第3章高层建筑结构荷载1

合集下载

第3章高层建筑结构的荷载和地震作用(精)

第3章高层建筑结构的荷载和地震作用(精)

第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。

已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。

已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。

为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。

解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。

脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。

则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。

科学出版社 高层建筑结构设计(第二版)史庆轩 主编 国家级精品课教材 赠课件 第3章-局部修改

科学出版社 高层建筑结构设计(第二版)史庆轩 主编  国家级精品课教材 赠课件  第3章-局部修改

第3章 高层建筑结构的荷载和地震作用 ——局部修改P39:作用在楼面上的活荷载,不可能以标准值的大小布满在所有楼面上,因此在设计梁、墙、柱和基础时,还要考虑实际荷载沿楼面分布的变异情况,对活荷载标准值乘以规定的折减系数。

折减系数的确定比较复杂,目前大多数国家均通过从属面积来考虑,具体可参考《荷载规范》的规定。

P46:表3.2.2 脉动增大系数ξ注:计算201T ω时,对地面粗糙度B 类地区可直接代入基本风压,而对A 类、C 类和D 类地区应按当地的基本风压分别乘以1.38、0.62和0.32后代入。

P47:表3.2.4 振型系数ϕP49:表3.2.5 风荷载作用下各区段合力的计算P50:结构地震动力反应过程中存在着地面扭转运动,而目前这方面的强震实测记录很少,地震作用计算中还不能考虑输入地面运动扭转分量。

为此,《高层规程》规定,计算单向地震作用时应考虑偶然偏心的影响,每层质心沿垂直于地震作用方向的偏移值可按下式采用,即0.05i i e L =± (3.3.1) 式中:i e 为第i 层质心偏移值(m),各楼层质心偏移方向相同;i L 为第i 层垂直于地震作用方向的建筑物总长度(m)。

P51:表3.3.2 时程分析时输入地震加速度的最大值 (cm/s 2)P53:表3.3.5 水平地震影响系数最大值αP59:2)跨度大于24m 的楼盖结构、跨度大于12m 的转换结构和连体结构、悬挑长度大于5m 的悬挑结构,结构竖向地震作用效应标准值宜采用时程分析法或振型分解反应谱方法进行计算。

时程分析计算时输入的地震加速度最大值可按规定的水平输入最大值的65%采用,反应谱分析时结构竖向地震影响系数最大值可按水平地震影响系数最大值的65%采用,但设计地震分组可按第一组采用。

3)高层建筑中,大跨度结构、悬挑结构、转换结构、连体结构的连接体的竖向地震作用标准值,不宜小于结构或构件承受的重力荷载代表值与表3.3.9所规定的竖向地震作用系数的乘积。

第三章 建筑结构荷载

第三章 建筑结构荷载

第三章建筑结构荷载《建筑结构荷载规范》GB50009-2001一荷载分类1、永久荷载:结构自重、土压力、预应力2、可变荷载:楼面活荷载、屋面活荷载、积灰荷载、吊车荷载、风荷载、雪荷载、地震荷载3、偶然荷载:爆炸力、撞击力例:工业厂房屋盖自重荷载:防水层(八层作法)标准值0.35kN/m2(沿屋面坡向)找平层(2cm厚水泥砂浆)标准值0.40kN/m2(沿屋面坡向)保温层(10cm沥青珍珠岩)标准值0.30 kN/m2(沿屋面坡向)预应力钢筋混凝土大型屋面板标准值1.40 kN/m2(沿屋面坡向)屋架自重(包括支撑)标准值0.45 kN/m2(沿水平面)例:工业厂房屋盖活荷载:使用荷载标准值0.70 kN/m2(沿水平面)雪荷载标准值0.45 kN/m2(沿水平面)例:常用材料自重(kN/m3):钢-78.5;钢筋混凝土-25;普通砖-18;焦渣空心砖-10;瓷砖-19.8;木材-4~9;水泥-16;水泥砂浆-20二荷载代表值1、永久荷载采用标准值作为代表值;2、活荷载采用标准值、组合值、频遇值、准永久值作为代表值;3、偶然荷载应按建筑结构使用的特点确定代表值三 荷载效应组合1、对于承载能力极限状态:包括基本组合、偶然组合;设计表达式:R S ≤0γ其中:0γ-结构重要性系数;1.1、1.0、0.9S -荷载效应组合的设计值; R -结构构件抗力的设计值;◎基本组合由可变荷载效应控制的组合∑=++=ni Qikci Qi k Q Q Gk G S S S S 211ϕγγγ式中:Gγ-永久荷载的分项系数;Qi γ-第i 个可变荷载的分项系数;S Gk -按永久荷载G k 计算的荷载效应值; S Qik -按可变荷载Q ik 计算的荷载效应值;ci ϕ-可变荷载Q i 的组合值系数由永久荷载效应控制的组合∑=+=ni Qikci Qi Gk G S S S 1ϕγγ注:1.基本组合中的设计值仅用于荷载与荷载效应为线性的情况;2.当对S Q1k 无法明显判断时,轮次以可变荷载效应为S Q1k ,取最不利荷载组合效应;3.当考虑以竖向的永久荷载效应控制的组合时,参与组合的可变荷载仅限于竖向荷载对一般的排架、框架结构,基本组合可采用简化规则:对可变荷载效应控制的组合:取下列两式的不利值kQ Q Gk G S S S 11γγ+= ∑=+=ni QikQi Gk G S S S 19.0γγ对永久荷载效应控制的组合不变 基本组合的荷载分项系数按下列规定采用永久荷载分项系数:当其效应对结构不利时:对由可变荷载效应控制的组合取1.2;对永久荷载效应控制的组合取1.35当其效应对结构有利时:一般情况下取1.0;对结构的倾覆、滑移或漂浮验算时取0.9 可变荷载的分项系数:一般情况下取1.4;对标准值大于4kN/m 2的工业房屋楼面结构的活荷载取1.3偶然组合偶然荷载的代表值不乘分项系数,按有关规定进行。

