遥感物理基础
遥感物理基础
X
10-6m 1nm 0.38m 0.76m 3m 6m 15m 1mm 1m
紫可近中远超微无
射射 外 见 红 红 红 远 波线
线线 线 光 外 外 外 红
电
外
波
1mm=1000 m;1m=1000nm
电磁波谱的划分
紫外波段 可见光波段
紫色光 蓝色光 青色光 绿色光 黄色光 橙 色光 红色光 近红外(摄影红外)波段 近红外(反射红外)波段 中红外波段(热红外)
❖ 灰体:0< α <1,α不随波长而变 化。
❖ 选择性辐射体: 0< α <1,α随 波长而变化。
概念——辐射度量
❖ 辐射能量(W):电磁辐射的能量,单位J。 ❖ 辐射通量(Φ):单位时间内通过某一面积的
辐射能量,Φ=dW/dt,单位W。辐射通量是波长 的函数,总辐射通量是各谱段辐射通量之和或 辐射通量的积分值。 ❖ 辐射通量密度(E):单位时间内通过单位面 积的辐射能量,E=dΦ/dS,单位W/M2,S为面 积。
普朗克公式表示出了黑体辐射通量密度与温 度的关系及按波长分布的情况。反映黑体 辐射的三个特性:
E0
6000K 3000K
❖ 辐射通量密度随波长连续变化,温度一定 时,辐射通量密度随波长变化的曲线只有 一个最大值
1000K 200K
❖ 温度越高,辐射通量密度也越大,不同温
度下的曲线不相交。
❖ 随着温度的升高,辐射最大值所对应的波 长向短波方向移动。
由上式可见(在遥感技术上的意义): ❖ 绝对黑体表面上,单位面积发出的总辐射能
与绝对温度的四次方成正比,对于一般物体, 可用上式概略推算出总辐射能与绝对温度的 关系。 ❖ 黑体总辐射通量密度与温度的四次方成正比, 因而随温度的增加迅速增大——红外测温的 理论依据。
2遥感物理基础
遥感的基本出发点
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
2、地物的发射光谱特性 黑体 普朗克公式 斯蒂芬-玻尔兹曼定律(Stephen Boltzmann Law) 维恩位移定律(Wien’s Displacement Law) 基尔霍夫定律 地物的发射光谱
100-106cm >106cm
用于无线电通讯,分超短波、短波、中波、长波
冯新伟
常用的遥感波段有:紫外线、可见光、红外线、微波
紫外线:波长范围0.1---0.38μm,太阳辐射只有0.3--0.4μm到达地面,能量较少;可探测的高度在2000m以 下,目前多用于探测碳酸岩分布,油污染的监测,能提 供土壤水份和作物病类信息。 可见光:波长范围0.38---0.76μm,人眼对该波段具有 敏锐的分辨能力,是鉴别物质的主要波段。遥感技术中 主要用摄影和扫描方式接收和纪录地物对可见光的反射 特征,是现在遥感中最常用的波段。
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
太阳
太阳是太阳系唯一的恒星,它集中了太阳系99.865%的质量。 太阳是一个炽热的气体星球,没有固体的星体或核心。太阳从 中心到边缘可分为核反应区、辐射区、对流区和大气层。其能 量的99%是由中心的核反应区的热核反应产生的。太阳中心的 密度和温度极高。太阳大气的主要成分是氢(质量约占71%) 与氦(质量约占27%)。
遥感物理基础电磁波与电磁波谱
第二章遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。
由于不同物体具有各自的电磁波反射或辐射特性,才可能应用遥感技术探测和研究远距离的物体。
理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。
本章重点是掌握可见光近红外、热红外和微波遥感机理,以及地物波谱特征。
图2-1第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1. 电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。
当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。
2. 电磁辐射电磁场在空间的直接传播称为电磁辐射。
1887 年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。
装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影像。
3. 电磁波谱γ射线、X 射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。
