二、单自由度系统阻尼自由振动

合集下载

单自由度振动系统

单自由度振动系统

单自由度振动系统m质量,k刚度,c阻尼,有时有p激振力单自由度振动系统,指用一个独立参量便可确定系统位置的振动系统。

只要以它的平衡位置取为坐标原点,任一瞬时的质点坐标x(线位移)或 (角位移)就可以决定振动质点的瞬时位置。

根据牛顿定律:mx+cx+kx=F1.单自由度系统无阻尼自由振动mx+kx=0;x+kmx=0;令w m2=k/m,求微分方程的解,得x=c1e iw n t+c2e−iw n t=c1+c2cosw n t+i c1−c2sinw n t=b1cosw n t+b2sinw n t将其合成一个简谐振动,并代入初始条件:t=0时,x=x0,x=x0x=Asin(w n t+φ); A=x2+x02w n2; φ=tg−1x0w nx01.1固有频率系统的圆频率和频率只与系统本身的物理性质(弹性和惯性)有关,因此当振动系统的结构确定后,系统的振动频率就固定不变,而不管运动的初始条件如何,也和振幅的大小无关,因此成为固有圆频率和固有频率。

w n=km ;f n=12πkm1.2固有频率计算方法1)公式法。

根据公式w n=km计算2)静变形法。

根据质量块所处平衡位置的弹簧变形计算。

3)能量法。

根据能量守恒定律,由于无阻尼,无能量损失,12mx2+12kx2=E,将x的方程代入上式,系统的最大动能等于系统的最大弹性势能,计算求出。

4)瑞利法。

考虑到系统弹簧质量的计算方法,如假设系统的静态变形曲线作为假定的振动形式,根据推倒,得出系统的固有频率为w n=km+ρl3,式中加入的部分为“弹簧等效质量”不同振动系统的等效质量不同,只需先算出弹性元件的动能,根据T s =12m s x 2,计算即可。

1.3扭转振动根据扭转运动的牛顿定律 M =I θ,M 为施加到转动物体上的力矩,I 转动物体对于转动轴的转动惯量,θ角加速度。

圆盘转动惯量为I ,轴的转动刚度为kθ。

系统受到干扰后做扭转自由振动,振动时圆盘上受到一个由圆轴作用的与θ方向相反的弹性恢复力矩-K θθ。

单自由度系统的有阻尼自由振动

单自由度系统的有阻尼自由振动

0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18

第三讲单自由度系统的振动(阻尼)解读

第三讲单自由度系统的振动(阻尼)解读

nt i
两端取自然对数得 其中
ln ln e nTd
nT
δ称为对数减缩系数
Td
2
0 1 2
c 0 2 m k
n
对数减缩率δ与阻尼比ζ之间的关系为:
n
2
0 1
2

2 1
2
2
( 2<<1 )
上式表明:对数减缩率δ与阻尼比ζ之间只差2π倍,δ也是反映阻尼
x
这种振动的 振 幅 是 随 时 间 A x0 不断衰减的, 称为衰减振动。 衰减振动的运 动图线如图所 示。 d
Ae nt
衰减曲线的包络线
A1
A2
A3
t
Td
x
由衰减振动的表达式:
Ae
A x0
nt
x Ae
nt
sin(d t )
A1
A2
A3
这种振动不符合周期振 动 f (t ) f (t nT ) 的定
机械振动学
2.1.2.单自由度系统的有阻尼自由振动
1.阻尼
上节所研究的振动是不受阻力作用的,振动的振幅是不随
时间改变的,振动过程将无限地进行下去。
实际中的振动系统由于存在阻力,而不断消耗着振动的能 量,使振幅不断地减小,直到最后振动停止。 振动过程中的阻力习惯上称为阻尼。 阻尼类型: 1)介质阻尼; 2)结构阻尼; 3)库仑阻尼
ωd =ω0 , Td =T
阻尼对振幅的影响
nt 2 2 x Ae sin( n t ) 由衰减振动运动规律: 0
Ae-nt相当于振幅
设在某瞬时ti,振动达到的最大偏离值为Ai有: 经过一个周期 Td ,系统到达另一个 比前者略小的最大偏离值Ai+1

0723第二章单自由度振动系统(讲)

0723第二章单自由度振动系统(讲)

第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。

(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。

此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。

[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。

[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。

忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。

把它们看成是只有惯性而无弹性的集中质点。

于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。

在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。

阻尼器由一个油缸和活塞、油液组成。

汽车轮悬置系统等等。

[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。

所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。

以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。

在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。

有时在振动系统中还作用有一个持续作用的激振力P。

应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。

(牛顿运动定律) (达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零)(动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。

