市是中国重要的食用菌生产基地之一,食用菌产业得益于得天独厚的气候环境和土壤条件.某乡镇企业于2025年准备投资种植一批目前市场上较受欢迎的鸡枞菌.根据研究发现:种植鸡枞菌,一年需投入固定成本55万元,第一年最大产量50万斤,每生产x 万斤,需投入其他成本()c x 万元,211010,0366()160021285,3650x x x c x x x x ⎧++≤≤⎪⎪=⎨⎪+-<≤⎪⎩,根据市场调查,鸡枞菌的市场售价每万斤20万元,且全年所有产量都能全部售出.(利润=收入-固定成本-其它成本)(1)写出2025年利润f x ()(万元)与产量x (万斤)的函数解析式;(2)求2025年鸡枞菌产量x 为多少万斤时,该企业所获利润最大,求出利润最大值.【答案】(1)211065,0366()1600230,3650x x x f x x x x ⎧-+-≤≤⎪⎪=⎨⎪--+<≤⎪⎩(2)2025年产量为40万斤时,该企业所获利润最大,利润最大值为150万元【解析】【分析】(1)由利润=收入-固定成本-其它成本,根据题意求解;(2)由(1)的结论,利用二次函数的性质和基本不等式求解.【小问1详解】解:由题意可知:当036x ≤≤时,2211()20101055106566f x x x x x x ⎛⎫=-++-=-+- ⎪⎝⎭,当3650x <≤时,16001600()202128555230,f x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭211065,0366()1600230,3650x x x f x x x x ⎧-+-≤≤⎪⎪∴=⎨⎪--+<≤⎪⎩.【小问2详解】由211065,0366()1600230,3650x x x f x x x x ⎧-+-≤≤⎪⎪=⎨⎪--+<≤⎪⎩,①当036x ≤≤时,2211()1065(30)8566f x x x x =-+-=--+当30x =时,()f x 取得大值,最大值为85,②当3650x <≤时,1600()230230150f x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当1600x x=即40x =时,()f x 取得最大值50,由①②可得:当40x =时,()f x 取得最大值150,综上所述,2025年产量为40万斤时,该企业所获利润最大,利润最大值为150万元.18.设函数2x x f a ka x -=-()(0a >且1,R)a k ≠∈,若()f x 是定义在R 上的奇函数且8(1)3f =.(1)求k 和a 的值;(2)判断()f x 的单调性(无需证明),并求关于m 的不等式()2(1)50f m f m ++-+<成立时实数m 的取值范围;(3)已知函数22()2(),[0,1]x x g x a a f x x -=+-∈,求()g x 的值域.【答案】(1)1,32k a ==(2)在R 上单调递增,()(),23,-∞-⋃+∞(3)341,9⎡⎤⎢⎥⎣⎦【解析】【分析】(1)利用函数奇偶性以及函数值即可解得k 和a 的值;(2)由复合函数单调性可判断()f x 在R 上单调递增,利用单调性以及奇偶性解不等式可得实数m 的取值范围;(3)利用换元法将函数整理成二次函数形式,判断出其单调性,再由二次函数性质可得结果.【小问1详解】因为()f x 是R 上奇函数,所以()()f x f x -=-,即22x x x x a ka a ka ---=-+,整理得:()(12)0x x k a a --+=所以1120,2k k -==.所以()x x f x a a -=-,检验可知符合题意;又18(1)3f a a =-=,即28103a a --=,解得3a =或13a =-(舍)所以1,32k a ==.【小问2详解】由(1)可知()33x x f x -=-,易知指数函数3x y =为单调递增,函数3x y -=为单调递减,利用复合函数单调性可得()f x 在R 上单调递增,又因为()f x 为R 上的奇函数,所以()()22(1)55f m f m f m +<--+=-所以215m m +<-,即260m m -->,解得2m <-或3m >.所以()f x 在R 上单调递增,m 的取值范围是−∞,−2∪3,+∞【小问3详解】()2222()2()2,[0,1]x x x x x x g x a a f x a a a a x ---=+-=+--∈所以()22()33233x x x x g x --=+--()()2332332,[0,1]x x x x x --=---+∈令33x x t -=-,由(2)易知33x x t -=-在0,1上单调递增,所以8t 0,3⎡⎤∈⎢⎥⎣⎦记22822(1)1,0,3y t t t t ⎡⎤=-+=-+∈⎢⎥⎣⎦当时min 1,1t y ==;当83t =时,max 349y =.所以()g x 的值域是341,9⎡⎤⎢⎥⎣⎦.19.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.给定函数4()1f x x x c=-++.(1)写出函数()f x 图象的对称中心(只写出结论即可,不需证明);(2)当2c =时,①判断函数()f x 在区间(2,)-+∞上的单调性,并用定义证明;②已知函数g(1)1x +-是奇函数,且当[0,1]x ∈时,2()22g x x mx m =-+,若对任意1[0,2]x ∈,总存在2[0,2]x ∈,使得()()12g x f x =,求实数m 的取值范围.【答案】(1)(,1)c c --(2)①函数()f x 在区间(2,)-+∞上单调递增,证明见解析;②[0,1].【解析】【分析】(1)由函数成中心对称的充要条件可得()4()1f x c c x x---=-为奇函数,可得对称中心;(2)①根据单调性定义按照步骤即可证明函数()f x 在区间(2,)-+∞上单调递增;②依题意并根据二次函数性质得出两函数的值域之间的包含关系,限定出最值之间的不等关系,解不等式即可求得结果.【小问1详解】根据题意可知,函数4()1f x x x c =-++是由函数4y x x =-向左平移c 个单位,向上平移1个单位得到的;所以()4()1f x c c x x---=-为奇函数,可得函数()f x 图象的对称中心是(,1)c c --.【小问2详解】当2c =时,4()12f x x x =-++.①函数()f x 在区间(2,)-+∞上单调递增;证明如下:12,(2,)x x ∀∈-+∞,且12x x <,()()()()()12121212124441112222f x f x x x x x x x x x ⎛⎫-=-+-+-=-+ ⎪ ⎪++++⎝⎭,因为122x x -<<,所以12120,20,20x x x x -<+>+>,所以()()1241022x x +>++,所以()()120f x f x -<,即()()12f x f x <.所以()f x 在(2,)-+∞单调递增,②因为(1)1g x +-是奇函数,所以()g x 关于点(1,1)对称,设()g x 在[0,2]上的值域为,()A f x 在[0,2]上的值域为B .因为对任意1[0,2]x ∈,总存在2[0,2]x ∈,使得()()12g x f x =,所以A B ⊆,由①可知()f x 在[0,2]上单调递增,又(0)1,(2)2f f =-=,所以[1,2]B =-,又222()22()2,[0,2]g x x mx m x m m m x =-+=--+∈,当0m <时,()g x 在[0,1]上单调递增,又g(1)1,()g x =关于点(1,1)对称,所以函数()g x 在(1,2]也单调递增,故()g x 在[0,2]上单调递增,又因为g(0)2,(2)2(0)22m g g m ==-=-,故[2,22]A m m =-,因为A B ⊆,所以21222m m ≥-⎧⎨-≤⎩,得0m ≥,又0m <,所以此时m 不存在.当01m ≤≤时,g()x 在(0,)m 单调递减,在(,1)m 单调递增,又g()x 的对称中心为(1,1),所以g()x 在(1,2)m -单调递增,在(2,2]m -单调递减,所以[min{(2),()},max{(0),(2)}]A g g m g g m =-,要使A B ⊆,只需()()()222022121g g m g m m m ⎧=-=-≥-⎪⎨=-+≥-⎪⎩,且()()()202222222g m g m g m m m ⎧=≤⎪⎨-=-=-+≤⎪⎩,解得01m ≤≤,又01,m ≤≤所以01m ≤≤,当1m >时,()g x 在[0,1]单调递减,所以()g x 在(1,2]单调递减,所以()g x 在[0,2]单调递减,所以[22,2]A m m =-,所以22122m m -≥-⎧⎨≤⎩,所以1m ≤,又1m >,所以此时m 不存在,综上:01m ≤≤,即m 的范围是[0,1].【点睛】关键点点睛:本题关键在于根据二次函数性质得出两函数的值域之间的包含关系,限定出最值之间的不等关系,解不等式即可求得结果.。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2024-2025学年江苏省苏州市常熟市高一第一学期期中考试数学试题 (含答案)

2024-2025学年江苏省苏州市常熟市高一第一学期期中考试数学试题 (含答案)

2024-2025学年江苏省常熟市高一第一学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知命题p:“∃x∈R,x+2≤0”,则命题p的否定为( )A. ∃x∈R,x+2>0B. ∀x∈R,x+2>0C. ∃x∉R,x+2>0D. ∀x∈R,x+2≤02.已知x>0,则x−1+4x的最小值为( )A. 4B. 5C. 3D. 23.已知函数y=f(x)的定义域为[−2,1],则函数y=f(2x+1)的定义域为( )A. RB. [−2,1]C. [−3,3]D. [−32,0]4.若函数f(x)=(m2−2m−2)x2−m是幂函数,且y=f(x)在(0,+∞)上单调递减,则实数m的值为( )A. 3B. −1C. 1+3D. 1−35.常熟“叫花鸡”,又称“富贵鸡”,既是常熟的特产,也是闻名四海的佳肴,以其鲜美、香喷、酥嫩著称。

