高等流体力学各章习题汇总

合集下载

高等流体力学各章习题汇总

高等流体力学各章习题汇总
A t S ( Au ) 0
式中是 u 速度, dS 是流动方向的微元弧长. 7. 试证明对于滞止焓 h0 有以下方程成立
t ( h0 ) x j ( u j h0 ) p t x j ( ij u i k T x j ) fiu i
滞止焓
h0 h
1 u u 2
8.一个物质体系V 分为V1和V2 两部分, Σ 是V1和V2的分界面, S 是V的 边界曲面, 设交界面Σ以速度 u 运动,在 Σ 两侧物理量 F 有一个跃变. 试导出推广的雷诺输运公式
Dt
V
D
FdV

V
F t
dV

S
F V nd S
第五章 教科书 5.5, 5.6, 5.7 4. 证明在球坐标系下 (
A r
2
co s B r ) sin
2 2
可表示不可压缩流体
某轴对称无旋流动中的流函数,并求其速度势.
5. 已知流体绕流圆球的势函数
的力.
( r , ) U ( r
a
3 2
) co s
2r
, 式中 a 是
2
2
(1)沿下边给出的封闭曲线积分求速度环量,
0 x 10, y 0; 0 y 5, x 10; 0 x 10, y 5; 0 y 5, x 0.
(2)求涡量 ,然后求


n dA
A
式中A是 (1) 中给出的矩形面积, 是此面积的外单位法线矢量。

u i t u
j
t
u j
x
ij j
x k

《流体力学》所有做过的习题答案

《流体力学》所有做过的习题答案

第一章习题简答1-3 为防止水温升高时,体积膨胀将水管胀裂,通常在水暖系统顶部设有膨胀水箱,若系统内水的总体积为10m 3,加温前后温差为50°С,在其温度范围内水的体积膨胀系数αv=0.0005/℃。

求膨胀水箱的最小容积V min 。

题1-3图解:由液体的热胀系数公式dTdVV 1V =α , 据题意, αv =0.0005/℃,V=10m 3,dT=50°С 故膨胀水箱的最小容积325.050100005.0m VdT dV V =⨯⨯==α1-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。

假定平板运动引起液体流动的速度分布是线性分布。

当h =10mm 时,求薄平板单位宽度上受到的阻力。

解:平板受到上下两侧黏滞切力T 1和T 2作用,由dyduAT μ=可得 12U 1515T T T AA 0.70.06840.040.010.01U N h h μμδ⎛⎫=+=+=⨯⨯+= ⎪--⎝⎭(方向与u 相反)1-7 温度为20°С的空气,在直径为2.5cm 的管中流动,距管壁上1mm 处的空气速度为3cm/s 。

求作用于单位长度管壁上的黏滞切力为多少?解:温度为20°С的空气的黏度为18.3×10-6 Pa·s 如图建立坐标系,且设u=ay 2+c 由题意可得方程组⎪⎩⎪⎨⎧+-=+=ca ca 22)001.00125.0(03.00125.00 解得a = -1250,c =0.195 则 u=-1250y 2+0.195则y dy y d dy du 2500)195.01250(2-=+-= Pa dyduAT 561048.4)0125.02500(1025.0103.18--⨯-=⨯-⨯⨯⨯⨯⨯==∴πμ (与课本后的答案不一样。

大学科目《流体力学》习题及答案

大学科目《流体力学》习题及答案

一、选择题1.按连续介质的概念,流体质点是指A .流体的分子; B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

2.作用在流体的质量力包括A. 压力;B. 摩擦力;C. 重力;D. 惯性力。

3.单位质量力的国际单位是:A . N ; B. m/s ; C. N/kg ; D. m/s 2。

4.与牛顿内摩擦定律直接有关系的因素是A. 切应力和压强; B. 切应力和剪切变形速率; C. 切应力和剪切变形。

5.水的粘性随温度升高而A . 增大; B. 减小; C. 不变。

6.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

7.流体的运动粘度υ的国际单位是A. m 2/s ;B. N/m 2 ; C. kg/m ;D. N ·s/m2 8.理想流体的特征是A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT 。