振动系统的自由度和阻尼对振动的影响如何

振动系统的自由度和阻尼对振动的影响如何

振动系统的自由度和阻尼对振动的影响如何一、振动系统的自由度振动系统的自由度是指系统在空间中独立运动的数量。

在物理学中,一个自由度通常指的是一个物体在某个参考系下可以独立运动的程度。

对于振动系统来说,自由度决定了系统的复杂程度和可能的状态。

1.单自由度系统:指系统在空间中只能沿一个方向或一个轴进行振动。

例如,一根弹簧振子就是一个单自由度系统。

2.多自由度系统:指系统在空间中有多个方向或多个轴可以进行振动。

例如,一个弹簧-质量系统,如果它可以在三维空间中的任意方向振动,则它是一个三自由度系统。

二、阻尼对振动的影响阻尼是振动系统中能量耗散的机制,它会使振动的振幅逐渐减小,直至振动停止。

阻尼对振动的影响主要表现在以下几个方面:1.阻尼比:阻尼比是描述阻尼特性的一个参数,定义为阻尼力与恢复力的比值。

阻尼比越大,系统的振动衰减越快,振幅减小得越迅速。

2.阻尼对振动幅值的影响:在初始阶段,阻尼对振动幅值的影响较小,但随着振动时间的增加,阻尼作用逐渐明显,振幅逐渐减小。

3.阻尼对振动周期的影响:阻尼对振动周期没有直接影响,振动周期仅与系统的弹性特性和质量有关。

4.阻尼对振动稳定性的影响:适当的阻尼可以提高振动的稳定性,防止系统发生过度振动或共振。

然而,过大的阻尼可能会导致系统过早地停止振动,影响某些应用中的振动性能。

三、自由度和阻尼的相互作用自由度和阻尼的相互作用表现在以下几个方面:1.自由度越多,系统可能出现的振动状态越多,同时阻尼对振动的影响也越复杂。

2.在多自由度系统中,各个自由度之间的振动可能会相互耦合,使得系统的振动特性更加复杂。

3.阻尼的存在可能会影响自由度之间的耦合关系,从而改变系统的振动特性。

综上所述,振动系统的自由度和阻尼对振动的影响是多方面的,它们相互作用决定了系统的振动特性。

了解这些知识点有助于我们更好地分析和解决实际问题。

习题及方法:1.习题:一个单自由度弹簧振子在无阻尼状态下做简谐振动,其质量为m,弹簧常数为k,振动的初始位移为A。

第二章 单自由度系统

第二章 单自由度系统

M x + c x + kx = meω 2 sin ω t
方程稳态响应可表示为:
M m
x ( t ) = X s in ( ω t )
式中:
m 2 eγ meω M X= = (k ω2M )2 + ω2c2 (1 γ 2 )2 + (2ξγ )2
2
系统的放大因子为:
MX γ2 = me (1 γ 2 ) 2 + (2ξγ ) 2
单自由系统
M
自由振动微分方程
m x + c x + kx = 0
K
无阻尼自由振动方程:
2 x+ ωn x = 0
Hale Waihona Puke C方程解:A=
x x + ωn
2 0 2 0
2
x = A sin (ωn t + ψ )
固有圆频率: 固有圆频率:
ψ = arctan
ω n x0
x0
固有频率: 固有频率:
式中,等效静位移 X 0 = F k 频率比 γ = ω / ωn 振幅放大因子 M = X =
X0
1 (1 γ 2 ) 2 + (2ξγ ) 2
简谐激励下的强迫振动
M= X 1 = X0 (1 γ 2 ) 2 + (2ξγ ) 2
γ = ω / ωn
等效静位移
X0 = F k
简谐激励下的强迫振动
隔振
T 令 TF = TD = TR ,R 叫做传递系数,随 ξ 和 γ 的变化曲线如下图.
位移传递系数 TD和力传递系数 TF 的表达式是完全相同的.
隔振
由图可得到两点结论: 1)无论阻尼比为多少, 只有在 γ > 2 时才有隔振 效果; 2)对于某个给定的 γ > 2 值,当阻尼比减小时,传 递系数也减小.

