二元一次方程组同步练习(6套)

合集下载

人教版七年级数学下册《8.1二元一次方程组》同步训练题-附答案

人教版七年级数学下册《8.1二元一次方程组》同步训练题-附答案

人教版七年级数学下册《8.1二元一次方程组》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________亲爱的同学,在做题时,一定要认真审题,完成题目后,记得审查,养成好习惯!祝你轻松完成本次练习。

一、单选题1.下面各组数值中,二元一次方程2x+y=10的解是( )A .{x =−2y =6B .{x =6y =−2C .{x =4y =3D .{x =−3y =4 2.下列方程中,是二元一次方程的是( )A .x=1-2yB .1x =1- 2yC .x 2=1-2yD .x=z -2y3.若 {x =1,y =2是关于x ,y 的二元一次方程 ax +y =3 的解,则 a 的值为( ) A .0B .1C .2D .无法确定 4.下列方程组属于二元一次方程组的是( )A .{x +2y =1,y +z =3B .{x =5,x +y =4C .{2x −3y =11,x 3+2y=2 D .{x −7y =3,xy =2 5.下列以 {x =2y =−1 为解的二元一次方程组是( )A .{3x +y =52x +3y =7B .{3x +y =−52x −3y =7C .{3x +y =52x −3y =7D .{3x +y =−52x −3y =−7 6.关于x ,y 的二元一次方程3x ﹣ay =1有一组解是 {x =3y =2 ,则a 的值为( )A .1B .2C .3D .4 7.若 {x =1y =2 是方程 2x −my =4 的一个解,则 m 的值为( ).A .1B .−1C .2D .−2收获记录卡8.已知关于 {x =2y =−1 是二元一次方程 3x −my =1 的解,则 m 的值等于( )A .5B .-5C .-7D .7 二、填空题9.若 {x =ay =b 是方程2x+y =10的解,求6a+3b ﹣4的值是 .10.若关于x 的方程(k ﹣2)x |k|﹣1-7y =8是二元一次方程,则k = 11.若式子 2x |m|+(m −1)y =3 是关于 x ,y 的二元一次方程,则 m = .三、解答题12.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染 {3x −2y =□5x +y =△,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是 {x =2y =−1 ,你能帮助他补上“口”和“△”的内容吗?说出你的方法.13.小明给小红出了一道数学题:“如果我将二元一次方程组 {2x +wy =3wx +y =3第一个方程中y 的系数遮住,第二个方程中x 的系数遮住,并且告诉你 {x =2y =1 是这个方程组的解,你能求出我原来的方程组吗?”请你帮小红解答这个问题.14.已知方程 12x +3y =5 ,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为{x =4y =1.15.怎样运用一个字母代数式表示另一个字母呢?如:4x﹣3y=20,用含y的式子表示x.解:4x﹣3y=20.(把常数项,含y的式子放在方程等式右边)移项得4x=20﹣3y.两边除以4得x=﹣43y+5.以上过程对吗?为什么?答案解析部分1.【答案】B【解析】【解答】解:A、2x+y=2×(-2)+6=2≠10 ,错误;B、2x+y=2×6+(-2)=10 ,正确;C、2x+y=2×4+3=11≠10 ,错误;D、2x+y=2×(-3)+4=-2≠10 ,错误.故答案为:B.【分析】把各组数值分别代入二元一次方程组进行检验,即可作答.2.【答案】A【解析】【解答】解:A、此方程是二元一次方程,故A符合题意;B、此方程是分式方程,故B不符合题意;C、此方程是二元二次方程,故C不符合题意;D、此方程是三元一次方程,故D不符合题意;故答案为:A.【分析】利用二元一次方程的定义:含有两个未知数,且含未知数项的最高次数是1的整式方程,再对各选项逐一判断.3.【答案】B【解析】【解答】解:∵{x=1,y=2是关于x,y的二元一次方程ax+y=3的解∴a+2=3解得a=1.故答案为:B.【分析】根据题意把{x=1,y=2代入原方程得到一个关于a的一元一次方程求解,即可解答.4.【答案】B【解析】【解答】解:A、{x+2y=1,y+z=3是三元一次方程,错误;B、{x=5,x+y=4是二元一次方程,正确;C、x3+2y=2是分式方程,错误;D 、 {x −7y =3,xy =2是二元二次方程,错误. 故答案为:B.【分析】如果方程组中含有两个未知数,且含未知数的项的次数都是一次 ,那么这样的方程组叫做二元一次方程组。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