高层建筑结构的荷载和地震作用31竖向荷载ss=

高层建筑结构的荷载和地震作用31竖向荷载ss=

第3章 高层建筑结构的荷载和地震作用高层建筑结构主要承受竖向荷载和和水平荷载。

恒荷载 风荷载 1) 竖向荷载 2)水平荷载活荷载 地震作用 本章主要内容z 竖向荷载(简介) z 风荷载(重点)z 地震作用(工程结构抗震课介绍此部分内容) 与多层建筑结构有所不同,高层建筑结构:z 竖向荷载效应远大于多层建筑结构;z 水平荷载的影响显著增加,成为其设计的主要因素; z 对高层建筑结构尚应考虑竖向地震的作用。

3.1 竖向荷载3.1.1 恒荷载1)恒荷载是指各种结构构件自重和找平层、保温层、防水层、装修材料层、隔墙、幕墙及其附件、固定设备及其管道等重量,其标准值可按构件尺寸、和材料密度(单位体积或面积的自重)计算确定。

2)材料容重可从《荷载规范》查取;固定设备由相关专业提供。

3.1.2 活荷载 1. 楼面活载1)高层建筑楼面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。

2)在荷载汇集及内力计算中,应按未经折减的活荷载标准值进行计算,楼面活荷载的折减可在构件内力组合时进行。

2. 屋面活载1)屋面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。

2)有些情况下,应考虑屋面直升机平台的活荷载:(优于五星级酒店的是,七星级酒店将提供秘书式的“管家服务”,辟有直升机停机坪,用直升机和“大奔”接送客人。

)3. 屋面雪荷载1)屋面水平投影面上的雪荷载标准值k s ,应按下式计算:0r k s s μ= (3.1.1)式中:0s 为基本雪压,系以当地一般空旷平坦地面上统计所得50年一遇最大积雪的自重确定,按《荷载规范》取用;μr为屋面积雪分布系数,屋面坡度α≤25°时,μr取1.0,其它情况可按《荷载规范》取用。

2)雪荷载的组合值系数可取0.7;频遇值系数可取0.6;准永久值系数按雪荷载分区Ⅰ、Ⅱ和Ⅲ的不同,分别取0.5、0.2和0。

3)雪荷载不应与屋面均布活荷载同时组合。

第3章高层建筑结构的荷载和地震作用.

第3章高层建筑结构的荷载和地震作用.

第3章高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m,室外地面至檐口的高度为120m,平面尺寸为30m⨯40m,地下室采用筏形基础,埋置深度为12m,如图3.2.4(a)、(b)所示。

已知基本风压为w0=0.45kNm,建筑场地位于大城市郊区。

已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN。

为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。

2解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: T1=0.05n=0.05⨯38=1.90sw0T12=0.45⨯1.92=1.62kN⋅s2m2(2)风荷载体型系数:对于矩形平面,由附录1可求得μs1=0.80H⎫120⎫⎛⎛⎪=- 0.48+0.03⨯⎪=-0.57 L40⎝⎭⎝⎭(3)风振系数:由条件可知地面粗糙度类别为B类,由表3.2.2可查得脉动增大系数ξ=1.502。

脉动影响系数ν根据H/B和建筑总高度H由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得ν=0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z与房屋高度H的比值,即ϕz=Hi/H,Hi为第i层标高;H为建筑总高度。

则由式(3.2.8)可求得风振系数为:ξ ν ϕzξνHi1.502⨯0.478Hiβz=1+=1+⋅=1+⋅μzμzHμzH(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:q(z)=0.45×(0.8+0.57)×40μzβz=24.66μzβzμs2=- 0.48+0.03按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。

高层建筑设计理论第3章

高层建筑设计理论第3章
❖ 第4.2.2条:基本风压应按照现行国家标准《建筑结构 荷载规范》GB50009 的规定采用。对于安全等级为一 级的高层建筑以及对风荷载比较敏感的高层建筑,承 载力设计时应按基本风压值的1.1倍采用。(强条)
2、风压高度变化系数 μ Z 风速大小不仅与高度有关,一般越靠近地面风速越小,
愈向上风速越大,而且风速的变化与地貌及周围环境有直 接关系。
风压高度变化系数
表 3-7 风压高度变化系数 z
风压的高度变化
单位面积风荷载标准值
(1)当计算主要承重结构时
wk z s z w0
式中 wk ——风荷载标准值(kN/m2); w0 ——基本风压(kபைடு நூலகம்/m2);
s ——风压高度变化系数; z ——风荷载体型系数; z ——z 高度处的风振系数。
(2)当计算围护结构时
wk gz s z w0
式中 gz ——高度 z 处的阵风系数。
基本风压
作用在建筑物上的风压力与风速有关,可表示为:
0

