多面体和旋转体最新版

合集下载

高二-11-多面体与旋转体

高二-11-多面体与旋转体

1、多面体定义为:由三角形或平面多边形围成的封闭几何体;如:棱柱、棱锥、棱台等几何体都是多面体.2、多面体可以用它的面的数量进行命名,有几个面的多面体就叫做几面体;例如,三棱锥有一个底面和三个侧面,所以是四面体;长方体(四棱柱)有六个面,是六面体.一般地,一个n 棱锥,有一个底面和n 个侧面,所以是n +1面体;n 棱柱或n 棱台有两个底面和n 个侧面,所以是n +2面体;由此可见,面数最少的多面体是四面体,即三棱锥.3、四面体在立体几何中的作用相当于三角形在平面几何中的作用.4、与平面上的正多边形类比,在空间中可以考虑正多面体.如果一个多面体的所有面都是全等的正三角形或正多边形,每个顶点聚集的棱的条数都相等,这个多面体就叫做正多面体.有正四面体、正六面体、正八面体、正十二面体、正二十面体共5种.【例1】下列说法正确的是( )A .多面体至少有3个面B .有2个面平行,其余各面都是梯形的几何体是棱台C .各侧面都是正方形的四棱柱一定是正方体D .棱柱的侧棱相等,侧面是平行四边形【难度】★第11讲 多面体与旋转体 知识梳理例题分析 模块一:多面体 ~~~~~~~~~~~~~~~~~~~~~~~~~【例2】“阿基米德多面体”是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.将正方体沿交于一个顶点的三条棱的中点截去一个三棱锥,如此截去八个三棱锥得到一个阿基米德多面体,则该阿基米德多面体的棱有条.【难度】★★【例3】图中的十面体的面是由四个正五边形,四个三角形和两个正方形组成的,则图中上正方形面积是下正方形面积的()倍.A.1B.2C.3D.4【难度】★★【难度】★★【例5】如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.【难度】★★1. 由一个平面封闭图形绕其所在平面上的一条定直线旋转一周所形成的空间封闭几何体称为旋转体;这条直线叫做该旋转体的轴.2. 与旋转体类似地可以定义空间中的旋转面:一条平面曲线(包括直线、折线等)绕其所在平面上的一条直线旋转一周所形成的空间图形称为旋转面.3. 圆柱、圆锥和圆台的概念(1)圆柱、圆锥和圆台的定义将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台.(2)与圆柱、圆锥、圆台有关的概念绕着旋转的这条直线叫做轴;垂直于轴的边旋转而成的圆面叫做底面;不垂直于轴的边旋转而成的曲面叫做侧面;无论旋转到什么位置,这条边都叫做母线.模块二:旋转体 ~~~~~~~~~~~~~~~~~~~~~~~~~ 例题分析知识梳理【例1】已知直角梯形ABCD,现绕着它的较长底CD所在的直线旋转一周,所得的几何体包括()A.一个圆柱、一个圆锥B.一个圆柱、两个圆锥C.一个圆台、一个圆柱D.两个圆柱、一个圆台【难度】★【例2】给出以下四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是__________.【难度】★【例3】下列给出的图形中,绕给出的轴旋转一周,能形成圆台的是()A.B.C.D.【难度】★【例4】已知AB是直角梯形ABCD与底边垂直的一腰(如图).分别以AB,BC,CD,DA为轴旋转,试说明所得几何体是由哪些简单几何体构成的?【难度】★★【例5】一个直角梯形的两底长为2和5,高为4,将其绕较长的底旋转一周,求所得旋转体的表面积.【难度】★★【难度】★★【例8】将一个边长为2的正三角形以其一边所在直线为旋转轴旋转一周,所得几何体的表面积为.【难度】★★【例9】已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内,过点C作l⊥CB,以l为轴将梯形ABCD旋转一周,求旋转体的表面积.【难度】★★【例1】如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5AB BC ==,3CD =.(1)求二面角A DC B −−的大小;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求△ACD 的三边在旋转过程中所围成的几何体的体积.【难度】★★【例2】已知在直角三角形ABC 中,AC BC ⊥,2,tan 22BC ABC =∠=(如图所示)(1)若以AC 为轴,直角三角形ABC 旋转一周,求所得几何体的表面积.(2)一只蚂蚁在问题(1)形成的几何体上从点B 绕着几何体的侧面爬行一周回到点B ,求蚂蚁爬行的最短距离.【难度】★★模块三:旋转体综合问题 ~~~~~~~~~~~~~~~~~~~~~~~~~ 例题分析1. 一个多面体至少有 个面.【难度】★2. 下列说法中,正确的是( )A .底面是正多边形,而且侧棱长与底面边长都相等的多面体是正多面体B .正多面体的面不是三角形,就是正方形C .若长方体的各侧面都是正方形,它就是正多面体D .正三棱锥就是正四面体【难度】★3. 如图,多面体的顶点数是 、棱数是 、面数是 .【难度】★4. 将一个正方体切一刀,可能得到的以下几何体中的种类数为( )①四面体;②四棱锥;③四棱柱;④五棱锥;⑤五棱柱;⑥六棱锥;⑦七面体A .3种B .4种C .5种D .以上均不正确 【难度】★★5. 边长为2的正方形ABCD 绕BC 旋转形成一个圆柱,则该圆柱的表面积为 .【难度】★★师生总结 巩固练习7. 正多面体各个面都是全等的正多边形,其中,面数最少的是正四面体,面数最多的是正二十面体,它们被称为柏拉图多面体.如图,正二十面体是由20个等边三角形所组成的正多面体.已知多面体满足:顶点数-棱数+面数2=,则正二十面体的顶点的个数为( )A .30B .20C .12D .10【难度】★★8. 多面体欧拉定理是指对于简单多面体,其顶点数V 、棱数E 及面数F 间有著名的欧拉公式:2V E F −+=,并且多面体所有面的内角总和为(2)360V −⋅.已知某正多面体所有面的内角总和为3600,且各面都为正三角形,设过每个顶点的棱数为n ,则该正多面体的顶点数V = ,棱数E = .【难度】★★9. 用斜二测画法画一个水平放管的平面图,其直观图如图所示,已知3A B ''=,1B C ''=,3A D ''=,且A D B C ''''∥.(1)求原平面图形ABCD 的面积;(2)将原平面图形ABCD 绕BC 旋转一周,求所形成的几何体的表面积和体积.【难度】★★10. 正多面体也称柏拉图立体,被喻为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求二面角A BF C −−的余弦值.【难度】★★1. 2021年10月,麻省理工大学的数学家团队解决了n 维空间中的等角线问题等角线是组直线,这组直线中任意两条直线所成的角都相等.三维空间中,最大的等角线组有6条直线,它们是连接正二十面体的12个相对顶点形成的6条直线.已知棱长为1的正二十面体,其外接球半径为10254+,则三维空间最大等角线组中,任意两条直线形成的角的大小为 (精确到0.1°)【难度】★★★能力提升【难度】★★★。