单自由度系统的振动阻尼

单自由度系统的振动阻尼

无阻尼固有频率:0
kb2 ml 2
b l
k m
c
a b l
ca
ca 2 ml 2
20
ca 2
2ml 20
ca2 2mlb
m k
阻尼固有频率: d 0
1
2
1 2ml 2
4kmb2l 2 c2a4
m k
m
k b ml
1
cc
2bl a2
mk
t
当n>ω0(ζ >1)时,称为大阻尼情形。此时阻尼系数c> cc ;在这种 情形下,特征方程的根为两个不等的实根,即:
r1 n n2 02
r2 n n2 02
微分方程的解为
x ent (C1e n2 02t C2e ) n2 02t
其中C1、 C2为两个积分常数,由运动起始条件来确定,运动图
当振动速度不大时,介质粘性引起的阻力与速度一次方成正 比,这种阻尼称为粘性阻尼。这种阻尼实际上较多,这里将以此 研究。
设振动质点的速度为为v,则粘性阻尼的阻力FC可表示为:
F
cv
负号表示方向
比例常数c称为粘性阻尼系数
振动系统中存在粘性阻尼时,经常用阻尼元件c表示。
一般的机械振动系统都可以简化为:
x 2nx 02 x 0 (1)
其解可设为:
x ert
代入(1)式,得到特征方程:r 2 2nr 02 0
两个特征根为: r1,2 n n2 02
该方程通解为: x C1er1t C2er2t
特征根 r1,2 n n2 02 为实数或复数时,运动规律有很大 不同,因此下面按n<ω0,n>ω0和n=ω0三种不同情形分别进行讨论。
其中
Td

第五章 单自由度系统的振动

第五章 单自由度系统的振动

上式也可改写为
F (t ) c0 ck cos(kt k )

式中
c0 a 0 / 2 ck ak2 bk2 bk k arct an ak
Cx Kx c0 ck cos(kt k ) M x
k 1
k 1
若系统的质量、刚度和阻尼分别为M、K和C,则此时受迫振动的微分方程为
c0相当于一个静载荷,它不引起振动,而只改变系统的静平衡位置。若令
k k
则稳态响应可以写为
ck x k cos(k t k k ) k 1 K
x e ( x0 cosd t
at
也可改写为 式中
d x Aeat sin(d t )
0 ax0 x
0 ax0 x
sin d t )
2 A x0 (
d
)2
arctan
d x0
0 ax0 x
从上面的式子可以看出,这时系统的运动为周期性的振动。其 振动圆频率为d ,称为有阻尼振动的固有频率,它比无阻尼自由振 动的固有频率 n 略小。振幅Ae-at随时间成指数形式衰减。如图给 出了这种衰减振动的响应曲线。

x A sin(nt )
式中:A称为振幅; 称为初相位,单位为rad。 无阻尼自由振动是一个以固有频率为频率的简谐振动。
设初始时刻t=0时的位移为x0、速度为v0,则可得
2 A x0 (v0 / 0 ) 2
x00 arctan 0 x
2、工程实例 机器或结构中的构件受一静负荷后要产生变形,其内 部要产生应力,分别称为静变形和静应力。而当受冲击或 产生振动时,构件要产生动变形和动应力。

第二章机械振动理论基础

第二章机械振动理论基础

工程中常见的振动问题 A 机械中的振动问题 B 结构中的振动问题 C 机械加工过程中的振动问题
振动诊断,就是对正在运行的机械设备或 给非工作状态的系统某种激励,测其振动响 应,对由测量响应得到的各种数据进行分析处 理,然后将结果与事先制订的某一标准进行比 较。进而判断系统内部结构的破坏、裂纹、开 焊、磨损、松脱及老化等各种影响系统正常运 行的故障。依此采取相应的对策来消除故障, 保证系统安全运行。
第三节 单自由度系统的自由振动
自由振动:就是指系统在初始干扰的作用后,仅靠弹性恢
复力来维持的振动形式。其中,系统中不存在阻尼的叫无阻 尼自由振动,而有阻尼的则称之为有阻尼的自由振动。 一.单自由度系统的无阻尼自由振动 1.直线振动 单自由度系统的无阻尼自由振动的力学模型可用弹簧-质 量系统来描述。
个周期内,摩擦力作功为FA,而在一个整周期内作 功总和为 We=4FA 将其代入式 We ,即可求得干摩擦阻尼的等 Ce 效阻尼系数为 A2
4F Ce A
②流体阻尼的等效粘性阻尼 当物体以较高的 速度在粘性较小的流体(包括空气、液体)中运动 时,物体所受的阻力与速度的平方成正比,即有
Wr Fr xdt Ce A2 2 cos2 (t )dt Ce A2
0 0
T
T
由We=Wr可得,等效粘性阻尼系数为
We Ce A2
① 干摩擦阻尼的等效粘性阻尼 干摩擦力F 一般 可近似认为是一个常力。它在整个强迫振动过程中 大小不变,但方向始终与运动方向相反。即在每1/4
x(t ) xi cos(2 fi t i )
i 1

至少有一组fm /fn为无理数
准周期振动时历曲线及频谱图 a-时历曲线 b-频谱图

03-单自由度系统:阻尼自由振动

03-单自由度系统:阻尼自由振动

整理得:
2W 2 2 T1 T gAT 1 T
μ的物理意义是单位面积的阻尼系数。
23
第2章 单自由度系统--阻尼自由振动
24
第2章 单自由度系统--阻尼自由振动
25
第2章 单自由度系统--阻尼自由振动

