实验3 连续时间信号的卷积计算
实验3 连续时间信号的卷积计算
(1)符号法:要注意积分变量和积分限的选取
lim
0 k
f1 (k )
f2 (t
k)
如果令t=n,则
(2)数值计算法
f (n) f1(k) f2 ((n k)) k
y(t)
t
eT
u (t )
etu(t
)
t
eT
u0
ex3_1.m
y(t) [u(t) u(t 1)][u(t) u(t 1)]
– 构造 对应的时间向量k.
f (n)
y(t) [u(t) u(t 1)][u(t) u(t 1)]
ex3_3.m
实验内容:
1、绘制 f1(t) f2 (t)
采用数值与符号法
f1 (t )
f2 (t)
2、两种方式计算如下卷积
(1) f1(t) f2 (t); (2) f1(t) f3(t); (3) f1(t) f4 (t) (4) f2 (t) f3(t); (5) f2 (t) f4 (t); (6) f3(t) f4 (t)
实验目的:
1、学会运用MATLAB实现连续时间信号的卷积 2、学会运用MATLAB符号运算法求连续时间信号 的卷积 3、学会运用MATLAB数值计算方法求连续时间信 号的卷积
实验原理:
f (t) f (t) f (t) f ( ) f (t )d 1
2
1
2
f (t) f1(t) * f2 (t) f1( ) f (t )d
函数实现卷积和wconvuv?1mwnumvnm????1212ftftftfftd????????????121122112200limlimftftftfmftfmftfmftfm??????对和进行等间隔均匀抽样则当足够小的时候则1212120limmftftftfftdfmftm?????????????????????1212mmfnfmfnmfmfnm????????????????1212mftfnfmfnmftfnfn????????????用用matlab实现连续信号卷积的过程
信号卷积计算公式(一)
信号卷积计算公式(一)信号卷积1. 什么是信号卷积?信号卷积是一种在时域中计算两个信号之间的乘积并求和的方法。
它是一种重要的信号处理技术,广泛应用于图像处理、语音识别、音频处理等领域。
2. 信号卷积的计算公式信号卷积的计算公式可以表示为:∞[k]⋅ℎ[n−k]y[n]=∑xk=−∞其中,x[n]和ℎ[n]分别表示输入信号和卷积核(也称为系统的冲击响应)的值。
3. 信号卷积的示例解释离散信号的卷积信号x[n]:考虑一个离散信号x[n],其数值如下所示:n 0 1 2 3x[n] 1 2 -1 3信号ℎ[n]:接下来,我们定义另一个离散信号ℎ[n],其数值如下所示:n 0 1 2 3ℎ[n]-1 0 1 2计算卷积结果y[n]:现在,我们可以使用信号卷积的计算公式来计算卷积结果y[n],如下所示:∞[k]⋅ℎ[n−k]y[n]=∑xk=−∞当n=0时,有:y[0]=x[0]⋅ℎ[0−0]+x[1]⋅ℎ[0−1]+x[2]⋅ℎ[0−2]+x[3]⋅ℎ[0−3]=1⋅(−1)+2⋅0+(−1)⋅1+3⋅2=4依此类推,可以计算出当n=1、n=2、n=3时的y[n]。
最终,卷积结果y[n]如下所示:n 0 1 2 3y[n] 4 -1 -1 7连续信号的卷积信号x(t):如果考虑连续信号的卷积,我们可以将卷积公式稍作修改。
考虑一个连续信号x(t),其函数表达式为:x(t)=δ(t)+2δ(t−1)−δ(t−2)+3δ(t−3)其中,δ(t)表示单位冲激函数。
信号ℎ(t):接下来,我们定义另一个连续信号ℎ(t),其函数表达式为:ℎ(t)=−δ(t)+δ(t−1)+2δ(t−2)计算卷积结果y(t):现在,我们可以使用修改后的信号卷积公式来计算卷积结果y(t),如下所示:∞(τ)⋅ℎ(t−τ)dτy(t)=∫x−∞具体计算过程略。
总结信号卷积是一种重要的信号处理技术,可应用于离散信号和连续信号的处理。
通过计算输入信号与卷积核的乘积并求和,我们可以得到卷积结果。
连续时间系统卷积的计算
实验报告实验名称:连续时间系统卷积的数值计算班级:120241姓名:彭壮学号:12021327一、实验目的:1、加深对卷积概念及原理的理解;2、掌握借助计算机计算任意信号卷积的方法。
二、实验原理:卷积积分不仅可以通过直接积分或查表的方法来求解,还可以用积分的数值计算方法来求解。
在线性系统的分析过程中,有时会遇到复杂的激励信号,或者有时只是一组测试数据或曲线,冲激响应也可能出现同样的情况。
显然,此时直接计算积分或查表都有困难,而采用近似的数值计算方法可以解决这个问题,求得卷积积分。
1、卷积的定义卷积积分可以表示为2卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。
3卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。
设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。
因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。
卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t = nΔt (n为正整数,nΔt 记为t )时r(t)的值,则由上式可以得到:当Δt 足够小时,r(t )就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1 将信号取值离散化,即以 Ts 为周期,对信号取值,得到一系列宽度间隔 为 Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2 将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为 t=0 时的卷积积分的值。
