优品课件之人教版九年级数学上册全册教案及作业题(带答案)

合集下载

人教版九年级数学上册全册教案及作业题(带答案)

人教版九年级数学上册全册教案及作业题(带答案)

三一文库()/初中三年级〔人教版九年级数学上册全册教案及作业题(带答案)〕《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0), =a (a≥0).(3)掌握 # =(a≥0,b≥0), = # ;= (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a ≥0)及 =a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0)、、、- 、、(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x2.下列式子中,不是二次根式的是()A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是()A.5 B. C. D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_______.4.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义.3.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新课标第一网1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1(4)∵4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(- )2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6=(4)(-3 )2=9× =6 (5)-62.(1)5=()2 (2)3.4=()2(3) =()2 (4)x=()2(x≥0)3. xy=34=814.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )(3)略1111。

人教版数学九年级上册全册教案(含课后练习)

人教版数学九年级上册全册教案(含课后练习)

21.1 二次根式(1)(民中)第一课时一、教学目标: 理解二次根式的概念,并利用a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题.三、 教学过程:例1. 1xx>0)、1x y+x ≥0,y •≥0).例2. 当x 在实数范围内有意义?四、应用拓展:例3.当x 11x +在实数范围内有意义?例4(1)已知,求xy的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1a ≥0)的式子叫做二次根式,“ 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、课后作业: (一)选择题:1.下列式子中,是二次根式的是( )A .BCD .x 2.下列式子中,不是二次根式的是( )A .B C D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对(二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根. (三)综合提高题:1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,x+x 2在实数范围内有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,且=b+4,求a 、b 的值.21.1 二次根式(2)(民中)第二课时一、教学目标:理解a ≥02=a (a ≥0),并利用它们进行计算和化简.二、教学重难点:1a ≥02=a (a ≥0)及其运用.2a ≥0)是一个非负数;用探究的方法导出(2=a (a ≥0).三、教学过程: 例1 计算1.(2 2.(2 32 4)2四、应用拓展:例2 计算12(x ≥0) 2232 42 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3 五、归纳小结1a ≥0)是一个非负数; 22=a (a ≥0);反之:a=2(a ≥0).六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7. 七、课后作业:(一)选择题:1次根式的个数是( ). A .4 B .3 C .2 D .1 2.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 (二)填空题1.(2=______. 2_______数.(三)综合提高题 1.计算(1)(2 (2)-2 (3)(122(4)( 2(5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3.已知,求x y 的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-521.1 二次根式(3)(民中)第三课时一、教学目标:(a≥0)并利用它进行计算和化简.二、教学重难点:1a(a≥0).2.难点:探究结论.三、教学过程:例1 化简(1(2(3(4四、应用拓展:例2、填空:当a≥0时,;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?五、归纳小结:(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业:1.教材P8习题21.1 3、4、6、8.七、课后作业:(一)选择题:1).A.0 B.23C.423D.以上都不对2.a≥0).A.BC D.(二)填空题:1..2m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+21.2 二次根式的乘除(1)(民中)第四课时一、教学目标:a≥0,b≥0a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:重点:a≥0,b≥0a≥0,b≥0)及它们的运用.难点:发现规律,导出a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1(2=4六、归纳小结:本节课应掌握:(1(a≥0,b≥0a≥0,b≥0)及其运用.七、布置作业:1.课本P151,4,5,6.(1)(2).八、课后作业:(一)选择题1和,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简a)A.B C.D.-3)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.B.4C.D.4(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm³30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)(民中)第五课时一、教学目标:a ≥0,b>0)和a ≥0,b>0)及利用它们进行运算.二、教学重难点:1.重点:理解a ≥0,b>0a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定. 三、教学过程:例1.计算:(1(2 (3 (4例2.化简:(1 (2 (3 (4)四、巩固练习: 教材P14 练习1. 五、应用拓展:例3.=,且x 为偶数,求(1+x六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9.八、课后作业:(一)选择题: 1的结果是( )A .27B .27CD .723==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简)A .2B .6C .13D (二)填空题:1.分母有理化:(1)=______. 2.已知x=3,y=4,z=5,那么_______.(三)综合提高题:11,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1²(m>0,n>0)(2)(a>0) 21.2 二次根式的乘除(3)(民中)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式. 三、教学过程: 例1.(1);(2)(3) 例2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.四、巩固练习:教材P 14 练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,=同理可得:从计算结果中找出规律,并利用这一规律计算)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用. 七、布置作业:1.教材P 15 习题21.2 3、7、10.BAC八、课后作业: (一)选择题:1(y>0)是二次根式,那么,化为最简二次根式是( ). A (y>0) B y>0) C y>0) D .以上都不对2.把(a-1a-1)移入根号内得( ).A .BC .D .3.在下列各式中,化简正确的是( )A B ±12 C 2 D .4的结果是( ) A . B . C . D .(二)填空题:1.(x ≥0) 2._________.(三)综合提高题:1.已知a •请写出正确的解答过程:2.若x 、y 为实数,且的值.21.3 二次根式的加减(1)(民中)第七课时一、教学目标:理解和掌握二次根式加减的方法. 二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式. 三、教学过程:例1.计算:(1 (2例2.计算:(1) (2+ 四、巩固练习:教材P 19 练习1、2. 五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值.六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5. 八、课后作业:(一)选择题: 1;③). A .①和② B .②和③ C .①和④ D .③和④ 2.下列各式:①317错误的有( ). A .3个 B .2个 C .1个 D .0个 (二)填空题: 1、的有________. 2.计算二次根式________.(三)综合提高题: 12.236-0.01)2.先化简,再求值.(-(x=32,y=27.21.3 二次根式的加减(2)(民中)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点. 三、教学过程:例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示) 例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?BACQPBAC2m1m4mD三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.B C.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13B C.D.(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)(三)综合提高题:1n m、n21.3 二次根式的加减(3)(民中)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.三、教学过程:例1.计算:(1(2)(例2.计算:(1)((2四、巩固练习:课本P20练习1、2.五、应用拓展:例3.已知x ba-=2-x ab-,其中a、b是实数,且a+b≠0,六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.七、布置作业:1.教材P21习题21.3 1、8、9.八、课后作业:(一)选择题1).A .203B .23C .223D .2032 ).A .2B .3C .4D .1 (二)填空题:1.(-12+)2的计算结果(用最简根式表示)是________.2.(-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知a 2b-ab 2=_________.(三)综合提高题: 12.当的值.(结果用最简二次根式表示)第二十二章 一元二次方程(民中)第十课时一、教学目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念。