习题课—单自由度系统阻尼简谐振动

26 Theory of Vibration with Applications
返回首页
--阻尼自由振动 第 2章 --阻尼自由振动 第 2章 单自由度系统 单自由度系统 引言
粘性阻尼-若物体以较大速度在空气或液体中运 动,阻尼与速度平方成正比。但当物体以低速度在粘 性介质中运动(包括两接触面之间有润滑剂时)可以 认为阻尼与速度成正比。
物体运动沿润滑表面的阻力与速度的关系
Fc cx
4 Theory of Vibration with Applications
返回首页
--阻尼自由振动 第 2章 --阻尼自由振动 第 2章 单自由度系统 单自由度系统 引言
• 振动系统的无阻尼振动是对实际问题的理论抽象。 如果现实世界没有阻止运动的话,整个世界将处在 无休止的运动中。客观实际是和谐的,有振动又有 阻尼,保证了我们生活在一个相对安静的世界里。 • 最常见的阻尼是
2 2
xe
nt
(C1e
n2 - p2 t
C2 e
n2 - p2 t
)
临界阻尼(n = p )情形 r1 r2 n
Theory of Vibration with Applications
x e nt (C1 C2 t )
返回首页
第2章
单自由度系统--阻尼自由振动 运动微分方程

单自由度体系的有阻尼振动

单自由度体系的有阻尼振动

m
m
令 c
k11
2m
m
y(t) 2y(t) 2 y(t) 0
其特征方程的根为 (- 2 1)
根据 取值不同,微分方程的解可分三种情况进行讨论
(1)<1,称为低阻尼的情况
特征根为两共轭复根。令c 1 2 则 ic
此时微分方程式的解为 y(t) et (C1cosct C2sinct)
从上式中可以看出,有阻尼的纯强迫振动仍为简谐振动, 其频率和周期都与阻尼无关。但位移比荷载滞后一个相位 角,当动荷载最大或最小时,位移并不是最大或最小,这 与无阻尼情况不同。
2
(4.488s1 )2
2)求阻尼比 及阻尼系数c。
1 ln A0 1 ln 0.005m 0.04
2π A1 2π 0.0039m
c
2m
2W g
2
9730.84103 N 9.8m s2
4.488s1
0.04
356506.2N s m
3)求振动5个周期后的振幅A5
A5
A e 5Tc 0
y(t) y(t) y*(t)
y(t) et (C1 cosct C2 sinct)
y (t) 可由待定系数法确定,设其形式为
y*(t) D1 cost D2 sint
则有
y*(t) D1 sint D2 cost
y*(t) D1 2 cost D2 2 sint
将它们代入微分方程,整理并分别令等号两边cost 和 sint 的相应系数相等,可得
结构力学
单自由度体系的有阻尼振动
一、阻尼与阻尼力
结构在振动过程中会受到周围介质的阻碍。例如,结构与支座 及构件之间各连接部位的摩擦,变形时材料内部的摩擦等等。 这些因素会引起振动能量的耗散,阻滞体系持续振动,我们把 这些因素称为阻尼。阻碍体系中质点运动的力称为阻尼力。

《理论力学 动力学》 第九讲 单自由度系统的有阻尼受迫振动

《理论力学 动力学》 第九讲 单自由度系统的有阻尼受迫振动

2、单自由度系统的有阻尼受迫振动单自由度系统的受迫振动理论单自由度系统的受迫振动理论(1)振动微分方程kOx②恢复力F e , 方向指向平衡位置O ,大小与偏离平衡位置的距离成正比。

kxF -=e ③黏性阻尼力F d , 方向与速度方向相反,大小与速度大小成正比。

d dd x xF cv ct=-=-物块的运动微分方程为:22d d sin()d d x x m kx c H t t tw =--+方程两边同除以m ,并令:(ω0, 固有角频率) , (δ, 阻尼系数),得到:mk =20w 2c md =2202d d 2sin()d d x x x h t t td w w ++=——有阻尼受迫振动微分方程的标准形式①激振力F , 简谐激振力。

sin()F H t w =H h m =解可以写成:12xx x =+x 1 对应齐次方程的通解; x 2 对应的是特解。

欠阻尼的情况下( δ<ω0),齐次方程的通解可写为:1e )t x A d q -=+特解可写为:)sin(2e w -=t b x ε表示受迫振动的相位角落后于激振力的相位角2、单自由度系统的有阻尼受迫振动单自由度系统的受迫振动理论将x 2 代入微分方程,得到:220sin()2cos()sin()sin()b t b t b t h t w w e d w w e w w e w --+-+-=将等式右边的h sin(ωt )做一个变换,得到:sin()sin[()]h t h t w w e e =-+cos sin()sin cos()h t h t e w e e w e =-+-代入微分方程,整理得到:)cos(]sin 2[)sin(]cos )([220=--+---e w e w d e w e w w t h b t h b 对任意瞬时t ,上式都必须是恒等式,所以有:cos )(220=--e w w h b 0sin 2=-e w d h b 2222204)(wd w w +-=hb 2202tan w w dwe -=于是,微分方程的通解为:e)sin()tx A b t d q w e -=++-式中,A 和θ为积分常数,由运动的初始条件确定。