9.当水的压强增加1个大气压时,水的密度增大约为A. 200001; B. 100001;C. 40001 。

10.水力学中,单位质量力是指作用在A. 单位面积液体上的质量力;B. 单位体积液体上的质量力; C. 单位质量液体上的质量力;D. 单位重量液体上的质量力 11.以下关于流体粘性的说法中不正确的是A. 粘性是流体的固有属性;B. 粘性是在运动状态下流体具有抵抗剪切变形速率能力的量度C. 流体的粘性具有传递运动和阻滞运动的双重作用;D. 流体的粘性随温度的升高而增大。

12.已知液体中的流速分布µ-y 如图所示,其切应力分布为 A.τ=0;B.τ=常数; C. τ=ky (k 为常数)。

13.以下关于液体质点和液体微团的正确论述是A. 液体微团比液体质点大;B. 液体微团包括有很多液体的质点; C. 液体质点没有大小,没有质量;D. 液体质点又称液体微团。

14.液体的汽化压强随温度升高而 A. 增大;B. 减小;C. 不变;15.一封闭容器盛以水,当其从空中自由下落时(不计空气阻力),其单位质量力为 A. 0 ; B. -g ; C. mg ;D. –mg 。

高等流体力学课后习题

高等流体力学课后习题

⎧ y = c′x 2 ⎨ 3 ⎩ z = c′′x
1.5 已知流体质点的空间位置表示如下,
x = x0 , y = y0 + x0 ( e −2 t − 1), z = z0 + x0 ( e −3t − 1) ,
求 (1) 速度的欧拉表示; (2) 加速度的欧拉和拉格朗日表示; (3) 过点 (1,1,1) 的流线及 t = 0 时在 ( x0 , y0 , z0 ) = (1,1,1) 处的流体质点的迹线; (4)散度、旋度及涡线; (5)应变率张量和 旋转张量。 解: (1)速度欧拉表示
x = c1t , y = c2 et , z = c3
由 t = τ 时 ( x, y , z ) = ( x∗ , y∗ , z∗ )得
c1 = x∗τ −1 , c2 = y∗e −τ , c3 = z∗
将以上常数代入迹线方程,
高 等 流 体 力 学 习 题
第一章 课后练习题解
1.2 一速度场用 u =
x 2y 3z 描述, (1)求加速度的欧拉描述; (2)先求 , v= , w= 1+ t 1+ t 1+ t
矢径表示式 r = r ( x0 , y0 , z0 , t ) ,再求此加速度的拉格朗日描述; (3)求流线。
涡线方程,
x = c1 dy dz = −3 t −2e −2 t 3e ⇒ z=− 2 t ye + c2 3
(5)应变率张量和旋转张量
⎛ ⎜ 0 ⎜ S = ⎜ e −2 t ⎜ 3 −3t ⎜− e ⎝ 2
1.8
e −2 t 0 0
3 ⎞ ⎛ − e −3t ⎟ ⎜ 0 2 ⎟ ⎜ 0 ⎟ , A = ⎜ − e −2 t ⎟ ⎜ 3 −3 t 0 ⎟ ⎜− e ⎠ ⎝ 2

高等流体力学第一章配套例题

高等流体力学第一章配套例题

r ez r ez
θ
P
σ Rω
a
σ Rθ
r r r pn = σ RR eR + σ Rθ eθ r 3µU r = − p0 eR + ez 2a
x
ω
y
z
σ RR
P
r 2π π r 2 3µU r r F = ∫ ∫ pn a sin θ dθ dω = 4π a 2 ez = 6πµUaez 2a 0 0
u = ay , v = w = 0 试求:
r
sij
aij s ijδ x j 和旋转速度 a ij δ x j
r r r i j k r r 1) ∇ × u = ∂ / ∂x ∂ / ∂y ∂ / ∂z = −ak ay 0 0
2)
0 a / 2 0 sij = a / 2 0 0 0 0 0
r + dr ,θ +
dθ dz ,z+ 2 2
dθ dz r ,θ + , z + 2 2
}dθ dz
dr

