数控机床的伺服驱动系统介绍

合集下载

伺服驱动系统

伺服驱动系统

参考资料:/%C5%C9%BF%CB652/blog/item/6dc3505e89715b411038c2a 8.html数控机床中的伺服驱动系统取代了传统机床的机械传动,是数控机床的重要特征之一,因此在一定意义上,伺服驱动系统的性能和可靠性决定了整台数控机床的性能和可靠性。

位置伺服驱动系统是由驱动系统与CNC系统中的位置控制部分构成的。

数控机床的驱动系统主要有两种:主轴驱动系统和进给驱动系统。

从作用看,前者控制机床主轴旋转运动,后者控制机床各坐标的进给运动。

不论是主轴驱动系统还是进给驱动系统,从电气控制原理来分都可分为直流驱动和交流驱动系统。

直流驱动系统在20世纪70年代初至80年代中期占据主导地位,这是由于直流电动机具有良好的调速性能,输出力矩大,过载能力强,精度高,控制原理简单,易于调整等。

随着微电子技术的迅速发展,加之交流伺服电动机材料、结构及控制理论有了突破性的进展,又推出了交流驱动系统,标志着新一代驱动系统的开始。

由于交流驱动系统保持了直流驱动系统的优越性,而且交流电动机维护简单,便于制造,不受恶劣环境影响,所以目前直流驱动系统已逐步被交流驱动系统所取代。

一、主轴驱动系统数控机床要求主轴在很宽的范围内转速连续可调,恒功率范围宽。

当要求机床有螺纹加工功能、准停功能和恒线速加工等功能时,就要对主轴提出相应的速度控制和位置控制要求。

1.直流主轴驱动系统由于直流调速性能的优越性,直流主轴电动机在数控机床的主轴驱动中得到广泛应用,主轴电动机驱动多采用晶闸管调速的方式。

(1)工作原理数控机床直流主轴电动机由于功率较大,且要求正、反转及停止迅速,故驱动装置通常采用三相桥式反并联逻辑无环流可逆调速系统,这样在制动时,除了缩短制动时间外,还能将主轴旋转的机械能转换成电能送回电网。

1)主电路图6-9为三相桥式反并联逻辑无环流可逆调速系统的主电路,逻辑无环流可逆系统是利用逻辑电路,使一组晶闸管在工作时,另一组晶闸管的触发脉冲被封锁,从而切断正、反两组晶闸管之间流通的电流。

数控机床的伺服系统

数控机床的伺服系统

第七章 数控机床的伺服系统
但直流电机有电刷,限制了转速的提高,而且结构复杂, 价格也高。进入80年代后,由于交流电机调速技术的突破,交 流伺服驱动系统进入电气传动调速控制的各个领域。交流伺服 电机,转子惯量比直流电机小,动态响应好。而且容易维修, 制造简单,适合于在较恶劣环境中使用,易于向大容量、高速 度方向发展,其性能更加优异,已达到或超过直流伺服系统, 交流伺服电机已在数控机床中得到广泛应用。
第七章 数控机床的伺服系统
进给伺服系统的作用:接受数控装臵发出的进给速度和位 移指令信号,由伺服驱动装臵作一定的转换和放大后,经伺服 电机(直流、交流伺服电机、功率步进电机等)和机械传动机 构,驱动机床的工作台等执行部件实现工作进给或快速运动。 数控机床的进给伺服系统能根据指令信号精确地控制执行 部件的运动速度与位臵,以及几个执行部件按一定规律运动所 合成的运动轨迹。如果把数控装臵比作数控机床的“大脑”, 是发布“命令”的指挥机构,那么伺服系统就是数控机床的 “四肢”,是执行“命令”的机构,它是一个不折不扣的跟随 者。
第七章 数控机床的伺服系统
二、步进电机工作原理
步进电机伺服系统是典型的开环控制系统,在此系统中, 步进电机受驱动线路控制,将进给脉冲序列转换成为具有一 定方向、大小和速度的机械转角位移,并通过齿轮和丝杠带 动工作台移动。进给脉冲的频率代表了驱动速度,脉冲的数 量代表了位移量,而运动方向是由步进电机的各相通电顺序 来决定,并且保持电机各相通电状态就能使电机自锁。但由 于该系统没有反馈检测环节,其精度主要由步进电机来决定, 速度也受到步进电机性能的限制。
第七章 数控机床的伺服系统
直线电动机的实质是把旋转电动机沿径向剖开,然后拉直 演变而成,利用电磁作用原理,将电能直接转换成直线运动动 能的一种推力装臵,是一种较为理想的驱动装臵。在机床进给 系统中,采用直线电动机直接驱动与旋转电动机的最大区别是 取消了从电动机到工作台之间的机械传动环节,把机床进给传 动链的长度缩短为零。正由于这种传动方式,带来了旋转电动 机驱动方式无法达到的性能指标和优点。由于直线电动机在机 床中的应用目前还处于初级阶段,还有待进一步研究和改进。 随着各相关配套技术的发展和直线电动机制造工艺的完善,相 信用直线电动机作进给驱动的机床会得到广泛应用。