最新人教版九年级数学上册全册课件.

最新人教版九年级数学上册全册课件.
四、情景导入
1.设计有趣的情景导入,激发学生的学习兴趣。
2.结合生活实际,让学生感受数学在现实中的应用价值。
教案反思
1.教学内容是否全面,是否符合学生的认知水平。
2.教学方法是否有效,学生是否积极参与课堂活动。
3.课堂提问和解答环节是否充分,学生是否真正理解和掌握所学知识。
4.课后作业和拓展延伸的设置是否合理,能否有效提高学生的数学素养。
六、板书设计
1.一元二次方程的解法步骤。
2.几何证明的基本方法。
3.圆的性质及应用。
七、作业设计
1.作业题目:
(1)求解以下一元二次方程:x^2 - 5x + 6 = 0。
(2)证明:等腰三角形的底角相等。
(3)已知圆的半径为5,求该圆的面积。
2.答案:
(1)x1 = 3, x2 = 2。
(2)证明过程略。
2.学会几何证明的基本方法,提高逻辑思维能力。
3.掌握圆的性质,并能应用于解决几何问题。
三、教学难点与重点
教学难点:一元二次方程的求解、几何证明的逻辑推理、圆的性质应用。
教学重点:培养学生解决实际问题的能力、提高逻辑思维能力和空间想象力。
四、教具与学具准备
教具:多媒体教学设备、黑板、粉笔。
学具:学生用书、练习本、直尺、圆规。
2.对于重点和难点内容,可以适当放慢语速,提高音量,强调关键信息。
二、时间分配
1.实践情景引入阶段,时间控制在5-10分钟,避免过长而影响后续内容的学习。
2.例题讲解和随堂练习阶段,时间分配要合理,确保学生有足够的时间理解和消化。
三、课堂提问
1.提问要具有针对性,引导学生思考关键问题。
2.鼓励学生主动提问,及时解答他们的疑惑,增强课堂互动。

2024年最新人教版九年级数学上册全册课件.

2024年最新人教版九年级数学上册全册课件.

2024年最新人教版九年级数学上册全册课件.一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程的概念13.2 解一元二次方程的公式法13.3 解一元二次方程的配方法13.4 解一元二次方程的因式分解法13.5 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 一元一次不等式14.2 一元一次不等式组14.3 实际问题与一元一次不等式组二、教学目标1. 让学生掌握一元二次方程的概念,能够熟练运用公式法、配方法、因式分解法解一元二次方程。

2. 培养学生运用不等式与不等式组解决实际问题的能力。

3. 提高学生的逻辑思维能力和数学素养。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法。

2. 教学重点:一元二次方程的概念、解法及其应用;不等式与不等式组的解法及其应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:学生用书、练习本、铅笔。

五、教学过程1. 引言:通过实际情景引入,让学生了解一元二次方程和不等式在实际生活中的应用。

2. 新课导入:详细讲解一元二次方程的概念、解法,结合例题进行讲解。

3. 课堂互动:引导学生参与解题过程,进行随堂练习,巩固所学知识。

5. 课堂检测:布置课堂练习,及时了解学生学习情况,进行针对性指导。

六、板书设计1. 一元二次方程的概念及解法2. 不等式与不等式组的解法3. 典型例题及解题步骤七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 5,x + 1 < 42. 答案:(1)x1 = 3,x2 = 2(2)x ∈ (2, 3)八、课后反思及拓展延伸1. 反思:本节课学生掌握了一元二次方程和不等式组的解法,但部分学生在实际应用题上还存在一定难度。

2. 拓展延伸:针对学有余力的学生,布置一些拓展性题目,如:一元二次方程与二次函数的关系、不等式的性质等,提高学生的数学素养。

最新人教版九年级数学上册全册课件.

最新人教版九年级数学上册全册课件.