人教版高中数学必修2-1.1《多面体与旋转体概念、棱柱》名师课件

人教版高中数学必修2-1.1《多面体与旋转体概念、棱柱》名师课件
棱柱的定义: 两个平面互相平行,其余各面都是四边形,并且每相邻两个四边
形的公共边都互相平行,由这些面围成的多面体称为棱柱.
知识回顾 问题探究 课堂小结 随堂检测
在棱柱中,两个互相平行的面叫做棱柱的底面; 其余各面叫做棱柱的侧面; 相邻侧面的公共边叫做棱柱的侧棱; 侧面与底面的公共顶点叫做棱柱的顶点.
知识回顾 问题探究 课堂小结 随堂检测
●活动② 巩固基础,检查反馈
例1 以下那种几何体属于多面体?( D )
A.球
B.圆柱
C.圆锥
【思路点拨】直接套用定义.
D.四面体
例2 下列说法中正确的是( D )
A.棱柱的两个互相平行的平面一定是棱柱的底面
B.棱柱中所有的棱长都相等
C.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形
想一想,我们应该给上述两大类几何体取个什么名称才好呢?
知识回顾 问题探究 课堂小结 随堂检测
第一类:由若干个平面多边形围成的几何体叫做多面体. 围成多面体的各个多边形叫做多面体的面; 相邻两个面的公共边叫做多面体的棱; 棱与棱的公共点叫做多面体的顶点. 按围成多面体的面数,多面体分为:四面体、五面体、六面体、……
多面体与旋转体概念、棱柱
知识回顾 问题探究 课堂小结 随堂检测
检测下预习效果:
点击“随堂训练” 选择“《多面体与旋转体概念、棱柱》预习自测”
知识回顾 问题探究 课堂小结 随堂检测
探究一:归纳提炼出多面体与旋转体,棱柱的定义★
●活动① 归纳提炼概念 观察课本P2图1.1-1的物体,观察思考,发现上图中的物体大体可分为 两大类.其中: (2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都 是平面图形,并且都是平面多边形; (1),(3),(4),(6),(8),(10),(11),(12)具有相同的特点:组成它们的面不全是平面 图形.

简单旋转体与多面体PPT课件

简单旋转体与多面体PPT课件

A' D
B'
L
c
C
=A B 2A D 2D D 2
=a2b2c2
A
a
b
B
L= a2b2c2
第36页/共38页
B组---2、
第37页/共38页
感谢您的观看!
第38页/共38页

半圆 直径 所在的直线
第31页/共38页
二、多面体的结构特征
多面体
结构特征
棱柱
有两个面 互相平行 ,其余各面都是四边形,并 且每相邻两个面的交线都_平__行__且__相_等___
有一个面是 多边形 ,而其余各面都是有一个公共 棱锥 __顶__点
的三角形
棱台
棱锥被平行于 底面 的平面所截, 截面 和 底面 之间的部分
三棱锥 四面体 直棱锥
四棱锥 正棱锥
第27页/共38页
五棱锥
2. 棱台
用一个平行于棱锥底面的平面去截棱锥 ,底面与截面之间的部分的多面体叫做棱台.
A1
D1
C1
B1
上底面
侧棱 侧面
下底面
正棱台:用正棱椎截得的棱 台叫正棱台
四棱台ABCD--A'B'C'D'
顶点
第28页/共38页
几何体的分类
柱体
锥体
D.圆锥所有的轴截面是全等的等腰三角形
2. 下列命题是真命题的是( )
A 以直角三角形的一直角边所在的直线为轴旋转所得 的几何体为圆锥;
B 以直角梯形的一腰所在的直线为轴旋转所得的旋转 体为圆柱;
C 圆柱、圆锥、棱锥的底面都是圆;
D 有一个面为多边形,其他各面都是三角形的几何体 是棱锥。