第4章 数控机床伺服系统

第4章 数控机床伺服系统
图4-7 永磁直流伺服电动机
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f

数控机床的伺服系统

数控机床的伺服系统

第6章 数控机床的伺服系统
伺服驱动装置
位置控制模块 速度控制单元
工作台 位置检测
速度环 速度检测 位置环
伺服电机
测量反馈
图6-1 闭环进给伺服系统结构
数控机床闭环进给系统的一般结构如图,这是一个双闭环系统,内 环为速度环,外环为位置环。速度环由速度控制单元、速度检测装置等构成。 速度控制单元是一个独立的单元部件,它是用来控制电机转速的,是速度控 制系统的核心。速度检测装置有测速发电机、脉冲编码器等。位置环是由 CNC装置中的位置控制模块、速度控制单元、位置检测及反馈控制等部分组 成。
第6章 数控机床的伺服系统
A C1 B4 2 B 3C A
逆时针转30º
C 4 B
A 1 2 3 A
B
C 1 B
A 2
B 3 C
C
逆时针转30º
4 A
第6章 数控机床的伺服系统
采用三相双三拍控制方式,即通电顺序按AB→BC→CA→AB(逆时针 方向)或AC→CB→BA→AC(顺时针方向)进行,其步距角仍为30。由于 双三拍控制每次有二相绕组通电,而且切换时总保持一相绕组通电,所以 工作比较稳定。
第6章 数控机床的伺服系统
设 A 相首先通电,转子齿与定子 A 、 A′ 对齐(图 3a )。然后在 A 相继续通电的情 况下接通 B 相。这时定子 B 、 B′ 极对转子 齿 2 、 4 产生磁拉力,使转子顺时针方向转 动,但是 A 、 A′ 极继续拉住齿 1 、 3 ,因 此,转子转到两个磁拉力平衡为止。这时转 子的位置如图 3b 所示,即转子从图 (a) 位 置顺时针转过了 15° 。接着 A 相断电, B 相继续通电。这时转子齿 2 、 4 和定子 B 、 B′ 极对齐(图 c ),转子从图 (b) 的位置又 转过了 15° 。其位置如图 3d 所示。这样, 如果按 A→A 、 B→B→B 、 C→C→C 、 A→A… 的顺序轮流通电,则转子便顺时针 方向一步一步地转动,步距角 15° 。电流 换接六次,磁场旋转一周,转子前进了一个 齿距角。如果按 A→A 、 C→C→C 、 B→B→B 、 A→A… 的顺序通电,则电机 转子逆时针方向转动。这种通电方式称为六 拍方式。