最新人教版九年级数学上册全册课件.一、教学内容1. 相似三角形的定义:探讨两个三角形对应角度相等,对应边成比例的图形。

2. 相似三角形的性质:包括面积比、周长比等,以及相似三角形中位线、高线、角平分线的性质。

3. 相似三角形的判定:通过已知条件判定两个三角形相似的方法。

二、教学目标1. 理解相似三角形的定义,掌握相似三角形的性质和判定方法。

2. 能够运用相似三角形的知识解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。

三、教学难点与重点重点:相似三角形的定义、性质及判定。

难点:相似三角形在实际问题中的运用。

四、教具与学具准备教具:黑板、粉笔、多媒体课件。

学具:笔记本、尺子、圆规、三角板。

五、教学过程1. 实践情景引入:通过展示两个形状相似的物体,引导学生思考如何判断它们相似。

2. 知识讲解:讲解相似三角形的定义、性质及判定方法,结合实例进行讲解。

3. 例题讲解:选取具有代表性的例题,讲解相似三角形的解题思路和方法。

4. 随堂练习:布置随堂练习题,让学生巩固所学知识,并及时解答学生的疑问。

6. 作业布置:布置课后作业,巩固所学知识。

六、板书设计板书设计如下:相似三角形定义:对应角度相等,对应边成比例的三角形性质:1. 面积比等于相似比的平方2. 周长比等于相似比3. 中位线、高线、角平分线性质判定:1. 已知两三角形相似2. 根据相似三角形的性质,解决问题七、作业设计1. 作业题目:已知两个三角形相似,求解未知边的长度。

已知:三角形ABC与三角形DEF相似,AB=8cm,BC=12cm,DE=6cm,EF=9cm。

求:DF的长度。

答案:DF=5cm。

2. 作业题目:已知两个三角形相似,求解未知角的度数。

已知:三角形ABC与三角形DEF相似,∠A=40°,∠D=60°。

求:∠B的度数。

答案:∠B=80°。

八、课后反思及拓展延伸本节课通过实例引入,让学生直观地理解相似三角形的定义,通过讲解和练习,使学生掌握相似三角形的性质和判定方法。

人教版数学九年级上册全册精品精品课件.

人教版数学九年级上册全册精品精品课件.

人教版数学九年级上册全册精品精品课件.一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程的概念与求解13.2 一元二次方程的根与系数的关系13.3 一元二次方程的应用2. 第十四章:不等式与不等式组14.1 不等式的概念与性质14.2 一元一次不等式组的解法及应用3. 第十五章:图形的相似15.1 相似图形的概念与性质15.2 位似的判定与性质15.3 相似图形的应用二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似等概念及性质。

2. 学会求解一元二次方程、不等式与不等式组,并能将其应用于实际问题的解决。

3. 掌握相似图形的判定与性质,并能应用于几何问题的解答。

三、教学难点与重点1. 教学难点:一元二次方程的求解、不等式与不等式组的解法、相似图形的性质与应用。

2. 教学重点:理解并掌握一元二次方程、不等式与不等式组、图形的相似的概念与性质,提高解决问题的能力。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、几何模型等。

2. 学具:教材、练习本、圆规、直尺、三角板等。

五、教学过程1. 实践情景引入通过生活实例,引出一元二次方程、不等式与不等式组、图形的相似等概念。

2. 例题讲解讲解一元二次方程、不等式与不等式组、相似图形的典型例题。

3. 随堂练习学生独立完成随堂练习,巩固所学知识。

5. 课堂小结六、板书设计1. 一元二次方程、不等式与不等式组、图形的相似的概念、性质与求解方法。

2. 典型例题及解题步骤。

3. 课堂小结与注意事项。

七、作业设计1. 作业题目一元二次方程、不等式与不等式组、图形的相似的应用题。

探究相似图形的性质及其应用。

2. 答案详见教材课后习题答案。

八、课后反思及拓展延伸1. 反思:对本节课的教学过程、学生掌握程度、教学效果等方面进行反思。

2. 拓展延伸:推荐相关学习资源,鼓励学生进行自主学习,提高数学素养。

重点和难点解析1. 教学内容的详细设计与章节分配。

优品课件之九年级数学上册全册导学案(人教版含答案)

优品课件之九年级数学上册全册导学案(人教版含答案)