r+
dr dz ,θ + dθ , z + 2 2 dr ,θ , z + 2 2 r+ dz ]dzdr
r
θ
x
r+
r r r +{[(σ zr er + σ zθ eθ + σ zz ez )r ] r r r −[(σ zr er + σ zθ eθ + σ zz ez )r ]
θ
σ Rω
a
σ Rθ
ω
又解 :
y
x
r r F = ez ∫ (σ RR cosθ − σ Rθ sin θ ) 2π a sin θ a dθ

(完整word版)流体力学总题库内部吐血整理

(完整word版)流体力学总题库内部吐血整理

2h
(3)

h 2H h1
(4)
等角速度旋转容器中液体相对平衡时等压面的方程为
2r2 gz C
2
(5)
r d z h 对于自由液面,C=0。圆筒以转速 n1 旋转时,自由液面上,边缘处,

,则
2
2
d 2
2
gh
0
(6)
2

2 2gh
d
(7)
由于
2 n1
60
(8)
n1
30
30
d δ
n L
2.在温度不变的条件下,体积为 由流体压缩系数计算公式可知:
的水,压强从
增到
,体积减少了
,试求水的压缩率。
3.某种油的运动黏度是 4.28x10∧-7 ㎡/s,密度是 ρ=678kg/m³,试求其动力黏度。
解:油的运动黏度 v=4.28x10∧-7 ㎡/s。ρ=678kg/m³
v=u/p 得 u=pv=4.28x10*-7x678=2.9x10∧-4Pa.s 4.(习题 1-8)
h= 因此,可以计算 h 得到:
pA -pB Hg g
(2.7+2.9) 104 = 13.55103 9.8
=0.422m
6、如图所示,一直立的煤气管,为求管中煤气的密度,在高度差 H=20m 的两个断面上安装 U 形管测压计,其内工
m h h 的密度 =1.28kg/ 3 ,测压计读数 1 =100mm, 2 =115mm。若忽略 U 形管测压计中空气密度的影响,试求煤气管中煤气的密度。解:
,间隙
,间隙内润滑油的动力黏度
,消耗的功率
解 油层与轴承接触面上的速度为零,与轴接触面上的速度等于轴面上的线速度

(完整word版)《高等流体力学》习题集

(完整word版)《高等流体力学》习题集

《高等流体力学》复习题一、 基本概念1. 什么是理想流体?正压流体,不可压缩流体? [答]:教材P57当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。

内部任一点的压力只是密度的函数的流体,称为正压流体。

流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。

2. 什么是定常场;均匀场;并用数学形式表达。

[答]:如果一个场不随时间的变化而变化,则这个场就被称为定常场。

其数学表达式为:)(ϕϕ=如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r ,则这个场就被称为均匀场。

其数学表达式为:)(t ϕϕ=3. 理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无粘性?为什么? [答]:理想流体运动时无切应力。

粘性流体静止时无切应力。

但是,静止时无切应力,而有粘性。

因为,粘性是流体的固有特性。

4. 流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系? [答]:教材P119-123如果流体运动是无旋的,则称此流体运动为有势运动。

对于无旋流动来说,其速度场V 总可以由某个速度标量函数(场)),(t r φ的速度梯度来表示,即φ∇=,则这个标量函数(场)),(t φ称为速度场V 的速度势函数。

无旋运动与有势运动的关系:势流运动与无旋运动是等价的,即有势运动是无旋的,无旋运动的速度场等同于某个势函数的梯度场。

5. 什么是流函数?存在流函数的流体具有什么特性?(什么样的流体具有流函数?) [答]:6. 平面流动中用复变位势描述的流体具有哪些条件(性质)? [答]:教材P126-127理想不可压缩流体的平面无旋运动,可用复变位势描述。