1 2
2
式中 0 ——用于建筑物表面的风压(N/m2); ——空气的密度,取 =1.25k9/m3; ——平均风速(m/s)。
全国l0年、50年和l00年一遇的风压标准值可由《建筑结 构荷载规范》(GB50009--2012)附表中查得。
屋面活荷载
屋面活荷载一般可按下述方法进行取值: 1.房屋建筑的屋面,其水平投影面上的屋面均布活荷载的标准值 及其组合值系数、频遇值系数和准永久值系数的取值,不应小于 表3-3的规定。 2.屋面直升机停机坪荷载应按局部荷载考虑,或根据局部荷载换 算为等效均布荷载考虑,其等效均布荷载不应低于5.0kN/m2。
2.风力受建筑物周围环境影响较大,处于高层建筑群中的高层建筑,有时会 出现受力更为不利的情况。例如,由于不对称遮挡而使风力偏心产生扭转;相邻 建筑物之间的狭缝风力增大,使建筑物产生扭转等等。在这些情况下要适当加大 安全度。

高层课后思考题答案

高层课后思考题答案

⾼层课后思考题答案⾼层课后思考题答案第1章绪论1.我国对⾼层建筑结构是如何定义的?答:我国规定:10层及10层以上或⾼度超过28m的住宅以及房屋⾼度⼤于24m的其他民⽤建筑为⾼层建筑。

2.⾼层建筑结构的受⼒及变形特点是什么?设计时应考虑哪些问题?答:特点:⽔平荷载对结构影响⼤,随⾼度的增加除轴⼒与⾼度成正⽐外,弯矩和位移呈指数曲线上升,并且动⼒荷载作⽤下,动⼒效应⼤,扭转效应⼤。

考虑:结构侧移,整体稳定性和抗倾覆问题,承载⼒问题。

3.从结构材料⽅⾯来分,⾼层建筑结构有哪些类型?各有何特点?答:相应的结构分类(以材料分类):砌体结构、钢结构、钢筋混凝⼟结构、钢-混凝⼟混合结构特点:(1)砌体结构具有取材容易、施⼯简便、造价低廉等优点,但其抗拉、抗弯、抗剪强度均较低,抗震性 __________能较差。

(2)钢结构具有强度⾼,⾃重轻(有利于基础),延性好,变形能⼒⼤,有利于抗震,可以⼯⼚预制,现场拼装,交叉作业但价格⾼,防⽕材料(增加造价),侧向刚度⼩。

(3)钢筋混凝⼟具有价格低,可浇筑成任何形状,不需要防⽕,刚度⼤。

但强度低,构件截⾯⼤占⽤空间⼤,⾃重⼤,不利于基础、抗震,延性不如钢结构。

(4)混合结构与钢构件⽐:⽤钢少,刚度⼤,防⽕、防锈;与混凝⼟构件⽐:重量轻,承载⼒⼤,抗震性能好。

第2章⾼层建筑结构体系与布置1.⾼层结构体系⼤致有哪⼏类?各种结构体系优缺点和受⼒特点如何?答:⾼层结构体系类型:框架结构体系剪⼒墙结构体系框架⼀剪⼒墙结构体系筒中筒结构体系多筒体系巨型结构体系框架结构:受⼒变形特点:框架结构的侧移⼀般由两部分组成:1)⽔平⼒引起的楼层剪⼒,使梁、柱构件产⽣弯曲变形,形成框架结构的整体剪切变形Us ;2)由⽔平⼒引起的倾覆⼒矩,使框架柱产⽣轴向变形(⼀侧柱拉伸,另⼀侧柱压缩)形成框架结构的整体弯曲变形Ub ;3)当框架结构房屋的层数不多时,其侧移主要表现为整体剪切变形,整体弯曲变形的影响很⼩。

