相似三角形中的动点问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形中的动点问题

例1.5.1在△ABC 中,6AB =cm ,12AC =cm ,动点D 以1cm/s 的速度从点A 出发到点B 止,动点E 以2cm/s 的速度从点C 出发到点A 止,且两点同时运动,当以点A 、D 、E 为顶点的三角形与△ABC 相似时,求运动的时间t .

例1.5.2如图,在四边形ABCD 中,AD ∥BC ,∠B=90°,AB=8cm ,AD=12cm ,BC=18cm ,点P 从点A 出发以2cm/s 的速度沿A →D →C 运动,点P 从点A 出发的同时点Q 从点C 出发,以1cm/s 的速度向点B 运动,当点P 到达点C 时,点Q 也停止运动.设点P ,Q 运动的时间为t 秒.

(1)从运动开始,当t 取何值时,PQ ∥CD ?

(2)从运动开始,当t 取何值时,△PQC 为直角三角形?

A B C D

E

例1.5.3如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB 边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0≤t≤2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;

(2)连接AQ、CP,若AQ⊥CP,求t的值;

例1.5.4已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B 出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C 匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时,PQ∥BC;

(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

例1.5.5如图,在△ABC 中,5AB AC ==,6BC =,点D 为AB 边上的一动点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .把△ADE 沿直线DE 折叠,点A 落在点'A 处.连结'BA ,设AD x =,△ADE 的边DE 上的高为y .

(1)求出y 与x 的函数关系式;

(2)若以点A '、B 、D 为顶点的三角形与△ABC 相似,求x 的值;

(3)当x 取何值时,△A DB '是直角三角形.

A

B

C D

E

A

B C

例1.5.6如图,在△ABC 中,2AB AC ==,90A ∠=︒,P 为BC 的中点,E 、F 分别是AB 、AC 上的动点,45EPF ∠=︒.

(1)求证:△BPE ∽△CFP .

(2)设BE x =,△PEF 的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围.

例1.5.7如图,已知Rt △ABC 中,∠C=90°,AC=8cm ,BC=6cm ,点P 自B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm/s .以AQ 、PQ 为边作平行四边形AQPD ,连接DQ ,交AB 于点E .设运动的时间为t (单位:s )(0≤t ≤4).解答下列问题:

(1)当t 为何值时,平行四边形AQPD 为矩形.

(2)在点P ,Q 运动过程中,平行四边形AQPD 的面积能否等于18cm 2?如果能,请求出t 的值;如果不能,请说明理由.

(3)当t=时,平行四边形AQPD 为菱形.

例1.5.8如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).

(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?

(3)当t为何值时,△EDQ为直角三角形.

相关文档
最新文档