【高考数学经典题型】递推数列奇偶性分析(每日一题)

合集下载

2025年高考数学一轮复习-拓展拔高7-数列中的奇偶项问题【课件】

2025年高考数学一轮复习-拓展拔高7-数列中的奇偶项问题【课件】
4
2
(+1)2
综上所述,Sn=൞
−(12) ] 2
1 n
=n +1-( ) .
1
2
1−2
思维升华
(),为奇数
形如an=൝
的结构,可分为两种情况:(1)邻项等差、等比数列,如已知
(),为偶数
+ 1,为奇数,
a1=1,an+1=൝
的解题思路:
2 ,为偶数
将n用2k-1或2k替代,当n=2k-1时,a2k=a2k-1+1;
项的规律,分别求出它们的通项公式.在求通项公式时,要注意把数列的项数间隔
开.(2)将数列分成奇数项和偶数项两组,分组进行求和.(3)将所得的结果汇总、化
简,便可求得数列的和.
视角一 含有(-1)n的递推公式
[例1] (2023·衡水模拟)(多选题)已知数列{an}满足a1=1,an+2=(-1)n+1(an-n)+n,记{an}的前n
+ 1−( ) 2 ,为奇数,
2
综上,Sn=൞ 4 2

1
+ 1−( ) 2 ,为偶数.
4
2

1
(2) 2 ]
1
2

1−
2
1
= +1-( ) 2 .
4
2
方法二:因为an=ቐ
,为奇数,
1
( ) 2 ,为偶数,
2
1 n
所以2−1 =2n-1,2 =( ) ,
2
所以2 =a1+a2+…+2 =(a1+a3+…+2−1 )+(a2+a4+…+2 )=(1+3+…+2n-1)+

2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.4(2023·湖南邵阳·统考三模)记S n 为等差数列{a n }的前n 项和,已知a 3=5,S 9=81,数列{b n }满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n a n +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .5(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .2【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=1(2021·山东济宁市·高三二模)已知数列{a n}是正项等比数列,满足a3是2a1、3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;log,求数列{b n}的前n项和T n.(2)若b n=-1n⋅2a2n+12【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.n n+13(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.2(2022·湖北省鄂州高中高三期末)已知数列a n前n项和满足a1=1,a n+a n+1=2n;数列b n为S n,且b1=1,2S n=b n+1-1.(1)求数列a n的通项公式;和数列b n(2)设c n=a n⋅b n,求c n前2n项和T2n.数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.【解析】【小问1详解】∵na n+1-n+1a n=1,∴a n+1n+1-a nn=1n-1n+1,a n+1+1n+1=a n+1n,所以a n+1n是常数列,即a n+1n=a1+11=3,∴a n=3n-1;【小问2详解】由(1)知,a n是首项为2,公差为3等差数列,由题意得b2n-1=a2n-1=6n-4,b2n=2a2n+1=12n+4,设数列b2n-1,b2n的前50项和分别为T1,T2,所以T1=50b1+b992=25×298=7450,T2=50×b2+b1002=25×620=15500,所以b n的前100项和为T1+T2=7450+15500=22950;综上,a n=3n-1,b n的前100项和为T1+T2=7450+15500=22950.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.【答案】(1)证明见详解(2)S2n=2n-1n19+n34n+3【详解】(1)当n=1时,可得a1=1,当n≥2时,由a1+3a2+⋯+2n-1a n=n,则a1+3a2+⋯+2n-3a n-1=n-1n≥2,上述两式作差可得a n=12n-1n≥2,因为a1=1满足a n=12n-1,所以a n的通项公式为a n=12n-1,所以1a n=2n-1,因为1a n-1a n-1=2n-1-2n-3=2(常数),所以1a n是一个等差数列.(2)c n=2n-119,n为奇数12n-12n+3,n为偶数 ,所以C1+C3+⋯C2n-1=1+5+9+⋯4n-319=2n-1n19,C2+C4+⋯C2n=1413-17+17-111+⋯+14n-1-14n+3=n34n+3所以数列c n的前2n项和S2n=2n-1n19+n34n+3.2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.【答案】(1)a1=12,a2=4;1024是数列a n的第342项(2)S2n-1=4n6+3n2-5n+116【详解】(1)由a n=2n-2,n为奇数3n-2,n为偶数可得a1=12,a2=4.令2n-2=1024=210,解得:n=12为偶数,不符合题意,舍去;令3n-2=1024,解得:n=342,符合题意.因此,1024是数列a n的第342项.(2)S2n-1=a1+a2+a3+a4+⋅⋅⋅+a2n-2+a2n-1=12+4+2+10+⋅⋅⋅+6n-8+22n-3=12+2+⋅⋅⋅+22n-3+4+10+⋅⋅⋅+6n-8=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.另解:由题意得a2n-1=22n-3,又a2n+1a2n-1=4,所以数列a2n-1是以12为首项,4为公比的等比数列.a2n=6n-2,又a2n+2-a2n=6,所以数列a2n是以4为首项,6为公差的等差数列.S2n-1为数列a2n-1的前n项和与数列a2n的前n-1项和的总和.故S2n-1=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.【答案】(1)a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)证明见解析.【详解】(1)由题意a2n+1=a2n+1=2a2n-1+1,所以a2n+1+1=2a2n-1+1,因为a1+1=2≠0,所以数列a2n-1+1是首项为2,公比为2的等比数列,所以a2n-1+1=2n,即a2n-1=2n-1,而a2n=2a2n-1=2n+1-2,所以a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)方法一:由(1)得T2n=ni=11a2i-1+1a2i=32ni=112i-1=32ni=12i+1-12i-12i+1-1<32ni=12i+12i-12i+1-1=3ni=12i2i-12i+1-1=3ni=112i-1-12i+1-1=31-12n+1-1<3方法二:因为2n-1≥2n-1n∈N*,所以T2n=∑ni=11a2i-1+1a2i=32∑n i=112i-1≤32∑n i=112i-1=31-12n<34(2023·湖南邵阳·统考三模)记S n为等差数列{a n}的前n项和,已知a3=5,S9=81,数列{b n}满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n an +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .【答案】(1)a n =2n -1,b n =3n (2)T 2n =3⋅9n 8-116n +12-724【详解】(1)设等差数列{a n }的公差为d ,∵a 3=5S 9=81 ,即a 1+2d =59a 1+9×82d =81 ,∴a 1=1,d =2,∴a n =2n -1.∵a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3,①∴a 1b 1+a 2b 2+⋯+a n -1b n -1=n -2 ⋅3n +3n ≥2 ,②所以①-②得,a n b n =2n -1 ⋅3n ,∴b n =3n n ≥2 .当n =1时,a 1b 1=3,b 1=3,符合b n =3n .∴b n =3n .(2)T 2n =c 1+c 2+c 3+⋯+c 2n ,依题有:T 2n =b 1+b 3+⋯+b 2n -1 +1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2.记T 奇=b 1+b 3+⋯+b 2n -1,则T 奇=3(1-32n )1-32=32n +1-38.记T 偶=1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2,则T 偶=12d 1a 2-1a 4 +1a 4-1a 6 +⋯+1a 2n -1a 2n +2=12d 1a 2-1a 2n +2=1413-14n +3 .所以T 2n =32n +1-38+1413-14n +3 =3⋅9n 8-116n +12-7245(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数【详解】(1)因为a n 是等比数列,公比为q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 11-34 1-3=9a 1+93,解得a 1=3,所以数列a n 的通项公式为a n =3n .(2)由(1)得b n =-n ,n 为奇数3n ,n 为偶数,当n 为偶数时,T n =b 1+b 2+⋅⋅⋅+b n =b 1+b 3+⋅⋅⋅+b n -1 +b 2+b 4+⋅⋅⋅+b n =-1+3+⋅⋅⋅+n -1 +32+34+⋅⋅⋅+3n=-n2⋅1+n -12×+91-9n 21-9=983n -1 -n 24;当n 为奇数时T n =T n +1-b n +1=983n +1-1 -n +1 24-3n +1=18×3n +1-98-n +1 24;综上所述:T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数.题型二、含有(-1)n 类型2【2020年新课标1卷文科】数列{a n }满足a n +2+(-1)n a n =3n -1,前16项和为540,则a 1=【答案】7【解析】a n +2+(-1)n a n =3n -1,当n 为奇数时,a n +2=a n +3n -1;当n 为偶数时,a n +2+a n =3n -1.设数列a n 的前n 项和为S n ,S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70)+(a 1+102)+(a 1+140)+(5+17+29+41)=8a 1+392+92=8a 1+484=540,∴a 1=7.故答案为:7.1(2021·山东济宁市·高三二模)已知数列{a n }是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =-1 n ⋅2a 2n +1log ,求数列{b n }的前n 项和T n .【解析】(1)设等比数列{a n }的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列{a n }是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-⋯-2n -1 +2n +1 =-3+5 +-7+9 +⋯+-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+⋯+-1 n ⋅2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+⋯+-1 n +1⋅2n +1 所以2T n =3+2[-1 2+-1 3+⋯+-1 n ]--1 n +12n +1 ,=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n=n+1-1n-1,n∈N*2【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2题型三、a n+a n+1类型3(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.【解析】(1)已知S n=a n2+n2+1,n∈N*当n=1时,a1=a12+2,a1=4;当n=2时,a1+a2=a22+5,a2=2,所以a1+a2=6.因为S n=a n2+n2+1①,所以S n+1=a n+12+n+12+1②.②-①得,a n+1=a n+12-a n2+n+12-n2,整理得a n+a n+1=4n+2,n∈N*,所以a n+1+a n+2-a n+a n+1=4n+1+2-4n+2=4(常数),n∈N*,所以a n+a n+1是首项为6,公差为4的等差数列.(2)由(1)知,a n-1+a n=4n-1+2=4n-2,n∈N*,n≥2.当n为偶数时,S n=a1+a2+a3+a4+⋯+a n-1+a n=n26+4n-22=n2+n;当n为奇数时,S n=a1+a2+a3+a4+a5+⋯+a n-1+a n=4+n-1210+4n-22=n2+n+2.综上所述,S n=n2+n,当n为偶数时n2+n+2,当n为奇数时1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.【答案】(1)a n=n,n=2k-1,k∈Zn-1,n=2k,k∈Z,bn=3n-1;(2)58n-59n8.【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n82(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,b n =3n -1;(2)58n -5 9n8.【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n8。

高中数学数列中的奇偶项问题(经典题型归纳)

高中数学数列中的奇偶项问题(经典题型归纳)

数列中的奇偶项问题题型一、等差等比奇偶项问题(1)已知数列{}n a 为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为32/27,则这个数列公差为________(2)等比数列{}n a 的首项为1,项数为偶数,且奇数项和为85,偶数项和为170,则数列的项数为_______(3)已知等差数列{}n a 的项数为奇数,且奇数项和为44,偶数项和为33,则数列的中间项为_________;项数为_____________题型二、数列中连续两项和或积的问题(()1n n a a f n ++=或()1n n a a f n +⋅=)1.定义“等和数列”:在一个数列中,如每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作数列的公和.已知数列{}n a 是等和数列,且12a =,公和为5,那么18a 的值为________,这个数列的前n 项和n S 的计算公式为___________________2.若数列{}n a 满足:11a =,14n n a a n ++=,则数列{}21n a -的前n 项和是_____________3.若数列{}n a 满足:11a =,14n n n a a +=,则{}n a 的前2n 项和是___________4.已知数列{}n a 中,11a =,11()2n n n a a +⋅=,记n S 为{}n a 的前n 项的和,221n n n b a a -=+,N n *∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)判断数列{}n b 是否为等比数列,并求出n b ; (Ⅲ)求n S .5.(2017年9月苏州高三暑假开学调研,19) 已知数列{}n a 满足()*143n n a a n n N ++=-∈.(1)若数列{}n a 是等差数列,求1a 的值; (2)当12a =时,求数列{}n a 的前n 项和n S ;6.(2015江苏无锡高三上学期期末,19)在数列{}n a ,{}n b 中,已知10a =,21a =,11b =,212b =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且满足21n n S S n ++=,2123n n n T T T ++=-,其中n 为正整数.(1)求数列{}n a 、{}n b 的通项公式; (2)问是否存在正整数m ,n ,使121n m n T mb T m++->+-成立?若存在,求出所有符合条件的有序实数对(),m n ,若不存在,请说明理由.题型三、含有()1n-类型1.已知()1123456..........1n n S n -=-+-+-+-,则173350S S S ++=_____________2.数列{}n a 满足1(1)21nn n a a n ++-=-,则的前60项和为________3.数列{}n a 前n 项和为n S ,11a =,22a =,()211nn n a a +-=+-,*n ∈N ,则100S =______ 4.已知数列{}n a 的前n 项和为n S ,()112nn n n S a =--,*n N ∈,则123100..........S S S S +++=____5.已知数列}{n a 满足11a =-,21a =,且*22(1)()2n n n a a n N ++-=∈.(1)求65a a +的值;(2)设n S 为数列}{n a 的前n 项的和,求n S ;题型四、含有{}2n a 、{}21n a-类型1.(2017.5盐城三模11).设数列{}n a 的首项11a =,且满足21212n n a a +-=与2211n n a a -=+,则20S = .2.(镇江市2017届高三上学期期末)已知*∈N n ,数列{}n a 的各项均为正数,前n 项和为n S ,且2121==a a ,,设n n n a a b 212+=-. (1)若数列{}n b 是公比为3的等比数列,求n S 2;(2)若)(1232-=nn S ,数列{}1+n n a a 也为等比数列,求数列的{}n a 通项公式.3.【2016年第二次全国大联考(江苏卷)】已知数列{}n a 满足*1221212221,2,2,3,()n n n n a a a a a a n N +-+===+=∈.数列{}n a 前n 项和为n S .(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值;4.(苏州市2018届高三第一学期期中质检,20)已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .(1)若33a =,求5a 的值;(2)证明:对任意正实数p ,{}221n n a pa ++成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.题型五、已知条件明确奇偶项问题1.(无锡市2018届高三第一学期期中质检,19)已知数列{}n a 满足1133,1,1,n n n a n n a a a n n ++ ⎧⎪==⎨---⎪⎩为奇数为偶数,记数列{}n a 的前n 项和为n S ,*2,n n b a n =∈N . (1)求证:数列{}n b 为等比数列,并求其通项n b ; (2)求n S ;(3)问是否存正整数n ,使得212n n n S b S +>>成立?说明理由.2.已知数列{}n a 中,11a =,))1n a +=,设232n n b a -=(1)证明数列{}n b 是等比数列(2)若n S 是数列{}n a 的前n 项的和,求2n S (3)探求满足0n S >的所有正整数n3.(2015江苏省连云港、徐州、宿迁三模19).设正项数列{}n a 的前n 项和为n S ,且21122n n n S a a =+,*n N ∈n ∈N *.正项等比数列{}n b 满足:22b a =,46b a =,(1)求数列{}n a ,{}n b 的通项公式;(2)设()*,21,2n n na n k cb n k k N =-⎧⎪=⎨=∈⎪⎩,数列{}nc 的前n 项和为n T ,求所有正整数m 的值,使得221nn T T -恰好为数列{}n c 中的项.。

数列中的奇偶项问题

数列中的奇偶项问题

数列中的奇偶项问题例1、〔12一模〕数列{}n a 满足:111,1,2n n n a n a a a n ++⎧==⎨⎩奇,,偶为数为数*n N ∈,设21n n b a -=. 〔1〕求23,,b b 并证明:122;n n b b +=+〔2〕①证明:数列{}2n b +等比数列;②假设22122,,9k k k a a a +++成等比数列,求正整数k 的值. 解:〔1〕2321=22(1)4,b a a a ==+=3543=22(1)10,b a a a ==+= 121221=22(1)2(1)22,n n n n n n b a a a b b ++-==+=+=+〔2〕①因为111122(2)1,20,2,22n n n n b b b a b b b +++==+≠==++所以数列{}2n b +是以3为首项,2为公比的等比数列.②由数列{}2n b +可得,1121322,322n n n n b a ---=⨯-=⨯-即,那么12211321n n n a a --=+=⨯-,因为22122,,9k k k a a a +++成等比数列,所以21(322)(321)(328)k k k -⨯-=⨯-⨯+,令2=k t ,得23(32)(1)(38)2t t t ⨯-=-+,解得243t =或,得2k =. 例2、〔14二模〕设等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,n N *∈.〔I 〕求数列{}n a ,{}n b 的通项公式;〔II 〕设⎩⎨⎧=为偶数为奇数n b n a c nn n ,求数列{}n c 的前n 项和n P . 解:〔Ⅰ〕由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. …………3分 230n n T b -+=,113n b ∴==当时,,112230n n n b --≥-+=当时,T ,两式相减,得12,(2)n n b b n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. …………7分〔Ⅱ〕14 32n n n n c n -⎧=⎨⋅⎩为奇数为偶数.当n 为偶数时,13124()()n n n P a a a b b b -=+++++++=212(444)6(14)222214n n n n n ++-⋅-+=+--. ……………10分 当n 为奇数时,〔法一〕1n -为偶数,1n n n P P c -=+(1)1222(1)24221n n n n n n -+=+--+=++- ……………13分点评:根据结论1退而求之.〔法二〕132241()()n n n n P a a a a b b b --=++++++++1221(44)6(14)2221214n n n n n n -++⋅-=+=++-- . ……………13分 12222,221n n n n n P n n n +⎧+-∴=⎨++-⎩为偶数,为奇数……………14分 点评:分清项数,根据奇偶进展分组求和。