高层建筑结构设计 第三讲 高层建筑结构荷载

高层建筑结构设计 第三讲 高层建筑结构荷载
14
回顾-地震作用的知识点
地震效应: 地面运动产生的结构反应,包括加速度、速度、位移 反应。 地面运动特性的特征量(三要素):强度、频谱和持续时间。
建筑物本身的动力特性对建筑破坏程度有很大的影响,建筑物的 动力特性:主要指建筑物的自振周期、振型和阻尼。 抗震设防是对建筑物进行抗震设计并采取一定的抗震措施,以达 到结构抗震的效果和目的。 抗震设防的目标:(三水准)
高层建筑结构设计
第三讲 高层建筑结构荷载
高层建筑主要承受竖向荷载、风荷载和地震作用。本章的主要 任务是介绍上述荷载的汇集方法。
3.1 竖向荷载
永久荷载(恒荷载):结构及装饰材料自重、固定 设备自重。 竖向荷载分为 可变荷载(活荷载):楼面均布活荷载、雪荷载、 积灰荷载及施工检修荷载。 恒荷载标准值可由《建筑结构荷载规范》GB50009提供的各种材 料自重标准值及构件和装饰物等截面尺寸进行计算,固定设备自重 由有关专业人员提供。 活荷载标准值应按《建筑结构荷载规范》GB50009的有关规定 采用。
“小震不坏,中震可修,大震不倒”
通过二阶段设计法来实现上述“三水准”抗震设计目标。
15
3.3 地震作用
一、地震作用的有关规定 1.建筑物重要性分类 甲类——指重大建筑工程和地震作用时可能发生严重次生灾 害的建筑。 乙类——指地震时使用功能不能中断或需尽快恢复的建筑。 丙类——指一般高层民用建筑。
(1)甲类建筑:应按高于本地区设防烈度计算; (2)乙、丙建筑,应按本地区设防烈度计算。 抗震措施不同,具体抗震措施要求看《规范》。
在计算高层建筑楼面活荷载引起的内力时,一般可不考虑楼 面活荷载不利布置,因为高层建筑楼面活荷载标准值一般为 2kN/m2 ,而高层建筑全部竖向荷载标准值一般为12~16kN/m2, 楼面活荷载最不利布置对内力影响较小,为简化计算,可不考虑 楼面活荷载不利布置,按活荷载满布进行计算,然后对梁跨中弯 矩乘以1.1~1.3的放大系数。 当楼面活荷载大于4kN/m2时,应考虑活荷不利布置。

高层建筑荷载

高层建筑荷载

是取该地区(城市)空旷平坦地面上,离地 10m 处,重现期为 50 年(或 100 年)的 10 分钟
平均最大风速
v
0
(m/s)作为计算基本风压值的依据,近似按照
v
2 0
/1600
计算风压值。
一般高层建筑取重现期为 50 年的风压值计算风荷载,对于特别重要或有特殊要求的高层建
筑,取重现期为 100 年的风压值计算风荷载。
T 0.0718 1.26s 地表面粗糙度 D 类: 0.32w0T 2 0.32 0.7 1.26 2 0.356 kNs2 / m2 。查 表3-3,得 =1.327。 D 类地区,查表3-4,得υ=0.449。振型系数简化为直线, z = Hi/H,则
wz zz
wi
z (1
z z
风洞试验的费用较高,但多数情况会得到更安全而经济的设 计,在国外应用较为普遍,我国应用还不普遍。随着我国经济实 力和技术提高,国内已有一些可以对建筑物模型进行风洞试验的 设备,今后国内风洞试验会逐步增加。
我国现行《混凝土高规》规定有下列情况之一的建筑物,宜按 风洞试验确定风荷载:
(1)高度大于 200m; (2)高度大于 150m,且平面形状不规则、立面形状复杂,或 立面开洞、连体建筑等; (3)规范或规程中没有给出风载体型系数的建筑物; (4)周围地形和环境复杂,邻近有高层建筑时,宜考虑互相 干扰的群体效应,一般可将单个建筑物的体型系数乘以相互干扰 增大系数,缺乏该系数时宜通过风洞试验得出。
-0.5
3 -0.7×6.0×(-0.45) -0.866
4 -0.7×28.38×(-0.5)
0.5
5 -0.7×6.0×(-0.5)
-0.5
6 -0.7×6.0×(-0.5)

第3章 高层建筑荷载及其效应组合

第3章 高层建筑荷载及其效应组合

根据假定(1),可分别考虑纵向平面结构 和横向平面结构的受力情况,即在横向水 平分力的作用下,只考虑横向框架(横向 剪力墙)而忽略纵向框架(纵向剪力墙)的 作用,而在纵向水平力作用下,只考虑纵 向框架(纵向剪力墙)而忽略横向框架(横 向剪力墙)的作用。这样可使计算大为简 化。
3.2 竖向荷载
竖向荷载包括恒载、楼面及屋面活荷载、 雪荷载。恒载由构件及装修材料的尺寸和材 料重量计算得出,材料自重可查《建筑结构 荷载规范》(GB 50009-2001)(以下简称《荷 载规范》)。楼面上的活荷载可按《荷载规 范》采用,常用民用建筑楼面均布活荷载见 表3-1。
震中距的影响 建筑物本身的动力特性对建筑破坏程 度有很大的影响 建筑物的动力特性:主要指建筑物的 自振周期、振型和阻尼。
自振周期:结构按某一振型完成一次自由振动所需
要的时间 阻尼:使自由振动衰减的各种摩擦和其他阻碍作用
地震的几个名词
地震震级 地震能量的量度。 地震烈度 对地面及建筑物的破坏程度。
3.在遭受高于本地区设防烈度的预估 罕遇地震的影响时,建筑物不致倒塌 或发生危及生命的严重破坏。(此时 建筑物将产生严重破坏但不至于倒塌, 大震)
恒载的计算内容: 1、结构构件(梁、板、柱、墙、支撑) 的重量 2、非结构构件(粉灰、饰面材料、填 充墙、吊顶等)的重量 这些重量的大小不随时间而改变,又 称为永久荷载。 恒载标准值等于构件的体积乘以材料 的容重。
常用材料的容重为:
钢筋混凝土 25kN/m3; 钢材 78.5kN/m3 水泥砂浆 20kN/m3; 混合砂浆 17kN/m3 铝型材 28kN/m3; 玻璃 25.6kN/m3
水平荷载作用方向图
3.1.2 平面化假定 荷载作用下的房屋结构都是空间受力体系, 对框架结构、剪力墙结构及框架-剪力墙结构进行 计算时,可以把空间结构简化为平面结构,并作 以下两个假定。 (1) 每榀框架或剪力墙可以抵抗自身平面内的侧 力,平面外刚度很小,可忽略不计。即不考虑框 架(剪力墙)参与抵抗平面外的水平作用,当作只 抵抗自身平面内水平作用的平面结构。 (2) 楼盖结构在自身平面内刚度无限大,平面外 刚度很小,可忽略不计。