以 Ts 为单位左右移动反转的信号,与另一信号相乘求积分,求的t<0和t>0时卷积积分的值;3 将所得卷积积分值与对应的t 标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。
信号与系统 连续时间信号卷积运算
连续时间信号的卷积运算的MATILAB实现薛皓20091453例1:已知两连续时间信号如图9-3所示,试用matlab求f(t)=f1(t)*f2(t),并绘出f(t)的时域波形图。
图1-1 连续时间信号波形图示例实现上述过程的matlab命令如下:p=0.5;k1=0:p:2;f1=0.5*k1;k2=k1;f2=f1;[f,k]=sconv(f1,f2,k1,k2,p)上述命令绘制的波形图也在图9-3中示出。
图9-3中给出了抽样时间间隔p=0.5时的处理效果。
而图9-4给出了抽样时间间隔p=0.01时的处理效果。
图1-2 例1的连续时间信号波形图习题1:已知f1(t)=1(2t 1≤≤),f2(t)=1(3t 2≤≤),用matlab 实现其卷积并绘制出卷积曲线。
解:程序代码如下:>> p=0.01;k1=1:p:2;f1=ones(size(k1)).*(k1>1);k2=2:p:3;f2=ones(size(k2)).*(k2>2);f=conv(f1,f2);f=f*p;k0=k1(1)+k2(1);k3=k1(length(k1))+k2(length(k2));subplot(2,2,1)plot(k1,f1)title('f1(t)')xlabel('t')ylabel('f1(t)')subplot(2,2,2)plot(k2,f2)title('f2(t)')xlabel('t')ylabel('f2(t)')subplot(2,2,3)plot(k,f);h=get(gca,'position');h(3)=2.5*h(3); 0set(gca,'position',h)title('f(t)=f1(t)*f2(t)')xlabel('t')ylabel('f(t)')绘制图形如图2-1所示。
连续时间信号卷积运算的MATLAB实现
连续时间信号卷积运算的MATLAB 实现一、实验目的(1)理解掌握卷积的概念及物理意义。
(2)理解单位冲激响应的概念及物理意义。
二、实验原理连续信号卷积运算定义为1212()()*()()()f t f t f t f f t d τττ∞-∞==-⎰卷积计算可以通过信号分段求和来实现,即1212120()()*()()()lim ()()k f t f t f t f f t d f k f t k τττ∞∞∆→=-∞-∞==-=∆-∆∆∑⎰ 如果只求当t n =∆(n 为整数)时()f t 的值()f n ∆,则由上式可得1212()()()()[()]k k f n f k f n k f k f n k ∞∞=-∞=-∞∆=∆∆-∆=∆∆-∆∑∑ 式中的12()[()]k f k f n k ∞=-∞∆-∆∑ 实际上就是连续信号1()f t 和2()f t 经等时间间隔∆均匀抽样的离散序列1()f k ∆和2()f k ∆的卷积和。
当∆足够小时,()f n ∆就是卷积积分的结果——连续时间信号()f t 的较好的数值近似。
三、实验程序function[f,k]=sconv(f1,f2,k1,k2,p)f=conv(f1,f2);f=f*p;k0=k1(1)+k2(1);k3=length(f1)+length(f2)-2;k=k0:p:k3*p;subplot(2,2,1)plot(k1,f1)title('f1(t)')xlabel('t')ylabel('f(1)')subplot(2,2,2)plot(k2,f2)title('t')xlabel('t')ylabel('f(2)')subplot(2,2,3)plot(k,f);h=get(gca,’position’);h(3)=2.5*h(3);set(gca,'position',h)title('f(t)=f1(t)*f2(t)')xlabel('t')ylabel('f(t)')四、求解f t=cost∗sint(1)Matlab命令如下:p=0.1;k1=0:p:6;f1=sin(k1);k2=k1;f2=f1;[f,k]=sconv(f1,f2,k1,k2,p)(2)运行过程如下:图一程序截图图二运行结果五、实验小结实验结果表明,用Matlab计算出的结果与理论分析结果一致。
连续信号卷积
物理与电子信息学院学生实验报告t=0:0.01:10; subplot(2,3,4) plot(t,f1f2*0.01) axis([0,5,0,2])subplot(2,3,5) plot(t,f1f3*0.01) axis([0,5,0,2])subplot(2,3,6) plot(t,f2f3*0.01) axis([0,5,0,2])实验项目连续信号卷积所属课程信号与系统 成绩评定专业 级 班 实验地点 实验楼502实验日期 20 年 月 日 指导教师 学生姓名同 组 人一、实验目的:掌握使用 MATLAB 实现信号的卷积运算、卷积的可视化。
二、实验原理:卷积积分运算实际上可利用信号的分段求和来实现。
利用 MATLAB 计算连续信号的卷积,是通过离散序列的卷积和的近似实现的,将连续信号 f1(t) 、 f2(t) 以相等的时间间隔进行取样,得到离散序列 f1(k1Δ ) 、 f2(k2Δ ) 。
在 MATLAB 中,函数 conv() 、函数 deconv() 可用来求两个离散序列的卷积和与反卷积, conv() 函数的调用格式为: f=conv(f1,f2) 、 deconv() 函数的调用格式为: [f,k]=deconv(f1,f2,k1,k2) 。