双十一购物节来临,某店铺制作了300只“叫花鸡”,若每只“叫花鸡”的定价是40元,则均可被卖出;若每只“叫花鸡”在定价40元的基础上提高x(x∈N∗)元,则被卖出的“叫花鸡”会减少5x只.要使该店铺的“叫花鸡”销售收入超过12495元,则该店铺的“叫花鸡”每只定价应为( )A. 48元B. 49元C. 51元D. 50元6.已知f(x)是奇函数,对于任意x1,x2∈(−∞,0)(x1≠x2),均有(x2−x1)(f(x2)−f(x1))>0成立,且f(2)=0,则不等式xf(x−2)<0的解集为( )A. (−2,0)∪(2,4)B. (−∞,−2)∪(2,4)C. (2,4)D. (−2,0)∪(0,2)7.通过研究发现:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)−b为奇函数,则函数f(x)=x3−3x2图象的对称中心为( ) 参考公式:(a+b)3=a3+3a2b+3ab2+b3A. (0,0)B. (1,2)C. (1,−2)D. (2,−4)8.已知正实数a,b满足a+b=4,则代数式1b +b+1a的最小值为( )A. 5+12B. 5+14C. 54D. 25+2二、多选题:本题共3小题,共18分。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷(答案在最后)注意事项1.本试卷共四页,共23道小题,满分150分.考试时间120分钟.2.在答题卡上指定位置贴好条形码,或填涂考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.答题不得使用任何涂改工具.出题人:高一备课组审核人:高一备课组一、选择题共12小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,{02}A B x x ==<<,则A B = ()A.{1}B.{1,2}C.{0,1,2}D.{02}x x <≤【答案】A 【解析】【分析】根据交集的运算方法即可计算.【详解】∵集合{}1,2,{02}A B x x ==<<,∴A B = {1}.故选:A .2.设命题2:N,25p n n n ∃∈>+,则p 的否定为()A.2N,25n n n ∀∈>+B.2N,25n n n ∀∈≤+ C.2N,25n n n ∃∈≤+ D.2N,25n n n ∃∈<+【答案】B 【解析】【分析】由特称命题的否定为将存在改任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题,则原命题的否定为2N,25n n n ∀∈≤+.故选:B 3.方程组221{9x y x y +=-=的解集是()A.(-5,4)B.(5,-4)C.{(-5,4)}D.{(5,-4)}【答案】D 【解析】【分析】消元法解方程组即可求解【详解】解方程组221{9x y x y +=-=,得()2219x x --=,解得54x y =⎧⎨=-⎩,故方程组的解集为{(5,-4)},故选:D.【点睛】本题考查解二元二次方程组及列举法表示集合,注意解集是点集的形式,是基础题4.已知全集U =R ,集合{}2M x x =>,{}13N x x =<<,那么下面的维恩图中,阴影部分所表示的集合为()A.{}2x x > B.{}2x x ≤ C.{}2x x > D.{}1x x ≤【答案】D 【解析】【分析】根据并集和补集的知识求得正确答案.【详解】{}|1M N x x => ,阴影部分表示集合为(){}|1M N x x ⋃=≤R ð.故选:D 5.不等式302xx -<+的解集为()A.{|2}x x <-B.{|23}x x -<< C.{|2x x <-或3}x > D.{|3}x x >【答案】C【分析】将不等式作等价转换,再求解集即可.【详解】30(2)(3)02xx x x -<⇒+->+,故解集为{|2x x <-或3}x >.故选:C 6.函数26()f x x x=-零点所在的一个区间是()A.(2,1)-- B.(0,1)C.(1,2)D.(2,)+∞【答案】C 【解析】【分析】根据零点存在性定理判断即可.【详解】令26()0f x x x=-=,解得:1360x =>,只有一个零点.而()611501f =-=>,()624102f =-=-<,由零点存在性定理知,函数26()f x x x=-零点所在的一个区间是(1,2).故选:C.7.下列函数中,在区间(0,1)上是增函数的是()A.||y x = B.3y x=- C.1y =-D.24y x =-+【答案】A 【解析】【分析】运用增函数定义,结合函数图像判断即可.【详解】对于A,区间()0,1,y x x ==,在()0,1单调递增,A 正确;对于B,区间()0,1,3y x =-,在()0,1单调递减,B 错误;对于C,区间()0,1,1y =-()0,1单调递减,C 错误;对于D,区间()0,1,24y x =-+,在()0,1单调递减,D 错误.故选:A.8.如果函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,那么()A.f (2)<f (1)<f (4)B.f (1)<f (2)<f (4)C.f (4)<f (2)<f (1)D.f (2)<f (4)<f (1)【答案】A【分析】根据给定条件可得函数()f x 图象对称轴为2x =,再借助对称性、单调性即可比较判断作答.【详解】因函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,则其图象对称轴为2x =,且()f x 在[2,)+∞上递增,于是得(2)(3)(4)f f f <<,而(1)(3)f f =,所以(2)(1)(4)f f f <<.故选:A9.已知0a >,0b >,且28a b +=,那么ab 的最大值等于A.4 B.8C.16D.32【答案】B 【解析】【分析】利用基本不等式可求得ab 的最大值.【详解】由基本不等式可得82a b =+≥8ab ≤,当且仅当2a b =时,等号成立,因此,ab 的最大值为8.故选:B.【点睛】本题考查利用基本不等式求最值,考查计算能力,属于基础题.10.已知,,,R a b c d ∈,则“a c b d +>+”是“a b >且c d >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质,分析条件间的推出关系判断充分、必要性.【详解】当3,2,0,2a b c d ==-==时,a c b d +>+,但c d >不成立,充分性不成立;若a b >且c d >,则必有a c b d +>+,必要性成立;所以“a c b d +>+”是“a b >且c d >”的必要不充分条件.故选:B11.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]--C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在 腊语 上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.12.设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足:()()()123f x f x f x ==.则123x x x ++的取值范围是()A.11,66⎛⎤⎥⎝⎦B.11,63⎛⎫⎪⎝⎭C.2026,33⎛⎫⎪⎝⎭ D.2026,33⎛⎤⎥⎝⎦【答案】B 【解析】【分析】根据解析式画出函数草图,结合零点的情况及一次、二次函数性质得236x x +=、1703x -<<,即可得答案.【详解】由解析式,可得如下()f x 图象,令()()()123f x f x f x k ===,要满足题设,则34-<<k ,若123x x x <<,则236x x +=,令343x +=-,则73x =-,故1703x -<<,综上,123x x x ++范围是11,63⎛⎫⎪⎝⎭.故选:B二、填空题共5小题,每小题5分,共25分.13.函数()2f x x =-的定义域是_______.【答案】[)2,+∞【解析】【分析】函数()2f x x =-的定义域满足20x -≥,解得答案.【详解】函数()2f x x =-的定义域满足20x -≥,解得2x ≥,故函数定义域为[)2,+∞.故答案为:[)2,+∞14.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________.【答案】14-.【解析】【分析】由于函数是奇函数,所以11(()22f f -=-,再由已知的解析式求出1()2f 的值,可得答案【详解】解:因为当x >0时,()f x =2x ,所以2111(()224f ==,因为()f x 是定义在R 上的奇函数,所以111((224f f -=-=-,故答案为:14-15.设函数22y x ax =+在区间(2,)+∞上是增函数,则实数a 的取值范围是______.【答案】2a ≥-【解析】【分析】由题意可知,(2,)+∞为函数单调递增区间的子集,根据子集关系可以求得.【详解】由函数22y x ax =+可知,对称轴为x a =-,因为在区间(2,)+∞上是增函数,则2a -≤,解得2a ≥-,故实数a 的取值范围是2a ≥-.故答案为:2a ≥-16.命题“2[1,2],10x x ax ∀∈-+<”为假命题的一个充分不必要条件是______.【答案】52a <(答案不唯一)【解析】【分析】问题化为1[1,2],x a x x∃∈≤+为真命题,利用对勾函数的单调性求最大值,即可得52a ≤,结合充分不必要条件写出一个符合要求的参数范围即可.【详解】由题设,1[1,2],x a x x ∀∈>+为假命题,故1[1,2],x a x x∃∈≤+为真命题,又1y x x =+在[1,2]x ∈上递增,则max 52y =,只需52a ≤即可,所以,原命题为假命题的一个充分不必要条件是52a <.故答案为:52a <(答案不唯一)17.设函数()()()2,1,242, 1.a x f x x x a x a x ⎧-<⎪=-⎨⎪--≥⎩①若0a =,则(1)2f =;②若1a =,则()f x 的最小值为1-;③存在实数a ,使得()f x 为R 上的增函数;④若()f x 恰有2个零点,则实数a 的取值范围是1,1[2,)2⎡⎫+∞⎪⎢⎣⎭.其中所有正确结论的序号是______.【答案】②③④【解析】【分析】①当0a =时,1x =代入()4()(2)f x x a x a =--中求值即可;②当1a =时,得到21,<1()24(1)(2),1x f x x x x x ⎧-⎪=-⎨⎪--≥⎩.分情况讨论求出各段最小值,最后得到()f x 的最小值.③保证两端都要增,端点考虑即可;④分类讨论,结合二次函数性质可解.【详解】①当0a =时,1x =代入()4()(2)f x x a x a =--中,得到(1)4(10)(10)42f =⨯-⨯-=≠,所以①错误.②当1a =时,21,<1()24(1)(2),1x f x xx x x ⎧-⎪=-⎨⎪--≥⎩.当<1x 时,则21x ->,,所以0<222<x-,1()1f x -<<.当1x ≥时,2231()4(1)(2)4(32)4()24f x x x x x x ⎡⎤=--=-+=--⎢⎥⎣⎦.对于二次函数2314()24y x ⎡⎤=--⎢⎥⎣⎦,对称轴为32x =,在32x =时取得最小值3()12f =-.综上,可得()f x 的最小值为1-,所以②正确.③当1x <时,22()22f x a a x x -=-=---是增函数.当1x ≥时,22()4()(2)432f x x a x a x ax a ⎡⎤=--=-+⎣⎦,其对称轴为32ax =.要使()f x 在R 上是增函数,则24(1)(12)21312a a a a ⎧-≤--⎪⎪-⎨⎪≤⎪⎩.解24(1)(12)21a a a -≤---,即281120a a -+≥,解得115711571616a a +-><或.解312a ≤得23a ≤.显然交集有元素.故存在a 能同时满足这两个条件使得函数在R 上单调递增,所以③正确.④当<1x 时,令2()02f x a x =-=-,则22a x =-,2(2)x a =-,22x a=-.若221x a=-<,即02a <<时,函数()f x 在<1x 时有一个零点.当1x ≥时,()4()(2)f x x a x a =--,令()0f x =,则x a =或2x a =.若1a <且21a ≥,即112a ≤<时,()f x 在1x ≥时有一个零点,结合1x <时的情况,此时()f x 恰有2个零点.若1a ≥,要使()f x 恰有2个零点,则21a >且22a a =-(无解)或者21a >且222a a=-(无解)或者1a >且21a >且221a-≥(即2a ≥).综上,实数a 的取值范围是1[,1)[2,)2+∞ ,所以④正确.故答案为:②③④.三、解答题共6小题,共77分.解答应写出文字说明,演算步骤或证明过程.18.关于x 的一元二次方程()22230x k x k +++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若12111x x +=-,求k 的值.【答案】(1)3(,)4-+∞(2)3【解析】【分析】(1)根据一元二次方程的性质,结合0∆>,即可求解;(2)根据题意,利用根与系数的关系,求得2121223,x x k k x x +=--=,结合12111x x +=-,列出方程,求得k 的值,即可求解.【小问1详解】由一元二次方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,则满足()222340k k ∆=+->,解得34k >-,即实数k 的取值范围为3(,)4-+∞.【小问2详解】因为方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,由(1)知34k >-,且2121223,x x k k x x +=--=,因为12111x x +=-,可得12121x x x x +=-,即1212x x x x +=-,可得223k k --=-,即223k k +=,解得3k =或1k =-,因为34k >-,所以3k =.19.设全集R U =,集合{}2|20A x x x =--<,集合{|||1}B x x m =->,其中R m ∈.(1)当1m =时,求()U A B A B ⋂⋃,ð;(2)若A B ⊆,求m 的取值范围.【答案】(1){|10}A B x x =-<< ,(){12}U A B x =-<≤ ð;(2)3m ≥或2m ≤-.【解析】【分析】(1)由题设得{|12}A x x =-<<,{|0B x x =<或2}x >,根据集合交并补运算求集合;(2)根据包含关系有12m -≥或11m +≤-,即可求参数范围.【小问1详解】由题设{}|(2)(1)0{|12}A x x x x x =-+<=-<<,{|1B x x m =<-或1}x m >+,当1m =时,{|0B x x =<或2}x >,故{|10}A B x x =-<< ,且{|02}U B x x =≤≤ð,故(){12}U A B x =-<≤ ð.【小问2详解】由A B ⊆,则12m -≥或11m +≤-,可得3m ≥或2m ≤-.20.已知函数2()(2)2f x x a x a =-++.(1)当0a =时,分别求出函数()f x 在[1,2]-上的最大值和最小值;(2)求关于x 的不等式()0f x <的解集.【答案】(1)最大值为(1)3f -=,最小值为(1)1f =-;(2)答案见解析.【解析】【分析】(1)根据二次函数的图象及性质确定区间上的最大值和最小值即可;(2)分类讨论求含参一元二次不等式解集.【小问1详解】由题设2()2f x x x =-,开口向上且对称轴为1x =,结合二次函数的图象,在[1,2]-上最大值为(1)3f -=,最小值为(1)1f =-.【小问2详解】由题意2(2)2()(2)0x a x a x a x -++=--<,当2a <时,解集为(,2)a ;当2a =时,解集为∅;当2a >时,解集为(2,)a .21.已知函数21()x f x x+=.(1)判断函数的奇偶性,并加以证明;(2)用定义证明()f x 在(0,1)上是减函数;(3)若函数()y f x m =-在12,3⎡⎤⎢⎥⎣⎦上有两个零点,求m 的范围.(直接写出答案)【答案】(1)()f x 是奇函数,理由见解析(2)答案见解析(3)5(2,]2【解析】【分析】(1)对于本题,需要先求出()f x -,然后与()f x 和()f x -进行比较.(2)利用函数单调性的定义,设12,(0,1)x x ∈且12x x <,然后计算12()()f x f x -,根据其正负判断函数的单调性.(3)函数()y f x m =-在1[,3]2上有两个零点,等价于()y f x =与y m =的图象在1[,3]2上有两个交点,需要先分析()f x 在1[,3]2上的单调性和值域,从而确定m 的范围.【小问1详解】函数21()x f x x+=的定义域为(,0)(0,)-∞+∞ ,关于原点对称.22()11()()x x f x f x x x-++-==-=--.根据奇函数的定义,对于定义域内任意x ,()()f x f x -=-,所以函数()f x 是奇函数.【小问2详解】设12,(0,1)x x ∈且12x x <.则222212122112121211(1)(1)()()x x x x x x f x f x x x x x +++-+-=-=,对分子进行化简:222212211222111212212112(1)(1)()()()(1)x x x x x x x x x x x x x x x x x x x x +-+=+--=-+-=--.因为12,(0,1)x x ∈,所以12(0,1)x x ∈,1210x x ->,210x x ->,120x x >.所以21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >.所以()f x 在(0,1)上是减函数.【小问3详解】1,32x ⎡⎤∈⎢⎥⎣⎦时,211()2x f x x x x+==+≥,当且仅当1x =取得最小值.当121,[,1)2x x ∈时,且12x x <,121[,1)4x x ∈,1210x x ->,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >,则当1)[1,2x ∈()f x 单调递减;当12,(1,3]x x ∈时,且12x x <,12(1,9]x x ∈,1210x x -<,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=<,即12()()f x f x <,则当(1,3]x ∈,()f x 单调递增;并且215()11524()112222f +===,(1)2f =,23110(3)33f +==.因为函数()y f x m =-在1[,3]2上有两个零点,所以5(2,]2m ∈.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35k x x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】40k =,因此40()35C x x =+.,当隔热层修建5cm 厚时,总费用达到最小值为70万元.【解析】【详解】解:(Ⅰ)设隔热层厚度为cm x ,由题设,每年能源消耗费用为()35k C x x =+.再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x=最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++(Ⅱ)22400'()6(35)f x x =-+,令'()0f x =,即224006(35)x =+.解得5x =,253x =-(舍去).当05x 时,'()0f x ,当510x 时,'()0f x ,故5x =是()f x 的最小值点,对应的最小值为800(5)6570155f =⨯+=+.当隔热层修建5cm 厚时,总费用达到最小值为70万元.23.设函数()f x 是定义在R 上的函数,对任意的实数,x y 都有()(1)(1)f x y f x f y +=+⋅-,且当0x >时()f x 的取值范围是(0,1).(1)求证:存在实数m 使得()1f m =;(2)当0x <时,求()f x 的取值范围;(3)判断函数()f x 的单调性,并予以证明.【答案】(1)证明见解析;(2)(1,)+∞;(3)()f x 单调递减,证明见解析.【解析】【分析】(1)令1x y ==结合题设可得(0)1f =,即可证;(2)令y x =-得到1(1)(1)f x f x --=+,若10t x =+>,结合已知即可求范围;(3)令1x x y =+>21x x =+,应用函数单调性定义求证即可.【小问1详解】令1x y ==,则(11)(11)(11)(2)(2)(0)f f f f f f +=+⋅-⇒=,当0x >时()f x 的取值范围是(0,1),即(2)0f ≠,故(0)1f =,显然存在0m =,使()1f m =,得证;【小问2详解】令y x =-,则()(1)(1)f x x f x f x -=+⋅--,即(1)(1)(0)1f x f x f +⋅--==,若10t x =+>,则10x t --=-<,故1(1)(1)f x f x --=+,即1()()f t f t -=,而()(0,1)f t ∈,则()(1,)f t -∈+∞,当0x <时,()f x 取值范围是(1,)+∞;【小问3详解】()f x 单调递减,证明如下:令1x x y =+>21x x =+,则1210x x y -=->,所以1212()()()f x f x f x x =⋅-,则12212()()()[()1]f x f x f x f x x -=--,由题设及(2)知,212()0,()10f x f x x >--<,则12())0(f x f x -<,即12()()f x f x <,所以()f x 单调递减,得证.。