数列中的奇偶项问题课件-2025届高三数学一轮复习

数列中的奇偶项问题课件-2025届高三数学一轮复习

(1)若数列{an}是等差数列,求数列{bn}的前100项和S100;
【解析】(1)因为{an}为等差数列,且a1=1,a2=2,
所以公差d=1,所以an=n.
+1 − = 1, 为奇数,
1, 为奇数,
所以bn=
即bn=
+1 + = 2 + 1, 为偶数,
2 + 1, 为偶数,
=3- ,
1 +
1
2
1−2
1−2
3 1
4
又2−1 =2 -2 =3- - =3- ,
2 2
2
3
3−
所以Sn=
3−

22
, 为偶数,
4
+1
2 2
, 为奇数.
谢谢观赏!!
所以2−1 =1,所以2 =4n-2,
1, 为奇数,
综上所述,an=
2 − 2, 为偶数.
视角二
已知条件明确的奇偶项问题
, 为奇数,
[例2]已知数列{an}的前n项和为Sn,an=
1
( ) 2 , 为偶数,
2
求Sn.
【解析】方法一:当n为偶数时,Sn=a1+a2+…+an=(a1+a3+…+−1 )+(a2+a4+…+an)
4
2
4
2
−1
(+1)2
1
+ 1 − ( ) 2 , 为奇数,
4
2
综上,Sn=
2
1
+ 1 − ( ) 2 , 为偶数.
4
2
2

高考数学培优---数列奇偶项问题

高考数学培优---数列奇偶项问题
7.若数列 满足 ,且数列 的前 项的和 总满足 (其中 为常数),则数列 的通项公式是 .
8.若数列 满足 ,且 ,若数列 单调递增,则 的取值范围为.
且每隔两项的和为9,7,5,3,1, , ,为递减,
可得 , , , , , ,
则当 取最大值时 或13.
例2设数列 的前 项和为 ,已知 ,则 _______.
【答案】-2
【解析】由 得,
两式相减得,
即 ,所以
两式相减得,
又将 代入 得,
所以 .
例3数列 满足 ,前16项和为540,则 ______________.
【巩固训练】
1.数列 满足 ,则其前 项和为________.
2.已知数列 的前 项和为 , , ,则 .
3.设 为数列 的前பைடு நூலகம்项和, 则
(1) _____; (2) .
4.已知数列 的前 项和为 ,对任意 , 且
恒成立,则实数 的取值范围是.
5.各项均为正数的数列 的前n项和为 ,且 ,则 .
6.设数列 满足 , 数列 前n项和是 ,对任意的 , ,若 ,当n是偶数时, 的表达式是___________.
【答案】
【分析】对 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用 表示,由偶数项递推公式得出偶数项的和,建立 方程,求解即可得出结论.
【解析】 ,
当 为奇数时, ;当 为偶数时, .
设数列 前 项和为 ,

.
点评:本题综合考查数列的递推公式的应用、数列的并项求和、分类讨论思想和数学计算能力.
高考数学培优---数列奇偶项问题
【典型题示例】
例1数列 满足 ,且 .记数列 的前 项和为 ,则当 取最大值时 为

数列中的奇、偶项问题

数列中的奇、偶项问题
=(-1+14)+(3+22)+(7+30)+…+[(2n-5)+(4n+6)]
(-1+2-5) (14+4+6)
32 +7
2
2
=[-1+3+…+(2n-5)]+[14+22+…+(4n+6)]=
+
=
.
2

2
时,Tn-Sn=
-(n +4n)=
2
2
综上可知,当 n>5 时,Tn>Sn.
− 2 -4,即+1
=(an+2)2,n≥2.
因为{an}的各项均为正数,所以 an+1=an+2,即 an+1-an=2,n≥2.
因为 a3=5,所以32 =4(a1+a2)+9,22 =4a1+5,解得 a2=3,a1=1.则 a2-a1=2,满足
an+1-an=2,
所以数列{an}是公差为 2 的等差数列,
=
(-1)
>0,所以
2
2
Tn>Sn.
2
[对点训练 2](2024·山东聊城模拟)已知数列{an}满足 a1+a3=2a2,
3 ,为奇数,
an+1=
数列{cn}满足 cn=a2n-1.
+ 2,为偶数,
(1)求数列{cn}和{an}的通项公式;
(2)求数列{an}的前n项和Sn.
解 (1)由 an+1=
探究二
奇、偶项通项不同的数列求和
-6,为奇数,

高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。

高考数学复习考点题型解题技巧专题讲解18 数列中的奇、偶项问题

高考数学复习考点题型解题技巧专题讲解18 数列中的奇、偶项问题

高考数学复习考点题型解题技巧专题讲解第18讲数列中的奇、偶项问题高考定位数列的奇、偶项问题,是近年来的高考的热点问题,考察了学生的分类与整合能力,考察了学生的探究发现的能力,也是今后考察的热点。

专题解析(1)求通项和求和时,分奇数项与偶数项分别表达;(2)求S n时,我们可以分别求出奇数项的和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.专项突破类型一、数列中连续两项和或积的问题(a n+a n+1=f(n)或a n·a n+1=f(n));例1-1.已知数列{a n}满足a1=1,a n+1+a n=4n.(1)求数列{a n}的前100项和S100;(2)求数列{a n}的通项公式.解(1)∵a1=1,a n+1+a n=4n,∴S100=(a1+a2)+(a3+a4)+…+(a99+a100)=4×1+4×3+...+4×99=4×(1+3+5+ (99)=4×502=10 000.(2)由题意,a n +1+a n =4n ,①a n +2+a n +1=4(n +1),② 由②-①得,a n +2-a n =4, 由a 1=1,a 1+a 2=4,所以a 2=3.当n 为奇数时,a n =a 1+⎝ ⎛⎭⎪⎫n +12-1×4=2n -1, 当n 为偶数时,a n =a 2+⎝ ⎛⎭⎪⎫n 2-1×4=2n -1.综上所述,a n =2n -1.练.设各项均为正数的等差数列{}n a 的前n 项和为n S ,520S =,且2a ,61a -,11a 成等比数列.(1)求数列{}n a 的公差d ;(2)数列{}n b 满足1n n n b b a ++=,且111b a +=,求数列{}n b 的通项公式. 【答案】 (1)1d =;(2)()11124n n n b -+-=+.【分析】(1)根据2a ,61a -,11a 成等比数列可得()262111a a a -=,利用1,a d 表示出520S =和()262111a a a -=,解方程组可求得1,a d ,结合0n a >可得结果;(2)由(1)可得11n n b b n +=-++,整理得()1131312424n n b n b n +⎛⎫--=---- ⎪⎝⎭,可知数列()13124n b n ⎧⎫---⎨⎬⎩⎭为等比数列,由等比数列通项公式可推导得到结果.(1)(1)设等差数列{}n a 的公差为d ,2a Q ,61a -,11a 成等比数列,()262111a a a ∴-=,即()()()21115110a d a d a d +-=++,又51545202S a d ⨯=+=,解得:121a d =⎧⎨=⎩或18217717a d ⎧=⎪⎪⎨⎪=-⎪⎩;当18217717a d ⎧=⎪⎪⎨⎪=-⎪⎩时,13182842120171717a a d =+=-=-<,与0n a >矛盾,121a d =⎧∴⎨=⎩,即等差数列{}n a 的公差1d =; (2)由(1)得:1n a n =+,11n n b b n +∴+=+,即11n n b b n +=-++,()1131312424n n b n b n +⎛⎫∴--=---- ⎪⎝⎭,又1121b a +==,解得:11b =,∴数列()13124n b n ⎧⎫---⎨⎬⎩⎭是以13144b -=为首项,1-为公比的等比数列, ()()113111244n n b n -∴---=-⨯,整理可得:()11124n n n b -+-=+.练.已知数列{}n a 的前n 项和为n S ,且11a =,121()n n a a n n N +++=+∈,则数列1{}nS 的前2020项的和为() A .20202021B .40402021C .40392020D .40412022【答案】B 【分析】首先根据已知条件求得n a ,然后求得n S ,利用裂项求和法求得正确答案. 【详解】数列{}n a 的前n 项和为n S ,且11a =,121n n a a n ++=+,则2132a a =-=. 所以2123n n a a n +++=+,两式相减得:22n n a a +-=,且11a =,22a =, 当n 为奇数时,11121122n n a a n n +⎛⎫=+-⨯=++-=⎪⎝⎭, 当n 为偶数时,212222n na a n n ⎛⎫=+-⨯=+-= ⎪⎝⎭,所以n a n =,所以数列{}n a 是首项为1,公差为1的等差数列. 所以(1)2n n n S +=, 故12112()(1)1n S n n n n ==-++,所以121111111112(1)2(1)22311n n T S S S n n n =++⋯+=-+-+⋯+-=-++,则2020140402(1)20212021T =-=. 故选:B例1-2.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n-1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .解 (1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列, 所以a 2n -1=⎝ ⎛⎭⎪⎫12n -1,a 2n =⎝ ⎛⎭⎪⎫12n,所以a n=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12n -12,n 为奇数,⎝ ⎛⎭⎪⎫12n 2,n 为偶数.(3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n=⎩⎪⎨⎪⎧3-32n2,n 为偶数,3-42n +12,n 为奇数.练.已知正项数列{}n a 的首项11a =,其前n 项和为n S ,且12n nn aa S +=.数列{}n b 满足:1n a +(b 1+b 2)n n b a ++=.(1)求数列{}n a 的通项公式; (2)记*n c n N =∈122n c c c +++<.【答案】 (1)(*)n a n n N =∈ (2)证明见解析 【分析】(1)根据题意得到12n n n a a S +=和112(2)n n n a a S n --=≥,两式相减得112(2)n n a a n +--=≥,解得答案.(2)计算1(1)n b n n =+,n c =n c <和n c >,利用裂项相消法计算得到证明. (1)由12n n n a a S +=得112(2)n n n a a S n --=≥,两式相减得112(2)n n a a n +--=≥,由11a =,得22a =,数列的偶数项和奇数项分别是公差为2的等差数列, 当n 为奇数时,n a n =,当n 为偶数时,n a n =. 综上所述(*)n a n n N =∈. (2) 由1211n n n a nb b b a n ++++==+,1211n n b b b n --+++=,2n ≥,112b =, 两式相减得1(1)n b n n =+,2n ≥,验证112b =成立,故1(1)n b n n =+.则n c那么n c =,故12111112(1)2231n c c c nn +++<-+-++-+=2(12<,同理n c,故121111112()233412n c c c n n +++>-+-+-++.类型二、含有(-1)n 的类型;例2-1.数列{a n }中,a 1=1,a 2=2,数列{b n }满足b n =a n +1+(-1)n a n ,n ∈N *. (1)若数列{a n }是等差数列,求数列{b n }的前100项和S 100; (2)若数列{b n }是公差为2的等差数列,求数列{a n }的通项公式. 解 (1)∵{a n }为等差数列,且a 1=1,a 2=2,∴公差d =1,∴a n =n .∴b n =⎩⎨⎧a n +1-a n =1,n 为奇数,a n +1+a n =2n +1,n 为偶数,即b n =⎩⎨⎧1,n 为奇数,2n +1,n 为偶数,∴b n 的前100项和S 100=(b 1+b 3+...+b 99)+(b 2+b 4+...+b 100) =50+(5+9+13+ (201)=50+50×5+50×(50-1)2×4=5 200.(2)由题意得,b 1=a 2-a 1=1,公差d =2, ∴b n =2n -1.∴⎩⎨⎧b 2n -1=a 2n -a 2n -1=4n -3, ①b 2n =a 2n +1+a 2n =4n -1, ② 由②-①得,a 2n +1+a 2n -1=2, ∴a 2n +1=2-a 2n -1,又∵a 1=1,∴a 1=a 3=a 5=…=1, ∴a 2n -1=1,∴a 2n =4n -2, 综上所述,a n =⎩⎨⎧1,n 为奇数,2n -2,n 为偶数.例2-2.设S n 为数列{a n }的前n 项和,S n =(-1)na n -12n ,n ∈N *.(1)求a 3;(2)求S 1+S 2+…+S 100.解(1)令n=4,则S4=a4-124,∴S3=-124.令n=3,则S3=-a3-1 23,∴a3=-S3-123=-124.(2)当n=1时,a1=-1 4;当n≥2时,a n =S n-S n-1=(-1)n·a n-12n-(-1)n-1·a n-1+12n-1=(-1)n·a n+(-1)n·a n-1+12n ,即a n=(-1)n·a n+(-1)n·a n-1+12n.(*)①当n为偶数时,由*式可得a n-1+12n=0,则a n-1=-12n ,∴a n=-12n+1,此时n为奇数.②当n为奇数时,由*式可得a n-1=-2a n+12n=-2·⎝⎛⎭⎪⎫-12n+1+12n=12n-1,∴a n=12n,此时n为偶数.综上所述,a n=⎩⎪⎨⎪⎧-12n +1,n 为奇数,12n,n 为偶数.∴S 1+S 2+…+S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)-⎝ ⎛⎭⎪⎫12+122+…+12100 =2⎝ ⎛⎭⎪⎫14+116+…+12100-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1. 练 .数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400 答案 B解析 S 100=1-5+9-…-397=4×(-50)=-200.练.已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式; (2)记数列{a n }的前2n 项和为T 2n ,求T 2n .解 (1)因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0, 所以[3+(-1)2n -1]a 2n +1-2a 2n -1+2[(-1)2n -1-1]=0, 即a 2n +1-a 2n -1=2,又b n =a 2n -1,所以b n +1-b n =a 2n +1-a 2n -1=2,所以{b n }是以b 1=a 1=1为首项,2为公差的等差数列. 所以b n =1+(n -1)×2=2n -1,n ∈N *.(2)对于[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0, 当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0, 即a n +2a n =12,所以a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列; 当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0, 即a n +2-a n =2,所以a 1,a 3,a 5,…是以a 1=1为首项,2为公差的等差数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =⎣⎢⎡⎦⎥⎤n ×1+12n (n -1)×2+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n1-12=n 2+1-12n ,n ∈N *.类型三、含有{a 2n },{a 2n -1}的类型;例3-1.已知数列{a n }为各项非零的等差数列,其前n 项和为S n ,满足S 2n -1=a 2n . (1)求数列{a n }的通项公式;(2)记b n =n a n a n +1(-1)n ,求数列{b n }的前n 项和T n .解 (1)S 2n -1=(2n -1)(a 1+a 2n -1)2=a n (2n -1)=a 2n ,∵a n ≠0,∴a n =2n -1(n ∈N *). (2)b n =n a n a n +1(-1)n =n (2n -1)(2n +1)(-1)n =14⎝⎛⎭⎪⎫12n -1+12n +1(-1)n ,当n 为偶数时T n =14⎝⎛⎭⎪⎫-11-13+13+15-15-17+…+12n -1+12n +1 =14⎝ ⎛⎭⎪⎫-11+12n +1=-n4n +2,当n 为奇数时T n =14⎝ ⎛⎭⎪⎫-11-13+13+15-15-17+…-12n -1-12n +1 =14⎝ ⎛⎭⎪⎫-11-12n +1=-n -14n +2. 所以T n=⎩⎪⎨⎪⎧-n 4n +2,n 为偶数,-n +14n +2,n 为奇数.练.已知数列{}n a 满足11a =,()2211nn n a a -=+-,2123n n n a a +=+(*N n ∈),则数列{}n a 的前2017项的和为() A .100332005- B .201632017- C .100832017- D .100932018-【答案】D 【分析】根据给定条件求出21{}n a -与2{}n a 的通项,进而求得212n n a a ++即可求出数列{}n a 的前2017项的和. 【详解】在数列{}n a 中,11a =,221(1)n n n a a -=+-,2123n n n a a +=+,*N n ∈, 则有1122212(1)3(1)n n n n n n a a a ++++=+-=++-,即12223(1)n n n n a a ++-=+-,而20a =,于是得2242642224222()()()()n n n n n a a a a a a a a a a ---=+-+-++-+-223211[3(1)][3(1)][3(1)][3(1)]n n n n ---=+-++-+++-++-221231[3333][(1)(1)(1)(1)]n n n n ---=+++++-+-++-+-113(13)1(1)113(1)1131(1)22n n n n -----=+=⋅+⋅-----,因此,212222113232[3(1)1]322n n n n nn n n n n a a a a a ++=++=+=⋅+⋅--+23(1)2n n =⋅+--,则2017123456720162017()()()()S a a a a a a a a a =+++++++++2233100810081[23(1)2][23(1)2][23(1)2][23(1)2]=+⋅+--+⋅+--+⋅+--++⋅+--23100823100812(3333)[(1)(1)(1)(1)]21008=++++++-+-+-++--⋅100810093(13)12020163201813-=+⋅+-=--,数列{}n a 的前2017项的和为100932018-. 故选:D练.数列{}n a 满足11a =,21n n a a n --=(*n N ∈且2n ≥),数列{}21n a -为递增数列,数列{}2n a 为递减数列,且12a a >,则99a =(). A .4950- B .4851- C .4851 D .4950【答案】D 【分析】由数列{}21n a -为递增数列,得到()()2122210n n n n a a a a +--+->,进而得出2120n n a a +->,又由数列{}2n a 为递减数列,得到()()22212120n n n n a a a a ++++-<-,得到22210n n a a ++-<, 得出当n 为奇数且3n ≥时,21n n a a n --=,当n 为偶数时,21n n a a n --=-,即可求解.【详解】因为数列{}21n a -为递增数列,所以2121n n a a -+<,即21210n n a a +-->,则()()2122210n n n n a a a a +--+->,由题意22212221(21)(2)n n n n a a n n a a +--=+>=-,则由()()212221212221n n n n n n n n a a a a a a a a +-+-⎧-+->⎪⎨->-⎪⎩得2120n n a a +->,*n N ∈,因为数列{}2n a 为递减数列,所以222n n a a +>,即2220n n a a +-<, 则()()22212120n n n n a a a a ++++-<-,由题意得,222221(22)(21)n n a a n n ++-=+>+212n n a a +=-,由()()222121222213120n n n n n n n na a a a a a a a ++++++⎧-+-<⎪⎨->-⎪⎩,可得22210n n a a ++-<,*n N ∈,又12a a >,即210a a -<,所以当n 为奇数且3n ≥时,21n n a a n --=; 当n 为偶数时,21n n a a n --=-. 所以99a =()()()()999898979796211a a a a a a a a a -+-+-++-+…2222229998979632199=-+-++-+=+…9897963214950++++++=….故选:D .类型四、已知条件明确的奇偶项问题. 例4-1.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧12a n +n -1,n 为奇数,a n-2n ,n 为偶数,记b n =a 2n ,求证:数列{b n }为等比数列,并求出数列{a n }的通项公式.证明 ∵b n +1=a 2(n +1)=12a 2n +1+2n +1-1=12a 2n +1+2n=12(a 2n -2·2n )+2n =12a 2n =12b n , ∴{b n }为等比数列,且公比q =12.又b 1=12a 1=12,可得b n =12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以,当n 为偶数时,a n =b n2=⎝ ⎛⎭⎪⎫12n;当n 为奇数且n ≥3时,a n =a (n -1)+1=a (n -1)-2(n -1)=b n -12-2(n -1)=⎝ ⎛⎭⎪⎫12(n -1)-2(n -1),可验证a 1=1也符合上式,综上所述,a n=⎩⎨⎧⎝ ⎛⎭⎪⎫12(n -1)-2(n -1),n 为奇数,⎝ ⎛⎭⎪⎫12n,n 为偶数.练.已知数列{a n }满足a n=⎩⎨⎧n2an +12+12,n 为正奇数,2a n 2+n2,n 为正偶数.(1)问数列{a n }是否为等差数列或等比数列?说明理由;(2)求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 2n 2n 是等差数列,并求数列{a 2n }的通项公式.(1)解 由a 1=12a 1+12+12=12a 1+12⇒a 1=1,a 2=2a 22+22=2a 1+1=3,a 3=32a 3+12+12=32a 2+12=5,a 4=2a 42+42=2a 2+2=8.∵a 3-a 2=2,a 4-a 3=3,∴a 3-a 2≠a 4-a 3, ∴数列{a n }不是等差数列.又∵a 2a 1=3,a 3a 2=53,∴a 2a 1≠a 3a 2,∴数列{a n }也不是等比数列.(2)证明 ∵对任意正整数n ,a 2n +1=2a 2n +2n , ∴a 2n +12n +1-a 2n 2n=12,a 22=32,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 2n 2n 是首项为32,公差为12的等差数列,从而对∀n ∈N *,a 2n 2n=32+n -12,则a 2n =(n +2)·2n -1. ∴数列{a 2n }的通项公式是a 2n =(n +2)·2n -1(n ∈N *).练.数列{}n a 且21,212sin ,24n n k n na n n k π⎧=-⎪⎪+=⎨⎪=⎪⎩()k N *∈,若n S 为数列{}n a 的前n 项和,则2021S =__________.【答案】30342023【分析】由题意,当n 为奇数时,21111222n a n n n n ⎛⎫==- ⎪++⎝⎭;当n 为偶数时,sin 4n n a π=.然后根据分组求和法、裂项相消求和法及三角函数的周期性即可求解.【详解】解:数列{}n a 且21,212sin ,24n n k n na n n k π⎧=-⎪⎪+=⎨⎪=⎪⎩()k N *∈, ①当n 为奇数时,21111222n a n n n n ⎛⎫==- ⎪++⎝⎭,②当n 为偶数时,sin4n n a π=,24680a a a a +++=,则偶数项和为()()246810121416a a a a a a a a ++++++++()20102012201420162018202020182024201a a a a a a a a a a +++++++==+=,所以()()2021132021242020S a a a a a a =+++++++1111111233520212023⎛⎫=-+-++- ⎪⎝⎭101130341120232023+=+=, 故答案为:30342023. 练.已知n S 数列{}n a 的前n 项和,1a λ=,且21(1)n n n a a n ++=-,若201920192101020192019S a μ-=-,(其中,0λμ>),则20191λμ+的最小值是()A .B .4C .D .2018【答案】B 【分析】由21(1)n n n a a n ++=-,可得2221223341,2,3a a a a a a +=-+=+=-,2245201820194,,2018a a a a +=+=,以上各式相加得可求得()12345201820192a a a a a a a +++++++,结合201920192101020192019S a μ-=-,根据均值不等式,即可求得答案. 【详解】21(1)n n n a a n ++=-∴2221223341,2,3a a a a a a +=-+=+=-,2245201820194,,2018a a a a +=+=,以上各式相加得,()22222212345201820192123420172018a a a a a a a +++++++=-+-+--+,()()()2222222019120192123420172018S a a ∴--=-++-+++-+(21)(21)(43)(43)(20182017)(20182017)=-⨯++-⨯+++-⨯+,12342017201820191009=++++++=⨯20192019121009201920192019S a a∴-=+ 又201920192101020192019S a μ-=-, 1100910102019a μ∴+=-, 即112019a μ+=, 又1a λ=,20191201912019λμλμλμ⎛⎫⎛⎫∴+=++ ⎪ ⎪⎝⎭⎝⎭201911242019μλλμ=++++…, 当且仅当20192019μλλμ=时等号成立,故选:B .练.已知数列{}n a 满足12a =,23a =且*21(1),n n n a a n N +-=+-∈,则该数列的前9项之和为() A .32 B .43C .34D .35【答案】C 【分析】讨论n 为奇数、偶数的情况数列{}n a 的性质,并写出对应通项公式,进而应用分组求和的方法求数列的前9项之和.【详解】*21(1),n n n a a n N +-=+-∈,∴当n 为奇数时,21210n n a a +--=,则数列21{}n a -是常数列,2112n a a -==;当n 为偶数时,2222n n a a +-=,则数列2{}n a 是以23a =为首项,公差为2的等差数列,129139248()()a a a a a a a a a ∴+++=+++++++4325(342)2⨯=⨯+⨯+⨯34=. 故选:C练.设n S 为数列{}n a 的前n 项和,*1(1),N 2n n n n S a n =--∈,则12100S S S +++=( )A .10011132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ B .9811132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦C .5011132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ D .4911132⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【答案】A 【分析】由递推式求出数列的首项,当2n ≥时分n 为偶数和奇数求出n a ,代入*1(1),2n n n nS a n N =--∈后分组,然后利用等比数列的前n 项和公式求解. 【详解】由*1(1),2n n a n S a n =--∈N ,当1n =时,1112S a =--,得114a =-;当2n ≥时,111111(1)(1)22----=-=----+nn n n n n n n n a S S a a ,即11(1)(1)2n nn n n na a a -=-+-+. 当n 为偶数时,11(2)2n n a n -=-≥,所以112n n a +=-(n 为正奇数), 当n 为奇数时,11111112(2)2222n n n n nn a a -+-⎛⎫=-+=--+= ⎪⎝⎭,所以12n na =(n 为正偶数),所以122211,22a a -==,所以412342411112,,2222a a a a -+=⨯=-==,所以34991004310010011112,,,2222a a a a -+=⨯=⋯-==,所以991001009911222a a -+=⨯=.因为123100S S S S ++++()()()()12345699100a a a a a a a a =-++-++-+++-+-2100111222⎛⎫+++⎪⎝⎭359911112222=++++2100111222⎛⎫-+++= ⎪⎝⎭501001111112422111142⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭-=--10011132⎛⎫=- ⎪⎝⎭. 故选:A练.已知正项数列{}n a 的前n 项和为n S ,11a =,且()212n n n S S a n -+=≥,设()()121nn nna b S -+=,则数列{}n b 前n 项和的取值范围为_________.【答案】32,11,23⎡⎫⎛⎤--⋃--⎪ ⎢⎥⎣⎭⎝⎦【分析】根据n n S a ,之间关系可得数列{}n a 为等差数列并得到n a ,然后得到n b ,根据裂项相消可得数列{}n b 前n 项和,最后进行判断即可. 【详解】由21n n n S S a -+=①,则211n n n S S a +++=②②-①化简可得:()()1110n n n n a a a a ++--+=,又0n a >,所以()112n n a a n +-=≥当2n =时,21212122222a a S S a a a a +=⇒++=⇒= 所以211a a -=符号11n n a a +-=,故数列{}n a 是首项为1,公差为1的等差数列 所以n a n =,则()12n n nS +=所以()()()()2112111112nn n n n b n n n ⋅-+==⋅⎛⎫+ ⎪+⎝+⎭- 令设数列{}n b 前n 项和n T 所以()()111111121...11223341n nn T n n ⎡⎤=--++--++-⋅+-⋅⎢⎥+⎣⎦所以11,1111n n n T n n ⎧-⎪⎪+=⎨⎪--⎪+⎩为偶数,为奇数, 当n 为偶数时,111n T n =-+,则12133n T ≤-=-且1n T >- 当n 为奇数时,111n T n =--+,则13122n T ≥--=-且1n T <- 综上所述:32,11,23n T ⎡⎫⎛⎤∈--⋃--⎪ ⎢⎥⎣⎭⎝⎦故答案为:32,11,23⎡⎫⎛⎤--⋃--⎪ ⎢⎥⎣⎭⎝⎦练.设n S 是数列{}n a 的前n 项和,若1(1)2n n n n S a =-+,则1211S S S ++⋯+=_____. 【答案】13654096 【分析】运用数列的递推式,讨论n 为奇数或偶数,结合等比数列的求和公式,即可得到所求和.【详解】解:()112n n n nS a =-+, 当1n =时,11112a S a ==-+,解得114a =,2n ≥时,1n n n a S S -=-, 可得()()1112n n n n nS S S -=--+, 当n 为偶数时,112n n n S S S π-=-+,即有1n12n S -=; 当n 为奇数(3n ≥)时,()112n n n S S S π-=--+, 可得1122n n n S S -=-=1112022n n +⋅-=, 即有121114S S S +++=110001664+++++++1212 61111365441409614⎛⎫- ⎪⎝⎭==-. 故答案为13654096.。