目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。
可见光区间辐射源于原子、分子中的外层电子跃迁。
红外辐射则产生于分子的振动和转动能级跃迁。
无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。
微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。
由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。
可见光、红外和微波遥感,就是利用不同电磁波的特性。
电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。
图2-2电磁辐射的性质4. 电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。
4-2遥感——遥感的物理基础+光的三原色
颜色库。
2014-6-26
• 2、三种光的颜色可以设置成: 1)R=200,G=30,B=15——偏红色(显示器) 2)R=40,G=220,B=15——偏绿色 3)R=0,G=0,B=0——得到“黑色”(没有光) 4)R=255,G=255,B=255——得到“白色”(最强光,均 等) 5)0<R=G=B<255——得到“灰色”
•
黎明和黄昏时(此时地球与太阳之间距离很远),可见光要通过 较厚的大气层,波长小的紫光、蓝光在传播这么长的路程后几乎全被 大气吸收了,只剩下波长大的红光、橙光,直射光中红光成分大于蓝 光成分,∴太阳呈现红色。
•
大气中的瑞利散射对可见光影响较大,而对红外的影响很小,对
微波基本没有多大影响。
2014-6-26
决定。
•
如果气溶胶粒径与入射波长同数量级,发生米
氏散射;例如冬季燃煤产生的固体气溶胶浓度大,
发生米氏散射,常常一整天天空都是淡黄色、灰
蒙蒙的。
2014-6-26
• 3)粗粒散射(又叫非选择性散射或均匀散射)(r>>λ):大气
中的液、固态水滴和固态杂质(比如粒度较大的沙尘暴)——
“颗粒物”的半径>1μm,都远大于可见光的波长,当天空有云层 或雨层时,满足均匀反射的条件,各个波长的可见光散射强度相 同,因而云呈现白色,此时散射较大,可见光难以通过云层,这 就是阴天时候不利于用可见光进行遥感探测地物的原因。夏季暴 雨来之前,天空呈现暗黑色,就是大气中的小水滴这些颗粒物将 所有波长的光全部进行散射。 • 而太阳的电磁波辐射几乎包括电磁辐射的各个波段,因此,
2014-6-26
• 【反射≠散射≠漫反射≠镜面反射】 • 镜面反射:发生在光滑物体表面的一种反射,入射角=反射角。 • 漫反射:发生在粗糙物体表面的一种反射,入射角=反射角。而且漫反 射向四面八方的反射是相等的。 • 散射:是指电磁辐射与结构不均匀的物体作用后,产生的次级辐射无干 涉抵消,而是向各个方向传播的现象,它实质是反射、折射和衍射的综 合反映。散射主要发生在可见光波段。 • 电磁波在传播过程中遇到小微粒而使传播方向发生改变,并向各个 方向散开,称散射。尽管强度不大,但是从遥感数据角度分析,太阳辐 照到地面又反射到传感器的过程中,二次通过大气,传感器所接收到的
遥感原理与应用重点
第一章遥感物理基础1 遥感:使用某种传感器,不直接接触被研究的目标,感测目标的特征信息(一般是电磁波的反射或者发射辐射),经过传输、处理,从中提取人们感兴趣的信息的过程。
2电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱。
3绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。
4灰体:在各种波长处的发射率相等的实际物体。
5色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。
6大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高、对遥感有利的波段。
7发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。
8光谱反射率:物体的反射辐射通量与入射辐射通量之比。
9波粒二象性:电磁波具有波动性和粒子性。
10光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。
11 方向反射:实际地物表面由于地形起伏,在某个方向上反射最强烈的现象。
12 漫反射:如果入射电磁波波长λ不变,表面粗糙度h逐渐增加,知道h和λ同数量级,这时整个表面均匀反射入射光电磁波,入射到此表面的电磁辐射按照朗伯余弦定律反射。