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

武威一中2023年秋季学期期中考试高一年级 数学试卷第Ⅰ卷(选择题)一、单选题(共8小题,每小题5分)1.已知A 是由0,,三个元素组成的集合,且,则实数为( )A.2B.3C.0或3D.0,2,3均可2.已知全集,集合,,那么( )A. B. C. D.3.若集,合,则( )A. B. C. D.4.设,则( )A.B.C.1D.-25.若命题“,使得成立”是假命题,则实数的取值范围是( )A. B. C. D.6.已知函数是一次函数,且,则( )A.11B.9C.7D.57.已知函数是定义在上的偶函数,又,则,,的大小关系为( )A. B.C. D.8.若定义在R 的奇函数,若时,则满足的的取值范围是( )A. B.C. D.m 232m m -+2A ∈m U =R {}24A x x =-≤≤∣501x B x x ⎧⎫-=<⎨⎬+⎩⎭A B = ()1,4-(]1,4-()2,5-[)2,5-{}24x A x =<∣{N 13}B x x =∈-<<∣A B = {12}xx -<<∣{}0,1{}1{13}xx -<<∣()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15120R x ∃∈201k x >+k 1k >01k <<1k ≤0k ≤()f x ()23f f x x ⎡⎤-=⎣⎦()5f =()22f x ax a =+[],2a a +()()2g x f x =+()2g -()3g -()2g ()()()232g g g ->->()()()322g g g ->>-()()()223g g g ->>-()()()232g g g >->-()f x 0x <()2f x x =--()0xf x ≥x ()[],20,2-∞- ()(),22,-∞-+∞ ][(,20,2⎤-∞-⎦[]2,2-二、多选题(共4小题,每小题选对得5分,错选或多选得0分,少选或漏选得2分)9.下列结论中,不正确的是( )A. B. C. D.10.下列命题中,真命题的是( )A.,都有 B.任意非零实数,都有C.,使得D.函数211.下列命题正确的是( )A.命题“,,”的否定是“,,”B.与是同一个函数C.函数的值域为D.若函数的定义域为,则函数的定义域为12.函数的定义域为R ,已知是奇函数,,当时,,则下列各选项正确的是( )A. B.在单调递C. D.第Ⅱ卷(非选择题)三、填空题13.已知,集合,则图中阴影部分所表示的集合是________.14.函数的单调递减区间为________.15.已知集合,,若“”是“”的必要非充分条件,则实数的取值范围是________.0.20.20.20.3>113323--<0.10.20.81.25->0.33.11.70.9>x ∀∈R 21x x x -≥-,a b 2b a a b+≥()1,x ∃∈+∞461x x +=-y =x ∀y ∈R 220x y +≥x ∃y ∈R 220x y +<()1f x x =-()211x g x x -=+y x =[)0,+∞()1f x +[]1,4()f x []2,5()f x ()1f x +()()22f x f x +=-[]1,2x ∈()22f x ax =+()()4f x f x +=()f x []0,1()10f =13533f ⎛⎫=⎪⎝⎭U R ={11}A x x =->{B xy ==∣y =204x A xx ⎧⎫+=<⎨⎬-⎩⎭{}22210B x x ax a =-+-<∣x A ∈x B ∈a16已,,,知为四个互不相等的实数.若,,,中最大,则实数的取值范围为________.四、解答题17.(本小题10分)计算下列各式(式中字母都是正数):(1);(2);(3.18.(本小题12分)已知函数.(1)证明:函数在上是减函数;并求出函数在的值域;(2)记函数,判断函数的的奇偶性,并加以证明.19.(本小题12分)设关于的函数,其中,都是实数。

(完整版)高一数学第一学期期中考试试题及答案

(完整版)高一数学第一学期期中考试试题及答案

A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

北京市中学2024-2025学年高一上学期期中考试数学试卷含答案

北京市中学2024-2025学年高一上学期期中考试数学试卷含答案

北京2024—2025学年高一年级第一学期数学期中测试题(答案在最后)本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题1.下列说法不正确的是()A.*0∈N B.0∈NC.0.1∉ZD.2∈Q2.已知集合{}0,1,2A =,则集合{},B x yx A y A =-∈∈∣中元素的个数是()A.1B.3C.5D.93.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件4.“运动改造大脑”,为了增强身体素质,某班学生积极参加学校组织的体育特色课堂,课堂分为球类项目A 、径赛项目B 、其他健身项目C .该班有25名同学选择球类项目A ,20名同学选择径赛项目B ,18名同学选择其他健身项目C ;其中有6名同学同时选择A 和,4B 名同学同时选择A 和C ,3名同学同时选择B 和C .若全班同学每人至少选择一类项目且没有同学同时选择三类项目,则这个班同学人数是()A.51B.50C.49D.485.用二分法求函数的零点,经过若干次运算后函数的零点在区间(),a b 内,当a b ε-<(ε为精确度)时,函数零点的近似值02a bx +=与真实零点的误差的取值范围为()A.0,4ε⎡⎫⎪⎢⎣⎭B.0,2ε⎡⎫⎪⎢⎣⎭C.[)0,ε D.[)0,2ε6.已知关于x 的不等式210mx mx +->的解集为∅,则实数m 的取值范围是()A.()(),40,∞∞--⋃+ B.[)4,0- C.][(),40,∞∞--⋃+ D.[]4,0-7.设()f x 是定义在R 上的函数,若存在两个不等实数12,x x ∈R ,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭,则称函数()f x 具有性质P ,那么下列函数:①()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩;②()2f x x =;③()21f x x =-;具有性质P 的函数的个数为()A.0B.1C.2D.38.已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 中的元素不都是P 的元素;②M 的元素都不是P 的元素;③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为()A.1个B.2个C.3个D.4个9.已知函数()f x =,则()()1212g x f x x =-+-的定义域为()A.3,2∞⎡⎫+⎪⎢⎣⎭B.()3,22,2∞⎡⎫⋃+⎪⎢⎣⎭C.()3,22,4∞⎡⎫⋃+⎪⎢⎣⎭D.()(),22,∞∞-⋃+10.已知函数()f x m =+,若存在区间[](),1a b b a >≥-,使得函数()f x 在[],a b 上的值域为[]2,2a b ,则实数m 的取值范围是()A.178m >-B.102m <≤C.2m ≤- D.1728m -<≤-二、填空题11.下列集合:①{}0;②{}21,0,M xx n x n ==+<∈R ∣;③{}∅;④∅;⑤(){}0,0;⑥方程210x+=的实数解组成的集合.其中,是空集的所有序号为__________.12.若集合{}2210M xax x =++=∣只含一个元素,则a =__________.13.若二次函数()y f x =图象关于2x =对称,且()()()01f a f f <<,则实数a 的取值范围是__________.14.若关于x 的不等式212kx x k ≤++≤的解集中只有一个元素,则实数k 的取值集合为__________.15.若关于m 的方程2260m am a -++=的两个实数根是,x y ,则22(1)(1)x y -+-的最小值是__________.三、解答题16.设集合A 中的三个元素分别为,0,1a -,集合B 中的三个元素分别为1,,1c b a b++.已知A B =,求,,a b c 的值.17.已知集合{}(){}{}22224430,10,220A xx ax a B x x a x a C x x ax a =+-+==+-+==+-=∣∣∣,其中至少有一个集合不是空集,求实数a 的取值范围.18.已知关于x 的不等式()221x x a a -->∈R .(1)若1a =,求不等式的解集;(2)若不等式的解集为R ,求实数a 的范围.19.已知函数()2a f x x x =-,且()922f =.(1)求实数a 的值;(2)判断函数()f x 在()1,∞+上的单调性,并证明;(3)求函数()f x 在[]2,3上的最值.20.定义在区间[]0,1上的函数()f x 满足()()010f f ==,且对任意的[]12,0,1x x ∈都有()()12122x x f f x f x +⎛⎫≤+ ⎪⎝⎭.(1)证明:对任意的[]0,1x ∈都有()0f x ≥;(2)求34f ⎛⎫⎪⎝⎭的值;(3)计算202411112422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.已知函数()()2f x x x a x a =-+∈R .(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若存在实数[]0,4a ∈使得关于x 的方程()()0f x tf a -=恰有三个不相等的实数根,求实数t 的取值范围.答案一、单选题1.A2.C3.B4.B5.B6.D7.C8.B9.C10.D二、填空题11.②④⑥12.0或113.()(),04,∞∞-⋃+14.12,22⎧-+⎪⎨⎪⎪⎩⎭15.8三、解答题16.因为1,0A B a b=≠+,所以10,1,1c b a a b+==-=+,解得1,2,2a b c ==-=,所以,,a b c 的值分别为1,2,2-.17.当三个集合全是空集时,所对应的三个方程都没有实数解,即()2122223Δ164430,Δ(1)40,Δ480.a a a a a a ⎧=--+<⎪=--<⎨⎪=+<⎩解此不等式组,得312a -<<-.所以所求实数a 的取值范围为[)3,1,2∞∞⎛⎤--⋃-+ ⎥⎝⎦.18.(1)1a =时,原不等式为2211x x -->,整理,得2220x x -->,对于方程2220x x --=,因为Δ120=>,所以它有两个不等的实数根,解得1211x x ==+结合函数222y x x =--的图象得不等式的解集为{1x x <-∣或1x >+.(2)原不等式可化为2210x x a --->,由于不等式解集为R ,结合函数221y x x a =---图象可知,方程2210x x a ---=无实数根,所以()Δ441840a a =++=+<,所以a 的范围是{2}aa <-∣.19.(1)因为()2a f x x x =-,且()922f =,所以9422a -=,所以1a =-.(2)函数()f x 在()1,∞+上单调递增.证明如下:由(1)可得,()12f x x x=+,任取()12,1,x x ∞∈+,不妨设12x x <,则()()2121211122f x f x x x x x ⎛⎫-=+-+ ⎪⎝⎭()2121112x x x x ⎛⎫=-+- ⎪⎝⎭()1221122x x x x x x -=-+()211212x x x x ⎛⎫=-- ⎪⎝⎭()()21121221x x x x x x --=因为()12,1,x x ∞∈+且12x x <,所以2112120,210,0x x x x x x ->->>,所以()()210f x f x ->,即()()21f x f x >,所以()f x 在()1,∞+上单调递增.(3)由(2)知,函数()f x 在[]2,3上单调递增,则当2x =时,()f x 有最小值()922f =;当3x =时,()f x 有最大值()1933f =.20.(1)任取[]120,1x x x ==∈,则有()()22x f f x f x ⎛⎫≤+⎪⎝⎭,即()()2f x f x ≤,于是()0f x ≥,所以,对任意的[]0,1x ∈都有()0f x ≥.(2)由()()010f f ==,得()()01010002f f f +⎛⎫≤+=+=⎪⎝⎭,于是102f ⎛⎫≤ ⎪⎝⎭,但由(1)的结果知102f ⎛⎫≥⎪⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,由()10,102f f ⎛⎫== ⎪⎝⎭,则()1112100022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭,于是304f ⎛⎫≤ ⎪⎝⎭,由(1)的结果知304f ⎛⎫≥ ⎪⎝⎭,所以304f ⎛⎫= ⎪⎝⎭.(3)由()100,02f f ⎛⎫== ⎪⎝⎭,得()1012000022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭,于是104f ⎛⎫≤ ⎪⎝⎭,但由(1)的结果知104f ⎛⎫≥ ⎪⎝⎭,所以211042f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,继续求下去,可得10,1,2,3,,20242k f k ⎛⎫== ⎪⎝⎭,因此,2024111102422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++=⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭.21.(1)()()()222,22,x a x x a f x x x a x x a x x a ⎧+-≥⎪=-+=⎨-++<⎪⎩.由()f x 在R 上是增函数,则2,22,2a a a a -⎧≥-⎪⎪⎨+⎪≤⎪⎩即22a -≤≤,则a 范围为22a -≤≤.(2)当22a -≤≤时,()f x 在R 上是增函数,则关于x 的方程()()0f x tf a -=不可能有三个不等的实数根.当(]2,4a ∈时,由()()()222,2,x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩,得x a ≥时,()()22f x x a x =+-对称轴22a x -=,则()f x 在[),x a ∞∈+为增函数,此时()f x 的值域为())[),2,f a a ∞∞⎡+=+⎣;x a <时,()()22f x x a x =-++对称轴22a x +=,则()f x 在2,2a x ∞+⎛⎤∈- ⎥⎝⎦为增函数,此时()f x 的值域为2(2),4a ∞⎛⎤+- ⎥⎝⎦,()f x 在2,2a x ∞+⎡⎫∈+⎪⎢⎣⎭为减函数,此时()f x 的值域为2(2)2,4a a ⎛⎤+ ⎥⎝⎦;由存在(]2,4a ∈,方程()()2f x tf a ta ==有三个不相等的实根,则2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭,即存在(]2,4a ∈,使得2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭即可,令()2(2)8a g a a+=,只要使()max ()t g a <即可,而()g a 在(]2,4a ∈上是增函数,()max 9()48g a g ==,故实数t 的取值范围为91,8⎛⎫ ⎪⎝⎭.综上所述,实数t 的取值范围为91,8⎛⎫⎪⎝⎭.。