多面体与旋转体 高二数学(沪教版2020必修第三册)

多面体与旋转体 高二数学(沪教版2020必修第三册)
由此可见,面数最少的多面体是四面体,即三棱锥.四面体在 立体几何中的作用相当于三角形在平面几何中的作用.例如, 平面上的多边形都可以由三角形拼合而成,而空间中的多面体 都可以由四面体拼合而成.
与平面上的正多边形类似,在空间中可以考虑正多面体.如果一个 多面体的所有面都是全等的正三角形或正多边形,每个顶点聚集的 棱的条数都相等,这个多面体就叫做正多面体(regularp olyhedron).图113 1给出了五种不同的正多体.事 实上,用本节“课后阅读”中所介绍多面体的欧拉定理,可以验证 只有这五种正多面体.
旋转面是大学空间解析几何课程中的 内容之一.我们这里只关注最简单的 情况:一条直线a绕同一平面内的另
一条直线l旋转一周所形成的曲面: 圆柱面或圆锥面.当直线a与直线l平 行时,得到的是圆柱面;当直线a与 直线l相交(但不垂直)时,得到的 是圆锥面(图1133).直线a称
为圆柱面或圆锥面的母线.在圆锥面
课本练习
1.我国古代数学著作《九章算术》中研究过一种叫“鳖(biē)臑 (nào)”的几何体(见《九章算术》卷第五“商功”之一六),它 指的是由四个直角三角形围成的四面体.用你学过的立体几何知识说 明这种四面体确实存在
如图,先作一个底面为直角三角形的直棱柱AEF—BDC,其中∠BCD 是直角。 用平面ACD截此直三棱柱,则几何体A-BCD就是满足要求的“鳖臑”,这是 因为AB⊥平面BCD,所以△ABD、△ABC是直角三角形;又已知∠BCD为直 角,所以△BCD是直角三角形;最后,由CD⊥平面ABCF,推出CD⊥CA,即 ∠ACD为直角,所以△ACD是直角三角形。这样几何体A—BCD的四个面都是 直角三角形,即它是一个“鳖臑”。
我们迄今所见的多面体(如棱柱、棱锥、正多面体等)都是简单多 面体.但要构造一个非简单多面体也不难.如图11-3-4,这是 一个中间有一个长方体空洞的十六面体,往这样的橡胶多面体充气, 得到的是一个游泳圈,而不是球.算一算,对于图11- 3- 4的 多面体,V+F-E等于多少.

高中数学中的多面体和旋转体

高中数学中的多面体和旋转体

多面体和旋转体是高中数学中的重要概念,它们在几何学中起着重要的作用。

本篇文章将介绍多面体和旋转体的基本概念、性质以及它们在实际生活中的应用。

一、多面体多面体是指由若干个平面多边形围合而成的三维几何体。

每个面都是一个平面多边形,并且相邻两个面的公共边是相交于一点的。

多面体分为凸多面体和凹多面体,如果一个多面体的任何一个面都在另一个面的外部,则这个多面体是凸多面体;否则,这个多面体是凹多面体。

1. 多面体的性质(1)多面体的顶点数V和面数F之间有如下关系:V = F + E - 3,其中E表示边数。

这个公式称为欧拉公式。

(2)多面体的棱数E和面数F之间有如下关系:E = 3F - E - F,这个公式称为欧拉-斯图姆定理。

(3)多面体的对角线数D和面数F之间有如下关系:D = 2F - 4,这个公式称为拉格朗日定理。

2. 多面体的应用(1)多面体在计算机图形学中有着广泛的应用,例如,计算机生成的三维图形通常都是由许多平面多边形构成的。

(2)多面体在机械制造中也有着重要的应用,例如,制造凸轮、齿轮等零件时需要使用凸多面体或凹多面体的概念。

二、旋转体旋转体是指由一条平面曲线绕着它所在的平面内的一条定直线旋转所生成的立体。

曲线称为旋转体的母线,定直线称为旋转体的轴。

1. 旋转体的性质(1)如果一个旋转体的底面是一个圆,则这个旋转体一定是圆柱或圆锥;如果这个圆的半径等于旋转体的底面半径,则这个旋转体是圆柱;否则,这个旋转体是圆锥。

(2)如果一个旋转体的底面是一个椭圆或其他平面曲线,则这个旋转体一定是圆台或球;如果这个椭圆或其他平面曲线是旋转体的底面半径的倍数,则这个旋转体是圆台;否则,这个旋转体是球。