第3,4章 高层建筑荷载

第3,4章 高层建筑荷载

建筑物的抗震设防类别
建筑应根据其使用功能的重要性分为甲类、乙 类、丙类和丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发 生严重次生灾害的建筑, 乙类建筑应属于地震时使用功能不能中断或需 尽快恢复的建筑, 丙类建筑应属于除甲、乙、丁类以外的一般建 筑, 丁类建筑应属于抗震次要建筑。
局部风荷载:用于计算局部构件或围护构件或
维护构件与主体的连接。 对于檐口、雨蓬、遮阳板、阳台等突出构件的 上浮力,取μs>=-2.0。 对封闭式建筑,按外表面风压的正、负情况取2.0或+2.0。
3.1.3风洞试验
(JGJ3-2002)规定:有下列情况之一的建筑物, 宜按风洞试验确定风荷载。 1 高度大于200m 2高度大于150m,且平面性状不规则、立面形 状复杂,或立面开洞、连体建筑等 3 规范或规程中没有给出风载体形系数的建筑 物 4 周围地形和环境复杂的建筑物
3.2.3抗震计算理论
计算地震作用的方法可分为静力法、反应谱方法 (拟静力法)和时程分析法(直接动力法)。
反应谱理论
反应谱:单质点弹性体系在一定的地面 运动作用下,其最大反应(加速度、速 度和位移反应)与体系自振周期之间的 变化曲线(谱曲线)。
• 直接动力理论
用地震波(加速度时程)作为地面运动输入,直接计算 并输出结构随时间而变化的地震反应。 • 地震波的选取: 采用弹塑性动力分析方法进行薄弱层验算时,宜符合以下 要求:
第3章 高层建筑荷载
教学提示:本章主要介绍了高层建筑风荷载
的计算;抗震设防的准则和基本设计方 法,水平地震作用的计算方法(主要是 反应谱法)与竖向地震作用的计算方法。 教学要求:熟练掌握风荷载的计算方法,以 及用反应谱方法计算水平地震作用的方 法,理解抗震设防的准则和基本设计方 法,理解反应谱理论。

第三章 荷载及荷载效应组合

第三章 荷载及荷载效应组合

第三章荷载及荷载效应组合一、结构上的荷载分类1.按随时间的变异分类:永久荷载—在设计基准期内其量值不随时间变化,或其变化与平均值相比可以忽略不计的作用。

可变荷载—在设计基准期内其量值随时间变化,且其变化与平均值相比不可忽略的作用。

偶然荷载—在设计基准期内出现或不一定出现,而一旦出现其量值很大且持续时间很短的作用。

2.按随空间位置的变异分类固定荷载—在结构空间位置上具有固定分布的作用。

可动荷载—在结构空间位置上的一定范围内可以任意分布的作用。

3.按结构的反应分类静态荷载—使结构产生的加速度可忽略不计的作用。

动态荷载—使结构产生的加速度不可忽略的作用。

•《荷载规范》• 3.1.1结构上的荷载可分为下列三类:1 永久荷载,例如结构自重、土压力、预应力等。

2 可变荷载,例如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载等。

3 偶然荷载,例如爆炸力、撞击力等。

•二、荷载代表值•建筑结构设计时,对不同荷载应采用不同的设计值。

对永久荷载应采用标准值作为代表值;对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;对偶然荷载应按建筑结构使用的特点确定其代表值。

•《荷载规范》• 3.1.2建筑结构设计时,对不同荷载应采用不同的代表值。

对永久荷载应采用标准值作为代表值。

•对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。

对偶然荷载应按建筑结构使用的特点确定其代表值。

• 2.1.4荷载代表值representative values of a load设计中用以验算极限状态所采用的荷载量值,例如标准值、组合值、频遇值和准永久值。

•2.1.6标准值characteristic value/nominal value荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值或某个分位值)。

• 2.1.7组合值combination value对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值;或使组合后的结构具有统一规定的可靠指标的荷载值。