重庆市学校2023-2024学年高一上学期期中数学试题含解析

重庆市学校2023-2024学年高一上学期期中数学试题含解析

重庆市高2026届高一上期期中考试数学试题(答案在最后)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}0,2,4,6,8,10,1,0,1,2,3A B ==-,则A B = ()A.{}4,8 B.{}0,2,6 C.{}0,2 D.{}2,4,6【答案】C 【解析】【分析】根据交集概念进行求解.【详解】{}{}{}0,2,4,6,8,101,0,1,2,30,2A B =-= .故选:C2.全称量词命题“2,54x x x ∀∈+≠R ”的否定是()A.2,54x x x ∃∈+=RB.2,54x x x ∀∈+=RC.2,54x x x ∃∈+≠RD.2,54x x x ∀∈+≠R 【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题,把任意改为存在,把结论否定.【详解】“2,54x x x ∀∈+≠R ”否定是“2,54x x x ∃∈+=R ”.故选:A3.函数()3f x x =-的定义域为()A.()1,-+∞ B.[)1,-+∞ C.[)1,3- D.[)()1,33,-⋃+∞【答案】D 【解析】【分析】根据解析式的特征,直接列式即可得解.【详解】因为()3f x x =-,所以1030x x +≥⎧⎨-≠⎩,解得1x ≥-且3x ≠.所以函数的定义域是[)()1,33,-⋃+∞.故选:D.4.若函数)1fx =,则()f x 的解析式为()A.()()20f x x x x =+≥ B.()()21f x x x x =+≥C.()()20f x x x x =-≥ D.()()21f x x x x =-≥【答案】D 【解析】【分析】直接利用换元法可得答案,解题过程一定要注意函数的定义域.【详解】令1t =+,则()21x t =-,1t ≥,因为)1fx +=+,所以()()()()22111f t t t t t t =--+=≥-,则()()21f x x x x =-≥,故选:D.5.设奇函数()f x 的定义域为[]5,5-,当[]0,5x ∈时,函数()y f x =的图象如图所示,则使()0f x <的x 的取值集合为()A.()3,5 B.()()5,30,3-- C.()5,3-- D.()()3,00,3- 【答案】B 【解析】【分析】根据奇函数的图象特征补全()f x 的图象,从而结合图象即可得解.【详解】因为函数()f x 是奇函数,所以()y f x =在[]5,5-上的图象关于坐标原点对称,由()y f x =在[]0,5x ∈上的图象,知它在[]5,0-上的图象,如图所示,所以使()0f x <的x 的取值集合为()()5,30,3-- .故选:B.6.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.112ab > B.111a b+≤ C.2≥ D.4194a b +≥【答案】D 【解析】【分析】根据特殊值以及基本不等式求得正确答案.【详解】当1,3a b ==时,3ab =,113ab =,1114133a b +=+=,所以112ab <,111a b+>2<,ABC 选项错误.()4114114544b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭19544⎛≥+= ⎝,当且仅当2484,,,433a b b a a b a b a b =⎧===⎨+=⎩时等号成立,D 选项正确.故选:D7.设m 为给定的一个实常数,命题[]2:0,3,40p x x x m ∀∈-+≥,则“6m >”是“命题p 为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】先求出命题p 为真命题时4m ≥,进而判断出答案.【详解】由题意得24m x x ≥-+对[]0,3x ∀∈恒成立,其中()22424y x x x =-+=--+,故24y x x =-+在2x =处取得最大值,最大值为4,故4m ≥,即命题p 为真命题时4m ≥,由于64m m >⇒≥,但4m ≥⇒6m >,故则“6m >”是“命题p 为真命题”的充分不必要条件.故选:A8.已知函数()f x 满足条件:()()()()()11,,2f f x y f x f y f x =+=⋅在R 上是减函数,若[]1,4x ∃∈,使()()216f x f mx ≤成立,则实数m 的取值范围是()A.(),5-∞ B.(],5-∞ C.(),4-∞ D.(],4∞-【答案】B 【解析】【分析】将问题转化为24mx x ≤+能成立,再利用对勾函数的单调性即可得解.【详解】因为()()()()11,2f f x y f x f y =+=⋅,所以()()()12114f f f =⋅=,()()()141622f f f =⋅=,所以()()216f x f mx ≤,可化为()()()()()22214164f mx f x f f x f x ≥==+⋅,因为()f x 在R 上是减函数,所以24mx x ≤+,所以问题转化为[]1,4x ∃∈,使24mx x ≤+成立,即4m x x ≤+,则max 4m x x ⎛⎫+ ⎪⎝≤⎭,因为对勾函数4y x x=+在[]1,2上单调递减,在[]2,4上单调递增,所以当1x =或4x =时,4y x x=+取得最大值5,所以5m ≤,即(],5m ∈-∞.故选:B.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的4个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列各项中,()f x 与()g x 表示的函数相等的是()A.()(),f x x g x ==B.()()f x g x ==C.()()32,x f x x g x x== D.()()1,11,1,1x x f x x g x x x -≥⎧=-=⎨-<⎩【答案】BD 【解析】【分析】根据函数的定义,一一判断各选项函数的定义域和对应法则是否相同,即可得到答案.【详解】对于A ,()f x x =,定义域为R ,()||g x x ==,定义域为R ,但对应法则与前者不同,故两函数不相等,故A 错误;对于B ,由210x -≥得11x -≤≤,故()f x =[]1,1-,由1010x x +≥⎧⎨-≥⎩得11x -≤≤,故()g x =的定义域为[]1,1-,又两者对应法则相同,故两函数相等,故B 正确;对于C,()f x x =定义域为R ,3()x g x x =定义域为{|0}x x ≠,故两函数不相等,故C 错误;对于D ,1,1()11,1x x f x x x x -≥⎧=-=⎨-<⎩,()1,11,1x x g x x x -≥⎧=⎨-<⎩,两函数相等,故D 正确.故选:BD.10.若集合()20,,5x A x B a x ∞⎧⎫-=<=+⎨⎬-⎩⎭,若A B ⊆,则实数a 可能是()A.3- B.1C.2D.5【答案】ABC 【解析】【分析】解不等式求得集合A ,根据A B ⊆求得a 的取值范围,进而求得正确答案.【详解】由205x x -<-解得25x <<,所以()2,5A =,由于A B ⊆,所以2a ≤,所以ABC 选项正确,D 选项错误.故选:ABC11.下列说法正确的是()A.函数4(0)y x xx=+<的最大值是4- B.函数2y =的最小值是2C.函数16(2)2y x x x =+>-+的最小值是6 D.若4x y +=,则22x y +的最小值是8【答案】ACD 【解析】【分析】根据基本不等式的知识对选项进行分析,从而确定正确答案.【详解】A 选项,对于函数4(0)y x x x=+<,()444x x x x ⎡⎤+=--+≤--⎢-⎣⎦,当且仅当4,2x x x -==--时等号成立,所以A 选项正确.B 选项,22y ==≥=,=B 选项错误.C 选项,对于函数16(2)2y x x x =+>-+,20x +>,1616222622x x x x +=++-≥-=++,当且仅当162,22x x x +==+时等号成立,所以C 选项正确.D 选项,由基本不等式得22222x y x y ++⎛⎫≥ ⎪⎝⎭,所以222222282x y x y +⎛⎫≥⨯=⨯= ⎪⎝⎭+,当且仅当2x y ==时等号成立,所以D 选项正确.故选:ACD12.德国数学家狄里克雷(Dirichlet ,PeterGustavLejeune ,1805~1859)在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图象、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是()A.()00D = B.()D x 的值域为{}0,1C.()D x 图象关于直线1x =对称 D.()D x图象关于点12⎫⎪⎭对称【答案】BC 【解析】【分析】AB 选项可根据题意直接得到,C 可分x 为有理数和无理数两种情况推导;D 选项,可举出反例.【详解】A 选项,因为0为有理数,故()01D =,A 错误;B 选项,由题意得()D x 的值域为{}0,1,B 正确;C 选项,当x 为有理数时,()1D x =,此时()D x 图象关于直线1x =对称,当x 为无理数时,()0D x =,此时()D x 图象关于直线1x =对称,综上,()D x 图象关于直线1x =对称,C 正确.D 选项,由于()()01,21D D ==,且()()0,1,2,1不关于12⎫⎪⎭对称,D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.设函数3,0()6,0x x f x x x≥⎧⎪=⎨-<⎪⎩,则((3))f f -=__________.【答案】6【解析】【分析】代入分段函数解析式求解即可.【详解】由题意,()()()63263f f f f ⎛⎫-=-== ⎪-⎝⎭.故答案为:614.重庆市第十一中学校每学年分上期、下期分别举行“大阅读”与“科技嘉年华”两项大型活动,深受学生们的喜爱.某社团经问卷调查了解到如下数据:96%的学生喜欢这两项活动中的至少一项,78%的学生喜欢“大阅读”活动,87%的学生喜欢“科技嘉年华”活动,则我校既喜欢“大阅读”又喜欢“科技嘉年华”活动的学生数占我校学生总数的比例是_________.【答案】69%【解析】【分析】根据集合的知识求得正确答案.【详解】设只喜欢“大阅读”的有x 人,两者都喜欢的有y 人,只喜欢“科技嘉年华”的有z 人,则0.960.780.87x y z x y y z ++=⎧⎪+=⎨⎪+=⎩,解得0.69y =.故答案为:69%15.已知实数()111,3,,84a b ⎛⎫∈∈ ⎪⎝⎭,则a bb +的取值范围是_________.【答案】()5,25【解析】【分析】利用不等式的基本性质即可得解.【详解】因为11,84b ⎛⎫∈ ⎪⎝⎭,所以148b <<,又(1,3)a ∈,所以424a b <<,故5125ab<+<所以1a b ab b+=+的取值范围为()5,25.故答案为:()5,25.16.已知函数()220x a x f x x ax x +<⎧=⎨-≥⎩,,,若关于x 的方程()()0f f x =有8个不同的实根,则a 的取值范围__________.【答案】()8,+∞【解析】【分析】先讨论0a ≤,结合函数解析式,确定显然不满足题意;再讨论0a >,画出()f x 的图象,利用数形结合的方法,即可求出结果.【详解】若0a ≤,当0x <时,()20f x x a =+<恒成立;当0x ≥时,由()()20f x x ax x x a =-=-=得0x =;即()0f x =仅有0x =一个根;所以由()()0ff x =可得()0f x =,则0x =;即方程()()0f f x =仅有一个实根;故不满足()()0ff x =有8个不同的实根;若0a >时,画出()2200x a x f x x ax x +<⎧=⎨-≥⎩,,的大致图象如下,由()()0f f x =可得()12f x a =-,()20fx =,()3f x a =,又()()0ff x =有8个不同的实根,由图象可得,()20f x =显然有三个根,()3f x a =显然有两个根,所以()12f x a =-必有三个根,而20a -<,2222244a a a y x ax x ⎛⎫=-=--≥- ⎪⎝⎭,为使()12f x a =-有三个根,只需224a a ->-,解得8a >;综上可知,8a >.故答案为:()8,+∞.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚.17.设m ∈R ,集合{}2280A x x x =--≤,{}2B x m x m =≤≤+.(1)若3m =,求()R A B ð;(2)若A B ⋂=∅,求实数m 的取值范围.【答案】(1){}23x x -≤<(2)()(),44,∞∞--⋃+【解析】【分析】(1)解不等式得到{}24A x x =-≤≤和R B =ð{3x x <或}5x >,利用交集概念求出答案;(2)根据交集为空集得到不等式,求出实数m 的取值范围.【小问1详解】{}{}228024A x x x x x =--≤=-≤≤,3m =时,{}35B x x =≤≤,故R B =ð{3x x <或}5x >,故(){}R 24A B x x ⋂=-≤≤ð{3x x ⋂<或}5x >{}23x x =-≤<;【小问2详解】显然B ≠∅,因为A B ⋂=∅,所以22m +<-或4m >,解得4m <-或4m >,故实数m 的取值范围为()(),44,∞∞--⋃+.18.已知函数()21f x ax bx =++(,a b 为实数),()10f -=,且_________.请在下列三个条件中任选一个,补充在题中的横线上,并解答.①()()31f f -=;②()f x 的值域为[)0,∞+;③()0f x <的解集为∅;(1)求()f x 的解析式;(2)当[]2,2x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值范围;注:如果选择多个条件解答,按第一个解答计分.【答案】(1)选①②③,答案均为()221f x x x =++(2)(][),26,-∞-+∞ 【解析】【分析】(1)选①,得到方程组求出1a =,2b =,求出解析式;选②,根据函数值域及()10f -=得到方程组,求出解析式;选③,由二次函数图象分析得到20Δ40a b a >⎧⎨=-≤⎩,结合()10f -=得到1a =,2b =,求出答案;(2)转化为()()221g x x k x =+-+在[]2,2x ∈-上单调,结合函数对称轴得到不等式,求出答案.【小问1详解】选①,()()31f f -=,因为()10f -=,所以109311a b a b a b -+=⎧⎨-+=++⎩,解得12a b =⎧⎨=⎩,故()221f x x x =++;选②,()f x 的值域为[)0,∞+,即2404a b a-=由于()10f -=,所以10a b -+=,解得12a b =⎧⎨=⎩,故()221f x x x =++;选③,()0f x <的解集为∅,故20Δ40a b a >⎧⎨=-≤⎩,由于()10f -=,所以10a b -+=,即1b a =+,故()()221410a a a +-=-≤,解得1a =,故2b =,解析式()221f x x x =++.【小问2详解】()()221g x x k x =+-+在[]2,2x ∈-上单调,其中()()221g x x k x =+-+的对称轴为22k x -=,故需满足222k -≥或222k -≤-,解得6k ≥或2k ≤-,故实数k 的取值范围是(][),26,-∞-+∞ .19.已知函数()()()221,12ax b x f x g x f x x x ++==⋅++.若()f x 为R 上的奇函数且()112f =.(1)求,a b ;(2)判断()g x 在(),2-∞-上的单调性,并用单调性的定义证明.【答案】(1)1a =,0b =;(2)单调递增,证明见解析.【解析】【分析】(1)根据给定的函数式,利用奇函数的定义求出b ,由()112f =求出a 即得.(2)由(1)求出()g x 并判断单调性,再利用定义证明即得.【小问1详解】由()f x 为R 上的奇函数,得()()0f x f x -+=,即22()011a xb ax b x x -+++=++,则2201b x =+,解得0b =,又()112f =,则21(1)112a f ==+,解得1a =,所以1a =,0b =.【小问2详解】由(1)知2()1x f x x =+,则212()()1222x x g x f x x x x +=⋅==-+++,函数()g x 在(),2-∞-上的单调递增,()12,,2x x ∞∀∈--,121221122()22()()22(2)(2)x x g x g x x x x x --=-=++++,因为122x x <<-,则1220,20x x +<+<,120x x -<,有12122()0(2)(2)x x x x -<++,即12()()<g x g x ,所以函数()g x 在(),2-∞-上的单调递增.20.我校在一个月内分批购入每张价值为200元的书桌共360张,若每批都购入x 台(x 是正整数),且每批均需付运费400元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比.若每批购入40张书桌,则该月需用的运费和保管费共5200元.(1)求该月购入书桌时需用的运费和保管费的总费用()f x ;(2)为使得该月购入书桌所需的运费和保管费最少,应如何安排每批进货的数量?【答案】(1)()36040040f x x x=⨯+,*Z x ∈(2)每批进货的数量为60【解析】【分析】(1)假设题中比例为k ,由题意列出()f x 关于k 的表达式,再代入已知条件求得k ,从而得解.(2)结合(1)中解析,利用基本不等式即可得解.【小问1详解】设题中的比例系数设为k ,每批购入x 台,则共需分360x 批,每批书桌价值200x 元,则()360400200f x k x x =⨯+⨯,*Z x ∈,因为当40x =时,5200y =,所以36040020040520040k ⨯+⨯⨯=,解得15k =,所以()36040040f x x x =⨯+,*Z x ∈.【小问2详解】由(1)可得:()036040040480f x x x =≥=⨯+(元)当且仅当36040040x x⨯=,即60x =时,等号成立,所以每批进货的数量为60.21.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【答案】(1)a =﹣1,b =2(2)见解析【解析】【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;【小问2详解】当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.22.对于定义域为D 的函数()y f x =,若存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,则称区间[],a b 为函数()f x 的“最美区间”.(1)求函数()2f x x =的“最美区间”;(2)若()f x k =存在最美区间[],a b 函数,求实数k 的取值范围.【答案】(1)[]0,1(2)9,4a ⎛⎤- ⎥⎝⎦【解析】【分析】(1)推导出0a ≥,0b >,结合()f x 在[],a b 上单调递增,得到()f b b =,()f a a =,求出0a =,1b =,得到答案;(2)根据()f x k =+在[)2,-+∞上单调递增,得到()()f a a f b b ⎧=⎪⎨=⎪⎩,转化为,a bk x =在[)2,-+∞上两个不等的实根,且k a b ≤<,平方后,数形结合得到不等式,求出实数k 的取值范围.【小问1详解】因为()20f x x =≥,()f x 在[],a b 上的值域为[],a b ,故0a ≥,因为a b <,所以0b >,故()f x 在[],a b 上单调递增,所以()f b b =,即2b b =,解得1b =或0(舍去),所以1a <,同理()f a a =,解得0a =或1(舍去),综上,()2f x x =的“最美区间”是[]0,1;【小问2详解】令20x +≥,解得2x ≥-,故()f x k =的定义域为[)2,-+∞,且()f x k =在[)2,-+∞上单调递增,故()()f a a f b b ⎧=⎪⎨=⎪⎩,k a k b==,即,a b为方程k x =在[)2,-+∞上两个不等的实根,且k a b ≤<,x k =-,两边平方得()222120x k x k -++-=,令()()22212g x x k x k =-++-,需满足()()()222122Δ2142020k x k k g k a +⎧=>-⎪⎪⎪=+-->⎨⎪-≥⎪⎪≤⎩,解得94k a -<≤,故实数k 的取值范围是9,4a ⎛⎤- ⎥⎝⎦.。