高中数学数列中的奇偶项问题(经典题型归纳)

高中数学数列中的奇偶项问题(经典题型归纳)

数列中的奇偶项问题题型一、等差等比奇偶项问题(1)已知数列{}n a 为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为32/27,则这个数列的公差为________(2)等比数列{}n a 的首项为1,项数为偶数,且奇数项和为85,偶数项和为170,则数列的项数为_______(3)已知等差数列{}n a 的项数为奇数,且奇数项和为44,偶数项和为33,则数列的中间项为_________;项数为_____________题型二、数列中连续两项和或积的问题(()1n n a a f n ++=或()1n n a a f n +⋅=)1.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作数列的公和.已知数列{}n a 是等和数列,且12a =,公和为5,那么18a 的值为________,这个数列的前n 项和n S 的计算公式为___________________2.若数列{}n a 满足:11a =,14n n a a n ++=,则数列{}21n a -的前n 项和是_____________3.若数列{}n a 满足:11a =,14n n n a a +=,则{}n a 的前2n 项和是___________4.已知数列{}n a 中,11a =,11()2n n n a a +⋅=,记n S 为{}n a 的前n 项的和,221n n n b a a -=+,N n *∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)判断数列{}n b 是否为等比数列,并求出n b ; (Ⅲ)求n S .5.(2017年9月苏州高三暑假开学调研,19) 已知数列{}n a 满足()*143n n a a n n N ++=-∈.(1)若数列{}n a 是等差数列,求1a 的值;(2)当12a =时,求数列{}n a 的前n 项和n S ;6.(2015江苏无锡高三上学期期末,19)在数列{}n a ,{}n b 中,已知10a =,21a =,11b =,212b =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且满足21n n S S n ++=,2123n n n T T T ++=-,其中n 为正整数.(1)求数列{}n a 、{}n b 的通项公式; (2)问是否存在正整数m ,n ,使121n m n T mb T m++->+-成立?若存在,求出所有符合条件的有序实数对(),m n ,若不存在,请说明理由.题型三、含有()1n-类型1.已知()1123456..........1n n S n -=-+-+-+-,则173350S S S ++=_____________2.数列{}n a 满足1(1)21nn n a a n ++-=-,则的前60项和为________3.数列{}n a 前n 项和为n S ,11a =,22a =,()211nn n a a +-=+-,*n ∈N ,则100S =______ 4.已知数列{}n a 的前n 项和为n S ,()112nn n nS a =--,*n N ∈,则123100..........S S S S +++=____5.已知数列}{n a 满足11a =-,21a =,且*22(1)()2n n n a a n N ++-=∈.(1)求65a a +的值;(2)设n S 为数列}{n a 的前n 项的和,求n S ;题型四、含有{}2n a 、{}21n a-类型1.(2017.5盐城三模11).设数列{}n a 的首项11a =,且满足21212n n a a +-=与2211n n a a -=+,则20S = .2.(镇江市2017届高三上学期期末)已知*∈N n ,数列{}n a 的各项均为正数,前n 项和为n S ,且2121==a a ,,设n n n a a b 212+=-. (1)若数列{}n b 是公比为3的等比数列,求n S 2;(2)若)(1232-=nn S ,数列{}1+n n a a 也为等比数列,求数列的{}n a 通项公式.3.【2016年第二次全国大联考(江苏卷)】已知数列{}n a 满足*1221212221,2,2,3,()n n n n a a a a a a n N +-+===+=∈.数列{}n a 前n 项和为n S .(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值;4.(苏州市2018届高三第一学期期中质检,20)已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .(1)若33a =,求5a 的值;(2)证明:对任意正实数p ,{}221n n a pa ++成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.题型五、已知条件明确奇偶项问题1.(无锡市2018届高三第一学期期中质检,19)已知数列{}n a 满足1133,1,1,n n n a n n a a a n n ++ ⎧⎪==⎨---⎪⎩为奇数为偶数,记数列{}n a 的前n 项和为n S ,*2,n n b a n =∈N . (1)求证:数列{}n b 为等比数列,并求其通项n b ; (2)求n S ;(3)问是否存正整数n ,使得212n n n S b S +>>成立?说明理由.2.已知数列{}n a 中,11a =,()()1133n n n n n a n a a n ++=-⎧⎪⎨⎪⎩为奇数为偶数,设232n n b a -=(1)证明数列{}n b 是等比数列(2)若n S 是数列{}n a 的前n 项的和,求2n S (3)探求满足0n S >的所有正整数n3.(2015江苏省连云港、徐州、宿迁三模19).设正项数列{}n a 的前n 项和为n S ,且21122n n n S a a =+,*n N ∈n ∈N *.正项等比数列{}n b 满足:22b a =,46b a =,(1)求数列{}n a ,{}n b 的通项公式;(2)设()*,21,2n n na n k cb n k k N =-⎧⎪=⎨=∈⎪⎩,数列{}nc 的前n 项和为n T ,求所有正整数m 的值,使得221nn T T -恰好为数列{}n c 中的项.。

高中数学数列中的奇偶项问题(解析版)精选全文完整版

高中数学数列中的奇偶项问题(解析版)精选全文完整版

数列中的奇偶项问题一、真题剖析【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=_____ ________【试题情景】本题属于课程学习情景,本题以数列中的两项之间的关系为载体,考查数列中的项。