二、单自由度系统阻尼自由振动解析

二、单自由度系统阻尼自由振动解析
coefficient)记为,cc
cc 2 km 2mn
阻尼比
▪ 令 c c c ,称为阻尼比或者相 cc 2 km 2mn
对阻尼系数。是一个无量纲的数, 是一个重要
振动参数。
▪ 表征一个振动系统阻尼的大小:
▪ 1 表示大阻尼,
▪ 1 表示临界阻尼,
▪ 1 表示小阻尼。
微分方程和解的表达方式
▪由
n
k m
,和
c m
c cc
cc m
2mn
m
2n
▪ 原来的微分方程可以改写成:
x 2n x n2x 0
▪ 特征根:s1,2 2 1 n
大阻尼情况的讨论
▪ 当 1,方程的特征根 s1,2 2 1 n , 均为实数,方程的通解为:
x e Ae A e nt
2 1nt
1
2 1nt
2
▪ A1, A2 与初始条件 x0 , x0 有关,
A1,2
1 2
x0
x0
n x0 2 1 n
大阻尼系统的运动特点
▪ 可以证明,x e Ae A e nt
2 1nt 1
2 1nt 2
越过平衡位置的次数至多有一次。
x
·x0
x
·x0
x
x0
x0
t
x0
·x0
x0
n d
x0
tan1 x0 n x0 d x0
小阻尼的运动曲线
▪ 如图所示的为衰减振 5
动。在 cos(dt ) 1 4
的时候,物体的运动 3
2
曲线和曲线:
1
振幅
x Aent
相切, 0 -1
在切点的x值的绝对 -2

《振动力学》2单自由度系统自由振动

《振动力学》2单自由度系统自由振动

单位:弧度/秒(rad/s)
则有 : &x& + ω02 x = 0
通解 : x(t) = c1 cos(ω0t) + c2 sin(ω0t) = Asin(ω0t + ϕ)
c1, c2: 任意常数,由初始条件决定
振幅 : A = c12 + c22
初相位 : ϕ = tg −1 c1
c2
4
单自由度系统自由振动
解法2:
平衡位置2
动能 T = 1 Iθ&2 = 1 ml2θ&2
最大位移位置,系统动 能为零,势能达到最大
ω0 = k / m
T +V = const
Tmax = Vmax
Tmax = 0
Vmax
=
1 2
kxm2 ax
m
k
最大位移位置
0
xmax
静平衡位置
x
x&max = ω0 xmax
x 是广义的 对于转动: θ&max = ω0θmax
x(t) = Asin(ω0t + ϕ) 30
无阻尼的质量弹簧系统受到初始扰动后,其自由振动是以 ω0 为频率的简谐振动,并且永无休止。
x
T = 2π / ω 0
初始条件的说明:
初始条件是外界能量输入的一 x0
A
种方式,有初始位移即输入了 弹性势能,有初始速度即输入 了动能。
ϕ0
ω0
t
9
单自由度系统自由振动
零初始条件下的自由振动:
x(t)
=
x0
&x& + ω02 x = 0
ω0 =
k m

第二章-单自由度系统的自由振动-yyt

第二章-单自由度系统的自由振动-yyt

x(t ) A sin(nt )
振幅: A
arctan 初相位:
固有频率
x 0 x n n x0
2 0
2
x 0
n
k m
21
2.3 单自由度无阻尼自由振动—实例
例2 提升机系统。重物W=1.47x105N,钢丝刚度k=5.78x104N/cm。重物以 v=15m/min的速度匀速下降,求绳的上端突然卡住时, (1)重物的振动频率;(2)绳中最大张力。 gk 解:振动(自然)频率 n 19.6 rad / s W
证明:动能 T 1 mx 2
2
势能 V mgx k ( x )dx mgx k x
0

x
1 2 1 2 kx kx 2 2
T V const
2 kx2 const mx
两边求导并整理: (m kx) x 0 x
不恒等于0: x
Tmax Vmax
29
零平衡位置
能量方法:
解:广义坐标θ,平衡位置设置零坐标如图
显然,系统的振动方程为: (t ) cos(nt ) θ
(t ) sin( t ) 则,角速度为: n n
有 max 最大动能 Tmax
max n
弹簧-质量-阻尼系统
4
2.1 基本概念(实际结构简化)
m
m
5
2.1 基本概念