河北省保定市六校联盟2024-2025学年高一上学期11月期中联考试题 数学含答案

河北省保定市六校联盟2024-2025学年高一上学期11月期中联考试题 数学含答案

六校联盟2024年11月期中联考高一数学试题(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版必修第一册第一章~第三章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}7U x x =∈N ≤,{}2,3,6,7A =,{}2,3,4,5B =,则()U A B = ð()A .{}6,7B .{}1,7C .{}1,6D .{}1,6,72.不等式()()230x x -->的解集是()A .{}23x x <<B .{}3x x >C .{}2x x <D .{}2,3x x x <>或3.函数()41f x x =-的定义域是()A .[]2,2-B .()2,2-C .()()2,11,2- D .()(]2,11,2- 4.某班同学参加课外兴趣小组,有三个兴趣小组可供选择,要求每位同学至少选择一个小组,经统计有20人参加奥数小组,16人参加编程小组,10人参加书法小组,同时参加奥数小组和编程小组的有12人,同时参加奥数小组和书法小组的有6人,同时参加编程小组和书法小组的有5人,三种都参加的有3人,则该班学生人数为()A .27B .23C .26D .295.“1x =”是“42320x x -+=”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.已知{}0,1,2A =,{}2,4B =,下列对应关系不能作为从集合A 到集合B 的函数的是()A .f :1x y x →=+B .f :x y x →=C .f :2x y x→=D .f :x y →=7.命题“x ∀∈R ,23208kx kx +-<”的否定为假命题,则k 的取值范围是()A .()3,0-B .[]3,0-C .()3,0-D .()3,0-8.已知()f x 是定义域为R 的偶函数,且当0x ≥时,()f x 是增函数.若()()321f m f m +>-,则m 的取值范围为()A .(),4-∞B .2,43⎛⎫-⎪⎝⎭C .()4,+∞D .()2,4,3⎛⎫-∞+∞ ⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分。

安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)

安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题(含答案)