荷载与设计要求,建筑结构设计计算的一般规定

荷载与设计要求,建筑结构设计计算的一般规定
3)第12项楼梯活载,对预制楼梯踏步板,尚应按1.5KN集中荷载验算; 4)第13项阳台荷载,当人群有可能密集时,宜按3.5KN/m2采用。
确定楼面梁、墙、柱及基础的荷载标准值时,应 将楼面活荷载标准值乘以规定的折减系数。 1)设计楼面梁时,上表中的折减系数为: ①第1项当楼面梁从属面积超过25m2时,取0.9; ②第2~8项当楼面梁从属面积超过50m2时,取0.9; ③第9项对单向板楼盖的次梁和槽形板的纵肋应取 0.8;
1、 单位面积上的风荷载标准值 我国《建筑结构荷载规范》规定垂直作用于 建筑物表面单位面积上的风荷载标准值 wk(KN/m2)按下式计算:
2)上人的屋面,当兼作其他用途 时,应按相应楼面活荷载采用。
3)对于因屋面排水不畅、堵塞等引 起的积水荷载,应采取构造措施加以防 止;必要时,应按积水的可能深度确定 屋面活荷载。
4)屋顶花园活荷载不包括花圃土石 等材料自重。
屋面均布活载不应与雪荷载同时组 合,雪荷载的取用见《荷载规范》。
活荷载按楼层的折减系数
确定高层建筑风荷载的方法有两种,大多 数建筑(高度300m以下)按照《荷载规范》规 定的方法计算风荷载值,少数建筑(高度大、 对风荷载敏感或有特殊情况者)还要通过风洞 试验确定风荷载,以补充规范的不足。
一般情况下,在风力不很大的地震区建 筑物仅考虑地震作用而不考虑风荷载;而在 风力较大的地震区建筑物,则需同时考虑风 荷载和地震作用;在没有抗震设防要求的地 区,风荷载起主要的控制作用。
0.7 0.7
0.7 0.7
0.7 0.7 0.7
0.7
0.5 0.7
0.4 0.5
0.4 0.5 0.3
0.5
注:1)本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情 况特殊时,应按实际情况采用;

第3章高层建筑结构荷载

第3章高层建筑结构荷载

建筑抗震设计方法 (两阶段设计方法)
第一阶段设计:按小震作用效应和其他荷载效应的基 本组合验算结构构件的承载能力,以 及在小震作用下验算结构的弹性变形 以满足第一水准抗震设防目标
第二阶段设计: 在大震作用下验算结构的弹塑性变形 以满足第三水准抗震设防目标
以抗震构造措施来加以保证第二水准抗震设防目标的要求
(12个)
一次地震,只有一个震级,而在
不同的地区却有不同的烈度
基本烈度: 一个地区的基本烈度是指该地区在今后 50年期限内,在一般场地条件下可能遭遇 的超越概率为10%的地震烈度。
第3章 高层建筑 结构荷载
3.2 地震荷载
建筑抗震设防分类
甲类建筑—— 属于重大建筑工程和地震时可能发 生严重次生灾害的建筑
第3章 高层建筑 结构荷载
一、定义
3.1 风荷载
风可在建筑物表面产生压力与吸力,称为风荷载。
动力荷载
静荷载
(实质)
(设计)
二、风荷载标准值按下式决定
wk zszw0
w0— 基本风压(kN/m2) z —高度z处的风振系数
风荷载标准值(kN/m2)
s — 风荷载体型系数
z — 风压高度变化系数
第3章 高层建筑 结构荷载
质点 m
位移 xt 最大加速度 xt
惯性力 F t
H
L 地面运动位移 xg t
最大加速度 xg max
第3章 高层建筑 结构荷载
3.2 地震荷载
加速度反应谱曲线(地震影响系数曲线)—P28
max 水平地震影响系数最大值
与设防烈度有关 P29表2-10
设计特征周期
与场地类别有关
第3章 高层建筑 结构荷载

高层建筑结构第3章 高层建筑结构的荷载作用及其效应组合

高层建筑结构第3章 高层建筑结构的荷载作用及其效应组合

第3章 高层建筑结构的荷载作用及其效应组合
风荷载的特点:
与地震作用相比,风力作用持续时间较长,其作用 更接近于静力,但建筑物的使用期限出现较大风力的 次数较多。 由于有较长期的气象观测,大风的重现期很短,所 以风力大小的估计比地震作用大小的估计较为可靠。 而且抗风设计具有较大的可靠性。
3.2.2 风荷载的计算
0.45 0.55 0.30
0.50 0.60 0.35
第3章 高层建筑结构的荷载作用及其效应组合
(2)风压高度变化系数

z
风压高度变化系数应该根据地面粗糙度类别确定

地面粗糙度分类: A类:近海海面和海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的 乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群且房屋较高的城市市区;
第3章 高层建筑结构的荷载作用及其效应组合
3.1 竖向荷载
3.2 风荷载
3.3 地震作用
3.4 温度作用 3.5 荷载效应组合
1
第3章 高层建筑结构的荷载作用及其效应组合
高层建筑结构主要承受竖向荷载和水平荷载。 恒荷载 1)竖向荷载 活荷载 2)水平荷载 地震作用 风荷载
与多层建筑结构有所不同,高层建筑结构—— 1)竖向荷载效应远大于多层建筑结构;
第3章 高层建筑结构的荷载作用及其效应组合

地面粗糙度分类
第3章 高层建筑结构的荷载作用及其效应组合
第3章 高层建筑结构的荷载作用及其效应组合
(3)风荷载体型系数 s
①定义:风荷载体型系数是指风作用在建筑物表面所引起 的压力(吸力)与原始风速算得的理论风压的比值。
②特点:风荷载体型系数一般都是通过实测或风洞模拟试验的