振动方式:自由振动

系统在初始时只受到一个外界扰动,此后并不受其他 力的作用而发生的振动。
O
θ l
mg
6
7
2.1 单自由度系统的自由振动

第二章 单自由度系统的振动11

第二章 单自由度系统的振动11

其中 -柔度系数(单位力作用下相应的位移) k –刚度系数(单位位移作用下所需加的力) g –重力加速度
W
–重力 yst –重力引起的位移
例1) 、试建立图示结构的运动方程(考虑阻尼)并求自振频率 (不计阻尼)。设横梁刚度无限大, 柱 EI 4.5 106 Nm2 梁的质量 m=5000kg。h=3m 解:由于横梁刚度无穷大,结构只能产生水平 h EI 位移。设x坐标向右。二柱的侧移劲度系数为: 12 EI k k1 k2 3 = h 2 y P(t) m 又设横梁(质量m)位移为y,以它为隔离 体,受力如图所示。 F F cy
仅在P(t)作用下m的位移由位移计算得 因此在所示“外力”下,质量的位移为
f I my
f d cy
cy ) P y ( my
例5)、 试建立图示质量、弹簧、阻尼器 抽象化模型的运动方程。 解:设质量水平位移为u,向右为正。 以m为隔离体,加上惯性力fI、阻尼力 fd如图所示,此外还有弹簧的弹性恢复 力fe 。根据达朗泊尔原理和阻尼假定
F F 1 sin t = sin t 2 2 2 2 (1 2 ) m m k 1 2 m m k 又 则 m 1 2 y(t )
F sin t yst sin t k
故 振幅(振动的最大值)
ymax yst or ymax / yst
例2-5 结构参数如例1,若使m产生侧移25mm,然后突 然放开,刚架产生自由振动,振动5周后测得的侧移为 7.12mm,试求1)考虑阻尼时的自振频率,2)阻尼比 和阻尼系数,3)振动10周后的振幅。
解:由y0=25mm和y0+5Td=7.12mm,求阻尼比和阻尼系数。

结构振动理论2-单自由度系统自由振动

结构振动理论2-单自由度系统自由振动

由 dE 0 1、求出运动方程: mx kx 0
dt
有常力作用的机械能: E 1 mx&2 1 k( x)2 Fx
2
2
dE mx&&x& k( x)x& Fx& x&(m&x& kx) 0
dt
由 Ek max E p max E 2、求固有频率
假设 x Asin( pt ) 则 x Apcos(pt )
2
l 0
/
2
y02{3(
x l
)
4(
x l
)3}2
dx
1 2
0.486
ly02
Ek
1 2
me
y02
me 0.486 l
n
ke me
00:03
单自由度系统自由振动
例 铰接式直升机旋翼挥舞振动分析
取微元做受力分析,微元
cos
R
L
2(R cos)d 离心力对铰链轴o的力矩为
θ
ξ
(2 (R cos )d )( sin )
则系统的自由振动方程为: me ke 0
固有频率为:
n
ke me
需要注意的是,me不是梁的总质量,它可以通过梁上各 点位移关系和动能等效的原则求得。
00:03
单自由度系统自由振动
y( x, t )
y0
(t
)[3x l
4(
x )3 ] l
(x 1) l2
Ek
1 2
l y2dm 1 2
0
由此可见,弹性元件并联将提高总刚度,串联将降低总刚
度。这与电学中电阻的并联、串联结论是相反的。阻尼器串联

第03课 单自由度系统:阻尼自由振动

第03课 单自由度系统:阻尼自由振动

式(2.3-1)可以写成
2 ɺɺ + 2ζω n x + ωn x = 0 ɺ x
(2.3-3)
根据 ζ 的大小,可得到三种不同形式的解:弱阻尼,临界阻尼和过阻尼。
粘性阻尼振动系统
(1) ζ < 1 ,此时为弱阻尼(欠阻尼,underdamped)情况,此时特征值 为二共轭复根
2 2 s1, 2 = (− ζ ± i 1 − ξ 2 )ωn c k c k c − ± − > 方程(2.3-3)的通解为 2m 2m m 2m m 2 −c i 1−ξ ω t −ζ − i 1−ξ ω t k ζ + + B e c x(t= − ) = B1e s1,2 2 = 2m 2m m =−ζω t (A1 cos 1 − ξ 2 ω n t + A2 sin ω n t ) = Ae −ζω t cos(ω d t − ϕ ) e 2 2 k c k c −1 - c2 ω±叫做阻尼固有频率。粘性阻尼系统的自由振动,其位 − < 式中 ωd = ζ n i 2m m 2m 2m m 移是一个具有振幅随时间按指数衰减的减小振动。 实际阻尼小于临界阻尼的系
πd 2
2
d c = 4πLµ D
2
粘性阻尼
若物体以较大速度在空气或液体中运动,阻 尼与速度平方成正比。但当物体以低速度在 粘性介质中运动(包括两接触面之间有润滑 剂时)可以认为阻尼与速度成正比。
粘性阻尼振动系统
在线性振动理论中规定, 由粘性阻尼引起的粘性阻尼力的大小 与相对速度成正比,方向与速度方向相反。阻尼系数 c 为常数。单 自由度系统阻尼振动的模型如图所示,与阻尼自由振动相比,增加 一个阻尼器。按照前面讲述的建立系统运动微分方程的方法可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