九年级数学上册全册导学案(人教版含答案)第二十一章一元二次方程 21.1 一元二次方程 1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)•(50-2x)=3600__,化简整理,得__x2-75x+350=0__.① 问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共x(x-1)2__场.列方程__x(x-1)2=28__,化简整理,得__x2-x-56=0__.② 探究: (1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程. 1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程. 2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式: ax2+bx +c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.判断下列方程,哪些是一元二次方程? (1)x3-2x2+5=0;(2)x2=1; (3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1); (5)x2-2x=x2+1; (6)ax2+bx+c=0. 解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程. 2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10. 点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0. ∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可. 2.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4. 解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程. (1)1-x2=0; (2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0; (5)(x+3)2=(x-3)2; (6)9x2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是. 2.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根,∴4a+8-5=0,解得a=-34. 3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x; (2)一个长方形的长比宽多2,面积是100,求长方形的长x. 解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0. 学生总结本堂课的收获与困惑.(2分钟) 1.一元二次方程的概念以及怎样利用概念判断一元二次方程. 2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0. 3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟) 21.2 解一元二次方程 21.2.1 配方法(1) 1. 使学生会用直接开平方法解一元二次方程. 2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次――转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟) 问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm. 探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4? 方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±5__,即将方程变为__2x-1=5和__2x-1=-5__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__1+52,x2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到 __x+3=±2__ ,方程的根为x1= __-1__,x2=__-5__. 归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 解下列方程: (1)2y2=8;(2)2(x-8)2=50; (3)(2x-1)2+4=0; (4)4x2-4x+1=0. 解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3; (3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=12. 点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.用直接开平方法解下列方程: (1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11. 解:(1)-1±73;(2)-1±26;(3)4±113. 点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根. 2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.解:±1. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程: (1)3(x-1)2-6=0 ; (2)x2-4x+4=5; (3)9x2+6x+1=4; (4)36x2-1=0; (5)4x2=81; (6)(x+5)2=25; (7)x2+2x+1=4. 解:(1)x1=1+2,x2=1-2;(2)x1=2+5,x2=2-5;(3)x1=-1,x2=13;(4)x1=16,x2=-16;(5)x1=92,x2=-92;(6)x1=0,x2=-10;(7)x1=1,x2=-3. 学生总结本堂课的收获与困惑.(2分钟) 1.用直接开平方法解一元二次方程. 2.理解“降次”思想. 3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0? 学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2) 1.会用配方法解数字系数的一元二次方程. 2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x-a)2=b的过程. (2分钟) 1.填空: (1)x2-8x+__16__=(x-__4__)2; (2)9x2+12x+__4__=(3x+__2__)2; (3)x2+px+__(p2)2__=(x+__p2__)2. 2.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.一、自学指导.(10分钟) 问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.探究:怎样解方程x2+6x-16=0? 对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x2+6x=16,两边都加上__9__即__(62)2__,使左边配成x2+bx+(b2)2的形式,得__x2__+6__x__+9=16+__9__,左边写成平方形式,得 __(x+3)2=25__,开平方,得 __x+3=±5__,(降次) 即 __x+3=5__或__x+3=-5__,解一次方程,得x1=__2__,x2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程: (1)3x2-1=5;(2)4(x-1)2-9=0; (3)4x2+16x+16=9. 解:(1)x=±2;(2)x1=-12,x2=52;(3)x1=-72,x2=-12. 归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax2+bx+c=0; (2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a; (4)方程两边同时加上一次项系数一半的平方; (5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空: (1)x2+6x+__9__=(x+__3__)2;(2)x2-x+__14__=(x-__12__)2; (3)4x2+4x+__1__=(2x+__1__)2. 2.解下列方程: (1)x2+6x+5=0; (2)2x2+6x+2=0;(3)(1+x)2+2(1+x)-4=0. 解:(1)移项,得x2+6x=-5,配方得x2+6x+32=-5+32,(x+3)2=4,由此可得x+3=±2,即x1=-1,x2=-5. (2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方得x2+3x+(32)2=(x+32)2=54,由此可得x+32=±52,即x1=52-32, x2=-52-32. (3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2. 点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟) 如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程: 12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0, (x-7)2=25, x-7=±5,∴x1=12,x2=2, x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC 面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x的方程: (1)2x2-4x-8=0;(2)x2-4x+2=0; (3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5; (2)x1=2+2,x2=2-2; (3)x1=14+174,x2=14-174; (4)x1=62,x2=-62. 2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2. ∴(xy)z=[2×(-3)]-2=136. 学生总结本堂课的收获与困惑.(2分钟) 1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2 公式法 1. 理解一元二次方程求根公式的推导过程,了解公式法的概念. 2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导. (2分钟) 用配方法解方程: (1)x2+3x+2=0;(2)2x2-3x+5=0. 解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟) 问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a. 分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根,当b2-4ac<0时,方程没有实数根. (2)x=-b±b2-4ac2a叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫做公式法. (4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根. (5)一般地,式子b2-4ac 叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论? (1)2x2-3x=0;(2)3x2-23x+1=0;(3)4x2+x+1=0. 解:(1)x1=0,x2=32;有两个不相等的实数根;(2)x1=x2=33;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.方程x2-4x+4=0的根的情况是( B ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有一个实数根 D.没有实数根 2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0, (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14. 3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根. 证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0. 对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况: (1)2x2-3x-32=0; (2)16x2-24x+9=0; (3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0; (3)x2+4x+8=2x+11;(4)x(x-4)=2-8x; (5)x2+2x=0 ; (6)x2+25x+10=0. 解:(1)x1=3,x2=-4;(2)x1=2+32,x2=2-32;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2;(6)无实数根.点拨精讲:(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的; (2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入x=-b±b2-4ac2a(b2-4ac≥0)中,可求得方程的两个根; (3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟) 1.求根公式的推导过程. 2.用公式法解一元二次方程的一般步骤:先确定a,b,c的值,再算出b2-4ac的值、最后代入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟) 21.2.3 因式分解法 1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程. 2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想. (2分钟) 将下列各题因式分解: (1)am +bm+cm=(__a+b+c__)m; (2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟) 问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s) 设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,① 思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得: x(10-4.9x)=0,于是得x=0或10-4.9x=0,② ∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m. 点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法. (2)如果a•b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.说出下列方程的根: (1)x(x-8)=0;(2)(3x+1)(2x-5)=0. 解:(1)x1=0,x2=8;(2)x1=-13,x2=52. 2.用因式分解法解下列方程: (1)x2-4x=0; (2)4x2-49=0; (3)5x2-20x+20=0. 解:(1)x1=0,x2=4; (2)x1=72,x2=-72; (3)x1=x2=2. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.用因式分解法解下列方程: (1)5x2-4x=0;(2)3x(2x+1)=4x+2; (3)(x +5)2=3x+15. 解:(1)x1=0,x2=45; (2)x1=23,x2=-12;(3)x1=-5,x2=-2. 点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式. 2.用因式分解法解下列方程: (1)4x2-144=0; (2)(2x-1)2=(3-x)2; (3)5x2-2x-14=x2-2x+34; (4)3x2-12x=-12. 解:(1)x1=6,x2=-6; (2)x1=43,x2=-2; (3)x1=12,x2=-12; (4)x1=x2=2. 点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程: (1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0; (5)(x-4)2=(5-2x)2. 解:(1)x1=0,x2=-1; (2)x1=0,x2=23; (3)x1=x2=1; (4)x1=112,x2=-112; (5)x1=3,x2=1. 点拨精讲:因式分解法解一元二次方程的一般步骤: (1)将方程右边化为__0__; (2)将方程左边分解成两个一次式的__乘积__; (3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m. 则可列方程2πx2=π(x+5)2. 解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52) m. 学生总结本堂课的收获与困惑.(2分钟) 1.用因式分解法解方程的根据由ab=0得 a =0或b=0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系 1. 理解并掌握根与系数的关系:x1+x2=-ba,x1x2=ca. 2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 自学1:完成下表:方程 x1 x2 x1+x2 x1x2 x2-5x+6=0 2 3 5 6 x2+3x-10=0 2 -5 -3 -10 问题:你发现什么规律?①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项.②x2+px+q=0的两根x1,x2用式子表示你发现的规律. 答:x1+x2=-p,x1x2=q. 自学2:完成下表:方程 x1 x2 x1+x2 x1x2 2x2-3x-2=0 2 -12 32 -1 3x2-4x+1=0 13 1 43 13问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.答:x1+x2=-ba,x1x2=ca. 自学3:利用求根公式推导根与系数的关系.(韦达定理) ax2+bx+c=0的两根x1=__-b+b2-4ac2a__,x2=__-b-b2-4ac2a__. x1+x2=-ba,x1x2=ca. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x2-3x-1=0 ;(2)2x2+3x-5=0; (3)13x2-2x=0. 解:(1)x1+x2=3,x1x2=-1; (2)x1+x2=-32,x1x2=-52; (3)x1+x2=6,x1x2=0. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 1.不解方程,求下列方程的两根之和与两根之积. (1)x2-6x-15=0; (2)3x2+7x-9=0; (3)5x-1=4x2. 解:(1)x1+x2=6,x1x2=-15; (2)x1+x2=-73,x1x2=-3; (3)x1+x2=54,x1x2=14. 点拨精讲:先将方程化为一般形式,找对a,b,c. 2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.解:另一根为32,k=3. 点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答. 3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值. (1)1α+1β;(2)α2+β2;(3)α-β. 解:(1)-35;(2)19;(3)29或-29. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积: (1)x2-3x=15; (2)5x2-1=4x2; (3)x2-3x+2=10; (4)4x2-144=0. 解:(1)x1+x2=3,x1x2=-15; (2)x1+x2=0,x1x2=-1; (3)x1+x2=3,x1x2=-8; (4)x1+x2=0,x1x2=-36. 2.两根均为负数的一元二次方程是( C ) A.7x2-12x+5=0 B.6x2-13x-5=0 C.4x2+21x+5=0 D.x2+15x-8=0 点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟) 不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值. 1.先化成一般形式,再确定a,b,c. 2.当且仅当b2-4ac≥0时,才能应用根与系数的关系. 3.要注意比的符号:x1+x2=-ba(比前面有负号),x1x2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟) 21.3 实际问题与一元二次方程(1) 1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟) 问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x+1)(x+1)__人患了流感.则列方程: __(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得 x1=__2__,x2=__4__,∴原来的两位数为24或42. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为( ) A.x(x+1)=2550 B.x(x-1)=2550 C.2x(x+1)=2550 D.x(x-1)=2550×2 分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B. 一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别. 2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟) 1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A.2和4 B.6和8 C.4和6 D.8和10 2.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟) 1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题. 2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(2) 1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b 为增长(或降低)后的量.一、自学指导.(10分钟) 自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01) 绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则 11月份的营业额为__5000(1+x)__元, 12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2; n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n. 解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟) 某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%) 分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x•80%;第二次存,本金就变为1000+2000x•80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x•80%+(1000+2000x•80%)x•80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%. 答:所求的年利率是12.5%. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟) 青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%. 答:水稻每公顷产量的年平均增长率为8%. 点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟) 1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义. 2. 若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟) 21.3 实际问题与一元二次方程。