人教版七年级数学下册 第八章  二元一次方程组  8.2.2  用加减法解二元一次方程组  同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。

(新人教版)数学七年级下册:《二元一次方程组》同步练习及详细解答

(新人教版)数学七年级下册:《二元一次方程组》同步练习及详细解答

《二元一次方程组》同步练习.已知方程 x y -,用含 x 的代数式表示 y 为: y ;用含 y 的代 1 2 +3 4=0 =_______数式表示x 为: x.=________.在二元一次方程- 1x y 中,当 x =4 时,y ;当 y - 时,x . 2 2 +3 =2 =_______ = 1 =______.若 x 3m - 3- y n - 1=5 是二元一次方程,则 m ,n . 3 2 =_____ =______.已知 x 2,是方程x -ky =1 的解,那么 k . 4 y 3=_______.已知│ x - │ ( y )2 ,且 x -ky ,则 k . 51 + 2+1 =02 =4 =_____.二元一次方程 x y 的正整数解有______________.6+ =57.以x5为解的一个二元一次方程是 _________.y 7.已知 x 2是方程组mxy3的解,则m, n .8y 1x ny 6=_______ =______9.当 y=- 3 时,二元一次方程 3x+5y=- 3 和 3y - 2ax=a+2(对于 x , y 的方程) 有同样的解,求 a 的值.10.假如( a - 2)x+(b+1) y=13 是对于 x , y 的二元一次方程,则 a , b 知足什 么条件?.二元一次方程组 4x 3y 7 的解 x , y 的值相等,求 k .11kx (k 1) y 312.已知 x ,y 是有理数,且(│ x │- 1)2 +(2y+1)2=0,则 x - y 的值是多少?13.已知方程 1x+3y=5,请你写出一个二元一次方程,使它与已知方程所构成2的方程组的解为x4.y 114.依据题意列出方程组:(1)明显到邮局买 0.8 元与 2 元的邮票共 13 枚,共花去 20 元钱,问明显两种邮票各买了多少枚?( 2)将若干只鸡放入若干笼中,若每个笼中放 4 只,则有一鸡无笼可放;若每个笼里放 5 只,则有一笼无鸡可放,问有多少只鸡,多少个笼?15.方程组xy25的解能否知足 2x- y=8?知足 2x- y=8 的一对 x,y 的值是2x y8否是方程组x y25 的解?2x y816.(开放题)能否存在整数m,使对于 x 的方程 2x+9=2-( m- 2)x 在整数范围内有解,你能找到几个m的值?你能求出相应的x 的解吗?答案:1.42 x 43 y322.4-10 33.4,2分析:令 3m-3=1,n-1=1,∴ m=4, n=2.334.- 1分析:把x 2,代入方程 x-ky=1 中,得- 2-3k=1,∴ k=-1.y35.4分析:由已知得x- 1=0,2y+1=0,x,y -1,把x1代入方程x-ky中,1k ,∴ k.1=4∴=1 =2y22+=4=1 22x1x2x3x46.解:4y3y2y1y分析:∵ x+y=5,∴ y=5- x,又∵ x,y 均为正整数,∴x 为小于 5 的正整数.当 x=1 时, y=4;当 x=2 时, y=3;当 x=3,y=2;当 x=4 时, y=1.∴ x+y=5 的正整数解为x 1 x 2 x 3 x 4y 4 y 3 y 2 y1x y分析:以 x 与 y 的数目关系组建方程,如 x y, x -y =3等,此7. + =122+=17 2题答案不独一.8.1 4分析:将 x2代入方程组mx y3中进行求解.y 1x ny6三、解答题9.解:∵ y=-3 时, 3x+5y=- 3,∴3x+5×(- 3)=-3,∴ x=4,∵方程 3x+5y=-3 和 3x - 2ax=a+2 有同样的解,∴3×(- 3)- 2a ×4=a+2,∴ a=-11.910.解:∵( a -2)x+( b+1)y=13 是对于 x ,y 的二元一次方程,∴a -2≠0, b+1≠0,∴ a ≠2, b ≠- 1分析:本题中,若要知足含有两个未知数,需使未知数的系数不为0.(若系数为 0,则该项就是 0)11.解:由题意可知 x=y ,∴4x+3y=7 可化为 4x+3x=7,∴ x=1,y=1.将 x=1,y=1 代入 kx +( k - 1) y=3 中得 k+k -1=3,∴ k=2 分析:由两个未知数的特别关系,可将一个未知数用含另一个未知数的代数式取代,化“二元”为“一元”,进而求得两未知数的值.12.解:由(│ x │- 1) 2+(2y+1)2=0,可得│ x │- 1=0 且 2y+1=0,∴ x=±1,y - 1.=2当x ,y - 1时,x -y=1+1 = 3;当x - ,y - 1时,x -y - 1 - 1.=1 =22 = 1 = = 1+2=222分析:任何有理数的平方都是非负数,且题中两非负数之和为 0,则这两非负数(│ x │- )2 与( y )2 都等于 ,进而获得│ x │- , y .1 2 +1 01=0 2 +1=0 13.解:经验算 x 4是方程1x+3y=5 的解,再写一个方程,如 x -y=3.y 1 214 .( )解:设 0. 8 元的邮票买了 x 枚, 2元的邮票买了 y 枚,依据题意得1x y 13 .0.8x 2y20(2)解:设有 x 只鸡, y 个笼,依据题意得4 y 1 x .5(y 1) x15.解:知足,不必定. 分析:∵xy 25 x y的解,也知足x -y ,2x y的解既是方程+ =252=88∴方程组的解必定知足此中的任一个方程,但方程2x -y=8 的解有无数组,如 x ,y ,不知足方程组 x y 25 .=10 =122x y 816.解:存在,四组.∵原方程可变形为-mx=7,∴当 m=1 时, x=-7;m=-1时, x=7;m=7 时, x=- 1; m=-7 时 x=1.。