第五章 数控机床的伺服驱动系统

第五章 数控机床的伺服驱动系统
机可能在过载的条件下工作,这就要求电动机有较强的抗过 载能力。通常要求在数分钟内过载4~6倍而不损坏。
(7)惯性匹配 移动部件加速和降速时都有较大的惯量,由于要求系统
的快速响应性能好,因而电动机的惯量要与移动部件的惯量 匹配。通常要求电动机的惯量不小于移动部件惯量。
数控机床的伺服驱动系统
5.2 位置控制
D/A 转换器
伺服放大器
伺服 电动机
Pf 反馈脉冲
位置检测
脉冲处理
图 5-2 脉冲比较伺服系统结构框图
工作台
光栅或光 电编码器
数控机床的伺服驱动系统
(1) 由计算机数控制装置提供指令的脉冲。 (2) 反映机床工作台实际位置的位置检测器。 (3) 完成指令信号与反馈信号相比较的比较器。 (4) 将比较器输出数字信号转变成伺服电动机模拟控制 信号的数/模转换器。 (5) 执行元件(伺服电动机)。
数控机床的伺服驱动系统
(1)指令脉冲PC=0,这时反馈脉冲Pf=0,则Pe=0,则伺
服电动机的速度给定为零,工作台继续保持静止不动。
(2)现有正向指令PC+=2,可逆计数器加2,在工作台尚 未移动之前,反馈脉冲Pf+=0,可逆计数器输出Pe=Pc+-Pf+=2
-0=2,经转换,速度指令为正,伺服电动机正转,工作台 正向进给。
CP A9 ≥1
CP
RC
+Vcc B
A A10 RD Q +Vcc
A3
DS
A4
Q CP
≥1
A7
DS
CPQ
A8 ≥1
RC
+Vcc BQ
A A11 RD +Vcc
D Q7 A12

数控技术 第七章 数控机床的进给伺服系统

数控技术   第七章  数控机床的进给伺服系统

三 步进电动机的基本控制方法
(2) 双电压功率放大电路 优点:功耗低,改善了脉冲 优点:功耗低, 前沿。 前沿。 缺点:高低压衔接处电流波 缺点: 形呈凹形, 形呈凹形,使步进电机 输出转矩降低, 输出转矩降低,适用于 大功率和高频工作的步 进电机。 进电机。
三 步进电动机的基本控制方法
(3) 斩波恒流功放电路 优点: 优点:1)R3较小(小 R3较小( 较小 于兆欧) 于兆欧)使整个 系统功耗下降, 系统功耗下降, 效率提高。 效率提高。 2)主回路不串 电阻, 电阻,电流上升 快,即反应快。 即反应快。 3)由于取样绕 组的反馈作用, 组的反馈作用, 绕组电流可以恒定在确定的数值上, 绕组电流可以恒定在确定的数值上,从而保证在很大频率范 围内,步进电机能输出恒定的转矩。 围内,步进电机能输出恒定的转矩。
二 数控机床对伺服系统的基本要求
1 高精度 一般要求定位精度为0.01~0.001mm; ; 一般要求定位精度为 高档设备的定位精度要求达到0.1um以上。 以上。 高档设备的定位精度要求达到 以上 2 快速响应 3 调速范围宽 调速范围指的是 max/nmin 。 调速范围宽:调速范围指的是 调速范围指的是:n 进给伺服系统:一般要求 进给伺服系统 一般要求0~30m/min,有的已达到 一般要求 ,有的已达到240m/min 主轴伺服系统:要求 主轴伺服系统 要求1:100~1:1000恒转矩调速 要求 恒转矩调速 1:10以上的恒功率调速 以上的恒功率调速
一 直流伺服电动机调速原理
7-30 直流电动机的机械特性
二 直流电动机的PWM调速原理 直流电动机的 调速原理
7-24 脉宽调制示意图 脉宽调制示意图
Ud =
τ
T
U = δ T U δ T 称为导通率

数控机床的伺服系统的组成和各伺服电机技术的特点

数控机床的伺服系统的组成和各伺服电机技术的特点

数控机床的伺服系统的组成和各伺服电机技术的特点
数控机床伺服系统是以机械位移为直接控制目标的自动控制系统,也可称为位置随动系统,简称为伺服系统。

伺服系统的组成是由:比较环节——驱动电路——执行元件——传动装置——移动部件;速度反馈,位置反馈环节。

进给伺服电机技术特点有六点:
1 调速范围宽。

2 位移精度高;一般数控机床的脉冲当量为0.01mm~0.005mm脉冲,高精度的数控机床其脉冲当量可达0.001mm脉冲。

3 定位精度高;定位精度一般为0.01mm~0.001mm,甚至0.1um。

4 稳定性好;对伺服系统要求有较强的抗干扰能力,保证进给速度均匀,平稳,稳定性直接影响数控加工的精度和表面粗糙度。

5 动态响应要求过渡时间要短,一般在200ms以内,甚至小于几十毫秒。

步进电机的特点:步进电机的角位移或直线位移与脉冲数成正比,它的转速与脉冲频率成正比,能快速
的起动,制动和反转;在一定频率范围内各种运动方式都能任意的改变且不会失步,当停止输入控制脉冲后,只要维持控制绕组电流不变,电动机就会保持在某一固定位置上,所以步进电机具有自整步的能力,并且没有周累积误差,所以定位精度较高。