2. 旋转体的应用(1)旋转体在建筑工程中有着广泛的应用,例如,圆柱形和球形建筑物的外壳是由旋转体的概念构成的。

(2)旋转体在油管和通风管道的设计中也有着重要的应用。

认识多面体和旋转体课件

认识多面体和旋转体课件
感谢观看
体积计算
对于多面体,体积可以通过计算各个 面的体积之和得到。对于旋转体,体 积可以通过计算底面圆的体积或整个 旋转体的体积得到。
角度和弧度的计算
角度计算
在多面体中,角度可以通过测量各个 面之间的夹角得到。在旋转体中,角 度可以用来描述旋转体的旋转角度。
弧度计算
在旋转体中,弧度可以用来描述旋转 体的旋转程度,通常用于旋转轴的角 度测量。
旋转体的建模
旋转体的建模可以使用旋转几何公式进行,例如圆柱和圆锥可以使用旋转面的几何公式进行建模。
建模方法的比较和选择
01 02
精度和复杂性
使用CAD软件进行建模可以获得高精度的模型,但需要一定的技能和经 验。而使用数学公式进行建模可以创建相对简单的模型,但对于复杂模 型可能不够精确。
适用范围
CAD软件适用于各种类型的多面体和旋转体建模,而数学公式适用于某 些特定类型的模型,例如正多面体和旋转体。
在科学研究和教学中的应用
多面体和旋转体的科学研究价值
多面体和旋转体的研究涉及到几何学、拓扑学、物理学等多个学科领域,对于推动数学 和科学的发展具有重要意义。
多面体和旋转体的教学价值
在数学和工程学科的教学中,多面体和旋转体是重要的教学素材,有助于培养学生的空 间思维、几何直觉和解决实际问题的能力。
THANKS
该直线称为旋转轴, 平面图形称为旋转面 。
旋转体的分类
根据旋转面的形状,旋转体可以 分为圆柱、圆锥、圆台等类型。
根据旋转轴的方向,旋转体可以 分为正轴和斜轴两类。
根据旋转轴与旋转面的关系,旋 转体可以分为直纹和单叶两类。
旋转体的性质
旋转体的侧面是曲面,其展开 后是平面图形。
旋转体的体积和表面积与旋转 面和旋转轴的形状、大小和位 置有关。

《多面体旋转体》PPT课件

《多面体旋转体》PPT课件

27
棱锥的分类:按底面多边形的边数
分别称底面是三角形,四边形,五边形……的 棱锥为三棱锥,四棱锥,五棱锥……
正棱锥:
底面是正多边形,顶点在底面上的射影是底面正 多边形的中心的棱锥叫正棱锥。
整理ppt
28
正棱锥性质 : (1)正棱锥的各侧棱相等, (2)各侧面是全等的等腰三角形, (3)各等腰三角形底边上的高相等, (4)侧棱和底面所成角相等,侧面与底面所 成角相等,相邻两侧面所成角相等。
侧面
侧棱
整理ppt
底面
10
思考3:下列多面体都是棱柱吗?如何在 名称上区分这些棱柱?如何用符号表示?
D1 C1
E1
A1
B1
D E
A
C
B D1
A1
D
C1 B1
C B
A1
A
C1
B1 C
D1 A1
C1 B1
D
C
B
A
整理ppt
A
B
11
思考4:棱柱上、下两个底面的形状大小 如何?各侧面的形状如何?
两底面是全等的多边形,
整理ppt
2
(一):空间几何体的类型
思考1:观察下列图片,你知道这图片在 几何中分别叫什么名称吗?
整理ppt
3
整理ppt
4
思考2:如果将这些几何体进行适当分类, 你认为可以分成那几种类型?
思考3:图(2)(5)(7)(9)(13) (14)(15)(16)有何共同特点?这 些几何体可以统一叫什么名称?
每个侧面都是全等的矩形的四棱柱整理整理pptppt2323整理整理pptppt2424整理整理pptppt2525侧面顶点底面多边形面叫做棱锥的底面有公共顶点的各三角形面叫做棱锥的侧面相邻侧面的公共边叫做棱锥的侧棱各侧面的公共顶点叫做棱锥的顶点

11.3 多面体与旋转体(课件)高二数学(沪教版2020必修第三册)

11.3 多面体与旋转体(课件)高二数学(沪教版2020必修第三册)
从围成几何体的面的角度,可将上述几何体分为两类: 一类是围成它们的每个面都是平面图形,并且是平面多边形; 一类是围成它们的面不全是平面图形,有些面是曲面.
空间几何体的相关概念 观察 如图示,这些图 片中的物体具有怎样的 形状? 在日常生活中, 我们把这些物体的形状 叫做什么? 如何描述它 们的形状?
认识旋转体:
直棱柱
多面体
棱柱
斜棱柱
棱锥
Hale Waihona Puke 几何体旋转体 …其它
七面体
八面体
练习:若将图中的平面图形旋转一周,试说出它 形成的几何体的结构特征.
解:将图中的平面图形旋转一周,形成的几何体 是圆锥、圆台和圆柱的组合体,并且圆锥底面与 圆台的下底面重合,圆柱的上底面和圆台的上底 面重合.
在我们周围存在着各种各样的物体,它 们都占据着空间的一部分,如果只考虑这些 物体的形状和大小,而不考虑其他因素,那 么由这些物体抽象出来的空间图形就叫做空 间几何体.
多面体 由若干个平面多边形围成的几何体叫做多面体.如图
★ 多面体的面:围成多面体的各个多边形 叫做多面体的面; ★ 多面体的棱:两个面的公共边叫做多面体 的棱; ★ 多面体的顶点:棱与棱的公共点叫做多面 体的顶点.
认识多面体:
正多面体只有5个:
拓展 多面体由平面多边形围成,这里的多边形包括它内部的平面部分; 多面体至少有4个面;
各个面是相同的正多边形的多面体叫做正多面体,正多面体有如 下五种——
正四 面体
正六面体 正八 正方体 面体
正十二 正二十
面体
面体
旋转体
一条平面曲线(包括直线)绕它所在的平面内的一条定直 线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何 体叫做旋转体.这条定直线叫做旋转体的轴.