【必备知识】本题考查数列中的递推公式以及通项公式,并项求和等问题·【能力素养】本题考查空间想象能力、逻辑思维能力和运算能力,考查的学科素养是理想思维和数学探索,对n为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a1表示,由偶数项递推公式得出偶数项的和,建立a1方程,求解即可得出结论.【答案】7【解析】a n+2+(-1)n a n=3n-1,当n为奇数时,a n+2=a n+3n-1;当n为偶数时,a n+2+a n=3n-1.设数列a n的前n项和为S n,S16=a1+a2+a3+a4+⋯+a16=a1+a3+a5⋯+a15+(a2+a4)+⋯(a14+a16)=a1+(a1+2)+(a1+10)+(a1+24)+(a1+44)+(a1+70)+(a1+102)+(a1+140)+(5+17+29+41)=8a1+392+92=8a1+484=540,∴a1=7.故答案为:7.二、题型选讲题型一、分段函数的奇偶项求和例1.(2022·南京9月学情【零模】)(本小题满分10分)已知正项等比数列{a n}的前n项和为S n,S3= 7a1,且a1,a2+2,a3成等差数列.(1)求{a n}的通项公式;(2)若b n=a n,n为奇数,n,n为偶数,求数列{bn}的前2n项和T2n.【解析】(1)因为数列{a n}为正项等比数列,记其公比为q,则q>0.因为S3=7a1,所以a1+a2+a3=7a1,即a3+a2-6a1=0,因此q2+q-6=0,解得q=2或-3,从而q=2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又a1,a2+2,a3成等差数列,所以2(a2+2)=a1+a3,即2(2a1+2)=a1+4a1,解得a1=4.因此a n=4×2n-1=2n+1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)因为b n=a n,n为奇数,n,n为偶数,所以T2n=(b1+b3+⋯+b2n-1)+(b2+b4+⋯+b2n)=(a1+a3+⋯+a2n-1)+(2+4+⋯+2n)=(22+24+⋯+22n)+(2+4+⋯+2n))⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分=4×1-4n1-4+(2+2n)n2=n2+n+4n+1-43.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分变式1.(2022·江苏南京市金陵中学高三10月月考)已知等差数列{a n}前n项和为S n(n∈N+),数列{b n}是等比数列,a1=3,b1=1,b2+S2=10,a5-2b2=a3.(1)求数列{a n}和{b n}的通项公式;(2)若c n=2S n,n为奇数b n,n为偶数,设数列{c n}的前n项和为T n,求T2n.【答案】(1)a n=2n+1,b n=2n-1;(2)1+22n+13-12n+1.【解析】【分析】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q(q≠0),根据等差等比数列通项公式基本量的计算可得结果;(2)求出S n=n(3+2n+1)2=n(n+2),代入可得c n=2n(n+2)=1n-1n+2,n为奇数2n-1,n为偶数,再分组求和,利用裂项求和和等比数列的求和公式可求得结果.【详解】(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q(q≠0),∵a1=3,b1=1,b2+S2=10,a5-2b2=a3,∴q+3+3+d=103+4d-2q=3+2d ,∴d=2,q=2,∴a n=2n+1,b n=2n-1;公众号:高中数学最新试题(2)由(1)知,S n=n(3+2n+1)2=n(n+2),∴c n=2n(n+2)=1n-1n+2,n为奇数2n-1,n为偶数,∴T2n=1-13+13-15+⋅⋅⋅+12n-1-1 2n+1+(21+23+25+⋅⋅⋅+22n-1)=1-12n+1+2(1-4n) 1-4=1+22n+13-12n+1.变式2.(2022·山东·潍坊一中模拟预测)已知数列a n满足a12+a222+⋅⋅⋅+a n2n=n2n.(1)求数列a n的通项公式;(2)对任意的n∈N∗,令b n=2-n,n为奇数22-n,为偶数,求数列bn的前n项和S n.【解析】(1)当n=1时,得a12=12,解得a1=1;当n≥2时,可得a12+a222+⋅⋅⋅+a n2n=n2n①a1 2+a222+⋅⋅⋅+a n-12n-1=n-12n-1②,由①-②,得a n2n=n2n-n-12n-1=2-n2n,a n=2-n,当n=1时,a1=2-1=1也符合,所以数列a n的通项公式为a n=2-n.(2)由(1)知b n=2-n,n为奇数22-n,为偶数.当n为偶数时,S n=1+-1+-3+⋅⋅⋅+2-n-1+20+2-2+⋅⋅⋅+22-n=1+3-nn22+1-14 n21-14=4-nn4+431-12n=-3n2+12n+1612-13×2n-2;当n为奇数时,S n=S n+1-b n+1=-3n+12+12n+1+1612-13×2n-1-21-n=-3n2+6n+2512-43×2n-1.综上所述,S n =-3n 2+6n +2512-43×2n -1,n 为奇数-3n 2+12n +1612-13×2n -2,n 为偶数 .变式3.(2022·湖南省雅礼中学开学考试)(10分)已知数列{a n }满足n 2a n +12+12,为正奇数,2a n 2+n 2,n 为正偶数.(1)问数列{a n }是否为等差数列或等比数列?说明理由.(2)求证:数列a 2n2n是等差数列,并求数列{a 2n}的通项公式.【解析】(1)由题意可知,a 1=12a 1+12+12=12a 1+12,所以a 1=1,a 2=2a 22+22=2a 1+1=3,a 3=32a 3+12+12=32a 2+12=5,a 4=2a 42+42=2a 2+2=8,因为a 3-a 2=2,a 4-a 3=3,a 3-a 2≠a 4-a 3,所以数列{a n }不是等差数列.又因为a 2a 1=3,a 3a 2=53,a2a 1≠a 3a 2所以数列{a n }也不是等比数列.(2)法一:因为对任意正整数n ,a 2n +1=2a 2n+2n ,a 2n +12n +1-a 2n2n =12,a 22=32,所以数列a 2n2n是首项为32,公差为72的等差数列.从而对 n ∈N *,a 2n2n =32+n -12,a 2n=(n +2)2n -1,所以数列{a 2n}的通项公式是a 2n=(n +2)2n -1(n ∈N *).法二:因为对任意正整数n ,a 2n +1=2a 2n+2n ,得a 2n +1-(n +3)2n =2[a 2n-(n +2)2n -1],且a 21-(1+2)21-1=a 2-3=0所以数列{a 2n-(n +2)2n -1}是每项均为0的常数列,从而对∀n ∈N *,a 2n=(n +2)2n -1,所以数列{a 2n}的通项公式是a 2n=(n +2)2n -1(n ∈N *).∀n ∈N *,a 2n2n =n +22,a 2n +12n +1-a 2n2n =n +32-n +22,a 22=32,所以数列a 2n2n是首项为32,公差为12的等差数列题型二、含有(-1)n 类型公众号:高中数学最新试题例2.【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2.变式1.【2022·广东省深圳市育才中学10月月考】已知数列a n的前n项和为S n,且对任意正整数n,a n =34S n+2成立.(1)b n=log2a n,求数列b n的通项公式;(2)设c n=-1n+1n+1b n b n+1,求数列c n的前n项和T n.【答案】(1)a n=22n+1;(2)T n=1413+-1n+112n+3.【解析】【分析】(1)利用数列a n与S n的关系,即可求得数列a n的通项公式,代入b n=log2a n,即可求得数列b n的通项公式;(2)由(1)可知c n=14-1n+112n+1+12n+3,分n为奇数和偶数,分别求和.【详解】(1)在a n=34S n+2中令n=1得a1=8.因为对任意正整数n,a n=34S n+2成立,所以a n+1=34S n+1+2,两式相减得a n+1-a n=34a n+1,所以a n+1=4a n,又a1≠1,所以a n为等比数列,所以a n=8⋅4n-1=22n+1,所以b n=log222n+1=2n+1.(2)c n=-1n+1n+12n+12n+3=14-1n+14n+42n+12n+3=14-1n+112n+1+12n+3当n为偶数时,T n=1413+15-15+17+17+19-⋯-12n+1+12n+3=1413-12n+3,当n为奇数时,T n=1413+15-15+17+17+19-⋯+12n+1+12n+3=1413+12n+3.所以T n=1413+-1n+112n+3.变式2.(2021·山东济宁市·高三二模)已知数列a n是正项等比数列,满足a3是2a1、3a2的等差中项,a4 =16.公众号:高中数学最新试题(1)求数列a n 的通项公式;(2)若b n =-1 n 2a 2n +1log ,求数列b n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列a n 是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-L -2n -1 +2n +1 =-3+5 +-7+9 +L +-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+L +-1 n 2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+L +-1 n +12n +1 所以2T n =-3+2-1 2+-1 3+L +-1 n --1 n +12n +1=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n =n +1 -1 n -1,n ∈N *变式3.(2022·湖北·黄冈中学二模)已知数列a n 中,a 1=2,n a n +1-a n =a n +1.(1)求证:数列a n +1n是常数数列;(2)令b n =(-1)n a n ,S n 为数列b n 的前n 项和,求使得S n ≤-99的n 的最小值.【解析】(1)由n a n +1-a n =a n +1得:na n +1=n +1 a n +1,即a n +1n +1=a n n +1n n +1∴a n +1n +1=a n n +1n -1n +1,即有a n +1+1n +1=a n +1n,∴数列a n +1n 是常数数列;(2)由(1)知:a n +1n =a 1+1=3,∴a n =3n -1,∴b n =(-1)n 3n -1即b n =3n -1,n 为偶数-3n -1 ,n 为奇数,∴当n 为偶数时,S n =-2+5 +-8+11 +⋯+-3n -4 +3n -1 =3n2,显然S n ≤-99无解;当n 为奇数时,S n =S n +1-a n +1=3n +1 2-3n +1 -1 =-3n +12,令S n ≤-99,解得:n ≥66,结合n 为奇数得:n 的最小值为67.所以n 的最小值为67.题型三、a n +a n +1类型例3.(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z ,b n =3n -1;(2)58n -5 9n8.【解析】【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,公众号:高中数学最新试题又b2=3,∴n≥2时,b n=3n-1,b1=1=30,∴b n=3n-1;(2)由(1)得c n=n3n-1,n=2k-1,k∈Zn-13n-1,n=2k,k∈Z,T2n=1×30+3×32+5×34+⋅⋅⋅+2n-1⋅32n-2+1×31+3×33+5×35+⋅⋅⋅+2n-1⋅32n-1= 41×30+3×32+5×34+⋅⋅⋅2n-1⋅32n-2设K n=1×30+3×32+5×34+⋅⋅⋅2n-1⋅32n-2①则9K n=1×32+3×34+5×36+⋅⋅⋅+2n-1⋅32n②①-②得-8K n=1+232+34+⋅⋅⋅+32n-2-2n-1⋅32n=5+8n-59n-4,K n=5+8n-59n32,∴T2n=58n-59n8变式1.(2022·江苏苏州·高三期末)若数列a n满足a n+m=a n+d(m∈N*,d是不等于0的常数)对任意n∈N*恒成立,则称a n是周期为m,周期公差为d的“类周期等差数列”.已知在数列a n中,a1=1,a n+a n+1=4n+1(n∈N*).(1)求证:a n是周期为2的“类周期等差数列”,并求a2,a2022的值;(2)若数列b n满足b n=a n+1-a n(n∈N*),求b n的前n项和T n.【答案】(1)证明见解析;a2=4;a2022=4044(2)T n=2n+1,n为奇数, 2n,n为偶数.【解析】【分析】(1)由a n+a n+1=4n+1,a n+1+a n+2=4(n+1)+1,相减得a n+2-a n=4(n∈N*),即可得到答案;(2)对当n分为偶数和奇数进行讨论,进行并求和,即可得到答案;(1)由a n+a n+1=4n+1,a n+1+a n+2=4(n+1)+1,相减得a n+2-a n=4(n∈N*),所以a n周期为2,周期公差为4的“类周期等差数列”,由a1+a2=5,a1=1,得a2=4,所以a2022=a2+(2022-2)×2=4+4040=4044.(2)由b n=a n+1-a n,b n+1=a n+2-a n+1,得b n+1+b n=a n+2-a n=4,当n为偶数时,T n=(b1+b2)+(b3+b4)+⋯+(b n-1+b n)=4⋅n2=2n;当n为奇数时,T n=b1+(b2+b3)+(b4+b5)+⋯+(b n-1+b n)=3+4⋅n-12=2n+1.综上所述,T n=2n+1,n为奇数, 2n,n为偶数.变式2.(2022·江苏新高考基地学校第一次大联考期中)(10分)已知等差数列{a n}满足an+an+1= 4n,n∈N*.(1)求{a n}的通项公式;(2)设b1=1,bn+1=a n,n为奇数,-b n+2n,n为偶数,求数列{bn}的前2n项和S2n.【答案】(1)a n=2n-1;(2)4n-13+4n-3.【解析】【分析】(1)设等差数列a n的公差为d,由已知可得a n+1+a n+2=4n+1与已知条件两式相减可得a n+2-a n=4=2d求得d的值,再由a1+a2=4求得a1的值,利用等差数列的通项公式可得a n的通项公式;(2)当n为奇数时,b n+1=2n-1,当n为偶数时,b n+1+b n=2n,再利用分组并项求和以及等比数列的求和公式即可求解.【小问1详解】因为a n+a n+1=4n,所以a n+1+a n+2=4n+1,所以a n+2-a n=4,设等差数列a n的公差为d,则a n+2-a n=4=2d,可得d=2,当n=1时,a1+a2=a1+a1+2=4,可得a1=1,所以a n=1+2n-1=2n-1.【小问2详解】当n为奇数时,b n+1=a n=2n-1,当n为偶数时,b n+1+b n=2n,所以S2n=b1+b2+b3+b4+b5+b6+b7+⋯+b2n-2+b2n-1+b2n=1+22+24+26+⋯+22n-2+22n-1-1=20+22+24+26+⋯+22n-2+22n-1-1=201-4n1-4+4n-3=4n-13+4n-3.三、追踪训练1.(2022·江苏苏州市八校联盟第一次适应性检测)若数列{a n}中不超过f(m)的项数恰为b m(m∈N*),则称数列{b m}是数列{a n}的生成数列,称相应的函数f(m)是数列{a n}生成{b m}的控制函数.已知a n=2n,且f(m)=m,数列{b m}的前m项和S m,若S m=30,则m的值为()公众号:高中数学最新试题A.9B.11C.12D.14【答案】B【解析】由题意可知,当m为偶数时,可得2n≤m,则b m=m2;当m为奇数时,可得2n≤m-1,则bm=m-12,所以b m=m-12(m为奇数)m2(m为偶数),则当m为偶数时,S m=b1+b2+⋯+b m=12(1+2+⋯+m)-12×m2=m24,则m24=30,因为m∈N*,所以无解;当m为奇数时,S m=b1+b2+⋯+b m=S m+1-b m+1=(m+1)24-m+12=m2-14,所以m2-14=30,因为m∈N*,所以m=11,故答案选B.2.【2022·广东省深圳市第七高级中学10月月考】(多选题)已知数列a n满足a n+1+a n=n⋅-1 n n+12,其前n项和为S n,且m+S2019=-1009,则下列说法正确的是()A.m为定值B.m+a1为定值C.S2019-a1为定值D.ma1有最大值【答案】BCD【解析】【分析】分析得出a2k+a2k+1=2k⋅-1k2k+1,由已知条件推导出S2019-a1=-1010,m+a1=1,可判断出ABC选项正误,利用基本不等式可判断D选项的正误.【详解】当n=2k k∈N∗,由已知条件可得a2k+a2k+1=2k⋅-1k2k+1,所以,S2019=a1+a2+a3+⋯+a2019=a1+a2+a3+a4+a5+⋯+a2018+a2019=a1-2+4-6+8-⋯-2018=a1+2×504-2018=a1-1010,则S2019-a1=-1010,所以,m+S2019=m+a1-1010=-1009,∴m+a1=1,由基本不等式可得ma1≤m+a122=14,当且仅当m=a1=12时,等号成立,此时ma1取得最大值14.故选:BCD.3.(2022·江苏南通市区期中)(多选题)已知数列{a n}满足a1=-2,a2=2,a n+2-2a n=1-(-1)n,则A.{a2n-1}是等比数列B.5i=1a2i−1+2=-10C.{a2n}是等比数列D.10i=1a i=52【答案】ACD【解析】由题意可知,数列{a n}满足a1=-2,a2=2,a n+2-2a n=1-(-1)n,所以a n+2=1-(-1)n+2a n=2+2a n,n为奇数2a n,n为偶数,所以a3=2+2×(-2)=-2,a4=2×2=4,a5=2+2×(-2)=-2,a6=2×4=8,a7=2+2×(-2)=-2,a8=2×8=16,a9=2+2×(-2)=-2,a10=2×16=32,⋯,所以{a2n-1}={-2},是等比数列,故选项A正确;5i=1a2i−1+2=(a1+a3+a5+a7+a9)+2×5=-2×5+2×5=0,故选项B错误;对于选项C,{a2n}={2n}是等比数列,故选项C正确;对于选项D,10i=1a i=-2+2-2+4-2+8-2+16-2+32=52,故选项D正确,综上,答案选ACD.4.(2022·江苏海门中学、泗阳中学期中联考)已知数列{a n}满足a n+1+(-1)n a n=2n+1,则a1+a3+a5+⋯+a99=.【答案】50【解析】【分析】根据所给递推关系,可得a2n+1+a2n=4n+1,a2n-a2n-1=4n-1,两式相减可得a2n+1+a2n-1=2.即相邻奇数项的和为2,即可求解.【详解】∵a n+1+(-1)n a n=2n+1,∴a2n+1+a2n=4n+1,a2n-a2n-1=4n-1.两式相减得a2n+1+a2n-1 =2.则a3+a1=2,a7+a5=2,⋯,a99+a97=2,∴a1+a3+a5+⋯+a99=25×2=50,故答案为:505.(2021·天津红桥区·高三一模)已知数列a n的前n项和S n满足:S n=2a n+(-1)n,n≥1.(1)求数列a n的前3项a1,a2,a3;(2)求证:数列a n+23⋅-1n是等比数列:(3)求数列(6n-3)⋅a n的前n项和T n.【详解】(1)当n=1时,有:S1=a1=2a1+-1⇒a1=1;当n=2时,有:S2=a1+a2=2a2+-12⇒a2=0;当n=3时,有:S3=a1+a2+a3=2a3+-13⇒a3=2;综上可知a1=1,a2=0,a3=2;(2)由已知得:n≥2时,a n=S n-S n-1=2a n+(-1)n-2a n-1-(-1)n-1化简得:a n=2a n-1+2(-1)n-1公众号:高中数学最新试题上式可化为:a n+23(-1)n=2a n-1+23(-1)n-1故数列a n+23(-1)n是以a1+23(-1)1为首项,公比为2的等比数列.(3)由(2)知a n+23(-1)n=132n-1∴a n=13⋅2n-1-23(-1)n6n-3⋅a n=2n-12n-1-2-1n=2n-1⋅2n-1-2⋅(-1)n⋅(2n-1)当n为偶数时,T n=1⋅20+3⋅21+⋅⋅⋅+(2n-1)⋅2n-1-2[-1+3-5+⋅⋅⋅-(2n-3)+(2n-1)]令A n=1⋅20+3⋅21+⋅⋅⋅+(2n-1)⋅2n-1,B n=2[-1+3-5+⋅⋅⋅-(2n-3)+(2n-1)] A n=1⋅20+3⋅21+5⋅22⋅⋅⋅+(2n-3)⋅2n-2+(2n-1)⋅2n-1①2A n=1⋅21+3⋅22+⋅⋅⋅⋅⋅⋅+(2n-3)⋅2n-1+(2n-1)⋅2n②则①-②得-A n=20+2⋅21+2⋅22⋅⋅⋅+2⋅2n-1-(2n-1)⋅2n=1+221+22⋅⋅⋅+2n-1-(2n-1)⋅2n=1+2⋅21-2n-11-2-(2n-1)⋅2n=-3+(3-2n)⋅2n∴A n=3+(2n-3)⋅2n10B n=2[-1+3-5+⋅⋅⋅-(2n-3)+(2n-1)]=2⋅2⋅n2=2n所以T n=A n-B n=3+(2n-3)⋅2n-2n.当n为奇数时,A n=3+(2n-3)⋅2nB n=2[-1+3-5+⋅⋅⋅-(2n-5)+(2n-3)-(2n-1)] =22⋅n-12-2n+1=-2n所以T n=A n-B n=3+(2n-3)⋅2n+2n综上,T n=3+(2n-3)⋅2n-2n,n为偶数, 3+(2n-3)⋅2n+2n,n为奇数.6.(2022·山东烟台·高三期末)已知数列a n满足a1=4,a n+1=12a n+n,n=2k-1a n-2n,n=2k(k∈N*).(1)记b n=a2n-2,证明:数列b n为等比数列,并求b n的通项公式;(2)求数列a n的前2n项和S2n.【答案】(1)证明见解析;b n =12n -1,n ∈N *;(2)S 2n =-2n 2+6n +6-32n -1.【解析】【分析】(1)根据给定的递推公式依次计算并探求可得b n +1=12b n,求出b 1即可得证,并求出通项公式.(2)由(1)求出a 2n ,再按奇偶分组求和即可计算作答.(1)依题意,b n +1=a 2n +2-2=12a 2n +1+2n +1 -2=12a 2n -2×2n +2n +1 -2=12a 2n -1=12(a 2n -2)=12b n,而b 1=a 2-2=12a 1+1-2=1>0,所以数列b n 是以1为首项,12为公比的等比数列,b n =12n -1,n ∈N *.(2)由(1)知,a 2n =b n +2=12 n -1+2,则有a 2+a 4+⋅⋅⋅+a 2n =1-12 n1-12+2n =2-12n -1+2n ,又a 2n =12a 2n -1+2n -1,则a 2n -1=2a 2n -2(2n -1),于是有a 1+a 3+⋅⋅⋅+a 2n -1=2(a 2+a 4+⋅⋅⋅+a 2n )-2×1+(2n -1)2×n =22-12n -1+2n -2n 2=-2n 2+4n +4-22n -1,因此,S 2n =(a 1+a 3+⋅⋅⋅+a 2n -1)+(a 2+a 4+⋅⋅⋅+a 2n )=-2n 2+4n +4-22n -1+2-12n -1+2n =-2n 2+6n +6-32n -1,所以S 2n =-2n 2+6n +6-32n -1.公众号:高中数学最新试题。