数控机床的伺服驱动系统

数控机床的伺服驱动系统
不同的含义。数组说明的方括号中给出的是某一维的长度;而 数组元素中的下标是该元素在数组中的位置标识。 数组是一种构造类型的数据。一维数组可以看作是由一维数 组嵌套而构成的。
上一页 下一页 返回
6.2 二维数组
6.2.3二维数组的初始化
一维数组初始化也是在类型说明时给各下标变量赋以初值。 一维数组可按行分段赋值,也可按行连续赋值。
6.2 步进电机及其驱动控制系统
4、根据结构分类 步进电机可制成轴向分相式和径向分相式,轴向分相式
又称多段式,径向分相式又称单段式。单段反应式步进电机, 是目前步进电机中使用最多的一种结构形式。还有一种反应 式步进电机是按轴向分相的,这种步进电机也称为多段反应 式步进电机。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
下一页 返回
6.2 步进电机及其驱动控制系统
6.2.1步进电机的分类
1、根据相数分类 步进电机有二、四、五、六相等几种,相数越多,步距
角越小,而且采用多相通电,可以提高步进电机的输出转矩。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
2、根据力矩产生的原理分类 分为反应式和永磁反应式(也称混合式)两类。 反应式步进电机的定子有多相磁极,其上有励磁绕组, 而转子无绕组,用软磁材料制成,由被励磁的定子绕组产生 反应力矩实现步进运行。永磁反应式步进电机的定子结构与 反应式相似,但转子用永磁材料制成或有励磁绕组、由电磁 力矩实现步进运行,这样可提高电机的输出转矩,减少定子 绕组的电流。
上一页 下一页 返回
6.2 步进电机及其驱动控制系统
1、三相三拍工作方式 在图6-2中,设A相通电,A相绕组的磁力线为保持磁阻
最小,给转子施加电磁力矩,使磁极A与相邻转子的1、3齿 对齐;接下来若B相通电,A相断电,磁极B又将距它最近的 2、4齿吸引过来与之对齐,使转子按逆时针方向旋转30°; 下一步C相通电,B相断电,

数控机床伺服系统的分类及其应用要求

数控机床伺服系统的分类及其应用要求

数控机床伺服系统的分类及其应用要求数控机床伺服系统又称为位置随动系统,简称为伺服系统。

数控机床伺服系统是把数控信息转化为机床进给运动的执行机构,在许多自动化控制领域广泛应用。

数控机床伺服系统的种类繁多、技术原理各具特色,这对其应用带来很大的困扰,本文就数控机床伺服系统的分类及其应用要求做简单介绍。

一、数控机床伺服系统的分类数控机床伺服系统按其用途和功能分为进给驱动系统和主轴驱动系统;按其控制原理和有无位置检测反馈环节分为开环系统和闭环系统;按驱动执行元件的动作原理分为电液伺服驱动系统和电气伺服驱动系统。

电气伺服驱动系统又分为直流伺服驱动系统和交流伺服驱动系统。

1.进给驱动与主轴驱动进给驱动是用于数控机床工作台或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的转矩。