高二数学最新课件-第四章多面体和旋转体[原创] 精品

高二数学最新课件-第四章多面体和旋转体[原创] 精品

2..棱柱的性质;
1.) 侧棱都相等,侧面是平行四边形; 2 ). 两个底面与平行于底面的截面是全等的多边形;
3. )过不相邻的两条侧棱的截面是平行四边形。
作业:练习 P 57.4 习题P 63. 5
E1 A1 D E A B C D1
证明思路:
1 . 可证侧棱与高互相平行且 垂直于底面,它们都夹在两 个平行平面内。 2. 可证侧棱平行且相等。
C1
B1
2. 有一个侧面是矩形的棱柱是不是直棱柱? 有两个相邻侧面是矩形的棱柱呢?为什么?
分析:
右图:AA1⊥AB且 A A1与底面不垂直 时,棱柱为斜棱柱。 左图:两个相邻的 侧面与底面垂直时, 它们的交线也与底 面垂直。
A1 B1 C1
A B
C
3. 斜棱柱、直棱柱和正棱柱的 底面、侧面各有什么特点?
斜三棱柱
直四棱柱
正五棱柱
1. 斜棱柱、直棱柱的底面为任意多边形。正棱 柱的底面为正多边形。
2. 斜棱柱的侧面为平行四边形。直棱柱的侧面 为矩 形。正棱柱的各个侧面为全等的矩形。
4.棱柱集合、斜棱柱集合、直棱柱集合、 正棱柱集合之间存在怎样的包含关系?
棱柱集合 直棱柱集合 斜棱柱 集合 正棱柱 集合
例1:
已知正三棱柱ABC-A1 B1 C1的各 棱长都为1,M是底面上BC的中 点,N是侧棱CC1上的点,且CN= 1 CC1,求证:AB1 ⊥ MN 4 A1 B1 A B M C1 N C
1 1 1 AB1 MN (a c )( a b c ) 2 2 4 1 1 1 0 Cos 60 = 0 所以AB ⊥MN 1 2 2 4
D1 C1 B1 D A1 C B A C

多面体与旋转体[优质ppt]

多面体与旋转体[优质ppt]
在日常生活和生产实践中,我们常常遇到这 样一类几何体(geometric solid),它是由几 个平面相交而围成的封闭的或者由一个平面图形 绕着一条与它同在一个平面内、且不通过该平面 图形内部的定直线旋转一周所形成的封闭的几何 体,前者如方砖、盒子、金字塔等,后者如球体 、桶装方便面盒子等。这些几何体在我们的生活 中处处可见。
今天我们就一起走进这美妙的几何体世界中 ,从科学的角度来体验和研究其中的奥妙。
商金贸字盒大塔鱼子厦缸
方便面桶 可冰乐激地瓶凌球
观察下列物体的形状和大小,试给出相应的空 间几何体,说说它们的共同特征。
由若干平面多边形围成的几何体叫做多面体
由观一察个下平列面物图体形的绕形它状所和在大的小平,面试 内给的出一相条应定的直空线间旋几转何所体成,的说封说闭有几它何们 体的叫共做同旋特转征体。.
课堂小结 空间几何体
多面体
旋转体
棱棱棱 圆圆圆球 柱台锥 柱台锥体
畅想网络 Imagination Network 感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
E’
D’
F’ A’
C’ B’ห้องสมุดไป่ตู้
E
F A
D C
B
棱柱的概念
侧面与底面的 公共顶点叫 做棱柱的
顶点

·E’ · A’
·D’
两个互相
· · C’ 平行的面
B’
叫做棱柱
的底
其两余个各面面的叫做
相邻侧公棱面共柱的边的叫侧做面
E
· 公共边叫棱做柱的棱
· · 棱柱的侧棱 A

D
· · B
C
棱柱的性质
E’
D’
F’ A’

人教版中职数学(基础模块)下册9.4《多面体与旋转体》ppt课件2

人教版中职数学(基础模块)下册9.4《多面体与旋转体》ppt课件2

特殊的棱柱——正方体、长方体的体积公式,它们的 体积公式可以统一为:
V Sh(S为底面面积,h为高).
柱体(棱柱、圆柱)的体积是:
V Sh
其中S为底面面积,h为高.
(1)上图的左侧是一个圆柱形的器皿,底面半径为3cm, 高度为8cm,那么怎样计算它的容积呢?
(2) 上图V圆的柱右=侧S是h一=个长×方32体×的8游=泳7池2,(长cm是25)0.m,
D
V长方体=abc
A
c
D
b
A
a
(a,b,c 分别为长方体长、宽、高)
C B
C B
或V长方体=sh
(s, h分别表示长方体的底面积和高)
取一摞书放在桌面上,改变一下它们的形状, 观察改变前后的体积是否发生变化?
祖暅原理
夹在两个平行平面间的两个几何体,被平行于这两 个平面的任意平面所截,如果截得的两个截面的面积相 等,那么这两个几何体的体积相等 .
宽是21m,深是2m,那么这个游泳池能容纳多少立方 水?
V=Sh=50×21六角螺母毛坯,它的底面正六边形的边长是12mm, 高是10mm,内孔直径是10mm,求这个毛坯的体积.
解:六角螺母毛坯的体积是正六棱 柱的体积与圆柱体积之差,即:
因为V正六棱柱= 3×122×6×10 3741 (mm3) ,

立体几何

立体几何

立体几何
9.4何.6 多面体与旋转体的体积
(一)
(1) 上图的左侧是一个圆柱形的器皿,底面半径为 3cm,高度为8cm,那么怎样计算它的容积呢?
(2) 上图的右侧是一个长方体的游泳池,长是50米, 宽是21米,深是2米,那么这个游泳池能容纳多少立方 水?