七年级数学二元一次方程组练习题及答案

七年级数学二元一次方程组练习题及答案

题目一:解方程组1.3x+2y=72.x-y=3解答:将第二个方程两边同时乘以2,得到2x-2y=6然后将第一个方程与新得到的方程相加,得到(3x+2y)+(2x-2y)=7+65x=13x=13/5将x的值代入第二个方程,求得y的值:x-y=313/5-y=3y=-2/5所以方程组的解为x=13/5,y=-2/5题目二:解方程组1.5x-2y=92.3x+4y=12解答:将第一个方程乘以2,得到10x-4y=18然后将第二个方程与新得到的方程相加,得到(3x+4y)+(10x-4y)=12+1813x=30x=30/13将x的值代入第一个方程,求得y的值:5x-2y=95(30/13)-2y=9-10/13-2y=9-2y=9+10/13-2y=127/13y=-127/26所以方程组的解为x=30/13,y=-127/26题目三:解方程组1.2x-3y=82.x+4y=7解答:将第一个方程乘以4,得到8x-12y=32然后将第二个方程与新得到的方程相加,得到(x+4y)+(8x-12y)=7+329x-8y=39将第一个方程乘以3,得到6x-9y=24然后将上式与新得到的方程相加,得到(6x-9y)+(9x-8y)=24+3915x-17y=63解得15x-17y=639x-8y=39联立解得x=207/103,y=-255/103题目四:解方程组1.4x-y=72.2x+3y=1解答:将第一个方程乘以3,得到12x-3y=21然后将第二个方程与新得到的方程相加,得到(2x+3y)+(12x-3y)=1+2114x=22x=22/14将x的值代入第一个方程,求得y的值:4x-y=74(22/14)-y=788/14-y=7-y=7-88/14-y=-38/14y=38/14所以方程组的解为x=11/7,y=19/7题目五:解方程组1.3x+2y=82.4x-3y=2解答:将第一个方程乘以4,得到12x+8y=32然后将第二个方程与新得到的方程相加,得到(4x-3y)+(12x+8y)=2+3216x+5y=34将第一个方程乘以5,得到15x+10y=40然后将上式与新得到的方程相加,得到(15x+10y)+(16x+5y)=40+3431x+15y=74解得31x+15y=7416x+5y=34联立解得x=16/11,y=58/33题目六:解方程组1.2x+y=52.3x-y=7解答:将第一个方程乘以3,得到6x+3y=15然后将第二个方程与新得到的方程相加,得到(3x-y)+(6x+3y)=7+159x=22x=22/9将x的值代入第一个方程,求得y的值:2x+y=52(22/9)+y=544/9+y=5y=5-44/9y=1/9所以方程组的解为x=22/9,y=1/9题目七:解方程组1.5x-2y=72.x+6y=3解答:将第一个方程乘以6,得到30x-12y=42然后将第二个方程与新得到的方程相加,得到(x+6y)+(30x-12y)=3+4231x-6y=45将第一个方程乘以3,得到15x-6y=21然后将上式与新得到的方程相加,得到(15x-6y)+(31x-6y)=21+4546x-12y=66解得46x-12y=6631x-6y=45联立解得x=21/17,y=-15/17题目八:解方程组1.2x-3y=52.x+2y=4解答:将第一个方程乘以2,得到4x-6y=10然后将第二个方程与新得到的方程相加,得到(x+2y)+(4x-6y)=4+105x-4y=14将第一个方程乘以4,得到8x-12y=20然后将上式与新得到的方程相加,得到(8x-12y)+(5x-4y)