高考热点解读--递推数列的解法 试题

高考热点解读--递推数列的解法 试题

高考热点解读谈谈近几年高考中的连续热考的的递推数列问题 郓城第一中学 辛庆存 274700数列一直是高考的重点内容,也是高考的热点内容,由于数列与高等数学亲密相关,特别递推数列一直是高考的重点考察内容。

本文结合近几年的高考试题来谈谈常见的几种数列的处理策略。

一、形如()1n n a a f n +-=型的递推数列这种形式的递推数列,是等差数列的一种拓广,由差为常数变为函数。

可以用累差法。

通过求差的和来到达求解的目的,前提条件是数列(){}f n 是可求和的数列。

112211)()()(a a a a a a a a n n n n n +-++-+-=---例1〔2021年理22题 〕数列{n a }中,11122n n a n a a +=-、点(、)在直线y=x 上,其中n=1,2,3….(Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=-(Ⅱ)求数列{}的通项;n a(Ⅲ)设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?假设存在,试求出λ.假设不存在,那么说明理由。

分析:点在直线上,点的坐标满足直线的方程,就能得到递推数列关系。

解答:〔1〕证明:由得111,2,2n n a a a n +==+2213313,11.4424a a a ∴=--=--=-又11n n n b a a +=--,1211n n n b a a +++∴=--()112111111122112n n n n n n n n n n a n a nb a a b a a a a +++++++++----∴===---- {}n b ∴是以34-为首项,以12为公比的等比数列。

〔2〕解:由〔1〕知,131314222n n n b -⎛⎫=-⨯=-⨯ ⎪⎝⎭,131122n n n a a +--=-⨯2131122a a ∴--=-⨯32231122a a --=-⨯…1131122n n n a a ----=-⨯以上各式相加〔即累差〕得:()121311112222n n a a n -⎛⎫---=-⨯+++⎪⎝⎭, ()1111113131221111222212n n n a a n n --⎛⎫- ⎪⎛⎫⎝⎭∴=+--⨯=+--- ⎪⎝⎭-=()113131122222n n n n -⎛⎫+---=+- ⎪⎝⎭ 322n n a n ∴=+- 〔3〕解:存在2λ=,使数列n n S T n λ+⎧⎫⎨⎬⎩⎭是等差数列。

最新高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版
wxckt@
(n 1)bn1 nbn 2 0 令 n 1, 得 b1 2. bn 2 (n 1)d .
设 b2 2 d (d R), 下面用数学归纳法证明 (1)当 n 1, 2 时,等式成立
新疆 源头学子小屋
/wxc/
a2k 1 a2k 3k a2k 1 (1) k 3k ,即 a2k 1 a2k 1 3k (1) k a3 a1 3 (1) , a5 a3 32 (1) 2 ……
将以上 k 个式子相加,得 …… a2k 1 a2k 1 3k (1) k
②-①,得 2(bn1 1) (n 1)bn1 nbn , 即 (n 1)bn1 nbn 2 0, nbn2 (n 1)bn1 2 0.
-3-
③-④,得
nbn2 2nbn1 nbn 0, 即 bn2 2bn1 bn 0,
1 ___
n 1 n2
解:由已知,得 an1 a1 2a2 3a3 (n 1)an1 nan ,用此式减去已知式,得 当 n 2 时, an1 an nan ,即 an1 (n 1)an ,又 a2 a1 1,
a1 1,
b 1 b 1 b 1
(an 1)bn (n N * ), 证明:数列{bn}
是等差数列;(Ⅲ)证明:
a n 1 a1 a2 n ... n (n N * ). 2 3 a2 a3 an 1 2
(I)解: an1 2an 1(n N * ), an1 1 2(an 1), an 1 是以 a1 1 2 为首项,2 为公比的 等比数列 an 1 2n.

2020年高考数学一轮复习专题4.3利用递推公式求数列通项公式练习(含解析)

2020年高考数学一轮复习专题4.3利用递推公式求数列通项公式练习(含解析)

第三讲 利用递推公式求数列的通项公式1.递推数列(1)概念:数列的连续若干项满足的等量关系a n +k =f (a n +k -1,a n +k -2,…,a n )称为数列的递推关系.由递推关系及k 个初始值确定的数列叫递推数列.(2)求递推数列通项公式的常用方法:构造法、累加(乘)法、归纳猜想法. 2.数列递推关系的几种常见类型(1)公式法:形如S n =f(n)或S n =f(a n )或S n =f(n,a n ) (2)累加法:形如a n -a n -1=f (n )(n ∈N *,且n ≥2)当n ∈N *,n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1. (3)累乘法:形如a n a n -1=f (n )(n ∈N *且n ≥2) 当n ∈N *,n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1. 注意:n =1不一定满足上述形式,所以需要检验.(4)倒数法:(构造等差数列)形如11110nn n n n n n pa a a ka a a qa k++++-==+整式或分式整式:两边同时除以1n n a a + 分式:两边同时取倒数 (5)待定系数法①形如a n =pa n -1+q (n ∈N *且n ≥2) 方法:化为a n +qp -1=p ⎝ ⎛⎭⎪⎫a n -1+q p -1的形式.令b n =a n +qp -1,即得b n =pb n -1,{b n }为等比数列,从而求得数列{a n }的通项公式.②形如a n =pa n -1+f (n )(n ∈N *且n ≥2) 方法:两边同除p n,得a n p n =a n -1p n -1+f (n )p n ,令b n =a n p n ,得b n =b n -1+f (n )p n,转化为利用累加法求b n ⎝ ⎛⎭⎪⎫若f (n )p n 为常数,则{b n }为等差数列,从而求得数列{a n }的通项公式.考向一 公式法【例1】(1)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =________. (2)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. (3)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =2n,则a n =________.【答案】(1)4n -5 (2)-63 (3)∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1n ,n ≥2.【解析】(1)当n =1时,a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.(2)∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1,∴a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1=-1,公比q =2的等比数列,∴S n =a 1(1-q n )1-q =-1×(1-2n )1-2=1-2n ,∴S 6=1-26=-63.(3)当n =1时,由已知,可得a 1=21=2, ∵a 1+2a 2+3a 3+…+na n =2n,① ∴a 1+2a 2+3a 3+…+(n -1)a n -1=2n -1(n ≥2),②由①-②得na n =2n-2n -1=2n -1,∴a n =2n -1n.显然当n =1时不满足上式, ∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1n ,n ≥2.【举一反三】1.已知数列{a n }的前n 项和S n =3n+1,则a n =________.【答案】 ⎩⎪⎨⎪⎧4,n =1,2×3n -1,n ≥2【解析】 当n =1时,a 1=S 1=3+1=4; 当n ≥2时,a n =S n -S n -1=(3n+1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,2×3n -1,n ≥2.2.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则a n =________.【答案】13n 【解析】 因为a 1+3a 2+32a 3+…+3n -1a n =n3,① 则当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,所以a n =13n (n ≥2).由题意知a 1=13符合上式,所以a n =13n .3.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.【答案】 (-2)n -1【解析】 当n =1时,a 1=S 1=23a 1+13,即a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a na n -1=-2,所以数列{a n }是以1为首项,-2为公比的等比数列.故a n =(-2)n -1.考向二 倒数法求通项【例2】(1)在数列{a n }中,已知a 1=1,a n +1=2a na n +2,则a n =________. (2)已知在数列{}a n 中,a 1=15,且当n ≥2时,有a n -1-a n -4a n a n -1=0,则a n =____________.【答案】(1)2n +1,n ∈N * (2)14n +1(n ∈N *) 【解析】(1)由已知可知a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12, 又1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列,1a n =1a 1+(n -1)×12=n +12,∴a n =2n +1,n ∈N *. (2)由题意知a n ≠0,将等式a n -1-a n -4a n a n -1=0两边同除以a n a n -1得1a n -1a n -1=4,n ≥2,则数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,且首项为1a 1=5,公差d =4,故1a n =1a 1+(n -1)d =5+4(n -1)=4n +1,∴a n =14n +1(n ∈N *).【举一反三】1.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. 【答案】 -1n【解析】 ∵a n +1=S n +1-S n ,∴S n +1-S n =S n +1S n , 又由a 1=-1,知S n ≠0,∴1S n -1S n +1=1,∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,且公差为-1,而1S 1=1a 1=-1, ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.2.若数列{a n }的首项a 1=12,且a n =(a n +1)a n +1,则a 200a 300=________.【答案】301201【解析】 a n =(a n +1)a n +1,得a n -a n +1=a n a n +1且a n ≠0, 所以1a n +1-1a n=1,即⎩⎨⎧⎭⎬⎫1a n 是以2为首项,1为公差的等差数列,1a n=n +1,从而a 200a 300=301201. 考向三 累加法【例3】已知在数列{}a n 中,a 1=0,a n +1=a n +2n -1,求a n . 【答案】a n =(n -1)2【解析】由已知得a n -a n -1=2n -3,当n ≥2时,a n =(a n -a n -1) +(a n -1-a n -2)+…+(a 2-a 1)+a 1=(2n -3)+(2n -5)+…+1+0=(n -1)2. 当n =1时,a 1=0符合上式,所以a n =(n -1)2,n ∈N *.【举一反三】1.数列{}a n 满足a 1=12,a n =a n -1+1n 2-n (n ≥2,n ∈N *),求数列{}a n 的通项.【答案】a n =32-1n (n ∈N *).【解析】由a n -a n -1=1n 2-n (n ≥2,n ∈N *)且a 1=12, a n -a n -1=1n 2-n =1n -1-1na n -1-a n -2=1n -2-1n -1,…,a 2-a 1=1-12,各式累加整理得a n =32-1n ,n 取1时,32-1=12=a 1,所以a n =32-1n(n ∈N *).2.已知数列 , ,,则数列 的通项公式=______.【答案】【解析】数列 , ,, 可得 , , ,…, 累加可得:. 故答案为:考向四 类乘法【例4】已知在数列{}a n 中,a 1=2,且na n +1=(n +2)a n ,求a n . 【答案】a n =n (n +1)(n ∈N *). 【解析】由已知得a n +1a n =n +2n ,当n ≥2时,a n =a n a n -1.a n -1a n -2.....a 2a 1.a 1=n +1n -1.n n -2.. (3)1·2=n (n +1), 当n =1时,a 1=2也符合上式,所以a n =n (n +1)(n ∈N *).【举一反三】1.已知在数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求{a n }的通项公式.【答案】【解析】(1)由S 2=43a 2,得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理,得a n =n +1n -1a n -1.于是a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1, 将以上n 个等式两端分别相乘,整理,得a n =n (n +1)2.当n =1时,a 1=1也符合上式, 综上,{a n }的通项公式a n =n (n +1)2,n ∈N *.考向五 待定系数法【例5】(1)已知数列{a n }满足a 1=2,a n +1=2a n +2,求数列{a n }的通项公式. (2)已知在数列{}a n 中,a 1=2,a n +1=2a n +3·2n,则a n =________.【答案】(1)a n =2n +1-2(n ∈N *). (2)2n·⎝ ⎛⎭⎪⎫32n -12,n ∈N *【解析】(1)∵a n +1=2a n +2,∴a n +1+2=2(a n +2), 又a 1+2=4,∴{a n +2}是以4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2(n ∈N *).(2)在递推关系a n +1=2a n +3·2n的两边同除以2n +1,得a n +12n +1=a n 2n +32,令b n +1=a n +12n +1,则b n +1=b n +32,b 1=1,所以{b n }是以1为首项,32为公差的等差数列.所以b n =1+32(n -1)=32n -12,故a n =2n ·⎝ ⎛⎭⎪⎫32n -12,n ∈N *.【举一反三】1.已知数列{}a n 满足a n =13a n -1+2,a 1=1,求数列{}a n 的通项公式.【答案】a n =3-23n -1(n ∈N *)【解析】 设a n +λ=13(a n -1+λ),解得λ=-3,则a n -3=13(a n -1-3),令b n =a n -3,则数列{}b n 是以b 1=a 1-3=-2为首项,13为公比的等比数列,所以b n =-23n -1,所以a n =3-23n -1(n ∈N *).2.已知在数列{}a n 中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,则a n =________.【答案】32n -23n (n ∈N *) 【解析】 在a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1的两边同乘以2n +1得2n +1·a n +1=23·(2n a n )+1,令b n =2na n .则b 1=53,b n +1=23b n +1,于是可得b n +1-3=23(b n -3),∴b n -3=-43×⎝ ⎛⎭⎪⎫23n -1=-2⎝ ⎛⎭⎪⎫23n,【套路总结】使用条件:型如1n n a pa q +=+(其中,p q 为常数,且(1)0,pq p -≠)解题模板:第一步 假设将递推公式改写为a n +1+t =p (a n +t ); 第二步 由待定系数法,解得1qt p =-; 第三步 写出数列{}1n qa p +-的通项公式; 第四步 写出数列{}n a 通项公式.∴b n =3-2⎝ ⎛⎭⎪⎫23n,∴a n =b n 2n =3⎝ ⎛⎭⎪⎫12n -2⎝ ⎛⎭⎪⎫13n =32n -23n (n ∈N *).1.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________.【答案】 ⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2【解析】 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.2.已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,则a n =________. 【答案】 2n -1【解析】方法一 由已知2S n =a n +1,得当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1,代入已知得2S n =S n -S n -1+1,即S n -1=(S n -1)2. 又a n >0,故 S n -1=S n -1或S n -1= 1-S n (舍), 即S n -S n -1=1(n ≥2),由定义得{S n }是以1为首项,1为公差的等差数列, ∴S n =n .故a n =2n -1.方法二 ∵2S n =a n +1,∴4S n =(a n +1)2, 当n ≥2时,4S n -1=(a n -1+1)2,两式相减,得4a n =(a n +1)2-(a n -1+1)2, 化简可得(a n +a n -1)(a n -a n -1-2)=0, ∵a n >0,∴a n -a n -1=2, ∵2a 1=a 1+1,∴a 1=1.∴数列{a n }是以1为首项,2为公差的等差数列, ∴a n =2n -1.3.已知a 1=3,a n +1=3n -13n +2a n (n ≥1,n ∈N *),则a n =________. 【答案】 63n -1【解析】 当n ≥2时,a n =3(n -1)-13(n -1)+2·3(n -2)-13(n -2)+2·…·3×2-13×2+2·3-13+2a 1=3n -43n -1·3n -73n -4·…·58·25·3=63n -1. a 1=3也符合上式,所以a n =63n -1. 4.已知在数列{}a n 中,a 1=12,a n +1=a n +14n 2-1,则a n =____________. 【答案】 4n -34n -2(n ∈N *) 【解析】 由已知可得a n +1-a n =14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 令n =1,2,…,(n -1),代入得(n -1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -3-12n -1, ∴a n -a 1=12⎝ ⎛⎭⎪⎫1-12n -1,∴a n =a 1+12-12·12n -1, 即a n =1-14n -2=4n -34n -2(n ∈N *)⎝ ⎛⎭⎪⎫经验证a 1=12也符合. 5.在数列{a n }中,若a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =________. 【答案】 2+ln n (n ∈N *)【解析】 ∵当n ≥2时,a n =a n -1+ln ⎝ ⎛⎭⎪⎫1+1n -1=a n -1+ln n n -1, a n -1=a n -2+ln n -1n -2, a n -2=a n -3+ln n -2n -3, …,a 2=a 1+ln 2,累加可得a n =a 1+ln ⎝ ⎛⎭⎪⎫n n -1×n -1n -2×n -2n -3×…×2=a 1+ln n , ∴a n =2+ln n ,n ∈N *(经验证a 1=2也符合此式). 6.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,则数列{a n }的通项公式为____________.【答案】 a n =3n -1【解析】 由a 1=S 1=16(a 1+1)(a 1+2), 解得a 1=1或a 1=2.由已知a 1=S 1>1,得a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去.因此a n +1-a n -3=0,即a n +1-a n =3, 从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.7.已知数列{a n }的前n 项和为S n ,且a n +S n =n ,则数列{a n }的通项公式为____________.【答案】 a n =1-⎝ ⎛⎭⎪⎫12n (n ∈N *) 【解析】 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,又a 1+a 1=1,∴a 1=12≠1,∴a n +1-1a n -1=12. 设c n =a n -1,∵首项c 1=a 1-1=-12. ∴数列{c n }是以-12为首项,12为公比的等比数列. 故c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n (n ∈N *). 8.设数列{a n }的前n 项和为S n ,已知4a n -2n =3S n ,则a n =________.【答案】 3·4n -1-2n -1(n ∈N *)【解析】 由已知得4a n +1-2n +1=3S n +1,∴4(a n +1-a n )-2n =3a n +1,∴a n +1=4a n +2n , a n +1+2n =4a n +2n +1=4(a n +2n -1),又4a 1-2=3S 1,∴a 1=2,∴{a n +2n -1}是以3为首项,4为公比的等比数列. ∴a n +2n -1=3·4n -1, ∴a n =3·4n -1-2n -1(n ∈N *). 9.已知a 1=2,a 2=4,数列{b n }满足:b n +1=2b n +2且a n +1-a n =b n .(1)求证:数列{b n +2}是等比数列;(2)求数列{a n }的通项公式.【答案】见解析【解析】(1)证明:由题知,b n +1+2b n +2=2b n +2+2b n +2=2, ∵b 1=a 2-a 1=4-2=2,∴b 1+2=4,∴数列{b n +2}是以4为首项,2为公比的等比数列.(2)由(1)可得,b n +2=4·2n -1,故b n =2n +1-2.∵a n +1-a n =b n ,∴a 2-a 1=b 1, a 3-a 2=b 2,a 4-a 3=b 3,…a n -a n -1=b n -1.累加得,a n -a 1=b 1+b 2+b 3+…+b n -1(n ≥2),a n =2+(22-2)+(23-2)+(24-2)+…+(2n -2)=21-2n 1-2-2(n -1) =2n +1-2n ,故a n =2n +1-2n (n ≥2).∵a 1=2符合上式,∴数列{a n }的通项公式为a n =2n +1-2n (n ∈N *).10.已知 是数列 的前 项和,数列 满足,则 __________.【答案】【解析】∵, ∴, 两式做差,∴,∴ ,而 时,可得: 也满足,∴ ,∴ .11.设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n+1)a n ,求数列{a n }的通项公式。