▪由
n
k m
,和
c m
c cc
cc m
2mn
m
2n
▪ 原来的微分方程可以改写成:
&x& 2n x& n2x 0
▪ 特征根:s1,2 2 1 n
大阻尼情况的讨论
▪ 当 1,方程的特征根 s1,2 2 1 n , 均为实数,方程的通解为:
x e Ae A e nt
是相邻两次的振幅,对应的时间分别为:t1 和 t2 ,则:t2 t1T d
▪ 可得:
x1 x2
Aent1 Aen t1Td
enTd
1
▪ 在一个周期后,幅值缩减到原来的 enTd
衰减数据
▪ 在 0.05的情况下,在一个周期振幅减小27%,
经过10个周期,振幅减小到原来的4.3%。可见, 只要有微弱的阻尼,就可以使振动迅速衰减。
小阻尼系统的运动特点
▪ 当 1 ,特征方程的根
s1,2 n j 1 2 n
▪ 令: d 1 2 n
解的三角形式
▪ 方程可以写成:
x ent C1 cosdt C2 sindt Aent cos(dt )
, ,
▪ 由初始条件,
C1 x0
C2
x&0 n x0 d
2
A
x02
coefficient)记为,cc
cc 2 km 2mn
阻尼比
▪ 令 c c c ,称为阻尼比或者相 cc 2 km 2mn
对阻尼系数。是一个无量纲的数, 是一个重要
振动参数。
▪ 表征一个振动系统阻尼的大小:
▪ 1 表示大阻尼,
▪ 1 表示临界阻尼,
▪ 1 表示小阻尼。
微分方程和解的表达方式
5
10
15
20
时间
阻尼振动的特点
▪ 由于有衰减项的存在,因此阻尼振动既不 是简谐的,也不是周期的。而是随着时间t 趋于无穷时,振幅逐渐衰减为零,系统趋 于静止。这是阻尼自由振动和无阻尼自由 振动的主要区别之一。
阻尼振动的数字特征
▪ 习惯上,将函数 cos(dt ) 的周期称为衰
减振动的周期,故衰减振动的周期和频率 分别为:
车辆中广泛存在的阻尼
▪ 在车辆当中,广泛存在的阻尼有,悬挂/悬 架系统的减振器,轮胎的橡胶和其他各种 橡胶支撑,液体(浸没在液体中振动物 体),摩擦表面(离合器),金属橡胶等。
液压减振器工作原理
活塞缸
活塞运动方向
液流方向 阻尼孔
活塞
流体具有黏滞性而产生能耗及阻尼作用,称黏性阻尼;制有小 孔的阻尼器,当流体通过小孔时,形成涡流并损耗能量,所以 小孔阻尼器的能耗损失实际上包括黏滞损耗和涡流损耗。
Td
2 d
T
1 2
2 1 2 n
fd
d 2
1 2 f
1 2 n 2
阻尼对频率和周期的影响
▪ 可见,阻尼的存在,使系统的振动频率降
低,振动周期延长。但有的时候,阻尼的
存在对于周期和频率的影响,可以略去不
计。
1 1 1 x2 o(x2)
1 x2
2
1 x2 1 1 x2 o(x2) 2
f (x) ~
n0
f
(n) ( x0 ) ( x n!
x0 )n
忽略阻尼影响的条件
▪ 根据上述展开,大家可以口算当 0.05和 0.3 时,系统的周期和频率变化幅度。
▪ 所以,当时 0.3 ,通常忽略阻尼对固 有频率和周期的影响
阻尼对振幅的影响
▪ 阻尼对与振幅的影响非常大。设 x1 和 x2分别
单自由度系统阻尼自由振动
引言
▪ 惯性体由于任何外力原因离开平衡位置之 后,只受到和位移成比例的恢复力作用, 惯性体将在平衡位置附近按照其固有频率 进行简谐振动。由于没有能量耗散,系统 的机械能保持守恒。振动无限期的进行下 去。
引言
▪ 对于实际的振动系统,由于不可避免的存 在各种阻尼,振动系统的机械能不断转化 为其他形式的能,造成振幅衰减,以致最 后振动完全停止。
有: U 2
U1
证明
▪ 设第一个位移最大值 x1 ,相邻的位移最大 值 x2 ,则相应的机械能为:
U1
1 2
kx12
U2
1 2
kx22
2
U U1
U1 U2 U1
1
x2 x1
证明
2
▪ 由 ln x1
x2
,从而
x2 x1
e2
▪ 对 e2 进行Taylor展开
e2 1 2 4 2 8 3 L
轮胎的阻尼