要注意的是 k 如何确定。
三、实验内容 t=0:0.01:5;f1=(t/2).*(t>=0&t<2); subplot(2,3,1) plot(t,f1)axis([0,5,0,2])f2=(t>1&t<3); subplot(2,3,2) plot(t,f2)axis([0,5,0,2])f3=(t>=0&t<2); subplot(2,3,3) plot(t,f3)axis([0,5,0,2])f1f2=conv(f1,f2); f1f3=conv(f1,f3); f2f3=conv(f2,f3);四、实验总结(实验中所遇问题的原因分析及解决措施;本实验未解决的问题;对实验的改进;个人的收获等)。
运用MATLAB进行连续时间信号卷积运算
实验项目名称:运用MATLAB进行连续时间信号卷积运算(所属课程:信号与系统)院系:电子信息与电气工程专业班级:电气工程及其自动化姓名:安永军学号:201002040062实验日期:2012年4月12 号实验地点:A-07-408合作者:张德扬指导老师:李静本实验项目成绩: 教师签字: 日期:一:实验目的1,掌握连续时间信号的基本运算的实现方法。
2,熟悉连续LTI 系统在典型激励信号下的响应及其特征。
3、掌握连续LTI 系统单位冲激响应的求解方法。
4、重点掌握用卷积法计算连续时间系统的零状态响应。
5、熟悉MATLAB 相关函数的调用格式及作用。
6、会用MATLAB 对系统进行时域分析。
二、实验原理1、信号的运算包括:信号的基本运算,包括加、减、乘、除等;信号的时域变换,包括信号的平移、翻转、尺度变换等;两个信号的卷积运算等。
2、连续时间线性时不变系统(LTI )可以用如下的线性常系数差分方程来描述:()(1)()(1)110110()()()()()()()()n n m m n m n n r t r t r t r t e t e t e t e t a a a a b b b b ----++++=++++''其中,n m ≥,系统的初始条件为(0)r -,(0)r -',(0)r -'', (1)(0)n r--。
系统的响应一般包括两个部分,即由当前输入所产生的响应(零状态响应)和由历史输入(初始状态)所产生的响应(零输入响应)。
对于低阶系统,一般可以通过解析的方法得到响应。
但对于高阶系统,手工计算就比较困难,这时MATLAB 强大的计算功能就能比较容易地确定系统的各种响应,如冲激响应、阶跃响应、零输入响应、零状态响应、全响应等。
1)直接求解法在MATLAB 中,要求以系数相量的形式输入系统的微分方程。
因此,在使用前必须对系统的微分方程进行变换,得到其传递函数。
连续时间信号的卷积运算
实验二连续时间信号的卷积运算与LTI系统的时域分析实验人:Mr.yan1 实验目的(1)熟悉卷积的定义和表示;(2)掌握利用计算机进行卷积运算的原理和方法;(3)熟悉连续信号卷积运算函数conv的应用。
(4)熟悉连续LTI系统在典型激励信号下的响应及其特征;(5)掌握连续LTI系统单位冲激响应的求解方法;(6)掌握用卷积法计算连续时间系统的零状态响应;(7)能够应用Matlab对系统进行时域分析。
2 实验原理(1)卷积的定义、卷积的几何解法、卷积积分的应用(求系统的零状态响应)(2)对于一般的n阶LTI连续系统,如果n的数值比较小时,可以通过解析的方法得到响应。
但是,对于高阶系统,手工运算比较困难,要利用一些计算工具软件。
3 涉及的Matlab函数(1)conv函数:实现信号的卷积运算。
调用格式:w=conv(u,v)计算两个有限长度序列的卷积。
说明:该函数假定两个序列都从零开始。
(2)lsim函数:计算并画出系统在任意输入下的零状态响应。
调用格式:lsim(b,a,x,t)其中:a和b是由描述系统的微分方程系数决定的表示该系统的两个行向量;x和t是表示输入信号的行向量。
该调用格式将会绘出由向量a和b所定义的连续系统在输入为向量x 和t所定义的信号时,系统的零状态响应的时域仿真波形,且时间范围与输入信号相同。
(3)impulse函数:计算并画出系统的冲激响应。
调用格式:impulse(b,a)该调用格式以默认方式绘出向量a和b定义的连续系统的冲激响应的时域波形。
impulse(b,a,t)该调用格式将绘出向量a和b定义的连续系统在0-t时间范围内的冲激响应波形。
impulse(b,a,t1:p:t2)该调用格式将绘出向量a和b定义的连续系统在t1-t2时间范围内,且以时间间隔p均匀取样的冲激响应波形。
(4)step函数:计算并画出系统阶跃响应曲线调用格式:该函数与函数impulse()一样,也有相似的调用格式。
基于MATLAB的信号与系统实验指导编程练习
基于MATLAB的信号与系统实验指导编程练习2连续时间信号在M A T L A B中的表⽰2-1.利⽤MATLAB命令画出下列连续信号的波形图(1)>> t=0:0.01:3;>> ft=2*cos(3*t+pi/4);>> plot(t,ft),grid on;>> axis([0 3 -2.2 2.2]);>> title('2cos(3t+pi/4)')(2)>> t=0:0.01:3;>> ft=2-exp(-t);>> plot(t,ft),grid on;>> title('(2-exp(-t))u(t)')(3)>> t=-1:0.01:1;>> ft=t.*(uCT(t)-uCT(t-1));>> plot(t,ft),grid on>> axis([-1 1 -0.2 1.2]);>> title('t[u(t)-u(t-1)]')(4)>> t=-1:0.01:3;>> ft=(1+cos(pi*t)).