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.一、教学内容二、教学目标1. 理解并掌握二次函数、锐角三角函数、圆的性质及计算方法;2. 能够运用所学的知识解决实际问题,培养解决问题的能力;3. 培养学生的空间想象能力、逻辑思维能力和数据分析能力。

三、教学难点与重点教学难点:二次函数的性质及图像、锐角三角函数的计算、圆的方程与性质。

教学重点:二次函数的解析式、锐角三角函数的定义、圆与直线的关系。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、圆规、三角板;2. 学具:课本、练习本、圆规、三角板。

五、教学过程1. 导入:通过展示生活中的实例,引入二次函数、锐角三角函数、圆的概念;2. 新课讲解:(1)讲解二次函数的性质、图像及解析式;(2)讲解锐角三角函数的定义、图像及计算;(3)讲解圆的性质、方程及与直线的关系;3. 例题讲解:针对每个知识点,讲解经典例题,引导学生运用所学知识解决问题;4. 随堂练习:布置一些有针对性的练习题,让学生巩固所学知识;6. 课堂反馈:了解学生的学习情况,及时解答学生的疑问。

六、板书设计1. 二次函数:性质、图像、解析式;2. 锐角三角函数:定义、图像、计算;3. 圆:性质、方程、与直线的关系;4. 例题及解题步骤;5. 课堂练习题目。

七、作业设计1. 作业题目:(1)求二次函数y=x^22x3的顶点坐标和对称轴;(2)已知直角三角形的一个锐角为30°,求其余两个锐角的正弦、余弦、正切值;(3)已知圆的方程为(x2)^2+(y+3)^2=25,求圆的半径和圆心坐标。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课的教学效果如何?学生对知识点的掌握程度如何?哪些地方需要加强?2. 拓展延伸:引导学生探索二次函数、锐角三角函数、圆在实际生活中的应用,提高学生的实际应用能力。