【数学课件】多面体和旋转体

【数学课件】多面体和旋转体
上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱
O
O
O’
棱柱的性质
1 侧棱都相等,侧面都是平行四边形。 2 两底面与平行于底面的截面是全等多边形。
3 过不相邻的两条侧棱的截面是平行四边形。
正棱锥的性质
1 各侧棱都相等,各侧面都是全等的等腰三 角形。
2 棱锥的高,斜高和斜高在底面上的射影组 成一个直角三角形;棱锥的高,侧棱和侧棱 在底面上的射影也组成一个直角三角形。
心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
立体几何第二章
多面体和旋转体
多面体——棱柱 棱锥 棱台
1 图形及图形的画法 附:练习 2 棱柱 棱锥 棱台的性质 附:练习 3 多面体的侧面积 附:练习
4 两个重要的定理
棱柱的图形及分类
三棱柱 四棱柱 五棱柱
斜 棱 柱 直正 棱棱 柱柱
正棱锥 斜棱锥
棱 锥
三 棱 锥
o

图四

棱 锥
o
棱台 O
底面周长)

a
a
h’
h’
b
b
S
=

_(_a_+__b__)_h’ 2
长方体一条对角线的平方等于 一 个顶点上三条棱的长的平方和

多面体和旋转体(附答案)

多面体和旋转体(附答案)

第八章多面体和旋转体一、考纲要求1.理解棱柱、棱锥、棱台、圆柱、圆台、球及其有关概念和性质.2.掌握直棱柱、正棱锥、正棱台和圆柱、圆锥、圆台、球的表面积和体积公式(球缺体积公式不要求记住),并能运用这些公式进行计算.3.了解多面体和旋转体的概念,能正确画出直棱柱、正棱住、正棱台、圆柱、圆锥、圆台的直观图.4.对于截面问题,只要求会解决与几种特殊的截面(棱柱、棱锥、棱台的对角面,棱柱的直截面,圆柱、圆锥、圆台的轴截面和平行于底面的截面,球的截面)以及已给出图形或它的全部顶点的其他截面的有关问题.二、知识结构1.几种常凸多面体间的关系2.棱柱、棱锥、棱台的基本概念和主要性质名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的交线都互相平行的多面体侧棱垂直于底面的棱柱底面是正多边形的直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面平行四边形矩形矩形的形状平行于底面的截面的形状与底面全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体底面是正多边形,且顶点在底面的射影是底面的射影是底面和截面之间的部分用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分由正棱锥截得的棱台侧棱相交于一点但不一定相等相交于一点且相等延长线交于一点相等且延长线交于一点侧面的形状三角形全等的等腰三角形梯形全等的等腰梯形对角面的形状三角形等腰三角形梯形等腰梯形平行于底的截面形状与底面相似的多边形与底面相似的正多边形与底面相似的多边形与底面相似的正多边形其他性质高过底面中心;侧棱与底面、侧面与底面、相邻两侧面所成角都相等两底中心连线即高;侧棱与底面、侧面与底面、相邻两侧面所成角都相等名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分4.面积和体积公式下表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长 .名称侧面积(S侧) 全面积(S全) 体积(V) 棱棱柱直截面周长×l S侧+2S底S底·h=S直截面·l(1)全面积 S 全=3a 2;(2)体积 V=122a 3; (3)对棱中点连线段的长 d=22a ; (4)相邻两面所成的二面角 α=arccos31 (5)外接球半径 R=46a ; (6)内切球半径 r=126a. (7)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 6.旋转体 圆柱、圆锥、圆台、球的公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径. (2)圆锥、圆台某些数量关系②圆锥 圆锥轴截面两腰的夹角叫圆锥的顶角.②圆台 如图,圆台母线与下底面所成角为α,母线为l ,高为h ,上、下底面半径分别为r ′、r ,则h=lsin α r-r ′=lcos α.③球的截面 用一个平面去截一个球,截面是圆面.(1)过球心的截面截得的圆叫做球的大圆;不经过球心的截面截得的圆叫做球的小圆. (2)球心与截面圆圆心的连线垂直于截面.(3)球心和截面距离d,球半径R ,截面半径r 有关系:r=22d R .(3)球冠、球带和球缺①球缺 球面被平面所截得的一部分叫做球冠,截得的圆(圆周)叫做球冠的底,垂直于截面 的直径被截得的一段叫做相应球冠的高.球冠也可以看作一段圆弧绕经过它的一个端点的直径旋转一周所成的曲面. 球冠的面积公式 若球的半径为R ,球冠的高为h ,则S 球冠=2πRh其中h 表示球冠的高,R 是球冠所在的球的半径. ②球带 球面在两个平行截面之间的部分叫做球带.球带也可以看作一段圆弧绕它所在的半圆的直径旋转一周所成的曲面. 球带的面积公式 若球的半径为R ,球带的高为h ,则S 球带=2πRh③球缺 用一个平面截球体所得的部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径 被截得的线段长叫做球缺的高.球缺的体积公式 若球的半径为R ,球缺的高h ,底面半径为r ,则V 球缺=31πh 2(3R-h)=61πh(3r 2+h 2)三、知识点、能力点提示 (一)多面体例1 如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= .解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh. ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF =41S,V 1=31h(S+41S+41⋅S S)=127ShV 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5.例2 一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++② ①24)(420)(2Z y x zx yz xy由②2得:x 2+y 2+z 2+2xy+2yz+2xz=36 ③由③-①得 x 2+y 2+z 2=16即l 2=16 ∵l=4(cm).例3 正四棱锥S-ABCD 中,高SO =26,两相邻侧面所成角为γ ,tg 3322=γ,(1)求侧棱与底面所成的角。