13 波谱特性:是指各种地物各自具有的电磁波特性(发射辐射或反射辐射)。
二、问答题1黑体辐射遵循哪些规律?(1由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。
(2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。
(玻尔兹曼公式)(3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。
(维恩位移定律)(4 好的辐射体一定是好的吸收体。
(基尔霍夫)(5 在微波段黑体的微波辐射亮度与温度的一次方成正比。
(瑞利金斯公式)2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些?a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b. 微波、红外波、可见光3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?(1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。
遥感的物理基础
反射现象:电磁波在传播过程中,通过两种介 质的交界面时会出现反射现象,反射现象出要 出现在云顶(云造成噪声)。
遥感基础与应用
大气窗口
不同波段的电磁波受到大气的衰减作用轻重不 同。
电磁波通过大气层时较少被反射,吸收和 散射的,透射率较高的波段称为大气窗口。
遥感传感器选择的探测波段应包含在大气窗口 之内。
(2) 地物的发射光谱特性
同一地物,其表面粗糙或颜色较深的,发射率 往往较高,反之,发射率则较小。
比热大,热惯量大,以及具有保温作用的地物, 一般发射率大,反之发射率就小。
例如水体,在白天水面光滑明亮,表面反射强 而温度较低,发射率亦较低;而夜间,水的比 热大,热惯量也高,故而发射率较高。
遥感基础与应用
结果输出(图、表)
接收 预处理
用户处 理应用
遥感基础与应用
太阳辐射曲线
太阳辐射的能量主要集中 在可见光,其中0.38 ~ 0.76 µ m的可见光能量占太阳辐射 总能量的46%,最大辐射强 度位于波长0.47 µ m左右; 到达地面的太阳辐射主要 集中在0.3 ~ 3.0 µ m波段,
包括近紫外、可见光、近
土壤含水量增加,土壤的反射率就会下降,在 水的各个吸收带(1.4um、1.9um、2.7um处附近 区间),反射率的下降尤为明显。
遥感基础与应用
三种不同类型土壤在干燥环境下的光谱曲线
水的吸收带(1.4um、1.9um、2.7um) 干燥土壤的波谱特征主要 与土壤物质组成(成土矿 物和土壤有机质)有关。 土壤含水量增加,土壤的 反射率就会下降,
遥感基础与应用
不同地物的反射波谱特征
遥感基础与应用
电磁波及遥感物理基础
射、吸收、反射和透射)称为电磁辐射。
电磁波的特性
1) 电磁波是横波
2) 在真空中以光速传播
3) 电磁波具有波粒二象性:电磁波在传播过
程中,主要表现为波动性;在与物质相互作用时,主 要表现为粒子性,这就是电磁波的波粒二象性。
光的波动性充分表现在光的干涉、衍射、 偏振等现象中;而光在光电效应、黑体 辐射中则显示出粒子性。
• 在遥感中常用近红外波段确定水体的位置和轮廓, 在此波段的黑白正片上,水体的色调很黑,与周 围的植被和土壤有明显反差,很容易识别和判读。
• 在水中含有其他物质时,反射光谱曲线会发生变 化,含泥沙时,由于泥沙的散射,可见光波段发 射率会增加,峰值出现在黄红区。
不同浊度下水体的波谱特性曲线
• 水中含有叶绿素时,近红外波段明显抬升,这些 都是影像分析的重要依据。
植物
• 由于植物均进行光合作用,所以各类绿色植物具有很相似 的反射波谱特征:在可见光波段0.55um(绿光)附近有个波 峰,两侧0.45um(蓝光)和0.67um(红)则有两个吸收带。在 近红外波段0.8-10.um间有一个反射的陡坡,至1.1um附近 有一个峰值,形成植被的独有特征。在近红外波段1.32.5um受到绿色植物含水量的影响,吸收率大增,反射率 大大下降,特别是以1.45、1.95、2.7um为中心是水的吸收 带,形成低谷。
度、速度、测量地形等。
自然辐射源(被动式遥感的辐射源)
➢ 太阳辐射:是可见光和近红外的主要辐射源;
常用5900的黑体辐射来模拟;其辐射波长范围 极大;辐射能量集中-短波辐射,即0.3-2.5um。 大气层对太阳辐射的吸收、反射和散射。
➢ 地球的电磁辐射:小于3 μm的波长主要是太
遥感原理及应用总结