主轴驱动控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。

一般地,对于进给驱动系统,主要关心它的转矩大小、调节范围的大小和调节精度的高低,以及动态响应速度的快慢。

对于主轴驱动系统,主要关心其是否具有足够的功率、宽的恒功率调节范围及速度调节范围。

2.开环控制和闭环控制数控机床伺服驱动系统按有无位置反馈分两种基本的控制结构,即开环控制和闭环控制,如图5--1所示。

由此形成位置开环控制系统和位置闭环控制系统。

闭环控制系统又可根据位置检测装置在机床上安装的位置不同,进一步分为半闭环伺服驱动控制系统和全闭环伺服驱动控制系统。

若位置检测装置安装在机床的工作台上,构成的伺服驱动控制系统为全闭环控制系统;若位置检测装置安装在机床丝杠上,构成的伺服驱动控制系统则为半闭环控制系统。

现代数控机床的伺服驱动多采用闭环控制系统。

开环控制系统常用于经济型数控或老设备的改造。

3.直流伺服驱动与交流伺服驱动70年代和80年代初,数控机床多采用直流伺服驱动。

直流大惯量伺服电机具有良好的宽调速性能,输出转矩大,过载能力强,而且,由于电机惯性与机床传动部件的惯量相当,构成闭环后易于调整。

数控机床的进给伺服系统概述

数控机床的进给伺服系统概述
M j max
• 当步进电机励磁绕组相数大于3时,多相通电多数 能提高输出转矩。
• 所以功率较大的步进电机多数采用多于三相的励磁 绕组,且多相通电。
3、启动转矩Mq
AB C Mq
e
当电机所带负载ML<Mq时,电机可不失步的启动。
2、最高启动频率和最高工作频率
最高启动频率fg: 步进电机由静止突然启动,并不失步地进 入稳速运行,所允许的启动频率的最高值。 最高启动频率fg与步进电机的惯性负载J有 关。
故电动机的转速n为:
n f (r/s) 60 f (r/min) f ——控制脉冲的频率
mzk
mzk
SB-58-1型五定子轴向分相反应式步进电机。
• 定子和转子都分为5段,呈轴向分布;有16个 齿均匀分布在圆周上,
• 齿距=360º/16=22.5º;各相定子彼此径向错开 1/5个齿的齿距;
如按5相5拍通电,则步距角为:
4)电动机定子绕组每改变一次通电方式——称为一拍 5)每输入一个脉冲信号,转子转过的角度——步距角αº • 上述通电方式称为:三相单三拍。(三相三拍) • 单——每次通电时,只有一相绕组通电; • 双——每次通电时,有两相绕组通电; • 三拍——经过三次切换绕组的通电状态为一个循环; • 除此之外的通电方式还有: • 三相双三拍: AB—BC—CA—AB • 三相单双六拍: A—AB—B—BC—C—CA—A
第三节 数控机床的检测装置
1、检测装置的作用
• 检测装置是数控机床闭环伺服系统的重要组成部分 • 其作用是:检测位移和速度,发送反馈信号,构成
(1) 直线进给系统 已知:进给系统的脉冲当量δmm;步进电机的
步距角αº;滚珠丝杠的导程t mm;
求: 齿轮传动比 i。

数控机床的伺服驱动系统

数控机床的伺服驱动系统
1
数控机床的伺服驱动系统
伺服系统是指以机械位置或角度作为控制对象的自动控制系统,而在数控机床中,伺服系
2
统主要指各坐标轴进给驱动的位置控制系统,它由执行组件(如步进电机、交直流电动机
等)和相应的控制电路组成,包括主驱动和进给驱动。伺服系统接收来自CNC装置的进给
脉冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有
(4)步进电动机的主要特点
步进电动机受脉冲信号的 控制,每输入一个脉冲, 就变换一次绕组的通电状 态,电动机就相应转动一 步。因此角位移与输入脉 冲个数成严格的比例关系。
一旦停止送入控制脉冲, 只要维持控制绕组电流不 变,电动机可以保持在其 固定的位置上,不需要机 械制动装置。
输出转角精度高,虽有相 邻齿距误差;但无积累误 差。
4.3.2.2 直流伺服电动机
直流伺服电动机是数控机床伺服系统中应用最早的,也是使用最广泛的 执行组件。直流伺服电动机有永磁式和电磁式两种结构类型。随着磁性 材料的发展,用稀土材料制作的永磁式直流伺服电动机的性能超过了电 磁式直流伺服电动机,目前广泛应用于机床进给驱动。直流伺服电动机 的工作原理与普通直流电动机完全相同,但工作状态和性能差别很大。 机床进给伺服系统中使用的多为大功率直流伺服电动机,如低惯量电动 机和宽调速电动机等。
θb =
从上面的分析可以看 出,步进电动机转动 的角度取决于定子绕 组的相数、转子齿数 及供电的逻辑状态。 若以θb表示步距角, 则有
(4-12)
360
mzK 式中 m—步进电动机相数;z—转子齿数;K—由 步进电动机控制方式确定的拍数和相数的比例系 数,如三相三拍时,K=1;而三相六拍制时,K =2。 为了提高加工精度,一般要求步距角很小,数控 机床中常用的步进电动机步距角为0.36o~3o