可布置一些拓展性练习题,如研究二次函数图像的变换、锐角三角函数在实际测量中的应用等。

重点和难点解析1. 教学难点与重点的确定;2. 教学过程中的例题讲解和随堂练习;3. 作业设计中的题目和答案;4. 课后反思及拓展延伸。

人教版九年级数学上册全册全套课件200页

人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法)、根的判别式、根与系数的关系、实际应用等。

2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及不等式组的解法、不等式的应用等。

3. 第十五章:图形的相似详细内容:相似图形的定义、性质、判定方法、相似图形的应用等。

4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、互化公式、解直角三角形等。

二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数等基础知识。

2. 能够运用所学知识解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法、相似图形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的解法、不等式的性质与解法、相似图形的判定与性质、锐角三角函数的定义与互化公式。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、铅笔、圆规、三角板等。

五、教学过程1. 导入:通过实际情景引入新课,激发学生兴趣。

2. 新课讲解:详细讲解各章节知识点,结合例题进行讲解。

3. 随堂练习:针对新课内容,设计有针对性的练习题,巩固所学知识。

5. 课后作业:布置适量的课后作业,巩固所学知识。

六、板书设计1. 一元二次方程的解法2. 不等式与不等式组的解法3. 相似图形的判定与性质4. 锐角三角函数的定义与互化公式七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)解不等式组:2x 3 > 4,x + 5 < 3。

(3)证明:若两个三角形相似,则它们的对应角相等。

(4)计算:sin30°、cos45°、tan60°。

人教版九年级上册数学全册教学课件(2021年9月修订)

人教版九年级上册数学全册教学课件(2021年9月修订)

像这样,等号两边都是整式,只含有一个
未知数(一元),并且未知数的最高次数是
2(二次)的方程,叫做一元二次方程.
新知探究 知识点2
一般地,任何一个关于 x 的一元二次方程,经过整理,
都能化成如下形式:ax2 + bx +c = 0(a≠0)
2
这种形式叫做一元二次方程的一般形式.其中 ax 是
二次项,a 是二次项系数;bx是一次项,b 是一次项
去的小正方形的边长.设剪去的小正方形的边长是 x
cm,根据题意可列方程为( B )
A.10×6-4×6x=32
B.(10-2x)(6-2x)=32
C.(10-x)(6-x)=32 类似例题的素养解
D.10×6-4x2=32 读见《教材帮》RJ
九上21.1节中考帮
学生课堂行为规范的内容是:
按时上课,不得无故缺课、迟到、早 退。
新知探究 跟踪训练
例1 解下列方程:
(1)2x2=8;
(2)36x2-1=0.
解:二次项系数化为1,得 解:移项,得36x2=1.
二次项系数化为1,得
x2=4.
开平方,得
x=±2.
即x1=2,x2=-2.
1
2
x=
36
.
1
开平方,得 x=± 6
1
1
即 x1 , x2 .
6
6
.
新知探究 知识点2
因此要分类讨论.
(1)当p>0时,根据平方根的意义,方程( I )有两个不等
的实数根 1 = − ,2 = .
(2)当p=0时,方程( I )有两个相等的实数根 x1=x2=0.
(3)当p<0时,因为对任意实数x,都有x2≥0.所以方程

【人教版】2021年九年级数学上册课件(共616张)

【人教版】2021年九年级数学上册课件(共616张)
1.当方程的一边容易变形为含未知数的完全平方式,另 一边是非负数时,可以用直接开平方法求解,
即:对于(mx +n)2=p(p≥0),得:mx n p
2.若两边都是完全平方式,
即:(ax +b)2=(cx +d)2,得 ax b (cx d)
【针对练二】
DD
D
1/5
5.方程〔2x -1)2=(x +2)2的解为x:1=3,
25
10
即结:论x1: 当4106△1,bx224a4c1>060
时 ,1一元二次方程有两个不 5
相等的实数根.
例( 2 4)x2 17 8x
解:原方程可化为x2 8x 17 0
a 1,b 8,c 17
这里的a、 b、c的值 分别是什
么?
△ b2 4ac (8)2 4117 4<0
∴方程无实数根。
2.确定系数:用 a,b,c写出各项系 数;
x b b2 4ac 2a
4 44 4 2 11 .
21
2
3.计算: △=b24ac的值;
4.代入:把有关数 值代入公式计算;
2 – 11
5.定根:写出原方
x 2 11; x 2 11 结论:当 △ b2 4ac>0 时,一元二程次的方根程. 有两个不
x 0 或 1 0 4.9x 0, ②
可以发现,上述解法中,由①到②的过程,不是用开方降 次,而是先因式分解使方程化为两个一次式的乘积等于0 的形式,再使这两个一次式分别等于0,从而实现降次, 这种解法叫做因式分解法.
合作探究 达成目标
当一元二次方程的一边是0,而另一边易于分解成两 个一次因式的乘积时,我们就可以用分解因式的方法 求解.这种用分解因式解一元二次方程的方法称为分 解因式法.