绪论第一章遥感物理基础Chapter 1 Physical basis of remote sensing电磁波:在真空或物质中通过传播电磁场的振动而传输电磁能量的波。
(在真空或介质中传播的交变电磁场)电磁波是通过电场和磁场之间相互联系和转化传播的,是物质运动能量的一种特殊传递形式。
原子光谱、分子光谱和晶体光谱波粒二象性:1 波动性:表现出干涉、衍射、偏振等现象。
一般成像只记录了电磁波的振幅,只有全息成像时才同时记录振幅和相位,在遥感成像时,只有雷达成像是如此。
干涉的影响:利—利用能量增大的趋势使图像清晰,方向性强;弊—造成同一物质所表现的性质不同SAR成像时,斑点的产生就是由于电磁波的干涉引起的。
衍射的影响:(1)使电磁辐射通量的数量、质量和方向都发生变化,结果测量不准确,对目标物的解译也带来困难。
(2)缩小阴影区域。
(3)影响遥感仪器的分辨能力。
光的偏振现象说明光波是横波,在微波技术中称为“极化”。
多普勒效应:电磁辐射因辐射源或观察者相对于传播介质的移动,而使观察者接受到的频率发生变化的现象。
2 粒子性的基本特点是能量分布的量子化光电效应应用:扫描成像、电视摄像等,把光像变成电子像,把对人眼无作用的电磁辐射变成人们可以看见的影像。
3、波粒二象性的关系电磁波的波动性与粒子性是对立统一的,E(能量)、P(动量)是粒子的属性,υ(频率),λ(波长)是波动的属性,二者通过h联系起来。
光的波动性和粒子性是光在不同条件下的不同表现:从数量上看:少量光子的运动表现出粒子性;大量光子的运动表现出波动性。
从频率上看:频率高的光子粒子性强,频率低的光子波动性强。
当光和其它物质发生相互作用时表现为粒子性,当在传播时表现为波动性。
为什么说遥感的物理基础是电磁波理论?➢不同地物电磁波特性不同(表现为不同颜色,不同温度)➢传感器接收的是电磁波➢数据传输是电磁波➢数据处理的是地物电磁波信息➢应用的是地物电磁波特性电磁波谱:将电磁波在真空中按照波长或频率的依大小顺序划分成波段,排列成谱。
定量遥感-第二章遥感物理基础精讲
25
通量密度很多时候简称通量
•太阳常数与太阳辐射亮度
基本物理量
太阳光是平行光入射,即只在Ω0方向存在 亮度,注意到公式:
Lλ =³ Φ / A λ Ω
波长与穿透性的关系?
32
• 地物反射光谱特性
物体反射率随波长而改变的特性称为地物 反射光谱特性。
光谱曲线:
植物? 水体? 土壤? 云?雪?
水体+叶绿素? 水体+泥沙? 新雪、旧雪?
地物波谱(特性)
33
• 电磁波与介质的相互作用总结:
作用类型
散射
反射 透射
吸收(发射)
率:以比例形式表征的反射、透射和吸收强度 与入射辐射强度无关 ρ + τ + α = 1(无自身发射)
Ω0
Fλ =² Φ / A λ
因此,太阳的辐射亮度与Ω0方向上的辐射通量 (即太阳常数)之间的关系为:
L0=δ(Ω,Ω0)F0
26
• 各向同性辐射时亮度与通量的关系 基本物理量
假设地表为各向同性辐射,即辐射亮度L 在各方向分布均一,则其垂直地表向上的辐射
通量为:
F L cosd 2 θ
由于dΩ = dσ/r2 = sinθdθdφ 因此:
这三种反射形式分别在什么情 况下发生?
根据表面光滑或粗糙?
37
二、瑞利判据分析
L.Rayleigh提出表面为光滑或粗糙的标准为:
θi θr
镜面反射
当 h cos 为光滑表面
8
当 h cos 为粗糙表面
遥感概论期末复习知识点(完整)
遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。
二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。
三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。
1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。
3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。
遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。
由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。
由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。
可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。
微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。