高考数列经典题型全面解析

高考数列经典题型全面解析

行者教育——高中数学1高中数学:《递推数列》 经典题型全面分析种类 1an 1a n f (n)解法:把原递推公式转变为a n 1a n f (n) ,利用 累加法 (逐差相加法 )求解。

例 :已知数列a n 知足 a 1 1 , a n1a n1 ,求 a n 。

2 n2n解:由条件知:an 1a n1 1 1 1n 2 n n( n 1) n n 1分别令 n 1,2,3,, (n 1) ,代入上式得 (n 1) 个等式累加之,即(a 2 a 1 ) (a 3 a 2 ) (a 4 a 3 )(a n a n 1 )(1 1) (1 1) (1 1)(11 1 )2 23 34 n n因此 a na 1 11na 11 , a n 1 11 3 122n 2 n种类 2an 1f ( n)a n解法:把原递推公式转变为a n 1f (n) ,利用 累乘法 (逐商相乘法 )求解。

a n例 :已知数列a n 知足 a 12 , a n 1 n a n ,求 a n 。

3n 1解:由条件知an 1n ,分别令 n 1,2,3, ,(n 1) ,代入上式得 ( n 1) 个等式a n n1累乘之,即a 2 a 3 a 4 a na 1 a 2a 3an 1a n23n例 :已知a 1 3 ,an 13n 1a n 3n 2a n 3(n 1) 1 3( n 2)3( n 1) 2 3( n 2)1 2 3n 1 a n 1 a 12 23 4na 1又,n3(n 1) ,求 a n 。

1 32 13 1a 123 2 2 3 23n 4 3n 7 52363n 1 3n48 53n 1 。

种类 3an 1pa n q (此中 p , q 均为常数, ( pq( p 1) 0) )。

解法(待定系数法) :把原递推公式转变为:a n 1tp(a n t ) ,此中 tq,再利用1 p换元法 转变为等比数列求解。

超实用高考数学: 数列中的奇、偶项问题知识点解析(含历年真题专项练习)

超实用高考数学: 数列中的奇、偶项问题知识点解析(含历年真题专项练习)

数列中的奇、偶项问题数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.例 已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *. (1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式;(2)记数列{a n }的前2n 项和为T 2n ,求T 2n .解 (1)因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,所以[3+(-1)2n -1]a 2n +1-2a 2n -1+2[(-1)2n -1-1]=0,即a 2n +1-a 2n -1=2,又b n =a 2n -1,所以b n +1-b n =a 2n +1-a 2n -1=2,所以{b n }是以b 1=a 1=1为首项,2为公差的等差数列,所以b n =1+(n -1)×2=2n -1,n ∈N *.(2)对于[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0,即a n +2a n =12,所以a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列; 当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0,即a n +2-a n =2,所以a 1,a 3,a 5,…是以a 1=1为首项,2为公差的等差数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=⎣⎡⎦⎤n ×1+12n (n -1)×2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n 2+1-12n ,n ∈N *.(1)数列中的奇、偶项问题的常见题型①数列中连续两项和或积的问题(a n +a n +1=f (n )或a n ·a n +1=f (n ));②含有(-1)n的类型;③含有{a2n},{a2n-1}的类型;④已知条件明确的奇偶项问题.(2)对于通项公式分奇、偶不同的数列{a n}求S n时,我们可以分别求出奇数项的和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.1.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于() A.200 B.-200 C.400 D.-400答案 B解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.2.已知数列{a n}的前n项和S n=(-1)n·n,若对任意的正整数n,使得(a n+1-p)·(a n-p)<0恒成立,则实数p的取值范围是________.答案(-1,3)解析当n=1时,a1=S1=-1;当n≥2时,a n=S n-S n-1=(-1)n n-(-1)n-1(n-1)=(-1)n(2n-1).因为对任意的正整数n,(a n+1-p)(a n-p)<0恒成立,所以[(-1)n+1(2n+1)-p][(-1)n(2n-1)-p]<0.①当n是正奇数时,化为[p-(2n+1)][p+(2n-1)]<0,解得1-2n<p<2n+1,因为对任意的正奇数n都成立,取n=1时,可得-1<p<3.②当n是正偶数时,化为[p-(2n-1)][p+(1+2n)]<0,解得-1-2n<p<2n-1,因为对任意的正偶数n都成立,取n=2时,可得-5<p<3.联立⎩⎪⎨⎪⎧-1<p <3,-5<p <3,解得-1<p <3. 所以实数p 的取值范围是(-1,3).3.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式;(2)求数列{a n }的通项公式;(3)求S n .解 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, 所以数列{b n }是公比为12的等比数列. 因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *. (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列, 所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n =⎝⎛⎭⎫12n ,所以a n =11221,212n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩为奇数,偶,为数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n , 所以S n =21233,2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩为偶数,为奇数.,。

专题34数列中的奇偶性问题(解析版)

专题34数列中的奇偶性问题(解析版)