*(uCT(t)-uCT(t-2)); >> plot(t,ft),grid on>> axis([-1 3 -0.2 2.2]);>> title('[1+cos(pi*t)][u(t)-u(t-2)]')2-2.利⽤MATLAB命令画出下列复信号的实部、虚部、模和辐⾓(1)>> t=0:0.01:3;>> ft=2+exp(i*(pi/4)*t)+exp(i*(pi/2)*t);>> subplot(2,2,1);plot(t,real(ft));title('实部');axis([0 3 0 4]);grid on; >> subplot(2,2,2);plot(t,imag(ft));title('虚部');axis([0 3 0 2]);grid on; >> subplot(2,2,3);plot(t,abs(ft));title('模');axis([0 3 0 4]);grid on;>> subplot(2,2,4);plot(t,angle(ft));title('相⾓');axis([0 3 0 2]);grid on;(2)t=0:0.01:3;>> ft=2*exp(i*(t+pi/4));>> subplot(2,2,1);plot(t,real(ft));title('实部');axis([0 3 0 2]);grid on;>> subplot(2,2,2);plot(t,imag(ft));title('虚部');axis([0 3 0 2]);grid on;>> subplot(2,2,3);plot(t,abs(ft));title('模');axis([0 3 0 4]);grid on;>> subplot(2,2,4);plot(t,angle(ft));title('相⾓');axis([0 3 0 4]);grid on;2-3.利⽤MATLAB命令产⽣幅度为1、周期为1、占空⽐为0.5的⼀个周期矩形脉冲信号>> t=-0.5:0.01:3;>> ft=square(2*pi*t,50);>> plot(t,ft);grid on;axis([-0.5 3 -1.2 1.2]);>> title('幅度为1、周期为1、占空⽐0.5的周期举⾏脉冲信号')3连续时间信号在MATLAB中的运算3-1.试⽤MATLAB命令绘出以下信号的波形图(1)>> syms x t;>> t=-1:0.01:1;>> x=exp(-t).*sin(10*pi*t)+exp(-0.5*t).*sin(9*pi*t);>> plot(t,x)(2)>> syms x t;>> t=-1:0.01:1;>> x=sinc(t).*cos(10*pi*t);>> plot(t,x)3-2.已知连续时间信号f(t)的波形如图3-6所⽰,试⽤MATLAB 命令画出下列信号的波形图先画出图3-6:>> t=-2:0.01:2;>>f=(-t-1).*(-uCT(t+2)+uCT(t+1))+uCT(t+1)+uCT(t)-uCT(t-1)-(t-1).*(uCT(t-1)-uCT(t-2))-uC T(t-2); >> plot(t,f)>> axis([-4 4 -1 2])>> title('图3-6')>> t=-2:0.01:2;>> f1=funct2(t-1);>> f2=funct2(2-t);>> f3=funct2(2*t+1);>> f4=funct2(4-t/2);>> f5=(funct2(t)+funct2(-t)).*uCT(t);>> subplot(231);plot(t,f1);grid on;title('f(t-1)');axis([-3 3 -1 2]);>> subplot(232);plot(t,f2);grid on;title('f(2-t)');axis([-3 3 -1 2]);>> subplot(233);plot(t,f3);grid on;title('f(2t-1)');axis([-3 3 -1 2]);>> subplot(234);plot(t,f4);grid on;title('f(4-t/2)');axis([-3 3 -1 2]); >> subplot(235);plot(t,f5);grid on;title('(f(t)+f(-t))u(t)');axis([-3 3 -1 2]);3-3.试⽤MATLAB命令绘出如图3-7所⽰信号的偶分量和奇分量>> t=0:0.01:2;>> f=(uCT(t)-uCT(t-2)).*(-t+1);>> plot(t,f);title('图3-7')>> f1=fliplr(f);>> fe=(f+f1)/2;fo=(f-f1)/2;>> subplot(211),plot(t,fe);grid on>> title('fe')>> subplot(212),plot(t,fo);grid on;title('fo')4连续时间信号的卷积计算4-1⽤MATLAB命令绘出下列信号的卷积积分的时域波形图>> dt=0.001;t1=-0.5:dt:3.5;>> f1=uCT(t1)-uCT(t1-2);>> t2=t1;>> f2=uCT(t2)+uCT(t2-1)-uCT(t2-2)-uCT(t2-3);>> [t,f]=ctsconv(f1,f2,t1,t2,dt);6周期信号的傅⾥叶级数及频谱分析6-1已知周期三⾓信号如图6-5所⽰,试求出该信号的傅⾥叶级数,利⽤MATLAB编程实现其各次谐波的叠加,并验证其收敛性。
连续时间系统卷积的数值计算实验报告.docx
实验报告实验名称:连续时间系统卷积的数值计算一、实验目的:1、加深对卷积概念及原理的理解;2、掌握借助计算机计算任意信号卷积的方法。