7. 什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?Stokes 假设的基本事实依据是什么? [答]:教材P89第一粘性系数μ:反映了剪切变形对应力张量的贡献,因此称为剪切变形粘性系数; 第二粘性系数μ’:反映了体变形对应力张量的贡献,因而称为体变形粘性系数。

高等流体力学复习总结

高等流体力学复习总结

m y 2 x 2 y 2
四、倒数函数-偶极子
m 1 m x yi w( z ) i 2 2 2 x yi 2 x y
m 1 w( z ) 2 z
m是实数
dw m 1 iQ dw dz dz 0 2 c c dz c 2 z
正压流体
流体在流动过程中,若流体的密度仅
是压力的函数,则该流动是正压的。或
者,若等密度面与等压面重合,则流动 正压。
d ( )v ( v) dt
1 1 F p v ( v) 3
直角坐标系中的形式
u 2 u v w p xx p 2 x y z x 3 v 2 u v w p yy p 2 x y z y 3 w 2 u v w p zz p 2 x y z z 3



w( z ) a ln z
a是实数
i
w( z ) i a ln(re ) a ln r i
Q a 2 Q w( z ) ln z 2
点源 若点源不在坐标原点而在z0点,则复位势为: 点汇
Q w( z ) ln( z z0 ) 2
w( z) ib ln z b是实数 z re i w( z ) i bi ln(re ) bi(ln r i ) b bi ln r
第二章 流体力学的基本概念
一 流体的定义和特征
二、流体连续介质假设
三 描述流体运动的两种方 法
四 迹线与流线 P104 例题 P140习题 五 速度分解定理 变形速度二阶张量

高等教育-《流体力学》课后习题答案

高等教育-《流体力学》课后习题答案

高等教育 --流体力学课后习题答案习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。

重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510500.25m V V V T α∆=⋅⋅∆=⨯⨯=1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃ 得:1127350273323T t K =+=+=,2227378273351T t K =+=+= 根据mRT p V =,有:111mRT p V '=,222mRT p V '=G =mg自由落体: 加速度a =g得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V = 体积减小了()10.18100%82%-⨯=1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:uT Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅= 上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左 下表面单位宽度受到的内摩擦力:2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左 平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。

流体力学参考答案李玉柱(汇总)

流体力学参考答案李玉柱(汇总)

高等学校教学用书流体力学习题参考答案主讲:张明辉高等教育出版社李玉柱,苑明顺编.流体力学与流体机械, 北京:高等教育出版社,2008.1(2009 重印)《流体力学》第一章绪论992.2kg/m 3 0.661 10 6m 2/s 6.56 10 4Pa s1-3 一平板在油面上作水平运动,如图所示。

已知平板运动速度V = lm/s ,板与固定边 界的距离 A 5mm ,油的粘度 0.1Pa s ,求作用在平板单位面积上的粘滞阻力。

解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度为du V 1m/s 3dy5 10 m1-4有一底面积为40cm X 60cm 矩形木板,质量为5kg ,以0.9m/s 的速度沿着与水平 面成30°倾角的斜面匀速下滑,木板与斜面之间的油层厚度为1mm ,求油的动力粘度。

解:建立如下坐标系,沿斜面向下方向为 x 轴的正方向,y 轴垂直于平板表面向下。

1-1空气的密度 1.165kg/m 3,动力粘度 1.87 10 5Pa s ,求它的运动粘度解:由v —得,v — 1.87 10 5Pa s 1.165kg/m 3521.61 10 m /s1-2水的密度992.2kg/m 3,运动粘度v 0.661 10 6m 2/s ,求它的动力粘度解:由v —得, 200s由牛顿内摩擦定律豈,可得作用在平板单位面积上的粘滞阻力为du dy0.1Pa s 200s -120PaT77^7777^77777777越 1-3 I*设油膜内速度为线性分布,则油膜内的速度梯度为:由牛顿内摩擦定律知,木板下表面处流体所受的切应力为:30.9 10,Pa0.9 1 030.4 0.6 5 9.8sin 30从而可得油的动力粘度: 0.1134Pa s1-5上下两个平行的圆盘,直径均为d ,间隙厚度为§■,间隙中的液体动力黏度系数为 [1,若下盘固定不动,上盘以角速度 3旋转,求所需力矩M 的表达式。