=20+1413x-16y=34解得13x-16y=345x-4y=14联立解得x=82/89,y=-79/89题目九:解方程组1.3x-4y=62.2x+5y=1解答:将第一个方程乘以2,得到6x-8y=12然后将第二个方程与新得到的方程相加,得到(2x+5y)+(6x-8y)=1+128x-3y=13将第一个方程乘以3,得到9x-12y=18然后将上式与新得到的方程相加,得到(9x-12y)+(8x-3y)=18+1317x-15y=31解得17x-15y=318x-3y=13联立解得x=218/229,y=-125/229题目十:解方程组1.4x-y=62.x+3y=4解答:将第一个方程乘以3,得到12x-3y=18然后将第二个方程与新得到的方程相加,得到(x+3y)+(12x-3y)=4+1813x=22x=22/13将x的值代入第一个方程,求得y的值:4x-y=64(22/13)-y=688/13-y=6-y=6-88/13-y=-70/13y=70/13所以方程组的解为x=22/13,y=70/13。

二元一次方程组练习题及答案

二元一次方程组练习题及答案

二元一次方程组练习题及答案1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____。

答案:y= -4,1,6,11.2、在x+3y=3中,若用x表示y,则y=,用y表示x,则x=。

答案:y= (3-x)/3,x= 3-3y。

3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

答案:k=2或k=-2时为一元一次方程,k不等于2或-2时为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

答案:当x=0时,y= -4;当y=0时,x= 9/2.5、方程2x+y=5的正整数解是______。

答案:(1,3)。

6、若(4x-3)^2+|2y+1|=0,则x+2=______。

答案:x=-5/4.7、方程组x+y=ax=2的一个解为(2,3),那么这个方程组的另一个解是(1,a-1)。

8、若x=2时,关于x、y的二元一次方程组ax-2y=11x-by=2的解互为倒数,则a-2b=-15/2.二、选择题1、方程2x-3y=5,xy=3,x+y的值有(2个)。

答案:B、2.2、方程2x+y=9在正整数范围内的解有(3个)。

答案:C、3.3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(10x+2y=4)。

答案:A、10x+2y=4.4、若是5x^2y^m与4x^n+m+1y^2n-2同类项,则m-2n的值为(1)。

答案:A、1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(2或-2)。

答案:C、2或-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是x-3y=52x-y=5的解。

答案:A、{x=2,y=-1}。

7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(y=5x-3)。

(完整版)二元一次方程组练习题含答案

(完整版)二元一次方程组练习题含答案

二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道二元一次方程组练题100道(卷一)1、判断1、方程组xy526的解是()。