安徽省2024-2025学年高一上学期11月期中教学质量检测数学试题考试时间:120分钟满分150分一、单选题:本题共8小题,每小题5分,共40分.1.下列集合中表示同一集合的是()A. B.C. D.2.若,则下列不等式不能成立的是()A. B.C. D.3.不等式的解集为A.或B.或C.或D.4.函数的图象可能是()A. B. C. D.5.已知,则()A.27B.18C.15D.256.函数的单调递减区间是()A. B. C. D.7.已知是偶函数,且其定义域为,则()A. B.-1 C.1 D.78.已知函数,若存在,且两两不相等,则的取值范围为A. B. C.[0,1] D.{(3,2)},{(2,3)}M N=={4,5},{5,4}M N=={(,)1},{1}M x y x y N y x y=+==+=∣∣{1,2},{(1,2)}M N==a b<<||||a b>2a ab>11a b>11a b a>-23540x x-+->{3x x≤-∣2}x≥{3x x≤-∣1}x≥{31x x-≤≤∣2}x≥∅1(0,1)xy a a aa=->≠13a a-+=33a a-+=()f x=(,3]-∞-[1,1]-(,1]-∞-[1,)-+∞2()35f x ax bx a b=+-+[61,]a a-a b+=1725,0()22,0x xf xx x x->⎧=⎨+-≤⎩()()()123f x f x f x==123x x x、、123x x x++()(1,1)-(1,1]-(0,1]二、多选题:本题共3小题,共18分.9.(多选)下列说法正确的有( )A.命题,则B.“”是“”成立的充分条件C.命题,则D.“”是“”的必要条件10.若正实数a ,b 满足,则下列说法正确的是( )A.ab 有最大值C.有最小值4 D.11.对于函数的定义域中任意的,当时,如下结论正确的是( )A. B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.命题“对任意,都有”的否定是_______________.13.已知,求函数的最小值是_______________.14.已知是上的增函数,则实数的取值范围是_______________.四、解答题:本题共5小题,共77分.15.(本小题13分)已知集合,集合.(1)求;(2)设集合,且,求实数的取值范围.16.(本小题15分)已知二次函数.(1)若的解集为,求a ,b 的值;(2)若f (x )在区间上单调递增,求的取值范围.:,(0,1),2p x y x y ∀∈+<0000:,(0,1),2p x y x y ⌝∃∈+≥1,1a b >>1ab >2:,0p x R x ∀∈>2:,0p x R x ⌝∃∈<5a <3a <1a b +=14+11a b+22a b +()f x ()1212,x x x x ≠()2xf x =()()()1212f x x f x f x +=⋅()()()1212f x x f x f x ⋅=+()()12120f x f x x x ->-()()121222f x f x x x f ++⎛⎫<⎪⎝⎭x R ∈20x ≥54x >14245y x x =-+-2,1()4,12x a x f x a x x ⎧->⎪=⎨⎛⎫-≤ ⎪⎪⎝⎭⎩R a {22}A xx =-∣……{1}B x x =>∣()R B A ⋂ð{6}M xa x a =<<+∣A M M ⋃=a 2()3()f x x ax a R =--∈()0f x <{3}xx b -<<∣[2,)-+∞a17.(本小题15分)如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x m ,宽为y m.(1)若菜园面积为18m 2,则当x ,y 为何值时,可使所用篱笆总长最小?并求出最小值.(2)若使用的篱笆总长度为16m ,则当x ,y 为何值时,可使菜园面积最大?并求出最大值.18.(本小题17分)已知函数在上是偶函数,当时,,(1)求函数在上的解析式;(2)求单调递增区间和单调递减区间;(3)求在的值域.19.(本小题17分)已知函数对任意实数x ,y 恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数并求函数在区间上的最大值;(3)若对任意,不等式恒成立,求的取值范围.()f x R 0x (2)()23f x x x =+-()f x R ()f x ()f x [4,4]-()f x ()()()f x y f x f y +=+0x >()0f x <(1)2f =-()f x ()f x R ()f x [3,3]-x R ∈()23()4f axf x <+a高一期中考试数学参考答案1.B2.D3.D4.D5.B6.B7.A8.D 7.A 8.D9.ABD 10.AC 11.ACD12.存在,使得13.514.[4,8)14.解:(1)由已知,又,所以;(2)因为,所以,又,所以,解得.所以的取值集合为.16.解:(1)的解集为,和是方程的两根,由根与系数关系得:;.(2)的对称轴为且在区间上单调递增,;.17.解:(1)由已知可得,而篱笆总长为;又因为,当且仅当时,即时等号成立所以菜园的长为6m ,宽为3m 时,可使所用篱笆总长最小,最小值为12;0x R ∈200x ≤{1}R B x x =≤∣ð{22}A x x =-∣……(){21}R B A xx ⋂=-∣......ðA M M ⋃=A M ⊆{22},{6}A x x M x a x a =-=<<+∣∣ (62)2a a +>⎧⎨<-⎩42a -<<-a {42}a a -<<-∣()0f x < {3}x x b -<<∣3∴-b 230x ax --=∴3,33b a b -+=-⨯=-2,1a b ∴=-=()f x 2ax =()f x [2,)-+∞22a∴≤-4a ∴≤-18xy =2L x y =+212x y +≥=2x y =6,3x y ==x y(2)由已知得,而菜园面积为,则,当且仅当即时取等号,菜园的长为8m ,宽为4m 时,可使菜园面积最大,最大值为32.18.解:(1)当时,,函数是偶函数,当时,,.(2)由(1)可画出函数在上的图像,如图所示,则的单调递增区间为和,单调递减区间为和.(3)由函数的定义域为,由(2)中所作函数图象可知,当或时,取得最小值,当或时,取得最大值,故函数的值域.19.(1)解:取,则,,取,则,216x y +=S xy =2112232222x y S xy x y +⎛⎫==⋅⋅≤⋅= ⎪⎝⎭2x y =8,4x y ==∴x y 0x (2)()23f x x x =+- ()y f x =0x >20,()()23x f x f x x x -<∴=-=--22230()230x x x f x x x x ⎧+-∴=⎨-->⎩…()y f x =R ()f x (1,0)-(1,)+∞(,1)-∞-(0,1)()y f x =[4,4]-1x =1x =-(1)(1)4f f =-=-4x =4x =-(4)(4)5f f =-=()f x [4,5]-0x y ==(00)2(0)f f +=(0)0f ∴=y x =-()()()f x x f x f x -=+-对任意恒成立,为奇函数.(2)证明:任取且,则,,又为奇函数,.故为上的减函数;为上的减函数,在区间上的最大值为,,故在上的最大值为6.(3)解:为奇函数,且,整理原式得,即可得,而在上是减函数,所以即恒成立,①当时不成立,②当时,有且,即,解得.故的取值范围为.()()f x f x ∴-=-x R ∈()f x ∴12,(,)x x ∈-∞+∞12x x <()()()2121210,0x x f x f x f x x ->+-=-<()()21f x f x ∴<--()f x ()()12f x f x ∴>()f x R ()f x R ()f x ∴[3,3]-(3)f -(3)3(1)236,(3)(3)6f f f f ==-⨯=-∴-=-=()f x [3,3]-()f x (2)(2)2(1)4f f f -=-=-=()22()()(2)f ax f x f x f +-<+-()2(2)()(2)f axf x f x f +-<+-()22(2)f ax x f x -<-()f x R 222ax x x ->-2320ax x -+>0a =0a ≠0a >0< 0980a a >⎧⎨-<⎩98a >a 9,8⎛⎫+∞ ⎪⎝⎭。

吉林省白城市第一中学2024-2025学年高一上学期10月期中考数学试题(含答案)

吉林省白城市第一中学2024-2025学年高一上学期10月期中考数学试题(含答案)