多面体和旋转体

多面体和旋转体

O
A
F
证明:四边形EFGH 为矩形。
E
B
H
G
D C
已知:正三棱锥的棱 AC ,AD,BC, BD的中点分别为E,F,G ,H。且
SEFGH=2,AB=4
4
B
H E
A
求棱锥底面边长。
1
G
F
2
C
2
D
选择题:三棱锥的三侧棱长相等,则 顶点在底面上的射影为底面的 B A 垂心 B 外心 C 内心 D 重心
E

D
习题2:判断题
1 上下底面是正多边形的棱台为正棱台。 2 底面是正多边形的棱锥是正棱锥。 3 长方体一定是正四棱柱。
1 NO 2 N 4 正三棱锥就是正四面体。 3N 4N
习题1 证明:正三棱锥相对的两棱 互相垂直 A
知识点 : 1 正三棱锥定义 2 三垂线定理
B
O C
E
D
已知:ห้องสมุดไป่ตู้三棱锥的棱 AC ,AD,BC, BD的中点分别为E,F,G ,H。
o
o
O
棱台
O
O
O’
棱柱的性质
1 侧棱都相等,侧面都是平行四边形。 2 两底面与平行于底面的截面是全等多边形。 3 过不相邻的两条侧棱的截面是平行四边形。
正棱锥的性质
1 各侧棱都相等,各侧面都是全等的等腰三
角形。 2 棱锥的高,斜高和斜高在底面上的射影组 成一个直角三角形;棱锥的高,侧棱和侧棱 在底面上的射影也组成一个直角三角形。
正棱台的性质
直棱柱的侧面积

直 棱 柱 的 高
直棱柱底面周长C
h
S直棱柱侧 = ch
正棱锥的侧面积

几何课题4多面体与旋转体课件

几何课题4多面体与旋转体课件
图 4-16
在直角三角形ABC中,OC×AB=AC×BC, 则OC= = =2.4cm 所以 V = ×π×OC2×(AO+OB)
= ×π×(2.4cm)2×5cm ≈30.16cm3 S上=πrl=π×OC×AC S下=πrl=π×OC×BC
S总=S上+S下=π×OC×AC+π×OC×BC=π×OC×(AC+BC)≈52.78cm2. 即该旋转体的体积为30.16,表面积为52.78. 例2 如图4-17所示,从一个底面半径和高都是R的圆柱中,挖去一 个以圆柱的上底面为底,下底面中心为顶点的圆锥,得到一个几何 体.求这个几何体的表面
1.计算地球表面积(地球半径约为6730km).
2.有一个空心钢球,质量为142g,外径为5.0cm,求钢球的内径(钢的 密度是7.9g/cm3,保留两位有效数字).
项目4.5 多面体与旋转体的应用
案例导入 遇到问题,调整好状态应对吧!
【案例】 某厂生产如图4-15所示六角头螺母,螺母的底面是正六 边形,底面边长13.10mm,高10mm,内孔直径10mm.已知: (1)螺母的材料为“A3型钢”,密度7800kg/m3,目前的市场价为4000 元/t.该型钢有以下几种规格:
2.如果锥体被平行于底面的平面所截,则所得的截面与底面相 似,截面面积与底面面积的比等于顶点到截面距离的平方和锥体 高平方的比.
例1 根据图4-12的尺寸,制作相应锥体,并思考表面积的计算方法 (近似至0.1cm).
图 4-12பைடு நூலகம்
解:(1)正四棱锥的表面积=侧面积+底面积 =4× ×10cm× cm+(10cm)2 ≈382.8cm2
项目4.2 柱体 案例导入 遇到问题,调 整好状态应对吧!

人教版中职数学(基础模块)下册9.4《多面体与旋转体》ppt课件2

人教版中职数学(基础模块)下册9.4《多面体与旋转体》ppt课件2

水?
V=Sh=50×21×2=2100 (m3)
新授
例1 有一个六角螺母毛坯,它的底面正六边形的边长是12mm,
高是10mm,内孔直径是10mm,求这个毛坯的体积.
解:六角螺母毛坯的体积是正六棱 柱的体积与圆柱体积之差,即:
因为V正六棱柱=
3 ×122×6×10 3741 (mm3) ,
4
V圆柱 =×52×10785(mm3) ,
新授
4.柱体体积
特殊的棱柱——正方体、长方体的体积公式,它们 的体积公式可以统一为:
V Sh(S为底面面积,h为高).
柱体(棱柱、圆柱)的体积是:
V Sh
其中S为底面面积,h为高.
问题
回顾
(1)上图的左侧是一个圆柱形的器皿,底面半径为3cm, 高度为8cm,那么怎样计算它的容积呢?
宽(是2)21上mV,图圆深的柱是右=2侧mS,是h=那一么个×这长个方32游体×泳的8池游=能泳7容池2纳, 多长(c少是m立520)方m.,