压缩

复原
O
轮胎变形量
耗能量由分析恢复力——轮胎变形所包围的面积得到
单自由度粘性阻尼的自由振动
▪ 以物体的平衡位 置为原点,水平 方向为x轴正向, 建立如图所示的 坐标系。
O k
c
x m x
kx
m c·x
微分方程的建立
▪ 根据受力分析,和初始条件,可以得到下 面的微分方程。
m&x& cx& kx 0 x(0) x0, x&(0) x&0
c 2m
2
k
微分方程的通解
▪ 微分方程的通解为: x Bes1t Des2t
▪ B, D 为任意常数,由运动的初始条件决定。 而解的形式,决定于 s。1, 随s2 着阻尼系数
的不同,特征方程可以有两个不等的负实 根,相等的负实根和一对共轭复根。
临界阻尼系数
▪ 使特征方程有两个相等负实根的阻尼系数 值,称为临界阻尼系数(critical damping
·x0
t
t
临界阻尼情况的讨论
▪ 当 1 ,特征方程的根 s1,2 n
▪ 由微分方程的理论,方程的解为:
x A1ent A2tent
▪ 代入初始条件可得:
A1 x0, A2 x&0 n x0
临界阻尼系统的运动特点
▪ 可见,临界阻尼下的系统的运动也不是振 动,但在相同的条件下,临界阻尼的系统 的自由运动最先停止,因此,仪表都将系 统的阻尼设置为临界阻尼。
2! 3!
▪ 当阻尼很小的时候, = 1 , 2 = 1
U 2 4 2 8 3 L 2
U1
2! 3!
x&0
n d
x0
tan1 x&0 n x0 d x0
小阻尼的运动曲线
▪ 如图所示的为衰减振 5
动。在 cos(dt ) 1 4
的时候,物体的运动 3
2
曲线和曲线:
1
振幅
x Aent
相切, 0 -1
在切点的x值的绝对 -2
值 Aent
称为振幅。 -3 -4
-5 0
小阻尼振动曲线
2 1nt
1
2 1nt
2
▪ A1, A2 与初始条件 x0 , x&0 有关,
A1,2
1 2
x0
x&0
n x0 2 1 n
大阻尼系统的运动特点
▪ 可以证明,x e Ae A e nt
2 1nt 1
2 1nt 2
越过平衡位置的次数至多有一次。
x
·x0
x
·x0
x
x0
x0
t
x0
▪ 从上式可以看出,如果两个振动系统的固有频率相 同,则阻尼比较大的系统自由振动衰减得较快,这 也说明阻尼比表示了系统消耗振动能量的能力。如 果两个振动系统的阻尼比相同,则固有频率比较大 的系统自由振动衰减得较快,这也就是常说的; “高频成分衰减快”在单自由度系统时的情况。
对数缩减率
▪ 前后相邻的任意两次振动的振幅之比的自 然对数,称为对数缩减率,记为:
ln
x1 x2
nTd
▪ 由于: Td
T
1 2
可得:
2 1 2
▪ 当在小 = 1 的时候,有 2
对数缩减率的作用
▪ 由 2 ,可以求出
1 2
4 2 2
▪ 当在
=
1
的时候, 2 ,
2

为了便于测量, 通常由
1 n
n
1 ln xt n xtn
获得
例子
▪ 试证明:在衰减振动中,在相邻两个位移 最大值消耗的机械能U,与开始时的机械 能 U1 之比为常量,在阻尼很小的时候,
方程求解
▪ 由于方程为齐次的,因此,方程的解具有 如下形式:
x est
▪ 将解的形式带入微分方程:
s2
c m
s
k m
e
st
0
特征方程及其解
▪ 由于est 0 ,因此,要想方程成立;
▪ 必须: s2 c s k 0 称为微分方程 的特 征方程 m m
▪ 可以解出它的两个根:
s1,2
c 2m
阻尼定义
▪ 阻尼是用来衡量系统自身消耗振动能量能 力的物理量 。
线性阻尼
▪ 又称粘性阻尼,由粘性阻尼引起的粘性阻 尼力的大小与相对速度成正比,方向与速 度方向相反。阻尼系数为常数。
▪ 为了研究方便,通常将阻尼进行线性化, 线性化的方法是等效原则。即在运动过程 中,线性阻尼和原非线性阻尼吸收的能量 一样多。
相关文档
最新文档