②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。
微波越长,穿透能力越强。
4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。
黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。
遥感物理基础电磁波基础物体的发射辐射PPT精品
地物光谱发射特 性曲线
地物在不同波段上 光谱发射率不同, 波长与发射率的对 应关系绘制而成的 曲线即为地物光谱 发射特性曲线。
The emission of ground object
Type
1. 原子光谱——核外电子能级跃迁; 2. 分子光谱——跃迁、振动及转动; 3. 晶体光谱——包括晶体振动。
晶体振动 3 ~ 30m
中红外、远红外
Definition
电磁波谱:按电磁波在真空中传播的波长或频率, 递增或递减排列,则构成电磁波谱。
电磁波的分类及其在遥感中的应用
电磁波分类 Υ射线 [小于10-6μm]
面积的辐射能 • 辐射通量密度(E=dΦ/ds):单位时间通过单
位面积的辐射能
Measurement of electromagnetic radiation
辐照度(irradiation) (I=dΦ/ds):被辐射物 体表面单位面积上的辐 射通量
辐射出射度(radiant exitance) (M=dΦ/ds): 辐射源物体表面单位面 积上的辐射通量
按照发射率与波长的关系, 把地物分为: 1)黑体:发射率=1 2)灰体(grey body):发射 率<1,常数 3)选择性辐射体(Selective radiator):发射率<1,且随 波长而变化。
不同类型地物的发射率
影响地物发射率的因素:
地物的性质、表面状况、温度:比热大、 热惯量大,以及具有保温作用的地物, 一般发射率大,反之发射率就小。一般 常用平均发射率来表示地物的发射能力。
对普朗克公式微分求极值:
第二章遥感的物理基础
28
传感器探测波段的设计,是通过分析
比较地物光谱数据而确定的。
多光谱扫描仪(MSS)的波段设计:
MSS1(0.5-0.6 μm) MSS2(0.6-0.7 μm) MSS3(0.7-0.8 μm) MSS4(0.8-1.1 μm)
TM的波段: TM1 0.45~0.52μm TM2 0.52~0.60μm TM3 0.63~0.69μm TM4 0.76~0.90μm TM5 1.55~1.75μm TM6 10.4~12.5μm TM7 2.08~2.35μm
2 k 4 4 4 W0 T T 2 2 15c h
40
(3)维恩位移定律:Wien's displacement law
随着温度的升高,辐射最大值对应 的峰值波长向短波方向移动。
max T b
温度 波长 300 9.66 500 5.80 1000 2.90 2000 1.45 3000 0.97 4000 0.72 5000 0.58 6000 0.48 7000 0.41
W
W黑
W W黑
4
在给定的温度下,物体的发射率=吸收率(同一波 段);吸收率越大,发射率也越大。
第二章:遥感的物理基础
第一节:电磁波与电磁波谱 第二节:地物的光谱特性 第三节:大气对电磁辐射的影响 第四节:彩色合成原理
1
第一节:电磁波与电磁波谱
一、电磁波:电磁场在空间以一定的 速度由近及远的传播过程。从能量的 角度又称为电磁辐射。
二、电磁波谱
按电磁波波长的长短,依次排列制成 的图表叫电磁波谱。 依次为:
37
1.
2.
3、黑体辐射定律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁波是能量的一种动态形式。只有当它与物质相互作用 时才表现出来。
在自然界中,无线电波、微波、红外线、可见光、紫外线 、X射线、γ射线都是电磁波,不过它们产生的方式不同,波长 也不同。 根据电磁场理论,变化的电场能够在它的周围激起磁场的 变化,同样,变化的磁场也能够在它周围激起电场的变化,这 种交变的电磁场在空间由近及远的传播过程称为电磁波。
不同地物的光谱曲线不同。 同一种物体在不同的情况下,在各波段的反射率也
不同。
第一节
电磁波与电磁波谱
不同类型的地物具有反射或辐射不同波长电磁波的特性,遥 感技术是利用地物反射和辐射电磁微波的固有特性来探测地面 目标的。因此,关于电磁波辐射的基本原理就成为遥感技术的 理论基础。本章仅从“遥感”的角度简述一些有关问题。 一、电磁波
=V
电磁波在真空中以光速C=2.998×108米/秒(m/s)传播 ,在大气中小于光速但接近于光速传播。 一般可用波长或频率来描述或定义电磁波谱的范围。在 可见光一红外遥感中多用波长,如m、nm等:在微波遥感中 多用频率,如MHz、GHz等。