二、实验原理:卷积积分不仅可以通过直接积分或查表的方法来求解,还可以用积分的数值计算方法来求解。
在线性系统的分析过程中,有时会遇到复杂的激励信号,或者有时只是一组测试数据或曲线,冲激响应也可能出现同样的情况。
显然,此时直接计算积分或查表都有困难,而采用近似的数值计算方法可以解决这个问题,求得卷积积分。
1、卷积的定义卷积积分可以表示为2卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。
3卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。
设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。
因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。
卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t = nΔt (n为正整数,nΔt 记为t )时r(t)的值,则由上式可以得到:当Δt 足够小时,r(t )就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1 将信号取值离散化,即以 Ts 为周期,对信号取值,得到一系列宽度间隔为 Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2 将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为 t=0 时的卷积积分的值。
以 Ts 为单位左右移动反转的信号,与另一信号相乘求积分,求的t<0和t>0时卷积积分的值;3 将所得卷积积分值与对应的t 标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。
信号与系统-连续信号和离散信号的表示与卷积实验报告
实验一:连续信号和离散信号的表示与卷积一.实验目的1. 学习MATLAB 软件产生信号和实现信号的可视化2. 学习和掌握连续和离散信号的时域表示方法3. 学习和掌握连续信号和离散信号卷积方法二.实验原理1. 信号的表示方法● 常用信号:➢ 连续函数()θω+=t t f sin )(, atAe t f =)(,ttt Sa sin )(=➢ 离散信号()n n f 0sin ][ω=,njw e n f 0][=,][][n u a n f n=● 奇异信号:➢ 连续函数:冲激函数)(t δ,阶跃函数)(t u ,斜坡函数)(t R ➢ 离散信号:冲激函数][n δ,阶跃函数][n u ,斜坡函数][n R2.卷积连续函数的卷积:⎰∞∞--=τττd t f f t g )()()(21离散函数的卷积:∑∞-∞=-=m m n f m f n g ][][][21三.实验内容1. 熟悉matlab 工作环境(1) 运行matlab.exe ,进入matlab 工作环境,如图(1)所示。
图1 matlab工作环境(2)matlab工作环境由Command Window(命令窗口)、Current Direcroty(当前目录)、workspace (工作空间)、command History(历史命令)和Editor(文件编辑器)5部分组成。
其中所有文件的编辑和调试、运行在Editor编辑窗口下进行。
程序的运行也可以在命令窗口进行。
程序调试的信息显示在命令窗口。
(3)程序文件的产生:点击菜单file下的New下的M_files,进入编辑器界面,如图2。
图2 M 文件编辑器(4) 在m 文件编辑器下键入程序代码,保存程序文件(文件命名规则同C 语言)。
如果所定义的是函数文件,则要求函数名为M 文件名。
(5) 程序运行需要给定义的函数参数赋值。
切换到命令窗口下运行例如指数函数定义格式 [t,y]=exp1_exp(t1,t2,dt,A,a)指数函数文件调用方式:[t,y]=exp1_exp(-10,10,0.1,3,-1,1)2 连续和离散信号的时域表示方法(1)单边指数信号 )()(t u Ae t y tα=;function y=exp1_exp(t1,t2,dt,A,a,options)%指数函数,其中t1,t2,dt 分别为起始时间、终止时间和时间间隔 %A,a 为常数 y(t)=Aexp(a*t)%options 参数等于1时为单边指数函数,其他时为双边指数函数 %函数调用的格式 y=exp1_exp(-10,10,0.1,3,-1,1) if options==1t=0:dt:t2;%单边指数函数时间范围 elset=t1:dt:t2;%双边指数函数时间范围endy=A*exp(a*t);%指数函数plot(t,y)%画图grid onxlabel('t')%X轴坐标ylabel('y(t)')%Y轴坐标if options==1title(' 单边指数信号')%标题elsetitle(' 双边指数信号')%标题end实验要求:1)在同一张图上画出a>0,a=0,a<0时指数函数波形,如图3所示. 注意:a的取值范围要适中,不要导致纵坐标相差太大。
信号与系统实验四连续时间信号的卷积积分
实验名称:连续时间信号的卷积积分
报告人:姓名班级学号
一、实验目的
1、熟悉卷积积分的定义和性质;
2、了解卷积积分在系统分析中的应用;
3、熟悉MATLAB实现卷积的方法。
二、实验内容及运行结果
1已知两信号:f1(t)=u(t+1)-u(t),f2(t)=u(t)-u(t-1),求卷积:g(t)=f1(t)*f2(t)比较此题与例题t1=-1:0.01:0;
f1=ones(size(t1)); %高度为一的门函数,时间从t=-1到t=0
t2=0:0.01:1;