人教版九年级数学上册全册教案及作业题(带答案)

人教版九年级数学上册全册教案及作业题(带答案)

人教版九年级数学上册全册教案及作业题(带答案) 21.1 二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们实行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后使用结论严谨解题.教学重难点关键新|课|标|第|一|网1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其使用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2≥0.所以上面的4题都能够使用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1(4)∵4x2-12x+9=(2x)2-22x3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a。

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程及其解法13.2 一元二次方程的判别式13.3 一元二次方程的根与系数的关系13.4 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 不等式及其解法14.2 不等式的性质14.3 不等式组14.4 实际问题与不等式组3. 第十五章:函数及其图像15.1 函数的概念与表示方法15.2 函数的性质15.3 一次函数15.4 一次函数的图像与性质4. 第十六章:二次函数16.1 二次函数的概念与表示方法16.2 二次函数的图像与性质16.3 二次函数的顶点式16.4 二次函数与一元二次方程16.5 实际问题与二次函数二、教学目标1. 理解一元二次方程、不等式、不等式组、函数及二次函数的基本概念,掌握它们的解法、性质、图像和应用。

2. 培养学生运用数学知识解决实际问题的能力,提高逻辑思维能力和推理能力。

3. 培养学生团队合作精神,提高自主学习能力。

三、教学难点与重点1. 教学难点:一元二次方程的根与系数的关系、不等式的性质、一次函数与二次函数的图像与性质。

2. 教学重点:一元二次方程的解法、不等式组的解法、函数的概念及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔、教鞭等。

2. 学具:课本、练习册、草稿纸、直尺、圆规、计算器等。

五、教学过程1. 导入:通过实际问题引入新课,激发学生兴趣。

2. 新课讲解:结合教材,详细讲解各章节知识点,注重理论与实践相结合。

3. 例题讲解:精选典型例题,详细讲解解题思路和方法,引导学生分析问题,提高解题能力。

4. 随堂练习:设计针对性练习,巩固所学知识,及时发现问题并进行解答。

5. 小组讨论:分组讨论,培养学生团队合作精神,提高解决问题的能力。

六、板书设计1. 用大号字体书写,突出主题。

2. 知识点:用不同颜色粉笔书写,分层次、分模块展示。

2024年新人教版九年级数学上册全册课件.

2024年新人教版九年级数学上册全册课件.

2024年新人教版九年级数学上册全册课件.一、教学内容二、教学目标1. 理解并掌握一元二次方程的解法,能够解决实际问题。

2. 掌握不等式与不等式组的解法,并能应用于实际问题。

3. 理解图形的相似性质,能够运用相似知识解决几何问题。

4. 掌握圆的性质和方程,能够解决与圆相关的实际问题。

5. 了解概率与统计的基本概念,能够进行简单的数据分析。

三、教学难点与重点重点:一元二次方程的解法、不等式的解法、图形相似的应用、圆的性质和方程、概率与统计的基本概念。

难点:一元二次方程的求解、不等式组的求解、相似变换的应用、圆的方程推导、概率的计算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:课本、练习册、草稿纸、直尺、圆规。

五、教学过程1. 导入:通过实际问题引入,激发学生的学习兴趣。

2. 讲解:详细讲解各章节的重点知识点,结合例题进行讲解。

3. 课堂互动:针对讲解的内容,进行随堂练习,检验学生掌握程度。

4. 练习:布置课后作业,巩固所学知识。

六、板书设计1. 2024年新人教版九年级数学上册全册2. 知识点:各章节重点知识点、例题、练习题3. 板书布局:左侧为知识点,右侧为例题和练习题,中间为解题步骤和注意事项。

七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 1,3x + 4 < 2(3)计算圆的面积:已知圆的半径r = 5cm(4)根据概率公式,计算掷骰子得到偶数的概率。

2. 答案:见附录。

八、课后反思及拓展延伸2. 拓展延伸:针对学有余力的学生,布置一些拓展题目,提高学生的思维能力。

重点和难点解析一、教学内容的详细讲解重点和难点解析:在教学内容中,对于每个章节的重点和难点知识点的讲解需要特别关注。

教师应深入剖析这些知识点,通过生动的实例和直观的图形展示,帮助学生更好地理解和掌握。

1. 一元二次方程的求解:详细讲解求根公式及其推导过程,强调判别式Δ的符号对根的性质的影响。

最新人教版九年级上册数学全册教案+中考数学试题(解析版)

最新人教版九年级上册数学全册教案+中考数学试题(解析版)

2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把 2t+1 变为上面的 x,那么 2t+1=±3
即 2t+1=3,2t+1=-3
方程的两根为 t1=1,t2=--2
例 1:解方程:(1)(2x-1) 2=5
(2)x 2+6x+9=2
(3)x 2-2x+4=-1
分析:很清楚,x2+4x+4 是一个完全平方公式,那么原方程就转化为(x+2)2=1.
接化成上面两种形式的解题步骤.
2.
问题 1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)( p )2 p .
2
2
问题 2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二
次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了 x2=9,根据平方根的意义,直接开平方得 x=±3,如果 x 换元为 2t+1,即(2t+1)
六、布置作业
1.教材 复习巩固 1、2.
第 4 课时 22.2.1 配方法(1)
教学内容
间接即通过变形运用开平方法降次解方程.
教学目标
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成 x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直
2.难点与关键:通过根据平方根的意义解形如 x2=n,知识迁移到根据平方根的意义解形如(x+m)
2=n(n≥0)的方程.
教学过程
一、复习引入

人教版九年级数学上册全册完整优质课件

人教版九年级数学上册全册完整优质课件

人教版九年级数学上册全册完整优质课件一、教学内容二、教学目标通过本节课学习,我希望学生能够掌握一元二次方程、二次函数、圆基本性质及概率初步等知识,培养他们解决实际问题能力,提高数学思维和逻辑推理能力。