流体力学习题集

流体力学习题集

第1章 绪 论习 题1-1 从力学分析意义上说流体和固体有何不同? 1-2 量纲与单位是同一概念吗? 1-3 流体的容重和密度有何区别与联系?1-4水的密度为1000 kg/m 3,2升的水的质量和重量是多少? 1-5 体积为0.5m 3的油料,重量为4410N ,该油料的密度是多少?1-6 水的容重g = 9.71 kN/m 3,m = 0.599 ´ 10-3Pa×s,求它的运动粘滞系数。

1-7 如图所示为一0.8 ´ 0.2m 的平板,在油面上作水平运动,已知运动速度u = 1m/s ,平板与固定边界的距离d = 1mm ,油的动力粘滞系数为m = 1.15 Pa×s,由平板所带动的油的速度成直线分布,求平板所受的阻力。

1-8 旋转圆筒粘度计,悬挂着的内圆筒半径r = 20cm ,高度h = 40cm ,内筒不动,外圆筒以角速度w = 10 rad/s 旋转,两筒间距d = 0.3cm ,内盛待测液体。

此时测得内筒所受力矩M = 4.905 N×m。

求油的动力粘滞系数。

(内筒底部与油的相互作用不计)1-9 一圆锥体绕其中心轴作等角速度w = 16 rad/s 旋转,锥体与固定壁面的间隙d = 1mm ,其间充满m = 0.1 Pa×s 的润滑油,锥体半径R = 0.3m ,高R = 0.5m ,求作用于圆锥体的阻力矩。

1-10 如图所示为一水暖系统,为了防止水温升高时体积膨胀将水管胀裂,在系统顶部设一膨胀水箱。

若系统内水的总体积为8m 3,加温前后温差为50°C,在其温度范围内水的膨胀系数为,求膨胀水箱的最小容积。

(水的膨胀系数为0.0005 /°C)1-11 水在常温下,由5at 压强增加到10at 压强时,密度改变多少?1-12 容积为4的水,当压强增加了5at 时容积减少1升,该水的体积弹性系数为多少?为了使水的体积相对压缩1/1000,需要增大多少压强?题1-7图u题1-8图第2章 流体运动学基础习 题2-1 给定速度场u x = x + y ,u y = x - y ,u z = 0,且令t = 0时x = a ,y = b ,z = c ,求质点空间分布。

流体力学理论重点习题解答

流体力学理论重点习题解答

p

Ev
ln
Ev
Ev
0gh

2.3 10 9
ln
2.3 10 9
2.3 10 9 1030 9.8
6000
6.18107 Pa
密度为常数 1030 kg / m3
p gh 1030 9.8 6000
6.063107 Pa
目的是为了建立深度h与压强p之间的关系!
2 t
t
t
x ae k , y be k , z ce k
式中k为非零常数,请判断: (1)速度场是否定常; (2)流场是否可压缩; (3)是否有旋流场。
解:
(1) 如果流场内每一点的物理量都不随时间 t 而变化,
则称定常场:
2t
u x
ae
k



u ux
v vy
w wz
采用拉格朗日法,以x方向为例,a 为变量, k为常量;设取k=2;
做x与t的变化曲线,则可以看出,对应不同的a,有不同的曲线
形式,并且x是随着t而变化的,但x不是流场的物理量,只是空
间位置!
7
x= a *exp(-t)
6
5
2t
x ae k
4
t
3
H / sin 60
(s a)sds 0
0
得: Q 26778N
2-21 一个3m直径的敞开容 器装满水,容器有一半球的 底(如题图2-21所示)。试 确定对此曲面底静水压力的 大小,作用线,以及作用方 向。
由液体自重所产生的静压力的大小
Fz

g R 2 H


1 2

流体力学课后习题与答案

流体力学课后习题与答案

第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。

求流线方程并画出若干条流线。

解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。

z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。

解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。

流体力学 第1-2-3-4-5章部分习题 解答

流体力学 第1-2-3-4-5章部分习题 解答

欧拉法
同时描述所有质点的瞬时参数 表达式简单
直接反映参数的空间分布 适合描述流体微元 的运动变形特性
流体力学最常用的解析方法
12
作业: 2-2-2
圆管过流断面上的流速分布公式
u um 1 r 2 / R2
u 10 1 r 2 / R2
um管轴处最大流速,求流量Q,平均流速和最大流速之间的关系
dy