数控机床的伺服系统

数控机床的伺服系统
上一页 下一页 返回
4.2 步进电动机驱动控制系统
4.2.3 步进电动机的驱动控制
1.步进电动机的工作方式 从一相通电换接到另一相通电称为一拍,每拍转子转过一个
步距角。按A→B → C → A → …的顺序通电时,电动机的转 子便会按此顺序一步一步地旋转;反之,若按A → C → B → A→…的顺序通电,则电动机就会反向转动,这种三相依次 单相通电的方式,称为三相单三拍式运行,“单”是指每次 只有一相绕组通电,“三拍”是指一个循环内换接了三次, 即A、B、C三拍。单三拍通电方式每次只有一相控制绕组通 电吸引转子,容易使转子在平衡位置附近产生振荡,运行稳 定性较差;另外,在切换时一相控制绕组断电而另一相控制绕 组开始
4.2.2 步进电动机的工作原理与主要特 性
1.步进电动机的工作原理
上一页 下一页 返回
4.2 步进电动机驱动控制系统
步进电动机的工作原理实际上是电磁铁的作用原理。下面以 图4-2所示的一个最简单步进电动机结构为例说明步进电动机 的工作原理。其定子上分布有6个齿极,每两个相对齿极装有 一相励磁绕组,构成三相绕组。
也称为数组的长度。
下一页 返回
6.1 一维数组
对数组的定义应注意以下几点。 (1)数组的类型实际上是指数组元素的取值类型。对于同一
个数组,其所有元素的数据类型都是相同的。 (2)数组名的书写规则应符合标识符的书写规定。 (3)数组名不能与其他变量名相同。 (4)不能在方括号中用变量来表示元素的个数,但是可以用
按伺服控制方式不同,数控机床伺服系统可分为开环、闭环 和半闭环系统。开环型采用步进电动机驱动,控制方式简单, 信号单向传递,无位置反馈,所以精度不高,适用于要求不 高的经济型数控机床中。而闭环控制系统采用直流、交流伺 服电动机驱动,位置检测元件安装于机床运动部件上,

伺服驱动系统

伺服驱动系统
④ 电机应能承受频繁启动、制动和反转.
14.10.2023
6
伺服系统,其驱动元件为步进 电机.
功率步进电机控制系统的结构最简单,控制最容易,维修最方 便,控制为全数字化,这完全符合数字化控制技术的要求,控 制系统与步进电机的驱动控制电路结为一体.
步进电机又称脉冲电机,每接受一个脉冲信号转子转过一个角度,称为步距 角.
脉冲数目:位移大小;脉冲频率:速度大小;通电顺序:方向控制. 步进电机的结构:单段式三相反应式步进电机结构:
工作原理:电磁吸合 转子:开槽形成齿 定子:有磁极
以三相单三拍为例说明工作原理:
✓ 第一拍:A相励磁绕组通电,B、C励磁绕组断电.A相定子绕组的磁力线为 保持磁阻最小,给转子施加力矩,使相邻转子齿与之对齐.
暂的调节过程后,达到新的或者恢复到原来的平衡状态.直
接影响数控加工的精度和表面粗糙度.
3快速响应 快速响应是伺服系统动态品质的重要指标,它反映了
系统的跟踪精度.
4调速范围宽 调速范围是指生产机械要求电机能提供的最高转
速和最低转速之比.0~30m/min.
5低速大转矩 进给坐标的伺服控制属于恒转矩控制,在整个速
按使用场合分:有功率步进电机和控制步进电机.
按电机结构分:有单段式径向式、多段式轴向式、印刷绕组 式.
按工作相数分:有三相、四相、五相等.
按使用频率分:有高频步进电机和低频步进电机.
数控机床中使用较多的是反应式步进电机和永磁感应式步进 电机
14.10.2023
9
14.10.2023
10
2步进电机的结构与工作原理
14.10.2023
19
如上所述,在电磁转矩的作用下,转子有一定的稳定平衡点.