荷载与地震作用

荷载与地震作用

4、关于折减系数的规定: 表 3.1 中规定的是民用建筑楼面均布活荷载的标准 值相关数据,但是在实际建筑中,除了楼面承受荷载
之外,建筑中的梁、墙柱、基础也会承受荷载,梁、
柱、墙在设计时其能承受的内力时,和作用在其上的 荷载大小有密切关系,是对这些荷载进行折减,而后 进行设计。
(1)两个概念
① 梁的从属面积的概念:按梁两侧各延二分之一梁
S0→ 基本雪压(kN/㎡)。
二、基本雪压的确定:
1、雪压定义:单位水平面积上的雪重,kN/㎡。
2、基本雪压s0的定义:统计得到的50年一遇的最大雪压
(建立气象站起到 1995年时的最大雪压),即重现期为 50年的最大雪压,作为当地的基本雪压,如图3.2。
3、确定基本雪压s0时的注意事项:
① 选择确定基本雪压的场地需要有代表性
① 承载力极限状态,应考虑荷载的“基本组合”或 “偶然组合”设计;
② 正常使用极限状态,应考虑荷载“标准组合”、
“频遇组合”或“准永久组合”设计。 (5)每个系数的适用组合: ① 基本组合中,只用到“组合值系数”; ② 偶然组合中,只用到“频遇值系数”和“准永久值
系数”;
③ 标准组合中,只用到“组合值系数”;
值的概率极小,因此主导荷载(产生最大效应的荷 载)仍可以其标准值为代表值外,其他伴随荷载均 应小于标准值的荷载为代表值,此值即为可变荷载 组合值。
③可变荷载频遇值:是指在设计基准期内,被超越
的总时间占设计基准期的比率较小的荷载值,或被 超越的频率限制在规定频率内的荷载值。也就是说, 可变荷载频遇值是指在设计基准期内被超越的总时
④ 频遇组合中,只用到“频遇值系数”和“准永久值
系数”; ⑤ 准永久组合中,只用到“准永久值系数”