三、教学难点与重点本节课教学难点在于二次函数图像与性质理解、圆与直线关系判定以及概率计算。

教学重点是一元二次方程求解方法、二次函数顶点坐标求法以及圆方程。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:学生用书、练习本、铅笔。

五、教学过程1. 实践情景引入:通过展示生活中实例,引入一元二次方程、二次函数等概念,激发学生兴趣。

2. 例题讲解:(1)求解一元二次方程:x^2 5x + 6 = 0。

(2)二次函数y = x^2 2x 3图像及顶点坐标求法。

(3)圆方程x^2 + y^2 = 4图像及性质。

(4)计算随机事件A和B同时发生概率。

3. 随堂练习:针对每个知识点设计相应练习题,让学生独立完成,并及时给予反馈。

六、板书设计1. 一元二次方程求解方法、判别式。

2. 二次函数图像、性质、顶点坐标求法。

3. 圆方程、性质、圆与直线关系。

4. 概率计算、随机事件独立性。

七、作业设计1. 作业题目:(1)求解一元二次方程:x^2 3x 4 = 0。

(2)求二次函数y = x^2 4x + 3顶点坐标。

(3)已知圆方程为x^2 + y^2 4x 6y + 9 = 0,求圆半径和圆心坐标。

(4)计算随机事件A和B同时发生概率,已知P(A) = 0.3,P(B) = 0.4,P(AB) = 0.12。

2. 答案:(1)x1 = 1,x2 = 4。

(2)顶点坐标为(2,1)。

(3)半径为2,圆心坐标为(2,3)。

(4)P(A∩B) = 0.12。

八、课后反思及拓展延伸本节课结束后,我将反思教学过程中不足之处,并根据学生掌握情况,对教学内容进行适当调整。

同时,针对学有余力学生,我会设计一些拓展延伸题目,提高他们数学思维能力和解决问题能力。

人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件一、教学内容1. 函数与方程函数的概念、表示法及其性质一元二次方程的求解及其应用一次函数、反比例函数的性质及应用2. 图形的相似与证明相似图形的判定与性质位似图形的判定与性质相似变换及其应用3. 解直角三角形锐角三角函数的概念与性质解直角三角形及其应用4. 统计与概率频数与频率可能性的大小平均数、中位数、众数的计算及应用二、教学目标1. 理解函数、方程、相似图形等基本概念,掌握其性质与应用。

2. 学会使用锐角三角函数解直角三角形,并能应用于实际问题。

3. 培养学生的数据分析与逻辑思维能力,提高解决问题的能力。

三、教学难点与重点1. 教学难点:函数的性质、相似图形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的求解、一次函数与反比例函数的性质、统计与概率的计算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。

2. 学具:课本、练习本、计算器、直尺、圆规。

五、教学过程1. 导入:通过生活实例,引出函数、方程等概念,激发学生的学习兴趣。

2. 新课导入:(1)讲解函数的概念、表示法及其性质。

(2)通过例题,讲解一元二次方程的求解及其应用。

(3)介绍一次函数、反比例函数的性质,分析其在实际问题中的应用。

(4)讲解相似图形的判定与性质,通过实践操作加深理解。

(5)介绍锐角三角函数的概念与性质,引导学生学会解直角三角形。

3. 随堂练习:(1)针对函数、方程、相似图形等知识点,设计具有代表性的练习题。

(2)分组讨论,互帮互学,共同解决问题。

4. 知识巩固:(1)通过典型例题,巩固函数、方程等知识。

(2)讲解统计与概率的计算方法,分析其在生活中的应用。

5. 课堂小结:六、板书设计1. 函数、方程的概念与性质。

2. 一元二次方程的求解方法。

3. 一次函数、反比例函数的性质。

4. 相似图形的判定与性质。

5. 锐角三角函数的应用。

6. 统计与概率的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册全册教案及作业题(带答案)《人教版九年级上册全书教案》第二十一章二次根式教材内容 1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标 1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a (a≥0), =a(a≥0).(3)掌握• =(a≥0,b≥0),= • ; = (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点 1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算.教学难点 1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及 =a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB= 问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“ ”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、- 、、(x≥0,y ≥0).分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥ 当x≥ 时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时,+ 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1 当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2) (2)若 + =0,求a2004+b2004的值.(答案: ) 五、归纳小结(学生活动,老师点评)本节课要掌握: 1.形如(a≥0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x 2.下列式子中,不是二次根式的是()A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是() A.5 B. C. D.以上皆不对二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_______. 4.使式子有意义的未知数x有()个. A.0 B.1 C.2 D.无数 5.已知a、b 为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B 二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-421.1 二次根式(2) 第二课时教学内容 1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新|课|标|第|一|网 1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用. 2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式? 2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2= ,()2= ,()2=0,所以()2=a(a≥0)例1 计算 1.()2 2.(3 )2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2 = ,(3 )2 =32•()2=32•5=45,()2= ,()2= .三、巩固练习计算下列各式的值:X|k |b| 1 . c|o |m ()2 ()2 ()2 ()2 (4 )2 四、应用拓展例2 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0 ()2=x+1 (2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴()2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结本节课应掌握: 1.(a≥0)是一个非负数; 2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:《同步训练》第二课时作业设计一、选择题 1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题 1.(- )2=________. 2.已知有意义,那么是一个_______数.三、综合提高题 1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6= (4)(-3 )2=9× =6 (5)-6 2.(1)5=()2 (2)3.4=()2 (3) =()2 (4)x=()2(x≥0) 3. xy=34=81 4.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- ) (3)略优品课件,意犹未尽,知识共享,共创未来!!!。

相关文档
最新文档