f2=ones(size(t2)) ; %高度为一的门函数,时间从t=0到t=1
g=conv(f1,f2); %对f1和f2进行卷积
t3=-1:0.01:1;
subplot(3,1,1),plot(t1,f1); %画f1的波形
subplot(3,1,2),plot(t2,f2); %画f2的波形
subplot(3,1,3),plot(t3,g); %画g的波形
此题与例题的作用区间改变了,以及波形有不同
三、讨论与总论
通过本次试验,利用matlab求解卷积,利用conv函数解卷积非常方便和快速,需要注意每个函数的作用区间,并且了解卷积积分在系统分析中的应用。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。
实验三 信号卷积的MATLAB实现
实验三信号卷积的MATLAB实现一、实验名称:信号卷积的MATLAB实现二、实验目的:1.增加学生对卷积的认识2.了解MATLAB这个软件的一些基础知识3.利用MATLAB计算信号卷积4.验证卷积的一些性质三、实验原理:用MATLAB实现卷积我们先必须从信号下手,先把信号用MATLAB语句描述出来,然后再将这些信号带入到我们写好的求卷积的函数当中来计算卷积。
在本章中我们将信号分为连续信号和离散序列两种来实现卷积并验证卷积的一些性质。
MATLAB强大的图形处理功能及符号运算功能,为我们实现信号的可视化提供了强有力的工具。
在MATLAB中通常有两种方法来表示信号,一种是用向量来表示信号,另一种则是用符号运算的方法来表示信号。
用适当的MATLAB 语句表示出信号后,我们就可以利用MATLAB的绘图命令绘制出直观的信号波形。
连续时间信号,是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干不连续点以外,信号都有确定的值与之对应的信号。
从严格意义上来讲,MATLAB并不能处理连续信号,在MATLAB中,是用连续信号在等时间间隔点的样值来近似地表示连续信号的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。
在MATLAB中连续信号可用向量或符号运算功能来表示。
1.向量表示法对于连续时间信号f(t),我们可以用两个行向量f和t来表示,其中向量t是行如t=t1:p:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为中止时间,p为时间间隔。
向量f为连续信号f(t)在向量t所定义的时间点上的样值。
例如对于连续信号f(t)=sin(t),我们可以用如下两个向量来表示:t=-10:1.5:10;f=sin(t)用上述向量对连续信号表示后,就可以用plot命令来绘出该信号的时域波形。
Plot命令可将点与点间用直线连接,当点与点间的距离很小时,绘出的图形就成了光滑的曲线。
命令如下:plot(t,f)title(‘f(t)=sint’)xlabel(‘t’)axis([-10,10,-1.1,1.1])绘制的信号波形如图3.1所示,当把时间间隔p取得更小(如0.01)时,就可得到sint较好的近似波形,如图3.2所示。
连续时间信号的卷积与相关计算
连续时间信号的卷积与相关计算连续时间信号的卷积和相关计算是信号处理中常见的操作。
卷积是通过将两个信号进行叠加积分来获得新的信号。
给定两个连续时间信号f(t)和g(t),它们的卷积表示为(f * g)(t),计算公式如下:
(f * g)(t) = ∫[f(τ)g(t-τ)]dτ
其中,τ是积分变量。
卷积的结果是一个新的信号h(t),它包含着两个信号f(t)和g(t)间的相互影响。
相关计算用于衡量两个信号之间的相似性。
给定两个连续时间信号f(t)和g(t),它们的相关函数表示为R(t),计算公式如下:
R(t) = ∫[f(τ)g(t+τ)]dτ
相关计算中,τ也是积分变量。
通过计算相关函数的值,可以了解信号f(t)和g(t)的相似程度。
卷积和相关计算在信号处理中具有广泛的应用。
它们可以用于滤波、系统建模、特征提取等任务,有助于理解和处理连续时间信号的特性。
连续时间信号的卷积运算word资料5页
实验二连续时间信号的卷积运算与LTI系统的时域分析实验人:Mr.yan1 实验目的(1)熟悉卷积的定义和表示;(2)掌握利用计算机进行卷积运算的原理和方法;(3)熟悉连续信号卷积运算函数conv的应用。
(4)熟悉连续LTI系统在典型激励信号下的响应及其特征;(5)掌握连续LTI系统单位冲激响应的求解方法;(6)掌握用卷积法计算连续时间系统的零状态响应;(7)能够应用Matlab对系统进行时域分析。
2 实验原理(1)卷积的定义、卷积的几何解法、卷积积分的应用(求系统的零状态响应)(2)对于一般的n阶LTI连续系统,如果n的数值比较小时,可以通过解析的方法得到响应。
但是,对于高阶系统,手工运算比较困难,要利用一些计算工具软件。
3 涉及的Matlab函数(1)conv函数:实现信号的卷积运算。
调用格式:w=conv(u,v)计算两个有限长度序列的卷积。
说明:该函数假定两个序列都从零开始。
(2)lsim函数:计算并画出系统在任意输入下的零状态响应。
调用格式:lsim(b,a,x,t)其中:a和b是由描述系统的微分方程系数决定的表示该系统的两个行向量;x和t是表示输入信号的行向量。
该调用格式将会绘出由向量a和b所定义的连续系统在输入为向量x 和t所定义的信号时,系统的零状态响应的时域仿真波形,且时间范围与输入信号相同。
(3)impulse函数:计算并画出系统的冲激响应。
调用格式:impulse(b,a)该调用格式以默认方式绘出向量a和b定义的连续系统的冲激响应的时域波形。