60
A dL

F A dL dL U
速度u
U r d

M
2
Fr dL
d
1 d
2 2
d

力矩M
剪应力τ


4M d 3L

3 0.2 8.5 0.33 3.14 3015
0.178Pa s
8
习题1-4-2
已知水的体积弹性模量K=2*109Pa,若温度保持不变,应加多大压强,才能使其体积压缩5%
2y

xy)i

(3x

y3

z) j
试问1该流场是几维流动,2求点(2,2,3)处的加速度
u 4x3 2 y xy v 3x y3 z w 0
u 12 x2 y x
u 2 x y
ax
u
u x
v u y
ay
u
v x
v
v y
dt
dt
x Aet 1 t y Bet 1 t
M(x=1,y=1,t=0)
1 Ae0 1 0
1 Be0 1 0
→ A=2,B=2
x 2et 1 t
y 2et 1 t

流体力学例题大全

流体力学例题大全

第一章:绪论例1-1 200 ºC体积为的2.5m3水,当温度升至800ºC时,其体积增加多少?解: 200 ºC时:ρ1=998.23kg/m3 800CºC时:ρ2=971.83kg/m3即:则:例1-2使水的体积减小0.1%及1%时,应增大压强各为多少?(K=2000MPa)d V/V =-0.1%=-2000×106×(-0.1%)=2×106Pa=2.0MPad V /V = -1%= -2000×106×(-1%)=20 MPa例1-3输水管l=200m,直径d=400mm,作水压试验。

使管中压强达到55at后停止加压,经历1小时,管中压强降到50at。

如不计管道变形,问在上述情况下,经管道漏缝流出的水量平均每秒是多少?水的体积压缩率κ =4.83×10-10m2 /N 。

解水经管道漏缝泄出后,管中压强下降,于是水体膨胀,其膨胀的水体积水体膨胀量5.95 l 即为经管道漏缝流出的水量,这是在1小时内流出的。

设经管道漏缝平均每秒流出的水体积以Q 表示,则例1-4:试绘制平板间液体的流速分布图与切应力分布图。

设平板间的液体流动为层流,且流速按直线分布,如图1-3所示。

解:设液层分界面上的流速为u,则:切应力分布:图1-3上层下层:在液层分界面上:--流速分布:上层:下层:例1-5:一底面积为40 ×45cm2,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面向下作等速运动,如图1-4所示,已知木块运动速度u =1m/s,油层厚度d =1mm,由木块所带动的油层的运动速度呈直线分布,求油的粘度。

解:∵等速∴αs =0由牛顿定律:∑F s=mαs=0m gsinθ-τ·A=0(呈直线分布)图1-4∵ θ=tan-1(5/12)=22.62°例1-6: 直径10cm的圆盘,由轴带动在一平台上旋转,圆盘与平台间充有厚度δ=1.5mm的油膜相隔,当圆盘以n =50r/min旋转时,测得扭矩M =2.94×10-4 N·m。

大学流体力学期末考试题型和章节复习

大学流体力学期末考试题型和章节复习

第一章 流体的主要物理性质计算题:1 一无限大平板在另一固定平面上作如图所示的平行运动,0.3V m s =,间隙高0.3h mm =,其中充满比重为0.88δ=、粘度为0.65cP μ=的流体,间隙中的流速按线性分布。