立体几何

立体几何

立体几何
9.4何.6 多面体与旋转体的体积
(一)
导入 问题
(1) 上图的左侧是一个圆柱形的器皿,底面半径为 3cm,高度为8cm,那么怎样计算它的容积呢?
(2) 上图的右侧是一个长方体的游泳池,长是50米, 宽是21米,深是2米,那么这个游泳池能容纳多少立方 水?
新授
1.几何体的体积 几何体占有空间部分的大小叫做几
何体的体积. 平面几何中我们用单位正方形的面
积来度量平面图形的面积,立体几何中 用单位正方体(棱长为1个长度单位)的 体积来度量几何体的体积.
一个几何体的体积是单位正方体体 积的多少倍,那么这个倍数就是这个 几何体的体积的数值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何第二章
多面体和旋转体
多面体——棱柱 棱锥 棱台
1 图形及图形的画法 附:练习 2 棱柱 棱锥 棱台的性质 附:练习 3 多面体的侧面积 附:练习
4 两个重要的定理
棱柱的图形及分类
三棱柱 四棱柱 五棱柱
斜 棱 柱 直正 棱棱 柱柱
正棱锥 斜棱锥
棱 锥
三 棱 锥
o

图四

棱 锥
o
棱台 O
正棱台的性质

直棱柱的侧面积
直 直棱柱底面周长C
棱 柱 的 高
h
S直棱柱侧 = ch

正棱锥的侧面积
(底面周长为 c, 斜高为h’)
S=
1 2
ch’
h’
h’
a
a
正四棱锥的侧面积
S=
4
×
_a__h_’__ 2
正n棱锥的侧面积 S= n ×__a__h__’_
2
正棱台的侧面积
( c c’ 分S 别= _(为_c_棱+_2_台c_’_)_上h’
O
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
习题2:判断题
1 上下底面是正多边形的棱台为正棱台。
2 底面是正多边形的棱锥是正棱锥。
3 长方体一定是正四棱柱。 1 NO 2 N
4 正三棱锥就是正四面体。
3N
4N
习题1 证明:正三棱锥相对的两棱 互相垂直
A
知识点 :
1 正三棱锥定义 2 三垂线定理
B
O
D
E
C
已知:正三棱锥的棱 AC ,AD,BC, BD的中点分别为E,F,G ,H。
底面周长)

a
a
h’
h’
b
b
S
=

_(_a_+__b__)_h’ 2
长方体一条对角线的平方等于 一 个顶点上三条棱的长的平方和
b
a
d2 = a2 +b2 +c2
cd
习题1: 用符号“ ” 填空
A=直平行六面体集合 B=正方体集合 C=长方体集合 D=四棱柱集合 E=平行六面体集合
BC A E D
向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个 人。”时光叠加,沧桑有痕,终究懂得,漫漫人生路,得失爱恨别离,不过是生命的常态。原来,人生最曼妙的风景,就是那颗没被俗世河流污染的初心。大千世界,有很多 的东西可以去热爱,或许一株风中摇曳的小草,一朵迎风招展的小花,一条弯弯曲曲的小河,都足够让我们触摸迷失的初心。紫陌红尘,芸芸众生,皆是过客。若时光允许, 我愿意一生柔软,爱了樱桃,爱芭蕉,静守于轮回的渡口,揣一颗云水禅心,将寂寞坐断,将孤独守成一帧最美的山水画卷。一直渴盼着,与心悦的人相守于古朴的小院,守 着老旧的光阴,只闻花香,不谈悲喜,读书喝茶,不争朝夕。阳光暖一点,再暖一点,日子慢一些,再慢一些,从容而优雅地老去。浮生荡荡,阳春白雪,触目横斜千万朵, 赏心不过两三枝;任凭弱水三千,只取一瓢饮。有梦的季节,有爱的润泽,走过的日子,都会成为笔尖温润如玉的诗篇。相信越是走到最后,剩下的唯有一颗向真向善向美的 初心。似水流年,如花美眷,春潮带雨晚来急,野渡无人舟自横朝花夕拾,当回望过往,你是此生无憾,还是满心懊悔呢?随着芳华的流逝,我们终究会明白:任何的财富都 比不上精神上的愉悦,任何的快感都不及对初心的执着。愿你不趋炎附势,不阿谀奉迎,不苟且偷生,不虚掷有限的年华,活出属于自己的风采,活在每一个当下,不
1 侧棱都相等,侧面都是平行四边形。 2 两底面与平行于底面的截面是全等多边形。
3 过不相邻的两条侧棱的截面是平行四边形。
正棱锥的性质
1 各侧棱都相等,各侧面都是全等的等腰三 角形。
2 棱锥的高,斜高和斜高在底面上的射影组 成一个直角三角形;棱锥的高,侧棱和侧棱 在底面上的射影也组成一个直角三角形。
A 证明:四边形EFGH 为矩形。
F E
B
G
D
H
C
已知:正三棱锥的棱 AC ,AD,BC, BD的中点分别为E,F,G ,H。且
SEFGH=2,AB=4
求棱锥底面边长。
A
4 E 1F
2
B
G
D
H
2
C
选择题:三棱锥的三侧棱长相等,则
顶点在底面上的射影为底面的 B
A 垂心 B 外心 C 内心 D 重心
相关文档
最新文档