impulse(b,a,t)该调用格式将绘出向量a和b定义的连续系统在0-t时间范围内的冲激响应波形。
impulse(b,a,t1:p:t2)该调用格式将绘出向量a和b定义的连续系统在t1-t2时间范围内,且以时间间隔p均匀取样的冲激响应波形。
(4)step函数:计算并画出系统阶跃响应曲线调用格式:该函数与函数impulse()一样,也有相似的调用格式。
卷积计算的实验报告
1. 理解卷积的基本概念和原理;2. 掌握卷积的计算方法;3. 通过MATLAB软件实现卷积运算;4. 分析卷积运算在信号处理中的应用。
二、实验原理卷积是一种线性运算,它描述了两个信号之间的相互作用。
对于两个离散信号x[n]和h[n],它们的卷积y[n]定义为:y[n] = Σx[k]h[n-k]其中,n和k为离散时间变量,Σ表示求和。
卷积运算具有以下性质:1. 交换律:x[n] h[n] = h[n] x[n]2. 结合律:(x[n] h[n]) g[n] = x[n] (h[n] g[n])3. 分配律:x[n] (h[n] + g[n]) = x[n] h[n] + x[n] g[n]卷积运算在信号处理中具有重要的应用,如信号滤波、系统分析、图像处理等。
三、实验内容1. 熟悉MATLAB软件环境;2. 编写MATLAB程序实现卷积运算;3. 分析卷积运算的结果,验证卷积性质;4. 应用卷积运算解决实际问题。
四、实验器材1. 计算机;2. MATLAB软件;3. 离散信号数据。
1. 创建离散信号数据:在MATLAB中创建两个离散信号x[n]和h[n],分别代表输入信号和系统响应。
2. 编写卷积程序:使用MATLAB内置函数conv实现卷积运算,计算y[n] = x[n] h[n]。
3. 分析卷积结果:观察卷积运算的结果,验证卷积性质,如交换律、结合律、分配律等。
4. 应用卷积运算解决实际问题:选择一个实际问题,如信号滤波,使用卷积运算进行求解。
六、实验结果与分析1. 卷积运算结果:运行卷积程序,得到卷积运算结果y[n]。
观察y[n]的波形,分析卷积运算对信号的影响。
2. 验证卷积性质:通过比较x[n] h[n]和h[n] x[n]的卷积结果,验证交换律;通过比较(x[n] h[n]) g[n]和x[n] (h[n] g[n])的卷积结果,验证结合律;通过比较x[n] (h[n] + g[n])和x[n] h[n] + x[n] g[n]的卷积结果,验证分配律。
连续时间信号的卷积及信号的频域分析实验报告
课程实验报告题目:连续时间信号的卷积及信号的频域分析学院学生姓名班级学号指导教师开课学院通信与信息工程学院日期实验内容:(一)连续时间信号的卷积问题1:用计算机算卷积是把连续信号进行采样,得到一个个离散数值,然后用数值计算代替连续信号的卷积,请推导数值计算与连续信号的卷积之间的关系。
(学生回答问题)解:连续函数)(t x 和的卷积为:)(t h τττd t h x t h t x t y )()()()()(-=*=⎰∞∞- (F2-1)若)(t x 和)(t h 分别在时间区间)(21,t t 和)(43,t t 有非零的值,则ττετεττετετεεεεd t t t t t h t t x t t t t t h t t t t t x t y ⎰∞∞-------∙---=---*---=)]()()[()]()()[()]()()[()]()()[()(43214321要使)(t y 为非零值,必须有)()(21t t ---τετε=1和)()([43t t t t -----τετε=1 从而,应同时满足:21t t τ 和43t t t ++ττ ,即4231t t t t t ++ 。
由此得出结论:若)(t x 和)(t h 分别仅在时间区间)(21,t t 和)(43,t t 有非零的值,则卷积)()()(t h t x t y *=有非零值得时间区间为)(4231,t t t t ++。
对卷积公式(F2-1)进行数值计算是近似为:∆∆-∆∆=∆∑∞-∞=)()()(n k h n x k y n ,记作∆*=∆-=∑∞-∞=)()()()()(k h k x n k h n x k y n (F2-2)式中,)()()(k h k x t y 和、分别为对、)(t y )(t x 和)(t h 以∆为时间间隔进行采样所得的离散序列。
相应的可得出结论:若)()(k h k x 和分别仅在序号区间[21,k k ]和[43,k k ] 有非零的值,则离散卷积(卷积和))()()(t h t x t y *=有非零值的序号区间为[4231,k k k k ++]。
【信号与系统实验内容】实验三连续时间信号的卷积
实验三连续时间信号的卷积一、实验目的:1、掌握两个连续时间信号卷积的计算方法和编程技术。
2、进一步熟悉用MATLAB描绘二维图像的方法。
二、实验原理:卷积积分在信号与线性系统分析中具有非常重要的意义,是信号与系统分析的基本方法之一。
(一)卷积的定义连续时间信号f1(t)和f2(t)的卷积积分(简称为卷积)f(t)定义为:(二)线性时不变(LTI)系统的单位冲激响应给定一个连续时间LTI系统,在系统的初始条件为零时,用单位冲激信号δ(t)作用于系统,此时系统的响应信号称为系统的单位冲激响应(Unit impulse response),一般用h(t)来表示。
需要强调的是,系统的单位冲激响应是在激励信号为δ (t)时的零状态响应(Zero-state response)。
系统的单位冲激响应是一个非常重要的概念,如果已知一个系统的单位冲激响应,那么,该系统对任意输入信号的响应信号都可以求得。
(三)卷积的意义对于LTI系统,根据系统的线性和时不变性以及信号可以分解成单位冲激函数可得,任意LTI系统可以完全由它的单位冲激响应h(t)来确定,系统的输入信号x(t)和输出信号y(t)之间的关系可以用卷积运算来描述,即:由于系统的单位冲激响应是零状态响应,故按照上式求得的系统响应也是零状态响应。