试求:(1)流体的运动粘度ν;(2)上平板壁面上的切应力τ上及其方向;(3)下平面壁面上的切应力τ下及其方向。

2 管道内流体速度分布为u=2y-y 2,式中u 为距管壁y 处的速度;试求:(1)管壁处之切应力;(2)距管壁0.5cm 处的切应力;(3)若管道直径d=2cm,在100长度的管壁上其总阻力为若干?设流体的粘度μ=0.4Pa ·s. 基本概念:1. 流体 2. 牛顿流体 3. 粘性 填空题:1流体力学中的三种主要假设模型是------------,-----------和--------------。

2 粘度是衡量流体--------物理量,动力粘度单位是--------。

问答题:1作用在流体上的力有哪几种?各如何表示?有何不同?判断题:1作用在流体质点上的力有重力和表面力( ).2液体一定是不可压缩性流体, 气体一定是可压缩性流体( ).3作用于流体上的重力可作为表面力来处理( ).第一章 流体的主要物理性质计算题: 1 解: (1)437265100.88107.410m s νμρ--==⨯⨯=⨯(2)y hdv dyV h τμμ===上53265100.30.3100.65N m --=⨯⨯⨯=。

顺y 轴的方向看去,上平板壁面为一负平面,故所得τ的正值应指向负x 轴方向,即指向左边。

(3)20.65V h N m τμ==下。

下平面为一正平面,故正τ应指向x 轴的正方向,即指向右边。

2 解:先求速度梯度y dydu22-= (1) 管壁处的切应力为8.024.000=⨯===y dydu μτ 2N m(2) 距管壁0.5cm 处的切应力为 当y=0.5cm 时15.022=⨯-=dydu1s 所以 4.014.0=⨯==dyduμτ 2N m (3) 当d=2cm,l=100m 时的总阻力为026.51001028.020=⨯⨯⨯⨯==-ππτdl T N基本概念:4. 流体: 流体是一种受任何微小剪切力作用都能持续变形的一种物体. 5. 牛顿流体: 内摩擦力满足牛顿内摩擦定律的流体. 6. 粘性: 是指流体在运动中所表现出的抵抗剪切变形的性质. 填空题:1 连续介质假设,不可压缩流体假设,理想流体假设2 粘性,Pa ·S 问答题:1 答: 作用在流体上的力有质量力和表面力.二种不同在于: ⑴质量力属于非接触产生的力,是力场的作用.表面力属于接触产生的力.⑵质量力作用在流体的每一个质点上,表面力作用在流体的表面上. ⑶质量力与流体的质量成正比,(如为均质体,与体积成正比),表面力与所取的流体的表面积成正比.判断题: 1 (ⅹ). 2 (ⅹ). 3 (ⅹ).第二章 流体静力学计算题:1 有如图所示的容器A 和B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1). 证明圆周 x 2
y a
2
2
上的任意一点的速度都与 y 轴平行,且此
速度大小与 y 成反比. (2). 求 y 轴上的速度最大点;
(3). 证明 y 轴是一条流线.
7. 已知速度势φ, 求相应流函数ψ. (1). (2).
xy

x x y
2 2
b
b
U p
8. 求图示不脱体绕流平板上下表面压强, 压强系数和速度分布.
2
2
(1)沿下边给出的封闭曲线积分求速度环量,
0 x 10, y 0; 0 y 5, x 10; 0 x 10, y 5; 0 y 5, x 0.
(2)求涡量 ,然后求


n dA
A
式中A是 (1) 中给出的矩形面积, 是此面积的外单位法线矢量。

u i t u
j
t
u j
x
ij j
x k
u j u k

ij
xi
f
j
可简化为
u i x
j
fi
6. 流体在弯曲的变截面细管中流动,设 A 为细管的横断面积, 在 A 断面上的流动物理量是均匀的,试证明连续方程具有下述形式,
L1
C
L2
第四章 教科书 4.1, 4.4, 4.7, 4.12 5. 设复位势为
F ( z ) m ln ( z 1 z )
(1). 问流动是由哪些基本流动组成; (2). 求流线方程;
(3). 求通过 z i 和 z
1 2
两点连线的流体体积流量.
6. 在点 (a, 0), ( -a, 0) 上放置等强度的点源,
第三章 教科书3.2, 3.3
3. 证明理想气体,质量力有势时有
D ( Dt