第3章1-风荷载

第3章1-风荷载
式中 n——建筑外围表面数; Bi——第i个表面的宽度;
s ——第i个表面的风载体型系数;
ai ——第i个表面法线与总风荷载作用方向的夹角。
3.2 风荷载
3.2.2总体风荷载和局部风荷载
W z z0 (s1B1 cos1 s 2 B2 cos2 ... sn Bn cosn )
3.2 风荷载
3.2.3风洞试验
风洞试验要求在风 洞中能实现大气边界层 内风的平均风剖面、紊 流和自然流动,即能模 拟风速随高度的变化, 大气紊流纵向分量与建 筑物长度尺寸应具有相 同的相似常数。一般, 风洞尺寸达到宽2-4m、 高2-3m、长5-10m时可满 足要求。
3.2 风荷载
例题3-1
计算具有右图平面的 框架-剪力墙结构的总 风荷载及其合力作用 点。18层,高58m, H/B=1.72,D类地区, 地区标准风压 w0=0.70kN/m2。
-0.7
+0.4
-0.7
0 +0.8
-0.5 -0.5
0
-0.5
3.2 风荷载
4.风振系数 z
稳定风压(平均风压——静力): 风速的平均值产生的风压, 使建筑 物产生静侧移; 波动风压——动力:实际风速产生的风压,在平均风压附近 波动。
它把圣保罗大教堂与新的泰特现代艺 术画廊和星球剧院联系起来。这座泰 晤士河上的“千年桥”耗资1820万英 镑,2000年6月10日首次向公众开放时, 桥身出现明显摆动,三天后被迫关闭。 有关部门在这座350米长的步行桥上加 装了91个类似汽车减震器的装置,方 得以重新向公众开放。重新开放后的 千年桥热闹非凡。
伦敦千年桥
4.风振系数 z
3.2 风荷载
考虑范围: 房屋结构 H>30m 且 H/B>1.5 高耸结构 T1>0.25s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1 恒荷载
(1) 恒载范围
结构本身的自重;
附加于结构上的各种永久荷载
(2) 恒载计算
常用材料和构件的自重可按《建筑结构荷载规范》 (GB50009-2001)取值;
3.1.2 楼(屋)面活荷载
高层建筑结构的楼面活荷载应按《荷载规范》取用; 规范中未规定的楼面均布活荷载可按表3-1取值;
3.2.2.2 风压高度变化系数μz
(1)与离地面或海平面高度及地面粗糙度类别有关。当与离地 面高度为10米,且地面粗糙度类别为B类的μz为1.00。
(2)不同地面粗糙度的风速沿高度的变化曲线见教材。
(3)地面粗糙度可分为A、B、C、D四类:
A类指近海海面和海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵以及房屋比较稀疏 的乡镇和城市郊区; C类指有密集建筑群的城市市区; D类指有密集建筑群且房屋较高的城市市区。
地面粗糙度类别
A 3.12 3.12 3.12 3.12 2.99 2.83 2.64 2.40 2.34 2.27
B 3.12 3.12 3.12 2.97 2.80 2.61 2.38 2.09 2.02 1.95
C 3.12 3.12 2.94 2.75 2.54 2.30 2.03 1.70 1.62 1.54
框 架
重力荷载(包括活荷载) kN/m2(每层)
轻质填充墙 机制砖填充墙 轻质填充墙 机制砖填充墙 混凝土墙体 10~12 12~14 12~14 14~16 15~18
框架-剪力墙
剪力墙、筒体
3.2 风 荷 载(水平荷载)
3.2.1 风荷载的特点
3.2.2 风荷载标准值wk 及基本风压值w0 3.2.3 总风荷载 3.2.4 等效风荷载
表3-1
项次 l 2 3 4 5 类
规范中未规定的楼面均布活荷载
别 标准值(kN/m2) 3.0— 4.0 4.0一5.0 5.0— 8.0 4.0— 5.0 3.0一4.5 准永久值系数(ψq) 0.5 0.8 0.8 0.5 0.5
酒吧间、舞厅、 展销厅 屋顶花园 贮藏室 饭店厨房、洗衣房 健身房、娱乐室
3.2.2.1 风荷载标准值wk 及基本风压值w0
(1)风荷载标准值wk
垂直于建筑物表面单位面积上 的风荷载标准值Wk按下式计算:
wk=βzμzμsw0
(2)基本风压值w0
以当地比较空旷平坦地面上离地 10m高统计所 2/2 w = v 0 0 得的50年一遇10分钟平均年最大风速V0来确定:
D 1.02 0.93 0.84 0.73 0.62 0.62 0.62 0.62 0.62
注: 对于山顶及山坡上的高层房屋,可采用从山麓算起的 风压高度变化系数。
3.2.2.3 风载体型系数μs
风荷载体型系数是指风作用在建筑物表面上所引起的实 际压力(或吸力)与基本风压w0的比值。 它描述的是建筑物表面在稳定风压作用下的静态压力的 分布规律,主要与建筑物的体型和尺度有关,也与周围 环境和地面粗糙度有关; 当多个建筑物,特别是群集的高层建筑,相互间距较近 时,宜考虑风力相互干扰的群体效应;一般可将单独建 筑物的体型系数乘以相互干扰增大系数,该系数可参考 类似条件的试验资料确定;必要时宜通过风洞试验得出。
(4)位于山峰和山坡地的高层建筑物,其风压高度变化系数亦3-3
离地 面或 海平 面高 度 (m) >450 400 350 300 250 200 150 100 90 80
风压高度变化系数μs
离地面 或 海平面 高 度(m) 70 60 50 40 30 20 15 10 5 地面粗糙度类别
荷载较大时 按实际情况
施工活荷载一般取1.0~1.5 kN/m2;
设计楼面梁、墙、柱及基础时,楼面活荷载标准值应乘以 《荷载规范》规定的折减系数。
3.1.3
高层建筑上竖向荷载的初估值
在方案估算阶段,可参考表3-2提供的结构单位 面积重量估算竖向荷载。 表3-2 结构单位面积重力荷载估算表
结构类型
D 3.12 2.91 2.68 2.45 2.19 1.92 1.6l 1.27 1.19 1.11
A 2.20 2.12 2.03 1.92 1.80 1.63 1.52 1.38 1.17
B 1.86 1.77 1.67 1.56 1.42 1.25 1.14 1.00 1.00
C 1.45 1.35 1.25 1.13 1.00 1.84 0.74 0.74 0.74
3.1 恒荷载及楼面活荷载(竖向荷载)
荷载类别:
•竖向荷载(包括恒荷载和活荷载); •水平荷载(风荷载、水平地震作用); •施工荷载;
•由于材料体积变化受阻引起的作用 (包括温度、混凝土的徐 变和收缩所引起的作用) •地基不均匀沉 降等。
高层建筑的荷载特点:
•竖向荷载远大于低层建筑,可引起相当大的结构内力; •水平荷载的影响显著增加,成为高层建筑结构设计的主要因 素。特别是,抗震设计对高层建筑结构来说是十分重要的。
3.2.1 风荷载的特点
空气流动形成的风遇到建筑物时,在建筑物表面产生的 压力或吸力,即建筑物的风荷载。
(1)动力特性
波动风压会在建筑物上产生一定的动力效应(用静荷载乘 风振系数βz来考虑)。
(2)不均匀性
在计算整体作用时,取各个表面的平均风压; 在计算局部表面的作用时,采用局部风载体型系数。
(3)影响因素多
近地风的性质、风速、风向有关; 建筑物所在地的地貌及周围环境有关; 建筑物本身的高度、形状以及表面状况有关。
3.2.2 风荷载标准值及基本风压值
3.2.2.1 风荷载标准值wk 及基本风压值w0 3.2.2.2 风压高度变化系数μz 3.2.2.3 风载体型系数μs 3.2.2.4 风振系数βz
(3)基本风压W0在取值时应注意的几个问题:
基本风压W0可按全国基本风压分布图采用,但≥0.3kN/m2;
对于特别重要或对风荷载比较敏感的高层建筑,需要考虑 重现期为100年的强风;
基本风压值不是风对建筑物表面的压力;
《荷载规范( GB50009-2001 )》附录 D 可查出重现期为 10年、50年、100年的w0值。
相关文档
最新文档