几个辐射度量概念
辐射能W——电磁辐射所携带(或传递)的能量,它表
-6 -6
产生机理 原子核受激后产生 原子中内层电子受激后产生
特点 非常强的穿透力, 很难观 察到波动性 较强的穿透力, 粒子性突 出
用途 医学 医学
μm
-
μm ~10 3 μm ~0.38 μm
10
-3
0.38 ~0 .76 μm 0.76μm ~ 1 mm 1mm ~ 1m
原子、分子中外层电子受激发 后跃迁到低能态
定义:按照电磁波的波长(频率的大小)长短,依次排 列成的图表,称为电磁波谱。
0.38~0.76μm 0.76~1000μm
0.01~0.38μm
微波:1000 μm ~1.0m
蓝0.38~0.50μm,绿0.50~0.60μm,红0.60~0.76μm。
各种电磁波的特点
波长范围 γ 射 线 X 射 线 紫外 线 可见 光 红外 线 微 波 小于 10 10
P h/
h : 普朗克常数,6.6260755×10-34 J s c : 光速; v : 频率
能量和动量是粒子属性,频率和波长是波动属性。
可见光,红外线;微波和无线电波;紫外线和X射线Y射线。
电磁辐射传播的基本特性
干涉
衍射
偏振
杨氏干涉
小孔衍射
A天然光;B偏振光;C部分偏振光
二、电磁波谱
第二章 遥感物理基础
第二章 遥感物理基础
第一节
电磁波与电磁波谱 第二节 太阳辐射与大气窗口 第三节 地物波谱特征 第四节 色度学
地球上每一个物体都在不停地吸收、发射和反
射信息和能量,其中有一种人类已经认识到的 形式——电磁波。不同的物体具有不同的物质 组成和结构;由此导致其电磁波谱特征(特征 光谱)不同。 遥感就是根据这个原理来探测地表物体对电磁 波的反射和其发射的电磁波,从而提取这些物 体的信息,完成远距离识别物体。
明显的波粒二象性
可见光 遥感 红外遥 感
分子振动或转动的能级跃迁 电磁电感组成的振荡回路 波动性明显
微波遥 感
电磁波谱中各谱段的主要特点
—射线
的穿透能力。来自太阳辐射中的全被大气吸收,因此 不能用于遥感。但来自放射性矿物的可被低空遥感所 探测,有遥感前景。
波长小于0.03nm,波长短、频率高,具很大能量,很高
出射率——从表面发出的辐射通量密度。用符号M表示 (单位为W· m-2)
辐射强度I ——辐射源每单位立体角所发出的辐射通 量密度,单位为瓦· 球面度-1(W · Sr-1)
立体角是辐射通量定量测量的一个基本概念,采用类 似弧度的度量方法。
辐射率L——在扩展源的某一方向上的单位立体角内, 由垂直于那个方向的平面上辐射源的投影单位面积所 发射的辐射通量。
X—射线
波长0.03—3nm,在大气中全部被吸收,不能 用于遥感
紫外线(UV)
波长3nm—0.38 m
3nm—0.01m 超远紫外 0.01—0.2 m 远紫外 0.2—0.3 m 中紫外 0.3—0.38 m 近紫外(摄影紫外) 具较高能量,在大气中散射严重
可见光(Visible light)
电磁波示意图
电磁波的电(E)、磁(H)向量
电磁波
电磁能量有以下几个主要参数
波长 (Wavelength) : 指波在一个振动周期内传播的距 离。即沿波的传播方向,两个相邻的同相位点(如波峰
或波谷 )间的距离。用 表示,单位为厘米 (cm) 、毫米
(mm)、微米(m)、纳米(nm)等
周期:波前进一个波长那样距离所需的时间(T) 频率 (frequency) : 指单位时间内,完成振动或振荡的 次 数 或 周 期 ( T ) . 用 V 示 。 单 位 为 赫 兹 (Hz) 、 千 赫
(KHz)、兆赫(MHz)、吉赫(GHz)等 。
波长与频率
振幅(Amplitude):表示电场振动的强度。它被定义为振动物 理量偏离平衡位置的最大位移。即每个波峰的高度。单位为 瓦特/米2· 厘米 电磁波的的特点和遥感意义
1) 不需要传播介质
2) 横 波
3) 波动性 4) 粒子性 5) 叠加原理 6) 相干性和非相干性 7) 衍射和偏振 (遥感器的几何图象分辨率,波长越 长,偏振现象越显著,偏振摄影和雷达成像)
8)多谱勒效应 (合成孔径侧视雷达)
电磁波的粒子性
能量:E 动量:P
E hv hc /
示在给定的时间间隔内由辐射源辐射出的全部能量。 辐射能的单位是焦尔(符号J)
辐射通量——辐射能传递的时间速率,是单位时间内
所传递的能量。常用单位是瓦(符号W)。大多数传感 器响应的是辐射能传递的时间速率,而不是所传递的 总能量
辐射通量密度——单位面积所截获的辐射通量。 辐照度——投射到表面上的辐射通量密度。用符号E表 示(单位为W· m-2)