专题34数列中的奇偶性问题(解析版)专题34 数列中的奇偶性问题一、题型选讲题型一、与奇偶性有关讨论求含参问题含参问题最常用的方法就是把参数独立出来,要独立出来就要除以一个因式,此因式的正负与n 的奇偶性有关,因此要对n 进行奇偶性的讨论.例1、(2015扬州期末)设数列{a n }的前n 项和为S n ,且a n =4+-12n -1,若对任意n ∈N *,都有1≤p (S n -4n )≤3,则实数p 的取值范围是________.答案:[2,3]思路分析求参数的常用方法是分离参数,所以首先将参数p 进行分离,从而将问题转化为求函数f (n )=S n-4n 的最大值与最小值,再注意到题中含有-12n -1,涉及负数的乘方,所以需对n 进行分类讨论.令f (n )=S n -4n =4n +1--12n 1--12-4n =231--12n . 当n 为奇数时,f (n )=231+12n 单调递减,则当n =1时,f (n )max =1;当n 为偶数时,f (n )=231-12n 单调递增,由当n =2时,f (n )min =12. 又1S n -4n ≤p ≤3S n -4n,所以2≤p ≤3. 解后反思本题的本质是研究数列的最值问题,因此,研究数列的单调性就是一个必要的过程,需要注意的是,由于本题是离散型的函数问题,所以,要注意解题的规范性,“当n为奇数时,f (n )=231+12n ,单调递减,此时f (n )∈23,1;当n 为偶数时,f (n )=2 31-12n ,单调递增,此时f (n )∈12,1”的写法是不正确的,因为f (n )并不能取到12,1∈23,1=12,1内的所有值.例2、(2019苏州三市、苏北四市二调)已知数列{a n }的各项均不为零.设数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3S 2n -4S n +T n =0,n∈N *.(1) 求a 1,a 2的值;(2) 证明:数列{a n }是等比数列;(3) 若(λ-na n )(λ-na n +1)<0对任意的n ∈N *恒成立,求实数λ的所有值.思路分析 (1) 对3S 2n -4S n +T n =0,令n =1,2得到方程,解得a 1,a 2的值.(2) 3S 2n -4S n +T n =0中,对n 赋值作差,消去T n,再对n 赋值作差,消去S n ,从而得到a n +1=-12a n ,证得数列{a n }是等比数列.(3)先求出a n =-12n -1,由(λ-na n )(λ-na n +1)<0恒成立,确定λ=0适合,再运用反证法证明λ>0和λ<0不成立.规范解答 (1)因为3S 2n -4S n +T n =0,n∈N *.令n =1,得3a 21-4a 1+a 21=0,因为a 1≠0,所以a 1=1.令n =2,得3(1+a 2)2-4(1+a 2)+(1+a 22)=0,即2a 22+a 2=0,因为a 2≠0,所以a 2=-12.(3分) (2)解法1 因为3S 2n -4S n +T n =0, ∈所以3S 2n +1-4S n +1+T n +1=0, ∈∈-∈得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0, ∈(5分) 所以3(S n +S n -1)-4+a n =0(n≥2), ∈当n≥2时,∈-∈得,3(a n +1+a n )+a n +1-a n =0,即a n +1=-12a n ,因为a n ≠0,所以a n +1a n =-12. 又因(1)知,a 1=1,a 2=-12,所以a 2a 1=-12,所以数列{a n }是以1为首项,-12为公比的等比数列.(8分)解法2 因为3S 2n -4S n +T n=0,∈ 所以3S 2n +1-4S n +1+T n +1=0,∈∈-∈得,3(S n +1+S n )a n +1-4a n +1+a 2n +1=0,因为a n +1≠0,所以3(S n +1+S n )-4+a n +1=0,所以3(S n +1+S n )-4+(S n +1-S n )=0,(5分) 整理为S n +1-23=-12S n -23,又S 1-23=a 1-23=13, 所以S n -23=13·-12n -1,得S n =13·-12n -1+23,当n≥2时,a n =S n -S n -1=-12n -1,而a 1=1也适合此式,所以a n =-12n -1,所以a n +1a n =-12所以数列{a n }是以-12为公比的等比数列.(8分)(3)解法1 由(2)知,a n =-12n -1.因为对任意的n∈N *,(λ-na n )(λ-na n +1)<0恒成立, 所以λ的值介于n -12n -1和n -12n 之间.因为n-12n -1·n -12n <0对任意的n ∈N *恒成立,所以λ=0适合.(10分)若λ>0,当n 为奇数时,n -12n<λ<="" bdsfid="142" p="">-12n -1恒成立,从而有λ<n< bdsfid="144" p=""></n<>2n -1恒成立.记p (n )=n 22n (n ≥4),因为p (n +1)-p (n )=(n +1)22n +1-n 22n =-n 2+2n +12n +1<0, 所以p (n )≤p (4)=1,即n 22n ≤1,所以n 2n ≤1n(*),从而当n ≥5且n ≥2λ时,有λ≥2n ≥n2n -1,所以λ>0不符.(13分)若λ<0,当n 为奇数时,n -12n<λ<="" bdsfid="156" p="">-12n -1恒成立,从而有-λ<n< bdsfid="159" p=""></n<>2n 恒成立.由(*)式知,当n ≥5且n ≥-1λ时,有-λ≥1n ≥n2n ,所以λ<0不符.综上,实数λ的所有值为0.题型二、数列中奇偶项问题数列通项中出现奇、偶不同的表达式,需要分奇、偶分别赋值得到关系式,再对关系式相加或相减,得到奇数项或偶数项的关系式,体现减元的思想,考生要能够多观察,多思考,养成良好的逻辑推理的习惯.例3、例3、(2015苏州期末)已知数列{a n }中a 1=1,a n +1=13a n +n ,n 为奇数,a n -3n , n 为偶数.(1) 是否存在实数λ,使得数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由. (2) 若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .规范解答 (1) 由已知,得a 2(n +1)=13a 2n +1+(2n +1)=13[a 2n -3(2n )]+2n +1=13a 2n +1.(2分)令a 2(n +1)-λ=13(a 2n -λ),得a 2(n +1)=13a 2n +23λ,所以λ=32.(4分)此时,a 2-λ=13+1-32=-16.(5分)所以存在λ=32,使得数列{a 2n -λ}是等比数列.(6分)(2) 由(1)知,数列a 2n -32是首项为-16,公比为13的等比数列,所以a 2n -32=-16·13n -1=-12·13n ,即a 2n =123-13n .(8分) 由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=323-13n -6n +3,(10分) 所以a 2n -1+a 2n =323-13n -6n +3+123-13n =-213n -6n +9. 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-213+132+…+13n -6(1+2+…+n )+9n =13n -3n 2+6n -1,(12分)从而S 2n -1=S 2n -a 2n =32·13n -3n 2+6n -52.因为13n 和-3n 2+6n =-3(n -1)2+3在n ∈N *时均单调递减,所以S 2n 和S 2n -1均各自单调递减.(14分)计算得S 1=1,S 2=73,S 3=-73,S 4=-89,所以满足S n >0的所有正整数n 的值为1和2.(16分)解后反思对于通项公式分奇偶不同的数列{a n }求S n 时,一般先把a 2k -1+a 2k 看做一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .例4、(2018苏中三市、苏北四市三调)已知数列{}n a 满足15(1)()2n n n n aa n *+++-=∈N ,数列{}n a 的前n 项和为n S .(1)求13a a +的值; (2)若1532a a a +=.∈ 求证:数列{}2n a 为等差数列;∈ 求满足224()pm S S p m *=∈N ,的所有数对()p m ,.【思路分析】(1)直接令1,2n =得到关系式,两式相减,求出13a a +的值(2)分别赋值21,2n n -,得到关系式,两式相减,得到212112n n a a -++=,结合1532a a a +=,计算出114a =,从而求2114n a -=,代入关系式,得出294n a n =+,利用定义法证明{}2n a 为等差数列(3)求和得到2n S ,代入关系式整理得()2234322p m p m +=+,需要转化两个因数相乘的形式,变形处理,利用平方差公式得到(29)(23)27m p m p ++-+=,因为2912m p ++≥且2923m p m p ++-+,均为正整数,则两个因数只能为27和1,从而求出p m ,的值.规范解答 (1)由条件,得2132372a a a a -=+=??①②,∈-∈得 1312a a +=.……………………… 3分(2)∈证明:因为15(1)2n n n n a a +++-=,所以221212242252n n n n n a an a a -++?-=??+?+=?③④, ∈-∈得212112n n a a -++=, ……………………………………………… 6分于是13353111()()422a a a a a =+=+++=,所以314a =,从而114a =. (8)分所以121231111()(1)()0444n n n a a a ----=--==--=L , 所以2114n a -=,将其代入∈式,得294n a n =+, 所以2(1)21n n a a +-=(常数),所以数列{}2n a 为等差数列.……………………………………………… 10分∈注意到121n a a +=,所以2122n n S a a a =+++L2345221()()()n n a a a a a a +=++++++L2125322nk k n n =+==+∑,…………………………………………… 12分由224p m S S =知()2234322p m p m +=+.所以22(26)(3)27m p +=++,即(29)(23)27m p m p ++-+=,又*p m ∈N ,,所以2912m p ++≥且2923m p m p ++-+,均为正整数,所以2927231m p m p ++=??-+=?,解得104p m ==,,所以所求数对为(104),. (16)分例5、(2017苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *. (1) 求数列{a n }的通项公式;(2) 若∈n ∈N * ,都有S n ≤n (3n +1)成立,求实数a 的取值范围;(3) 当a =2时,将数列{a n }中的部分项按原来的顺序构成数列{bn },且b 1=a 2,证明:存在无数个满足条件的无穷等比数列{b n }.规范解答 (1) 当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5;当n≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1), 所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n)-6(S n -1+n -1),即(a n +1)(a n +1-a n -1)=6(a n +1), 又a n >0,所以a n +1-a n -1=6,(3分)所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,k∈N *,故a n=3n +a -3,n 为奇数,3n -1,n 为偶数.)(5分)(2) 当n 为奇数时,n +1为偶数,所以a n =3n +a -3,a n +1=3n +2,所以(3n +a -3+1)(3n +2+1)=6(S n +n ),整理得S n =1 2(3n +a -2)(n +1)-n ,由S n ≤n (3n +1)得,a ≤3n 2+3n +2n +1对n ∈N *恒成立.令f (n )=3n 2+3n +2n +1(n ∈N *),则f (n +1)-f (n )=3n 2+9n +4(n +2)(n +1)>0,所以f (n )=3n 2+3n +2n +1(n ∈N *)单调递增,f (n )min =f (1)=3+3+22=4,所以a ≤4.(8分) 当n 为偶数时,n +1为奇数,a n =3n -1,a n +1=3n +a ,所以(3n -1+1)(3n +a +1)=6(S n +n ),整理得S n =3n 2+(a -1)n2,由S n ≤n (3n +1)得,a ≤3(n +1)对n ∈N *恒成立,所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].(10分)(3) 当a =2时,若n 为奇数,则a n =3n -1,所以a n =3n -1(n ∈N *).解法1 因为数列{a n }的项是b 1=5的整数倍的最小项是a 7=20,故可令等比数列{b n }的公比q =4m (m ∈N *),因为b 1=a 2=5,所以b n =5·4m (n-1),设k =m (n -1),因为1+4+42+…+4k -1=4k -13,所以4k =3(1+4+42+…+4k -1)+1, 所以5·4k =5[3(1+4+42+…+4k -1)+1] =3[5(1+4+42+…+4k -1)+2]-1,(14分) 因为5(1+4+42+…+4k -1)+2为正整数, 所以数列{b n }是数列{a n }中包含的无穷等比数列,因为公比q =4m (m ∈N *)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n }有无数个.(16分)解法2 设b 2=ak 2=3k 2-1(k 2≥3),因为b 1=a 2=5,所以公比q =3k 2-15.因为等比数列{b n }的各项为整数,所以q 为整数, 取k 2=5m +2(m ∈N *),则q =3m +1,故b n =5·(3m +1)n -1.由3k n -1=5·(3m +1)n得k n =13[5(3m +1)n -1+1](m ,n ∈N *),而当n ≥2时,k n -k n -1=53[(3m +1)n -1-(3m +1)n -2]=5m (3m +1)n -2,即k n =k n -1+5m (3m +1)n -2.(14分)又因为k 1=2,5m (3m +1)n-2都是正整数,所以k n 也都是正整数,所以数列{b n }是数列{a n }中包含的无穷等比数列,因为公比q =3m +1(m ∈N *)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n }有无数个.(16分)解后反思作为数列压轴题,本题三个小题梯度明显,有较好的区分度,其中第(1)(2)小题联系紧密,难度中等,考生应该努力完成这两小题,而不是轻易放弃;而第(3)小题要求高,试题开放,解法1构造特殊数列,而解法2从一般性推理与证明两个角度完成证明,难度都非常大,建议考生果断放弃.题型三、数列中连续两项和或积的问题“相邻两项的和是一次式”的特征,联想到数列{a n }中相邻两项的和成等差数列,故考虑采用相邻项作差法,得到数列{a n }中奇数项成等差,偶数项也成等差,而且公差相同的结论,进而求出数列通项公式.例6、(2018苏州暑假测试)已知数列{a n }满足a n +1+a n =4n -3(n∈N *).(1) 若数列{a n }是等差数列,求a 1的值;(2) 当a 1=2时,求数列{a n }的前n 项和S n ;(3) 若对任意n ∈N *,都有a 2n +a 2n +1a n +a n +1成立,求a 1的取值范围.规范解答 (1) 若数列{a n }是等差数列,则a n =a 1+(n -1)d,a n +1=a 1+nd.由a n +1+a n =4n -3,得(a 1+nd)+[a 1+(n -1)d]=4n -3,(2分) 即2d =4,2a 1-d =-3,解得d =2,a 1=-12.(3分)(2) 由a n +1+a n =4n -3(n∈N *),得a n +2+a n +1=4n +1(n ∈N *).两式相减,得a n +2-a n =4.(5分)所以数列{a 2n -1}是首项为a 1,公差为4的等差数列.数列{a 2n }是首项为a 2,公差为4的等差数列,由a 2+a 1=1,a 1=2,得a 2=-1,所以a n =?2n ,n 为奇数,2n -5,n 为偶数.(6分)∈当n 为奇数时,a n =2n ,a n +1=2n -3.S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n=1+9+…+(4n -11)+2n =n -12×(1+4n -11)2+2n=2n 2-3n +52;(8分)∈当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7) =2n 2-3n 2.(10分)(3) 由(2)知,a n =?2n -2+a 1,n 为奇数,2n -3-a 1,n 为偶数.(11分)∈当n 为奇数时,a n =2n -2+a 1,a n +1=2n -1-a 1.由a 2n +a 2n +1a n +a n +1≥5得a 21-a 1≥-4n 2+16n -10. 令f (n )=-4n 2+16n -10=-4(n -2)2+6,当n=1或3时,f(n)max=2,所以a21-a1≥2.解得a1≥2或a1≤-1.(13分)∈当n为偶数时,a n=2n-a1-3,a n+1=2n+a1.由a2n+a2n+1a n+a n+1≥5得a21+3a1≥-4n2+16n-12.令g(n)=-4n2+16n-12=-4(n-2)2+4,当n=2时,g(n)max=4,所以a21+3a1≥4,解得a1≥1或a1≤-4.(15分)综上,a1的取值范围是(-∞,-4]∈[2,+∞).(16分)例7、(2019苏州期初调查)已知数列{a n}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n}前n项和为S n,且满足S3=a4,a5=a2+a3.(1) 求数列{a n}的通项公式;(2) 若a m a m+1=a m+2,求正整数m的值;(3) 是否存在正整数m,使得S2mS2m-1恰好为数列{a n}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.思路分析(1)建立方程组,求出公比和公差,用分段的形式写出{a n}的通项公式.(2)对m分奇、偶数,根据通项公式和a m a m+1=a m+2建立方程,求出m的值.(3)运用求和公式求出S 2m 和S 2m -1,计算S 2mS 2m -1,通过分析其值只能为a 1,a 2,a 3,分情况讨论,解方程,求m 的值.规范解答 (1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q.所以数列{a n }的前5项依次为1,2,1+d,2q,1+2d.因为{S 3=a 4,a 5=a 2+a 3,所以{4+d =2q ,1+2d =3+d ,解得{d =2,q =3.(2分) 所以a n =n ,n 为奇数,2·332-1,n 为偶数.(4分)(2)因为a m a m +1=a m +2.1° 若m =2k(k∈N *),则a 2k a 2k +1=a 2k +2,所以2·3k -1·(2k +1)=2·3k ,即2k +1=3,所以k =1,即m =2.(6分)2° 若m =2k -1(k ∈N *),则a 2k -1a 2k =a 2k +1,所以(2k -1)×2·3k -1=2k +1,所以2·3k -1=2k +12k -1=1+22k -1.因为2·3k-1为整数,所以22k -1必为整数,所以2k -1=1,所以k =1,此时2·30≠3.不合题意.(8分)综上可知m =2.(9分)(3) 因为S 2m =(a 1+a 3+…+a 2m -1)+(a 2+a 4+…+a 2m ) =m (1+2m -1)2+2(1-3m )1-3=3m +m 2-1.(10分)S 2m -1=S 2m -a 2m =3m +m 2-1-2·3m -1=3m -1+m 2-1.(11分) 所以S 2mS 2m -1=3m +m 2-13m -1+m 2-1=3-2(m 2-1)3m -1+m 2-1≤3.(12分)若S 2mS 2m -1为数列{a n }中的项,则只能为a 1,a 2,a 3. 1° S 2m S 2m -1=1,则3-2(m 2-1)3m -1+m 2-1=1,所以3m -1=0,m 无解.(13分) 2° S 2m S 2m -1=2,则3-2(m 2-1)3m -1+m 2-1=2,所以3m -1+1-m 2=0. 当m =1时,等式不成立;当m =2时,等式成立;当m ≥3时,令f (x )=3x -1+1-x 2=13·3x +1-x 2.所以f ′(x )=ln33·3x -2x ,f ″(x )=ln 233·3x-2.因为f ″(x )在(14分)3° S 2mS 2m -1=3,则3-2(m 2-1)3m -1+m 2-1=3,所以m 2-1=0,即m =1.(15分)综上可知m =1或m =2.(16分)解后反思第(3)问中,解方程3m -1+1-m 2=0,其中m 为正整数,体现函数的思想,可以先取m =1,m =2,…,找出规律,即执果索因,然后用导数的方法研究函数f(x)=3x -1+1-x 2的单调性,也可以用作差法来研究数列c m =3m -1+1-m 2的单调性来处理.二、达标训练1、(2018南京、盐城一模)设S n 为等差数列{a n }的前n 项和,若{a n }的前2017项中的奇数项和为2018,则S 2017的值为________.答案: 4034解析:因为a 1+a 3+a 5+…+a 2017=1009a 1009=2018,所以a 1009=2,故S 2017=a 1+a 2+…+a 2017=2017a 1009 =4034.2、(2019常州期末) 数列{a n },{b n }满足b n =a n +1+(-1)na n (n∈N *),且数列{b n }的前n 项和为n 2,已知数列{a n -n }的前2018项和为1,那么数列{a n }的首项a 1=________.答案: 32解析:思路分析通项公式中出现(-1)n ,注意分奇、偶项,求和时自然采用分组求和法.数列{b n }的前n 项和为n 2,所以b n =n 2-(n -1)2=2n -1(n≥2),b 1=1也符合,故b n =2n -1,故a n +1+(-1)n a n =2n -1,设{a n }的前n 项和为S n ,a 2-a 1=1.若n 为奇数,则a n +1-a n =2n -1,a n +2+a n +1=2n +1,解得a n +a n +2=2.若n 为偶数,则?a n +a n +1=2n -1,a n +2-a n +1=2n +1,解得a n +a n +2=4n.S 2018=a 1+(a 3+a 5)+(a 7+a 9)+…+(a 2015+a 2017)+a 2+(a 4+a 6)+(a 8+a 10)+…+(a 2016+a 2018)=2a 1+1+1008+4×(4+8+…+2016)=2a 1+1009+4×504×(4+2016)2=2a 1+1+1008×2021.又S 2018-2018×20192=1,所以2a 1+1+1008×2021=1+1009×2019,得a 1=32.3、(2015南京、盐城一模)已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n (n ∈N *),若数列{a 2n -1}单调递减, 数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.【答案】(-2)n -13 因为|a n +1-a n |=2n ,所以当n =1时,|a 2-a 1|=2.由a 2>a 1,a 1=-1得a 2=1.当n =2时,|a 3-a 2|=4,得a 3=-3或a 3=5.因为{a 2n -1}单调递减,所以a 3=-3.当n =3时,|a 4-a 3|=8,得a 4=5或a 4=-11.因为{a 2n }单调递增,所以a 4=5.同理得a 5=-11,a 6=21.因为{a 2n -1}单调递减,a 1=-1<0,所以a 2n -1<0.同理a 2n >0.所以当n 为奇数时(n ≥3),有a n -a n -1=-2n -1,a n-1-a n -2=2n -2.两式相加得a n -a n -2=-2n -2.那么a 3-a 1=-2;a 5-a 3=-23;…;a n -a n -2=-2n -2. 以上各式相加得a n -a 1=-(2+23+25+…+2n -2).所以a n =a 1-2[1-(22)n -32+1]1-22=-2n +13.同理,当n 为偶数时,a n =2n -13.所以a n=-2n +13,n 为奇数,2n-13, n 为偶数.也可以写成a n =(-2)n -13.4、(2017镇江期末)已知n ∈N *,数列{a n }的各项均为正数,前n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n . (1) 若数列{b n }是公比为3的等比数列,求S 2n ;(2) 若对任意n ∈N *,Sn =a 2n +n2恒成立,求数列{a n }的通项公式; (3) 若S 2n =3(2n -1),数列{a n a n +1}也为等比数列,求数列{a n }的通项公式.思路分析第2问,用相邻项作差法可把条件“对任意n ∈N *,S n =a 2n +n2”转化为“a n -a n -1=1或a n +a n -1=1”,因为a n +a n -1=1对任意的n ∈N *恒不成立,故有a n -a n -1=1对任意的n ∈N *恒成立;第3问,由“数列{a n a n +1}为等比数列”知a n +2a n 为同一个常数,即数列{a n }中奇数项和偶数项都是等比数列,且公比相同,不妨设为q ,在S 2n=3(2n -1)中,令n =2即可求出q .规范解答 (1) b 1=a 1+a 2=1+2=3,(1分)S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-3n )1-3=3(3n -1)2.(3分)(2) 当n ≥2时,由2S n =a 2n +n ,得2S n -1=a 2n -1+n -1,则2a n =2S n -2S n -1=a 2n +n -(a 2n -1+n -1)=a2n -a 2n -1+1,(a n -1)2-a 2n -1=0,(a n -a n -1-1)(a n +a n -1-1)=0,故a n -a n -1=1或a n +a n -1=1.(*)(6分)下面证明a n +a n -1=1对任意的n ∈N *恒不成立.事实上,a 1+a 2=3,则a n +a n -1=1不恒成立;若存在n ∈N *,使a n +a n -1=1,设n 0是满足上式最小的正整数,即an 0+an 0-1=1,显然n 0>2,且an 0-1∈(0,1),则an 0-1+an 0-2≠1,则由(*)式知,an 0-1-an 0-2=1,则an 0-2<0,矛盾.故a n +a n -1=1对任意的n ∈N *恒不成立.所以a n -a n -1=1对任意的n ∈N *恒成立.(8分)因此{a n }是以1为首项,1为公差的等差数列,所以a n =1+(n -1)=n .(10分) (3) 因为数列{a n a n +1}为等比数列,设公比为q ,则当n ≥2 时,a n a n +1a n -1a n =a n +1a n -1=q .即{a 2n -1},{a 2n }分别是以1,2为首项,公比为q 的等比数列,(12分)故a 3=q ,a 4=2q .令n =2,有S 4=a 1+a 2+a 3+a 4=1+2+q +2q =9,则q =2.(14分)当q =2时,a 2n -1=2n -1,a 2n =2×2n -1=2n ,b n =a 2n -1+a 2n =3×2n -1,此时S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n =3(1-2n )1-2=3(2n -1).综上所述,a n=2n -12,n 为奇数,2n2,n 为偶数.(16分)易错警示在第2问中,必须证明a n +a n -1=1对任意的n ∈N *恒不成立,不是“对任意的n ∈N *不恒成立”,因为若存在某个n 0∈N *使得a n +a n -1=1成立,由于逻辑连结词“或”的缘故,则此时式子“an 0-an 0-1=1”可以不成立!也就是说,“a n -a n -1=1对任意的n ∈N *恒成立”不一定正确.解后反思由于“S 2n =3(2n -1)”符合特征“S n =A -Aq n ”,故数列{a 2n -1+a 2n }是等比数列,且公比为2,再由“数列{a n a n +1}为等比数列”知a n +2a n为同一个常数,即数列{a n }中奇数项和偶数项都是等比数列,且公比相同,不妨设为q ,则有a 2n +1a 2n -1=a 2n +2a 2n =q ,即a 2n +1+a 2n +2a 2n -1+a 2n=q ,故q =2.5、(2016南京、盐城、连云港、徐州二模)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =(-1)n S n +p n (p 为常数,p ≠0).(1) 求p 的值;(2) 求数列{a n }的通项公式;(3) 设集合A n ={a 2n -1,a 2n },且b n ,c n ∈A n ,记数列{nb n },{nc n }的前n 项和分别为P n ,Q n .若b 1≠c 1,求证:对任意n ∈N *,P n ≠Q n .规范解答 (1) 由a 1=-S 1+p,得a 1=p2.(2分)。