白城市第一中学2024-2025学年度高一上学期期中考试数学试卷一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x >--,则实数x 的取值范围是()A.()1,-+∞ B.()1-∞-,C.()14-,D.()1-∞,2.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 应为()A.10mB.15mC.20mD.25m3.若()f x 是定义在R 上的单调递增函数,则下列四个命题中正确的有(1)若00()>f x x ,则[]00()>f f x x ;(2)若[]00()>ff x x ,则00()>f x x ;(3)若()f x 是奇函数,则[()]f f x 也是奇函数;(4)若()f x 是奇函数,则1212()()00+=⇔+=f x f x x x .A.4个B.3个C.2个D.1个4.已知实数,x y 满足24460x xy y +++=,则y 的取值范围是()A.{}|32y y -≤≤B.{}|23y y -≤≤C.{}{}|2|3y y y y ≤-≥ D.{}{}|3|2y y y y ≤-≥ 5.设,x y 是两个实数,命题“,x y 中至少有一个数大于1”的充分条件是()A.2x y += B.2x y +> C.222x y +> D.1xy >6.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是()A.1a ≤ B.0a ≤ C.a<0 D.0a >7.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A .a b c>> B.c a b >> C.c b a >> D.b c a>>8.若定义在()(),00,-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2422f x f x x --<+的解集为()A.(),1∞--B.()3,2-C.()(),31,2-∞-- D.()(),32,-∞-⋃+∞二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.若给定函数()221f x x x =--,2p =,则下列结论正确的是()A.()()()()00p p f f f f = B.()()()()11p p f f f f =C.()()()()22ppff f f = D.()()()()33ppff f f =10.以数学家约翰·卡尔·弗里德里希·高斯的名字命名的“高斯函数”为[]y x =,其中x ⎡⎤⎣⎦表示不超过x 的最大整数,例如[]3.23=,[]1.52-=-,则()A.R x ∀∈,[][]11x x --=B.不等式[][]22x x -≤的解集为{}13x x -≤<C.当1x ≥,3x x ⎡⎤+⎣⎦⎡⎤⎣⎦的最小值为D.方程[]243x x =+的解集为11.若存在常数k 和b 使得函数()F x 和()G x 分别对其定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()223R f x x x x =-∈,()()10g x x x=<,若使直线4y x b =-+为函数()f x 和()g x 之间的隔离直线,则实数b 的取值可以为()A.0B.-1C.-3D.-5(2023·浙江省余姚中学期中)12.已知,0,260x y x y xy >++-=,则()A.xy的最大值为B.2x y +的最小值为4C.x y +的最小值为3-D.22(2)(1)x y +++的最小值为16三、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数0a >,0b >,且111a b+=,则3211a b +--的最小值为___________.14.若关于x 的一元二次方程()22210a x ax a --++=没有实数解,则不等式30ax +>的解集__________.15.若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.16.若定义在区间[]2021,2021-上的函数()f x 满足:对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,且0x >时,有()2023f x >,()f x 的最大值为M ,最小值为N ,则()0f =______,M N +的值为______.四、解答题:写出必要的文字描述、解题过程.共6题.17.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:()2920031600=>++vy v v v .(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?18.(1)若()21,,204b x ax a x b =-∀∈+++≤R ,求a 的取值范围;(2)若22b a =--(a R ∈),求关于x 的不等式()220ax a x b +++≤的解集.19.已知关于x 的不等式20x ax b ++<的解集为()1,2,试求关于x 的不等式210bx ax ++>的解集.20.已知函数()()22323x x x f x -=<-≤+.(1)用分段函数的形式表示函数op ;(2)画出函数op 的图象;(3)写出函数op 的值域.21.已知函数()()01axf x a x =≠+.(1)当0a >时,判断()f x 的单调性;(2)若()f x 在区间[]1,2上的最大值为43.(i )求实数a 的值;(ii )若函数()()0b g x x b x =+>,是否存在正实数b ,使得对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.(2023·四川省攀枝花市第三高级中学月考)22.已知______,且函数()14212x x xa g x b+-⋅+=+.①函数()()0f x ax b a =+>在[]1,2上的值域为[]2,4;②函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数.请你在①②两个条件中选择一个条件,将上面的题目补无完整.(1)求a ,b 的值;(2)求函数()g x 在[]1,2-上的值域;(3)设()()2log 22xh x x m =+-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,求m 的取值范围.白城市第一中学2024-2025学年度高一上学期期中考试数学试卷一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()21010x x f x x ⎧+≤=⎨>⎩,,,若()()423f x f x >--,则实数x 的取值范围是()A.()1,-+∞ B.()1-∞-,C.()14-,D.()1-∞,【答案】C 【解析】【分析】根据函数的解析式,分析函数的单调性,进而可将(4)(23)f x f x ->-转化为:40230x x -<⎧⎨-⎩或4230x x -<- ,解得答案.【详解】 函数21,0()1,0x x f x x ⎧+=⎨>⎩,∴函数在(-∞,0]上为减函数,在(0,+∞)上函数值保持不变,若(4)(23)f x f x ->-,则40230x x -<⎧⎨-⎩或4230x x -<-,解得:(1,4)x ∈-,故选:C .【点睛】本题主要考查的知识点是分段函数的解析式、单调性,函数单调性的应用,难度中档.2.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 应为()A.10mB.15mC.20mD.25m【答案】C 【解析】【分析】设出矩形花园的宽为y m ,根据相似得到方程,求出40y x =-,从而表达出矩形花园的面积,配方求出最大值,并得到相应的x .【详解】设矩形花园的宽为y m ,则404040x y -=,即40y x =-,矩形花园的面积()()22404020400S x x x x x =-=-+=--+,其中()0,40x ∈,故当20x =m 时,面积最大.故选:C3.若()f x 是定义在R 上的单调递增函数,则下列四个命题中正确的有(1)若00()>f x x ,则[]00()>f f x x ;(2)若[]00()>ff x x ,则00()>f x x ;(3)若()f x 是奇函数,则[()]f f x 也是奇函数;(4)若()f x 是奇函数,则1212()()00+=⇔+=f x f x x x .A.4个 B.3个C.2个D.1个【答案】A 【解析】【分析】利用单调性判断①;利用单调性与反证法判断②;利用奇偶性的定义判断③;利用奇偶性以及单调性判断④.【详解】对于①,()f x 是定义在R 上的单调递增函数,若()00f x x >,则()()000f f x f x x >>⎡⎤⎣⎦,故①正确;对于②,当()00f f x x >⎡⎤⎣⎦时,若()00f x x ≤,由()f x 是定义在R 上的单调递增函数得()()000f f x f x x ≤≤⎡⎤⎣⎦与已知矛盾,故②正确;对于③,若()f x 是奇函数,则()()()f f x f f x f f x -=-=-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,()f f x ∴⎡⎤⎣⎦也是奇函数,故③正确;对于④,当()f x 是奇函数,且是定义在R 上的单调递增函数时,若()()120f x f x +=,则()()()12212120f x f x f x x x x x =-=-⇒=-⇒+=,若()()()()()12121221200x x x x f x f x f x f x f x +=⇒=-⇒=-=-⇒+=,故④正确;故选A.【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.4.已知实数,x y 满足24460x xy y +++=,则y 的取值范围是()A.{}|32y y -≤≤B.{}|23y y -≤≤C.{}{}|2|3y y y y ≤-≥ D.{}{}|3|2y y y y ≤-≥ 【答案】C 【解析】【分析】利用一元二次方程有解,可得判别式大于等于零可求解.【详解】由题意知,关于x 的一元二次方程有解,则21616(6)0y y ∆=-+≥,即260y y --≥,解得2y ≤-或3y ≥.所以y 的取值范围是{}{}|2|3y y y y ≤-≥ .故选:C.5.设,x y 是两个实数,命题“,x y 中至少有一个数大于1”的充分条件是()A.2x y += B.2x y +> C.222x y +> D.1xy >【答案】B 【解析】【分析】用赋值法,取不同的x 与y 代入,可排除A 、C 、D.【详解】对于A ,当1,1x y ==时,满足2x y +=,但命题不成立;对于C ,D ,当2,3x y =-=-时,满足222x y +>,1xy >,但命题不成立.故选:B.6.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是()A .1a ≤ B.0a ≤ C.a<0D.0a >【答案】C 【解析】【分析】根据恒成立问题结合二次函数最值分析求解.【详解】记2()2,02f x x x x =-+≤≤,则min )[0,2],(a f x x <∈.而22()2(1)1f x x x x =-+=--+,当02x ≤≤时,min ()(0)(2)0f x f f ===,所以实数a 的取值范围是a<0.故选C .7.已知函数()f x 是R 上的奇函数,对任意的()12,,0x x ∞∈-,()()()211212120,x f x x f x x x x x ->≠-,设()1523,,1325a f b f c f ⎛⎫⎛⎫==--= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A.a b c >>B.c a b>> C.c b a>> D.b c a>>【答案】A 【解析】【分析】确定数()()f x g x x=在(),0-∞上单调递增,()g x 是()(),00,-∞+∞ 上的偶数,变换得到13a g ⎛⎫=- ⎪⎝⎭,25b g ⎛⎫=- ⎪⎝⎭,()1c g =-,根据单调性得到答案.【详解】()()()211212120,x f x x f x x x x x ->≠-,即()()()121212120,f x f x x x x x x x ->≠-,故函数()()f x g x x=在(),0-∞上单调递增,()f x 是R 上的奇函数,故()g x 是()(),00,-∞+∞ 上的偶数,1113333a f g g ⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,522255b f g ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,()()()111c f g g ===-.12135->->-,故a b c >>.故选:A8.若定义在()(),00,-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2422f x f x x --<+的解集为()A.(),1∞--B.()3,2-C.()(),31,2-∞-- D.()(),32,-∞-⋃+∞【答案】C 【解析】【分析】构造函数()()f x g x x=,由题意可以推出函数()()f x g x x=的奇偶性、单调性,然后对x 进行分类讨论解不等式即可.【详解】因为对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,即对任意两个不相等的正实数12,x x 不妨设120x x <<,都有()()()()21121212121212x f x x f x f x f x x x x x x x x x --=<--,所以有()()1212f x f x x x >,所以函数()()f x g x x=是()0,∞+上的减函数,又因为()f x 为奇函数,即有()(),00,x ∀∈-∞⋃+∞,有()()f x f x -=-,所以有()()()()()f x f x f x g x g x xxx---====--,所以()g x 为偶函数,所以()g x 在(),0-∞上单调递增.当20x ->,即2x >时,有240x ->,由()()2422f x f x x --<+,得()()224224f x f x x x --<--,所以224x x ->-,解得<2x -,此时无解;当20x -<,即2x <时,由()()2422f x f x x --<+,得()()224224f x f x x x -->--,所以224x x -<-,解得3x <-或12x -<<.综上所述,不等式()()2422f x f x x --<+的解集为()(),31,2-∞-- .故选:C.【点睛】关键点点睛:解决本题的关键是由已知条件去构造函数()()f x g x x=,并结合已知导出其函数性质,从而分类讨论解不等式即可.二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.若给定函数()221f x x x =--,2p =,则下列结论正确的是()A.()()()()00p p f f f f = B.()()()()11p p f f f f =C.()()()()22ppff f f = D.()()()()33ppff f f =【答案】ACD 【解析】【分析】结合“p 界函数”的定义可确定函数解析式,再结合分段函数性质可得函数值,进而判断各选项.【详解】因为()221f x x x =--,2p =,令2212x x --≤,即2230x x --≤,解得13x -≤≤,则()2221,132,13x x x f x x x ⎧---≤≤⎪=⎨-⎪⎩或,A 选项:()()()2012p f f f =-=,()()()012pf f f =-=,即()()()()00ppf f f f =,A 选项正确;B 选项:()()()2122p f f f =-=,()()()127pf f f =-=,即()()()()11p pf f f f ≠,B 选项错误;C 选项:()()()212f f f =-=,()()()()()2222212ppf f f f f ==-=即()()()()22ppf f f f =,C选项正确;D 选项:()()()321ff f ==-,()()()()()2223321ppf f f f f ===-,即()()()()33ppf f f f =,D选项正确;故选:ACD.10.以数学家约翰·卡尔·弗里德里希·高斯的名字命名的“高斯函数”为[]y x =,其中x ⎡⎤⎣⎦表示不超过x 的最大整数,例如[]3.23=,[]1.52-=-,则()A.R x ∀∈,[][]11x x --=B.不等式[][]22x x -≤的解集为{}13x x -≤<C.当1x ≥,3xx ⎡⎤+⎣⎦⎡⎤⎣⎦的最小值为D.方程[]243x x =+的解集为【答案】AB 【解析】【分析】设x 的整数部分为a ,小数部分为b ,则[]x a =,则[]11x a -=-得到A 正确,解不等式得到[]12x -≤≤,计算B 正确,均值不等式等号条件不成立,C 错误,举反例得到D 错误,得到答案.【详解】对选项A :设x 的整数部分为a ,小数部分为b ,则[]x a =,1x -的整数部分为1a -,[]11x a -=-,故[][]11x x --=,正确;对选项B :[][]22x x -≤,则[]12x -≤≤,故13x -≤<,正确;对选项C :3x x ⎡⎤+≥=⎣⎦⎡⎤⎣⎦,当且仅当3x x ⎡⎤=⎣⎦⎡⎤⎣⎦,即x ⎡⎤=⎣⎦时成立,x ⎡⎤=⎣⎦不成立,故等号不成立,错误;对选项D :取x =,则[]4x =,代入验证成立,错误;故选:AB11.若存在常数k 和b 使得函数()F x 和()G x 分别对其定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()223R f x x x x =-∈,()()10g x x x=<,若使直线4y x b =-+为函数()f x 和()g x 之间的隔离直线,则实数b 的取值可以为()A.0B.-1C.-3D.-5【答案】BC 【解析】【分析】根据题意得到2234x x x b -≥-+,计算180b ∆=+≤得到一个范围,再根据双勾函数的单调性得到函数()14K x x x=+的最大值,综合得到答案.【详解】2234x x x b -≥-+,即220x x b +-≥恒成立,故180b ∆=+≤,解得18b ≤-;14x b x ≤-+,即14x b x+≤,函数()14K x x x =+在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,在1,02⎡⎫-⎪⎢⎣⎭上单调递减,故()max 142K x K ⎛⎫=-=- ⎪⎝⎭,故b 4≥-.综上所述:14,8b ⎡⎤∈--⎢⎣⎦.故选:BC.(2023·浙江省余姚中学期中)12.已知,0,260x y x y xy >++-=,则()A.xy的最大值为B.2x y +的最小值为4C.x y +的最小值为3-D.22(2)(1)x y +++的最小值为16【答案】BCD 【解析】【分析】A 选项,对不等式变形为26x y xy +=-,利用基本不等式得到6xy -≥,求出xy 的最大值;B 选项,将不等式变形为()62xy x y =-+,利用基本不等式得到()()22628x y x y +-+≤,求出2x y +的最小值;C 选项,对不等式变形为()()16y x x y +=-+,利用()()2114y x y x +++≤求解x y +的最小值;D 选项,不等式变形为()()218x y ++=,利用基本不等式求出和的最小值.【详解】由260x y xy ++-=得:26x y xy +=-,因为,0x y >,所以260x y xy +=->,所以06xy <<,由基本不等式可得:2x y +≥当且仅当2x y =时,等号成立,此时6xy -≥,解得:18xy ≥或2xy ≤,因为6xy <,所以18xy ≥舍去,故xy 的最大值为2,A 错误;由260x y xy ++-=得:()62xy x y =-+,因为,0x y >,所以()620x y -+>,所以026x y <+<,由基本不等式可得:()2224x y xy +≤,当且仅当2x y =时等号成立,即()()22628x y x y +-+≤,解得:24x y +≥或212x y +≤-,因为026x y <+<,所以212x y +≤-舍去,故2x y +的最小值为4,B 正确;由260x y xy ++-=变形为()16x y y x +++=,则()()16y x x y +=-+,由基本不等式得:()()2114y x y x +++≤,当且仅当1y x =+时等号成立,此时()()2164y x x y ++-+≤,令()0x y t t +=>,则由()2164t t +-≤,解得:3t -≥或3t -≤(舍去)所以x y +的最小值为3-,C 正确;由260x y xy ++-=可得:()()218x y ++=,从而22(2)(1)2(2)(1)2816x y x y +++≥++=⨯=当且仅当21x y +=+时,即2x =-,1y =-等号成立,故22(2)(1)x y +++最小值为16.故选:BCD ,三、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数0a >,0b >,且111a b +=,则3211a b +--的最小值为___________.【答案】【解析】【分析】利用111a b +=可得3211a b +--325b a =+-,根据()113232325b a b a b a a b a b ⎛⎫+=++=++ ⎪⎝⎭和基本不等式求出32b a +的最小值,从而可得解.【详解】根据题意得到111a b+=,变形为()()111ab a b a b =+⇒--=,则3211a b +--()()32532511b a b a a b +-==+---,因为111a b +=,故得到()1132323255b a b a b a a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当32b a ba=时等号成立.故3211a b +--≥故答案为:【点睛】本题考查了利用基本不等式求最值,属于基础题14.若关于x 的一元二次方程()22210a x ax a --++=没有实数解,则不等式30ax +>的解集__________.【答案】3|x x a ⎧⎫<-⎨⎬⎩⎭【解析】【详解】试题分析:因为关于x 的一元二次方程()22210a x ax a --++=没有实数解,所以()()2=44210a a a ∆--+<,可得320,3,a ax x a <--∴<- ,故答案为3x|x a ⎧⎫<-⎨⎬⎩⎭.考点:1、一元二次方程根与系数的关系;2、不等式的性质.15.若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】【详解】44224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号).【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.16.若定义在区间[]2021,2021-上的函数()f x 满足:对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,且0x >时,有()2023f x >,()f x 的最大值为M ,最小值为N ,则()0f =______,M N +的值为______.【答案】①.2023②.4046【解析】【分析】根据题意,取特殊点,结合单调性的定义,可得答案.【详解】∵对于任意的[]12,2021,2021x x ∈-,都有()()()12122023f x x f x f x +=+-,∴令120x x ==,得()02023f =,再令120x x +=,将()02023f =代入可得()()4046f x f x +-=,设12x x <,[]12,2021,2021x x ∈-则210x x ->,()()()21212023f x x f x f x -=+--∴()()2120232023f x f x +-->,又()()114046f x f x -=-,∴可得()()21f x f x >,即函数()f x 是严格增函数,∴()()max 2021f x f =,()()min 2021f x f =-,又∵()()202120214046f f +-=,∴M N +的值为4046.故答案为:2023;4046四、解答题:写出必要的文字描述、解题过程.共6题.17.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:()2920031600=>++vy v v v .(1)在该时段内,当汽车的平均速度v 为多少时车流量y 最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?【答案】(1)当40v =(千米/小时)时,车流量最大,最大值约为11.08千辆/小时;(2)汽车的平均速度应控制在[]25,64这个范围内(单位:千米/小时).【解析】【分析】(1)利用基本不等式可求得y 的最大值,及其对应的v 值,即可得出结论;(2)解不等式29201031600vv v ≥++即可得解.【小问1详解】解:0v >,292092092011.08160031600833v y v v v v ==≤≈++++(千辆/小时),当且仅当1600v v=时,即当40v =(千米/小时)时,车流量最大,最大值约为11.08千辆/小时.【小问2详解】解:据题意有29201031600vv v ≥++,即28916000v v -+≤,即()()25640v v --≤,解得2564v ≤≤,所以汽车的平均速度应控制在[]25,64这个范围内(单位:千米/小时).18.(1)若()21,,204b x ax a x b =-∀∈+++≤R ,求a 的取值范围;(2)若22b a =--(a R ∈),求关于x 的不等式()220ax a x b +++≤的解集.【答案】(1)[]4,1--;(2)见解析【解析】【分析】(1)对a 分两种情况讨论,结合二次函数的图像和性质求出a 的取值范围;(2)原不等式等价于()()2210ax a x ++-≤.再对a 分类讨论解不等式得解.【详解】(1)当0a =时,不等式可化为1204x -≤,显然在R 上不恒成立,所以0a ≠.当0a ≠时,则有()20,20,a a a <⎧⎪⎨∆=++≤⎪⎩解得41a -≤≤-.故a 的取值范围为[]4,1--.(2)()22220ax a x a ++--≤等价于()()2210ax a x ++-≤.①当0a =时,()210x -≤,原不等式的解集为−∞,1.②当0a >时,220a a +-<,原不等式的解集为22,1a a +⎡⎤-⎢⎥⎣⎦.③当0a <时,22321a a aa ++--=-.若()222,1033a x =---≤,原不等式的解集为R;若23222,0,3a a a a a ++<--<-<1,原不等式的解集为[)22,1,a a +⎛⎤-∞-+∞ ⎥⎝⎦ ;若232220,0,13a a a a a ++-<<->->,原不等式的解集为(]22,1,a a +⎡⎫-∞-+∞⎪⎢⎣⎭ .【点睛】本题主要考查二次型不等式的恒成立问题,考查解二次型的不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知关于x 的不等式20x ax b ++<的解集为()1,2,试求关于x 的不等式210bx ax ++>的解集.【答案】12x x ⎧<⎨⎩或>1.【解析】【分析】由题意可知,关于x 的方程20x ax b ++=的两个根为1、2,利用韦达定理可求得a 、b 的值,进而可求得不等式210bx ax ++>的解集.【详解】由题意可知,关于x 的方程20x ax b ++=的两个根为1、2,由韦达定理得1212a b -=+⎧⎨=⨯⎩,即32a b =-⎧⎨=⎩,所以,不等式210bx ax ++>为22310x x -+>,即()()2110x x -->,解得12x <或1x >.因此,不等式210bx ax ++>的解集为12x x ⎧<⎨⎩或>1.【点睛】本题考查一元二次不等式的求解,同时也考查了利用一元二次不等式的解集求参数,考查计算能力,属于基础题.20.已知函数()()22323x x x f x -=<-≤+.(1)用分段函数的形式表示函数op ;(2)画出函数op 的图象;(3)写出函数op 的值域.【答案】(1)()2,2012,033x x f x x x +-<≤⎧⎪=⎨-+<≤⎪⎩;(2)图象答案见解析;(3)(]0,2.【解析】【分析】(1)分20x -<≤和03x <≤两种情况去掉绝对值可求出函数的解析式;(2)根据(1)的解析式画出函数的图像;(3)根据函数图像可求出函数的值域【详解】(1)()2,2012,033x x f x x x +-<≤⎧⎪=⎨-+<≤⎪⎩.(2)函数op 的图象如下图所示.(3)由图得函数op 的值域为(]0,2.【点睛】此题考查分段函数,考查由函数解析式画函数图像,根据图像求出函数的值域,属于基础题21.已知函数()()01axf x a x =≠+.(1)当0a >时,判断()f x 的单调性;(2)若()f x 在区间[]1,2上的最大值为43.(i )求实数a 的值;(ii )若函数()()0b g x x b x =+>,是否存在正实数b ,使得对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)在(),1∞--和()1,-+∞上单调递增(2)(i )2a =;(ii )存在,15153b b ⎧⎫<<⎨⎬⎩⎭【解析】【分析】(1)根据单调性的定义判断单调性;(2)(i )根据题意,分别对a<0和0a >两种情况讨论单调性,即可得出结果;(ii )由题意()()0bg x x b x=+>,可证得()g x 在(为减函数,在)+∞为增函数,设()m f x =,1,13m ⎡⎤∈⎢⎥⎣⎦,则()()0b b g m m m =+>,从而把问题转化为1,13m ⎡⎤∈⎢⎥⎣⎦,()()min max 2g m g m >时,求实数b 的取值范围.结合()()0b b g m m m=+>的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意得(),111ax a f x a x x x ==-≠-++.设12,(,1)x x ∀∈-∞-且12x x <,则()()()()()11212212=1111a x x a a a a x x x x x f x f -⎛⎫--- ⎪=+⎭-+++⎝,因为121x x <<-,所以120x x -<,()()12110x x ++>,当0a >时,()()120f x f x -<,即()()12f x f x <.所以()1a f x a x =-+在(),1∞--上单调递增;同理可得,()1a f x a x =-+在()1,-+∞上单调递增.故()f x 在(),1∞--和()1,-+∞上单调递增.【小问2详解】(i )()f x 在区间[]1,2上的最大值为43.①当a<0时,同理(1)可知,函数()1a f x a x =-+在区间[]1,2上单调递减,∴()()max 41223a a f x f a ==-==,解得823a =>(舍去);②当0a >时,函数()1a f x a x =-+在区间[]1,2上单调递增,∴()()max 242333a a f x f a ==-==,解得[]1,22a =∈.综上所述,2a =.(ii )由(i )知,()221f x x =-+,且()f x 在区间1,15⎡⎤⎢⎥⎣⎦上单调递增.∴()()115f f x f ⎛⎫ ⎪⎝⎭≤≤,即()113f x ≤≤,∴()f x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.讨论函数()()0b g x x b x=+>:令120x x <<,则()()()12121212121b b b g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,当(12,x x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12g x g x >,()g x 为减函数;当)12,x x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12g x g x <,()g x 为增函数;∴()g x 在(为减函数,在)+∞为增函数,令()m f x =,则1,13m ⎡⎤∈⎢⎥⎣⎦,∴()()()()0b g f x g m m b m==+>.在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r ,s ,t ,都存在以()()g f r ,()()g f s ,()()g f t 为边长的三角形,等价于1,13m ⎡⎤∈⎢⎥⎣⎦,()()min max 2g m g m >.①当103<≤,即109b <≤时,()b g m m m =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()()min max 13,13g m b g m b =+=+,由()()minmax 2g m g m >,即2613b b +>+,得115b >,∴11159b <≤;②当1193b <≤时,()b g m m m =+在13⎡⎫⎢⎣⎭上单调递减,在⎤⎦上单调递增,∴()()ma min x 1g m g m b ==+,由()()min max 2g m g m >,即1b >+,得21410b b -+<,解得77b -<<+1193b <≤;③当113b <<时,()b g m m m =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()()m x min a 133g m g m b ==+,由()()min max 2g m g m >,即133b >+,得2191409b b -+<,解得74374399b -+<<,∴113b <<;④当1b ≥时,()b g m m m =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()()min max 11,33g m b g m b =+=+,由()()min max 2g m g m >,即12233b b +>+,解得53b <,∴513b ≤<.综上所述,实数b 的取值范围为15153b b ⎧⎫<<⎨⎩⎭.【点睛】关键点睛:本题第二问的关键是结合对勾函数的图象与性质,通过对b 的分类讨论从而得到不等式,解出即可.(2023·四川省攀枝花市第三高级中学月考)22.已知______,且函数()14212x x x a g x b+-⋅+=+.①函数()()0f x ax b a =+>在[]1,2上的值域为[]2,4;②函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数.请你在①②两个条件中选择一个条件,将上面的题目补无完整.(1)求a ,b 的值;(2)求函数()g x 在[]1,2-上的值域;(3)设()()2log 22x h x x m =+-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,求m 的取值范围.【答案】(1)选①根据单调性及值域列方程组求解;选②利用奇偶性列方程组求解(2)12,4⎡⎤-⎢⎥⎣⎦(3)12m >【解析】【分析】(1)选①,根据根据单调性及值域列方程组求解;选②根据函数为偶函数列方程组求解;(2)直接根据函数单调性求值域;(3)将1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立转化为()()2min 1g x h x <,先利用函数单调性求出()in 1m 2g x =-,即得则[]22,2x ∃∈-使得()()22222log 22x h x x m =+->-成立,继续转化为22min 112242x x m ⎛⎫>+⋅ ⎪⎝⎭,利用基本不等式最小值即可.【小问1详解】选①,函数()()0f x ax b a =+>在[]1,2上单调递增,故()()12224f a b f a b ⎧=+=⎪⎨=+=⎪⎩,解得2,0a b ==;选②,函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数故202110a b b -⎧=⎪⎨⎪-++=⎩,解得2,0a b ==;【小问2详解】由(1)得()1422112422x x x x x g x +-⋅+==+-,令12,42x t ⎡⎤=∈⎢⎥⎣⎦,[]1,2x ∈-,则()14g x t t =+-,1,42t ⎡⎤=⎢⎥⎣⎦,由对勾函数的性质可得1y x x =+在()0,1上递减,()1,+∞上递增,故()min 11421g x =+-=-,又()()131124,44224412g g =+-==+-=--,所以函数()g x 在[]1,2-上的值域为12,4⎡⎤-⎢⎣⎦;【小问3详解】由(2)得,当x ∈R 时,20x >,()min 2g x =-,若1R x ∃∈,[]22,2x ∃∈-使得()()12g x h x <成立,则[]22,2x ∃∈-使得()()22222log 22x h x x m =+->-成立,整理得22112242x x m >+⋅在[]22,2x ∈-上能成立,所以22min112242x x m ⎛⎫>+⋅ ⎪⎝⎭,又22112142x x +⋅≥=,当且仅当2211242x x =⋅,即21x =-时等号成立,所以21m >,即12m >.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年级上学期期中考试
数学试题 2014.11.8
( 满分150分,时间120分钟 )
一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一项是正确的。