)(


1 )u 3 p

是涡量.
4.设等截面直角形管道,铅直段长为L1,
水平段长为 L2, 管中盛满了理想不可 压缩均质的水(如图示). C 处有一阀门, 当阀门打开后,管中的流动在各截面上 是均匀分布的. 求当铅直段中液面高为 h 时,管中的压强分布.
(2) 垂直于该平面的应力矢量分量; (3)
n 与 p n 之间的夹角。
1.4 设流动速度分布为 求各切应力。
u yzt , v zxt , w 0 .
粘度系数为
0 .0 1 N s/m ,
1.5 (教科书 2.3 )已知流场
u 1 6 x y , v 1 0, w yz
第五章 教科书 5.5, 5.6, 5.7 4. 证明在球坐标系下 (
A r
2
co s B r ) sin
2 2
可表示不可压缩流体
某轴对称无旋流动中的流函数,并求其速度势.
5. 已知流体绕流圆球的势函数
的力.
( r , ) U ( r
a
3 2
) co s
2r
, 式中 a 是
练习题
第一章 1.1 设速度场
u x 1 t ,
v 2y 1 t ,
w 3z 1 t ,
(1) 求其加速度的欧拉描述; (2) 先求矢径表示式 r r ( x 0 , y 0 , z 0 , t ) ,再由此求加速度的拉 格朗日描述; (3) 求流线及迹线。 1.2 设
n
1.6 (教科书 2.6) 计算下列二维流场在任意点
(R, )
的涡量,
(1).
(2)
u R 0, u R
u R 0, u 2 R
上式中 R 和 是柱坐标变量, 1.7 (教科书1.8)

, 为常数。
第二章 教科书: 1.4, 1.7, 1.9 (增加 Φ 证明大于零), 1.10 5. 证明方程
( F1 F 2 ) u d S

V1
Σ Leabharlann n 和 分别是 S 和 Σ 的法向单位矢 式中

S
n
量,其指向如图所示, F1 - F2 为 Σ 两侧 F 函数的跳跃.
V2
9. 设物体表面是不可穿透的,且表面形状在初始时刻可用 F(x,y,z)=0 来表示,如果此物体从初始时刻开始做下列不同运动: (1). 以速度 U 做等速运动, 速度沿 X 轴的负方向; (2). 以速度V= f (t) 做变速直线运 动,速度沿 X 轴的正方向.试写出在静止坐标系中粘性流体在物面上 的速度,物面在运动过程中的表达式,并计算速度在物面法线上的分量.
滞止焓
h0 h
1 u u 2
8.一个物质体系V 分为V1和V2 两部分, Σ 是V1和V2的分界面, S 是V的 边界曲面, 设交界面Σ以速度 u 运动,在 Σ 两侧物理量 F 有一个跃变. 试导出推广的雷诺输运公式
Dt
V
D
FdV

V
F t
dV

S
F V nd S
w b ( a x y ),
2 2 2
u v 0,
求应变率张量及旋转张量。
1.3 在P点的应力张量如下
7 0 2 0 5 0 2 0 4
求 (1) P点与单位法向矢量
pn ; 垂直的平面上的应力矢量
2 1 2 n , , 3 3 3
A t S ( Au ) 0
式中是 u 速度, dS 是流动方向的微元弧长. 7. 试证明对于滞止焓 h0 有以下方程成立
t ( h0 ) x j ( u j h0 ) p t x j ( ij u i k T x j ) fiu i
圆球半径. 试求圆球表面的压强分布,并计算流体作用在圆球上
6. 求半径为 a 的圆球在无限流场中由于重力而下沉的运动规律。 设 圆球运动阻力
D 1 2 C D V A
2
,C 是阻力系数, A
D
a
2
,称为
迎风面积。
相关文档
最新文档