新高考数学数列经典题型专题提升-第18讲 奇偶数列问题(原卷版)

新高考数学数列经典题型专题提升-第18讲 奇偶数列问题(原卷版)

第18讲 奇偶数列问题一、单选题1.(2021·陕西·西安中学高三月考(理))数列满足,,若,且数列的前项和为,则( )A .64B .80C .D .2.(2021·全国·模拟预测)已知数列满足,,则数列的前2020项的和为( )A .0B .1010C .2020D .20243.(2020·全国·高三专题练习(文))数列{a n }的通项公式为a n =n cos ,其前n 项和为S n ,则S 2021等于( )A .-1010B .2018C .505D .1010二、填空题4.(2022·江苏·高三专题练习)设为数列的前项和,,则数列的前7项和为________.5.(2021·全国·高三专题练习(理))已知数列的通项公式为(),其前项和为,则_______.6.(2021·新疆·克拉玛依市第一中学高二月考)已知数列的前项和为,,且对任意的,都有,则______.7.(2020·上海静安·高一期末)数列的通项,则前10项的和______8.(2021·湖北·黄石二中高二期末)已知数列满足,且,则该数列的前9项之和为__________.9.(2020·全国·高三专题练习(文))已知数列满足,则前48项之和为___________.{}n a 11a =1(1)(1)n n na n a n n +=+++2cos3=πn n n b a {}n b n n S 11S =64-80-{}n a 120a a +=(1)22(1)2n n n n a a +++-={}n a 2n πn S {}n a n *1(1)()2n n n n S a n N +=-∈{}n S {}n a (1)sin2n n a n n π=+⋅n ∈+N n n S 8S ={}n a n n S 11a =n *∈N 22212log 12log n n n n n a a n n aa n +⎧=+⎪⎪+⎨+⎪=-+⎪⎩61S ={}n a ()sin 2n n a n n N π*=⋅∈12310a a a a ++++= {}n a 12a =23a =*21(1),n n n a a n N +-=+-∈{}n a 1(1)21n n n a a n ++-=-{}n a10.(2020·全国·高考真题(文))数列满足,前16项和为540,则______________.11.(2018·安徽池州·高三期末(理))已知数列满足,,且,则数列的前项和取得最大值时,__________.12.(2021·河南郑州·高二期中(文))数列的前项和,.设,则数列的前项和___________.13.(2020·江西·鹰潭一中高三期中(文))数列满足:,则的前项和=__________.14.(2018·浙江台州·高一期中)已知数列的前n 项和,.求数列的通项公式为______.设,求数列的前项和______.15.(2021·全国·高三专题练习(理))在数列中,,记,若对任意的恒成立,则实数的取值范围为__________.16.(2020·江西省修水县英才高级中学高二月考(理))已知数列的前n 项和为,若,不等式对一切恒成立,则实数的取值范围为____________.17.(2020·河北·石家庄二中模拟预测(文))已知数列的前项和为,对任意,且恒成立,则实数的取值范围是__.18.(2022·全国·高三专题练习)记为等比数列的前项和,已知,.则=____________;数列的前项和_____________.19.(2021·浙江·高二课时练习)数列的通项公式为,其前2020项的和为______.20.(2021·河南·孟津县第一高级中学高三月考(文))记等差数列的前项和为,若,则______.{}n a 2(1)31nn n a a n ++-=-1a ={}n a 112a =-11n n n n n ab b a b ++=+*1(1)5()2n n b n N +-=∈{}n a 2n 2n S n ={}n a n 21n n S =-n *∈N ()1nn n n b a a =+-{}n b 2n 2n T ={}n a ()()21121n n a n +=--{}n a 2n 2nS {}n a 22n S n =*n N ∈{}n a 2(1)nn n n b a a =+-{}n b 2n n T ={}n a ()1*111,32n n n a a a n -+==-∈N 32(1)n n n n c a λ=-⨯-*1,n n c n c +∈>N λ{}n a n S 212n nn a +=1(1)2nn n n S λ--<+*n ∈N λ{}n a n n S *n N ∈1(1)262n n n n S a n =-++-1()()0n n a p a p +--<p n S {}n a n 11a =1n n S a t +=+t (){}cos πn n a ⋅n }{n a )(1cos12nn n a n π=-⋅⋅-{}n a n n S ()()610cos , 18,165,sin , n n n a n a S b a n ππ⎧⎪===⎨⎪⎩为奇数为偶数1232021=b b b b +++⋅⋅⋅+21.(2021·贵州威宁·高一期末)已知正整数数列满足则当时,______.22.(2021·甘肃·静宁县第一中学高一月考(理))九连环是我国古代至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数,决定解开圆环的个数在某种玩法中,用a n 表示解下n(n ≤9,n ∈N *)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =,则解下n (n为奇数)个环所需的最少移动次数为___.(用含n 的式子表示)23.(2021·全国·高三专题练习(文))已知正整数数列满足,则当时,___________.三、解答题24.(2021·全国·高二课时练习)已知中,,求的值.25.(2021·江苏·海安高级中学高三月考)已知数列的前n 项和为,且(1)求的通项公式;(2)设,求数列的前20项和.26.(2021·河北唐山·一模)已知数列满足,,记数列的前n 项和为.(1)求的值;(2)求的最大值.27.(2021·全国·高三专题练习)设数列是公差大于零的等差数列,已知,.(1)求数列的通项公式;(2)设数列满足,求.28.(2020·四川·成都七中高一月考)已知数列满足,且(且),{}n a 131,,,,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数18a =202120222023a a a ++=1121,22,n n a n a n ---⎧⎨+⎩为偶数为奇数{}n a 131,,2n n n nn a a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数18a =2021a ={}n a 1(1)21nn n a a n ++-=-8S {}n a n S 2,, n n n S n n ⎧=⎨⎩为奇数为偶数{}n a 1n n n b a a +=+{}n b 20T {}n a 11a =-()11112nn n a a n ++-=-{}n a n S 101S n S {}n a 13a =22424a a =+{}n a {}n b sin ()cos ()n n n a n b a n ππ⎧=⎨⎩为奇数为偶数122021b b b ++⋅⋅⋅+{}n a 11a =122nn n a a -=+2,n …*n N ∈(1)求证:数列是等差数列;(2)设,求数列的前n 项和.29.(2021·重庆·西南大学附中高三月考)已知各项都为正数的数列满足,.(1)求的通项公式;(2)若数列满足,求数列的前项和.30.(2021·江苏·高二单元测试)已知数列满足,.(1)求,;(2)设,求证:数列是等比数列,并求其通项公式;(3)已知,求证:.31.(2021·天津市第二十一中学高三期中)已知数列的前项和为,满足.(1)求数列的通项公式;(2),求数列的前项和;32.(2021·湖北·高三期中)已知数列的各项均为正数,其前项和为,且.(1)求,;(2)设,求数列的前8项和.33.(2021·全国·高三期中)已知为等比数列,,记数列满足,且.(1)求和的通项公式;2n n a ⎧⎫⎨⎬⎩⎭()13(21)23nn n n b a n ⎛⎫=-++ ⎪⎝⎭{}n b {}n a 14a =211(41)40n n n n a a a a ++---={}n a {}n b *(25)cos π()n n b a n n n N =+-∈{}n b 2n {}n a 11a =11,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数2a 3a 22n n b a =-{}n b 12log n n c b =122311111n n c c c c c c -+++< {}n a n n S 1n n S a =-{}n a ()*2,log ,n n n a n c n N a n ⎧=∈⎨⎩为奇数为偶数{}n c n n T {}n a n n S 2421n n n a S a =--n a n S 1,n n n n b S S n -=-⎩为奇数为偶数{}n b 8T {}n a 124a a +={}n b 31log n n b a +=11n n b b +-={}n a {}n b(2)对任意的正整数,设,求的前项的和.34.(2021·湖南永州·高三月考)已知数列满足,.(1)求;(2)记,证明:数列为等比数列.35.(2021·全国·高二单元测试)已知数列,{b n },S n 为数列的前n 项和,a 2=4b 1,,,.(Ⅰ)求数列的通项公式;(Ⅱ)证明为等差数列;(Ⅲ)若数列{c n }的通项公式为,令T n 为{c n }的前n 项的和,求T 2n .36.(2021·四川新都·高一期末)已知等差数列中,,,数列满足,.(1)求,的通项公式;(2)记为数列的前项和,试比较与的大小;(3)任意,,求数列的前项和.n ()228,,n nn n n n nb a nc b b a b n +⎧-⎪=⎨⎪⎩为奇数为偶数{}n c 2n 2n S {}n a 11a =12,1,n n n a n a a n +⎧=⎨+⎩为奇数为偶数4a 22n n b a =+{}n b {}n a {}n a 22n n S a =-()211n n nb n b n n +-+=+*N n ∈{}n a n b n ⎧⎫⎨⎬⎩⎭,2,4n n n n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n a 42a =()5433a a a =-{}n b 12b =12n n b b +={}n a {}n b n S {}n a n 1n n a a +⋅12n S +*N n ∈()()2322, n n nn n n a a n b c a n b +⎧+--⎪⎪=⎨⎪⎪⎩为偶数为奇数{}n c 2n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为 a2 为定值,所以当 n = 6.5 即 n = 6 或 7 时, S2n−1 最大,即 S11 = S13 最大.
又 0 < a6 < 1 ,此时 a2 = a6 − 2d2 = a6 + 6 ∈ (6, 7)
因为 a1 + a2 = 9 ,所以 a1= 9 − a2 ,那么 a1 ∈ (2,3)
+
an )
=
9
+
7
+
5+⋅⋅⋅+
(11 −
n)
=

1 n2 4
+ 5n
当 n = 10 时, Sn 最大值为 25 .
由 an+1 + an = 11 − n + (−1)n 得: an+2 + an+1 = 11 − (n + 1) + (−1)n+1
1/4
两式相减得 an+2 − an =−2(−1)n − 1 =−3
递推数列奇偶性分析
已知数列 {an} 满足 an+1 + an = 11− n + (−1)n ,且 0 < a6 < 1 .记数列 {an} 的前 n 项和为 Sn ,则当 Sn
取得最大值时 n 为 ( ).
A.11
B.12
C.11 或 13
D.12 或 13
答案:C
解法一:奇偶分类法 1
由 an+1 + an = 11 − n + (−1)n 得: an+2 + an+1 = 11 − (n + 1) + (−1)n+1
解法三:奇偶分类法 3 由 an+1 + an = 11 − n + (−1)n 得: an+2 + an+1 = 11 − (n + 1) + (−1)n+1 两式相减得 an+2 − an =−2(−1)n − 1 ①当 n 为偶数,即 n = 2k 时, a2k+2 − a2k = −3 ,所以= a2k a2k+2 + 3 所以 a2k = a6 + (k − 3)(−3) = a6 + 9 − 3k 此时 S2k =−k 2 + 10k ,当 k = 5 即 n = 10 时, S10 最大,为偶数项中最大项. ② 当 n 为 奇 数 , 即 =n 2k − 1 时 , a2k+1 − a2k−1 = 1 , 所 以 a= 2k−1 a2k+1 − 1 , 所 以 a2k−1 = a7 + (k − 4) ⋅1= a7 + k − 4 S2k−1 =S2k − a2k =(−k 2 + 10k) − (a6 + 9 − 3k) =−k 2 + 13k − a6 − 9 所以当 k = 6.5 即 n = 11或13 时, S11 = S13 最大.
=na1
+
n(n −1) 2
d1
+
na2ቤተ መጻሕፍቲ ባይዱ
+
n(n −1) 2
d2
=n(a1
+
a2 )
+
n(n −1) 2
(d1
+
d2 )
=−n2
+ 10n
所以当 n = 5 时, S10 最大,为偶数项中最大项.
[ ] 由 S2n − S2n−1 = a2n 得 S2n−1 =S2n − a2n =−n2 + 2n − a2 + (n − 1)d2 =−n2 + 13n − a2 − 3
因为 a1 + a2 = 9 ,易得 a9 + a10 = 1, a11 + a12 = −1, a13 + a14 = −3, 所以 S11= S10 + a11 + a12 − a12= S10 − 1 − a12 ,
2/4
S13 = S10 + a11 + a12 + a13 + a14 − a14 = S10 − 4 − a14 = S10 − 4 − (a12 − 3)= S10 − 1 − a12
又 0 < a6 < 1 ,所以 S=11 S13 > S10 .故选 C.
解法四:奇偶合并法 由 an+1 + an = 11 − n + (−1)n 得: an+2 + an+1 = 11 − (n + 1) + (−1)n+1 两式相减得 an+2 − an =−2(−1)n − 1
当 n 为奇数时,数列{an} 中的奇数项 d1 = 1 ,奇数项是公差为1的等差数列 当 n 为偶数时,数列{an} 中的偶数项 d2 = −3 ,偶数项是公差为 −3 的等差数列 所以 {a2n−1 + a2n} 是公差为 −2 的等差数列
= − 14
(n
+ 1)2
+
5(n
+ 1)


3 2
(n
+ 1)
+
9
+
a6
= − 1 n2 4
+
6n

11 4

a6
当 n = − 2(−61 ) = 12 时, S11 或 S13 取得最大值 4
又 0 < a6 < 1 ,所以 S11 = S13 = 33 − a6 > S10 = 25 .故选 C.
所以 a8 − a6 =−2(−1)6 − 1 =−3 , a10 − a8 =−2(−1)8 − 1 =−3 , ⋅ ⋅ ⋅ , an − an−2 =−2(−1)n−2 − 1 =−3
累加得
an

a6
=−3( n 2

3)
,所以
an
=−
3 2
n
+
9
+
a6
②当
n
为奇数时,
Sn
= Sn+1

an+1
两式相减得 an+2 − an =−2(−1)n − 1
当 n 为奇数时,数列 {an} 中的奇数项成等差数列,公差 d1 = 1
当 n 为偶数时,数列 {an} 中的偶数项成等差数列,公差 d2 = −3
又当 n = 1 时, a1 + a2 = 9
S2n= a1 + a2 + a3 + ⋅ ⋅ ⋅ + a2n= (a1 + a3 + a5 + ⋅ ⋅ ⋅ + a2n−1) + (a2 + a4 + a6 + ⋅ ⋅ ⋅ + a2n )
又 0 < a6 < 1 ,所以 S=11 S13 > S10 .故选 C.
解法五:特征分析法 因为 an+1 + an = 11 − n + (−1)n 当 n 为奇数时, Sn+1 − Sn−1 = 10 − n > 0 即 n ≤ 9 所以 S2 < S4 < S6 < S8 < S10 > S12 > S14 > ⋅ ⋅ ⋅ 当 n 为偶数时, Sn+1 − Sn−1 = 12 − n ≥ 0 即 n ≤ 12 所以 S1 < S3 < S5 < S7 < S9 < S=11 S13 > S15 > ⋅ ⋅ ⋅ 通过比较只需比较 S11 与 S10 的大小即可
当 n 为奇数时,数列{an} 中的奇数项 d1 = 1 , {an} 为递增数列
所以 a11 > 0, S11 > S10 ,所以 S11 = S13 最大.故选 C.
解法二:奇偶分类法 2
①当 n 为偶数时,
Sn
=
a1
+
a2
+
a3
+⋅⋅⋅+
an
=
(a1
+
a2 )
+
(a3
+
a4 )
+⋅⋅⋅+
(an−1
相关文档
最新文档