第三章 CNC的伺服驱动系统

第三章 CNC的伺服驱动系统

CNC 插补指令
脉冲频率f 脉冲个数n
换算
f、n
脉冲环 形分配
变换
A相、B相 功率 放大
C相、…
机械执行部件
电机 2020/6/14
3.1.2 伺服系统的分类
开环数控系统 – 抗扰能力差! – 无位置反馈,精度差,精度主要取决于伺服驱
动系统和机械传动机构的性能和精度。 – 一般以功率步进电机作为伺服驱动元件。 – 结构简单、调试方便、维修简单、价格低廉,
AC~ 50Hz
中间直流环节
变压变频
整流
DC
逆变
AC
交-直-交(间接)变压变频器
2020/6/14
3.2.2 交流伺服电机驱动系统
◆ PWM交—直—交变压变频器 由二极管组成不控整流器和由全控型功率开关器件组 成的脉宽调制(PWM)逆变器。
交-直-交PWM变压变频器主回路结构图 (三相全桥式)
3.2.2 交流伺服电机驱动系统
直流环节滤波器参数的影响。 采用不可控的二极管整流器,电源侧功率因数较
高,且不受逆变输出电压大小的影响。
3.2.2 交流伺服电机驱动系统
PWM交—直—交变压变频器的缺点
由于二极管整流装置的单向导电特性,当电动 机工作在回馈制动状态时能量不能回馈至电网 ,造成直流侧电压上升,称作泵升电压。
3.2.2 交流伺服电机驱动系统
t
UdUΒιβλιοθήκη B OUS -USid id1
O
t
id2
id1
id2
t
Ub1、Ub 4
O t3
t
t1 t2 T t3 t1
Ub2、Ub 3 O
Ud UAB O
id
id1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•E/R- Modul •NCU
•DrehstromHauptspindelmotor
•Peripherie SIMATIC S7-300
•Umrichter SIMODRIVE 611 digital mit CNC SINUMERIK 840D
•Leistungsteil
•DrehstromServomotoren
进给脉冲频率f→定子绕阻通断电状态变化频率f→ 步进电机转速ω→工作台进给速度v
3. 工作台运动方向的控制
定子绕阻通电顺序改变→工作台运动方向改变
•三、步进电机的驱动(控制)线路
•功能:将一定频率f、数量N和方向的进给脉冲 转换为控制步进电机定子各相绕阻通断电状态变 化的频率、次数和顺序的功率信号
度均匀、平稳,粗糙度低,过载4~6倍,低速爬 行工作可靠,抗干扰性强;
三、数控机床伺服驱动系统的分类
✓ 按用途和功能分 ✓ 按控制原理和有无检测分 ✓ 按执行元件和动作原理分 ✓ 按控制方式分
1. 按用途和功能分
进给驱动:转距大小,调速范围,调节精度, 动态响应速度等; 主轴驱动:足够的功率,宽的恒功率调节 范围,速度调节范围;
•机床
•进给 指 令
一、数控机床伺服驱动系统的基本组成
•比较控制环节 •驱动控制单元 •执行元件 •反馈检测单元
注: 开环、闭环、CNC(比较由软件实现)
二、伺服驱动系统的性能
1. 进给速度调速范围大:5mm/min,10m/min 2. 位移精度要高:全程积累误差≤±5μm,与脉冲
当量有关,δ↓,Δ↓; 3.跟随误差要小:闭环自控系统动态性能要好; 4.伺服系统的工作稳定性要好:抗干扰能力强,速
2. 齿隙补偿(反向间隙补偿)
原因:机械传动链在改变方向时,由于间隙的存在, 会引起步进电机的空走; 补偿原理:对实际间隙进行实测并保存,当工作台换 向时增加输出脉冲进行补偿。
4. 步进电机的主要特征
步距角α : 0.5°~ 3°,决定控制精度,是决定步进式伺服系 统脉冲当量的重要参数 距角特性、最大静态转距Mjmax和启动转距Mq 启动频率fq :空载时,步进电机由静止突然启动,并进入不丢 步的正常运行所允许的最高频率 连续运行的最高工作频率:保证不丢步运行的极限频率 加减速特性:描述步进电机由静止到工作频率和由工作频率到 静止的加减速过程中,定子绕阻通电状态的变化频率与时间的 关系。
数控机床的伺服驱动系 统介绍
2020年4月22日星期三
§5-1 概述
伺服驱动系统接收数控单元的位移/速度控 制指令,驱动工作台/主轴按照控制指令的 要求进行运动。 伺服驱动系统直接影响移动速度、跟踪精 度、定位精度等一系列重要指标,是数控 机床的关键技术。
•机床的伺服驱动
•Bedientafelfront mit PCU 20/50/70
•二、步进式伺服驱动系统工作原理
•系统由 “步进电机驱动线路” + “步 进电机” 组成,对工作台位移、速度和 运动方向进行控制
•机床
•进给 指令
•步进电机驱动线路
•步进电 机
1. 工作台位移的控制
进给脉冲个数N→定子绕阻通电状态改变次数N→角
位移φ =αN→工作台位移
L=φt/360°
2. 工作台进给速度的控制
•进 •脉冲
•加 减
给 •混合 •脉 •电路
•脉 冲