) 1、下列各项中,不可以组成集合的是( )
A .所有的正数
B .等于2的数
C .不等于0的偶数
D .接近于0的数 2、已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0( )
A. {}2
B. {}3
C. {}432,,
D. {}4321,0,,, 3、下列四组函数中,为同一函数的一组是 ( )
A .1)(=x f 与0
)(x x g = B .2)(x x f =
与x x g =)(
C .x x f -=)(与)(x g =⎩
⎨⎧-x x D .=)(x f 112--x x 与1)(+=x x g
4、已知函数()则,x x x x x f ⎩⎨
⎧>+-≤+=1
,31
,1)2(f =( )
A 3
B 2
C 1
D 0
5、函数()y f x =的图象与直线1x =的公共点数目是( ) A .0或1 B .0 C .1 D .1或2
6、计算机成本不断降低,若每隔三年计算机价格降低
3
1
,则现在价格为8100元的计算机 9年后价格可降为( )
A.2400元
B.900元
C.300元
D.3600元
7、已知函数=-=+-=)(.)(.11lg )(a f b a f x
x
x f 则若( ) A .b B .b - C .b 1 D .1
b
-
8、已知)0(1)]([,21)(2
2
≠-=-=x x
x x g f x x g ,那么)21(f 等于( ) A .15 B .1 C .3 D .30
9、函数=)(x f 2)1(22+-+x a ax 在区间)4,(-∞上为减函数,则a 的取值范围为( ) A .5
1
0≤
<a B .510≤
≤a C .5
1
0<<a D .>a 51
10、已知有三个数2
3.0=a ,3.0log 2=b ,3
.02
=c ,则它们之间的大小关系是( )
A .b c a << B. c b a << C. c a b << D.a c b << 11、函数2-=x y 在区间]2,2
1
[上的最大值是( )
A .
4
1
B .1-
C .4
D .4- 12、如果0log 2
1>x 成立,则x 应满足的条件是( )
A. >
x 21 B. 2
1
1<<x C. 1<x D. 10<<x 二、填空题(本大题共4小题,每小题5分,共20分。


13、若函数x
a x f )21()(-=在实数集R 上是减函数,则实数a 的取值范围是 . 14、若函数)(x f 的定义域为(0,2),则函数)1(x f y -=的定义域是 . 15、若函数32)(2
+-=x x x f 在区间[0,m]上的值域为[2,3],则实数m 的取值范围 .
16、某企业制定奖励条例,对企业产品的销售取得优异成绩的员工实行奖励,奖励金额(元)
是()()()500f n k n n =-(其中n 为年销售额),而()()()()
0.350010000.4100020000.52000n k n n n ≤≤⎧⎪
=<<⎨⎪
≤⎩,
一员工获得400元的奖励,那么该员工一年的销售额为 .
(x ≥0)
(x <0)
数学答案
一、选择题 (本大题共12小题,每小题5分,共60分) 1-6:DBCCAA 7-12:BABCCD
二、填空题(本大题共4小题,每小题5分,共20分) 13:0<a <1/2, 14:(-1,1), 15: 1≤m ≤2, 16:1500
三、解答题(本大题共6题,满分70分,解答应写出文字说明,证明过程或演算步骤.) 17、(1)答案:1 (2)答案:6 18、{}(){}R 57C 57A
B x x A B x x x =<<=≤≤,或,
{}310A
B x x =<≤,()()(){}B A B 37
C A C C x x x
⋂=⋃=≤R R R 或
19、解:2
(1)1,()22,a f x x x =-=-+
对称轴min max 1,()(1)1,()(5)37x f x f f x f ====-= ∴max m ()37,()1in f x f x ==
(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调
∴ a≤-5或a≥5
20、解:2
2
(1)(1)(1)f a f a f a -<--=-,
则2
211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩
, ∴01a <<
21、.解:当121m m +>-,即2m <时,,B φ=满足B A ⊆,即2m <;
当121m m +=-,即2m =时,{}3,B =满足B A ⊆,即2m =;
当121m m +<-,即2m >时,由B A ⊆,得12
215m m +≥-⎧
⎨-≤⎩
即23m <≤;
∴的取值范围:3≤m。

相关文档
最新文档