它是描述连续时间系统输入输出关系的一个重要表达式。
(四)函数说明利用MATLAB的内部函数conv( )可以很容易地完成两个信号的卷积积分运算。
其语法为:y = conv(x,h)。
其中x和h分别是两个参与卷积运算的信号,y为卷积结果。
为了正确地运用这个函数计算卷积,这里对conv(x,h)做一个详细说明。
conv(x,h)函数实际上是完成两个多项式的乘法运算。
例如,两个多项式p1和p2分别为:和这两个多项式在MATLAB中是用它们的系数构成一个行向量来表示的,用x来表示多项式p1,h表示多项式p2,则x和h分别为x = [1 2 3 4]h = [4 3 2 1]在MATLAB命令窗口依次键入>> x = [1 2 3 4];>> h = [4 3 2 1];>> y=conv(x,h)在屏幕上得到显示结果:y = 4 11 20 30 20 11 4这表明,多项式p1和p2的乘积为:用MATLAB处理连续时间信号时,时间变量t的变化步长应该很小,假定用符号dt表示时间变化步长,那么,用函数conv( )作两个信号的卷积积分时,应该在这个函数之前乘以时间步长方能得到正确的结果。
连续卷积公式(二)
连续卷积公式(二)连续卷积公式什么是连续卷积公式?连续卷积公式是信号处理领域中常用的一种数学工具,用于描述连续时间下两个信号之间的卷积运算关系。
它在信号处理、图像处理、音频处理等领域广泛应用。
连续卷积公式表达形式连续卷积公式可以用以下形式表示:[ y(t) = _{-}^{} x() h(t-) , d ]其中,(y(t))表示输出信号,(x(t))表示输入信号,(h(t))表示系统的冲激响应。
连续卷积公式的解释连续卷积公式描述了输入信号经过系统作用后所得到的输出信号。
具体而言,输入信号在时间轴上的每个时刻与系统的冲激响应进行乘法运算,并在整个时间范围内进行积分,从而得到输出信号。
连续卷积公式的应用举例以下是一些常见的连续卷积公式的应用举例:1. 音频信号处理在音频信号处理中,连续卷积公式可用于描述音频信号经过滤波器后的频域响应。
例如,如果我们有一个音频文件作为输入信号,同时有一个滤波器的冲激响应,我们可以通过连续卷积公式计算出滤波后的音频信号。
2. 图像处理在图像处理中,连续卷积公式常常用于图像模糊、边缘检测等操作。
例如,当我们希望对一张图像进行模糊处理时,可以将图像与一个模糊核进行连续卷积运算,从而实现图像的模糊效果。
3. 系统建模连续卷积公式也经常被用于对系统进行建模。
通过测量系统对不同输入信号的响应,可以通过连续卷积公式来估计系统的冲激响应,从而了解系统的性质和行为。
4. 信号恢复在信号恢复领域,连续卷积公式可用于恢复受损的信号。
通过将损坏的信号与一个恢复核进行连续卷积运算,可以逐渐恢复信号的原始特征。
结论连续卷积公式是信号处理中重要的数学工具,帮助我们理解和分析信号与系统之间的相互作用关系。
在不同领域的应用中,连续卷积公式发挥着重要的作用,帮助我们处理和改进信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、学会运用MATLAB实现连续时间信号的卷积 2、学会运用MATLAB符号运算法求连续时间信号 的卷积 3、学会运用MATLAB数值计算方法求连续时间信 号的卷积
实验原理:
f (t) f (t) f (t) f ( ) f (t )d 1
2
1
2
f (t) f1(t) * f2 (t) f1( ) f (t )d
f1(m ) f2[(n m) ]
m
f (t) [ f1(n) f2 (n)]
• 用MATLAB实现连续信号卷积的过程:
– 将连续信号 f1(t与) f以2 (时t) 间间隔 抽样, 得
到
f1(k), f2(k)
– 构造与 f1(k), f相2(k对)应的时间变量k1和k2.
– 调用conv()函数计算卷积积分f(t)的近似向量
f1 (t )
lim 0
f1 (m
),
f2 (t)
lim 0
f2 (m
)
f (t) f1(t) f2 (t) f1( ) f2 (t )d
lim 0 m
f1 (m
) f2 (t m
)
f (n ) f1(m ) f2 (n m ) m
f1(m ) f2[(n m) ]
m
f (t) f (n )
(1)符号法:要注意积分变量和积分限的选取
lim
0 k
f1 (k )
f2 (t
k)
如果Байду номын сангаасt=n,则
(2)数值计算法
f (n) f1(k) f2 ((n k)) k
y(t)
t
eT
u (t )
etu(t
)
t
eT
u(
)
e (t
)u(t
)
0
ex3_1.m
y(t) [u(t) u(t 1)][u(t) u(t 1)]
– 构造 对应的时间向量k.
f (n)
y(t) [u(t) u(t 1)][u(t) u(t 1)]
ex3_3.m
实验内容:
1、绘制 f1(t) f2 (t)
采用数值与符号法
f1 (t )
f2 (t)
2、两种方式计算如下卷积
(1) f1(t) f2 (t); (2) f1(t) f3(t); (3) f1(t) f4 (t) (4) f2 (t) f3(t); (5) f2 (t) f4 (t); (6) f3(t) f4 (t)
ex3_2.m
MATLAB中:w conv(u,v) 函数实现卷积和
w(n) u(m)v(n 1 m)
m
f (t) f1(t) f2 (t) f1( ) f2 (t )d
对f1(t)和f2 (t)进行等间隔 均匀抽样, 则f1(t) f1(m ),f2 (t) f2 (m ), 当 足够小的时候,则