•分 配
•电

•加减 •速电
•路
•环形 •分配 •器
•功率 •放大
•至步进
•器 •电机绕阻
1. 脉冲混合电路
将脉冲进给、手动进给、手动回原点、误差补偿等混合 为正向或负向脉冲进给信号
2. 加减脉冲分配电路
将同时存在正向或负向脉冲合成为单一方向的进给脉冲
4. 按控制方式分
模拟伺服方式 数字伺服方式
•机床
•进给 指 令
§5-2 开环步进式伺服驱动系统
•驱动控制单元 •执行元件
✓ 执行元件是步进电机 ✓ 开环,无检测装置 ✓ 结构简单、容易调整 ✓ 控制精度低,速度受到限制。
•一、步进电机的种类、结构及工作原理
1. 步进电机的种类
按产生力矩原理分:反应式、激磁式 按输出力矩大小分:伺服式、功率式 按定子数:单定子、双定子、三定子、多定子 按各相绕阻分布:径向分相式、轴向分相式
5. 功率放大器
将环形分配器输出的mA级电流进行功率放大, 一般由前置放大器和功率放大器组成。
•四、提高步进式伺服驱动系统精度的措施
•影响步进式伺服驱动系统精度的因素 :
• 步进电机; • 丝杠螺母传动幅; •由于受工艺和结构的限制,常常从控 制线路采取措施
1. 细分电路
把步进电机的一步分得再细一些,减小脉冲当量
2. 步进电机的结构
3. 步进电机的工作原理源自基本结论步进电机定子绕阻通电状态每改变一次,它的转子 转过一个固定的角度,即电机的步距角; 改变步进电机定子绕阻的通电顺序,其转子的旋转 方向随之改变; 步进电机定子绕阻通电状态变化的频率越高,转子 的转速越高; 步距角与定子绕阻相数m、转子齿数z、通电方式k 有关。
3. 加减速电路
将单一方向的进给脉冲调整为符合步进电机加减速特性的 脉冲,频率的变化要平稳,加减速具有一定的时间常数。
•fa •同步器 •可逆计数器
•数模转换
•振荡器 •fb
4. 环形分配器
将来自加减速电路的一系列进给脉冲转换成控制 步进电机定子绕阻通、断电的电平信号,电平信号状 态的改变次数及顺序与进给脉冲的个数及方向对应。
2. 按控制原理和有无检测分
开环:无检测,经济型数控和老设备改造 闭环:半闭环(检测丝杠转角)和全闭环 (检测工作台直线位移)
3. 按执行元件和动作原理分
电液伺服驱动:由电液伺服阀、低速大 转矩液压马达或液压缸,位置检测等元 件组成 电气伺服驱动:步进电机、直流伺服电 机(频繁起动,制动,快速定位等优点 ,但有电刷,需要维护),交流伺服电 机(易于维护,制造简单)
相关文档
最新文档