解:这不是一个完整的方程组,缺少另一个方程,无法判断解。

2、方程组1是方程组yx3 2的解是方程3x-2y=13的一个解()。

解:将方程组代入3x-2y=13中,得到3x-2(-x/3-1/2)=13,化简得到x=5,y=-4,代入方程组可验证是解,因此选(√)。

3、由两个二元一次方程组成方程组一定是二元一次方程组()。

解:不一定,例如x+y=1和2x+2y=2就不是二元一次方程组。

4、方程组x3y 573x2y12235 3可以转化为方程组解:将第一个方程移项得到x+3y=2,代入第二个方程中消去x得到-7y=-18,解得y=18/7,代入第一个方程得到x=-41/7,因此可以转化为方程组5x-6y=-27和2y-3x+4=2,选(√)。

5、若(a-1)x+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()。

解:将XXX提取出来得到(a-1)(x+y)+(2a-3)y=0,因此x+y=-2a+3y/y-2,这是一个关于a的一次函数,当a=±1时,x+y=±1,此时方程组化为x+y=±1和-2x-2y=0,是二元一次方程组,因此选(√)。

6、若x+y=0,且|x|=2,则y的值为2()。

解:由x+y=0得到y=-x,代入|x|=2中得到|x|=|x+y|=|-x+y|=2,解得x=±1,因此y=±1,不等于2,选(×)。

7、方程组mx my m3x4x10y8有唯一的解,那么m的值为m≠-5()。

解:将第一个方程移项得到(m+3)x+my=m,代入第二个方程中消去x得到(3m+2)y=8-m,因为有唯一解,所以3m+2≠0,即m≠-2/3,代入方程组中验证,当m≠-5时,有唯一解,因此选(√)。

8、方程组1x y 233有无数多个解()。

8-3 实际问题与二元一次方程组(6)同步练习

8-3 实际问题与二元一次方程组(6)同步练习

8.3 实际问题与二元一次方程组(6)一、选择题1. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为( )A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=902. 如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是( )A. {x+2y=75y=3x B. {x+2y=75x=3yC. {2x−y=75y=3x D. {2x+y=75x=3y3. 小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是( )A. {x+y=13200x+70y=3350B. {x+y=2070x+200y=3350C. {x+y=1370x+200y=3350D. {x+y=20200x+70y=33504. 一批同学和部分家长结伴参加夏令营,同学和家长一共18人,同学数是家长数的2倍少3人.设家长有x人,同学有y人,根据题意,下面列出的方程组正确的是( )A. {x+y=182y−3=x B. {x+y=18y=2x+3 C. {x+y=18y=2x−3 D. {x+y=182y+3=x5. 某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人.下面所列的方程组正确的是( )A. {x+y=34x+1=2y B. {x+y=34x=2y+1 C. {x+y=342x=y+1 D. {x+2y=34x=2y+16. 成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是( )A. {x+y=2076x+76y=170B. {x−y=2076x+76y=170C. {x+y=2076x−76y=170D. {76x+76y=17076x−76y=207. 如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?( )A. x+y+3B. x+y+1C. x+y−1D. x+y−38. 一个天平的托盘中形状相同的物体质量相等,如图①、图②所示的两个天平处于平衡状态,要使图③的天平也保持平衡,则需要在它的右盘中放置( )A. 3个〇B. 4个〇C. 5个〇D. 6个〇9. 雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是( )A. {x+4y=15004x+y=8000 B. {x+4y=15006x+y=8000C. {x+y=15004x+6y=8000 D. {x+y=15006x+4y=800010. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A. {x−y=22x×2.5%+y×0.5%=10000 B. {x−y=22x2.5%+y0.5%=10000C. {x+y=10000x×2.5%−y×0.5%=22 D. {x+y=10000x2.5%−y0.5%=22二、解答题11.某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元,求购买A、B两种树苗每颗各需多少元?12.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?13.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?14.某班级社会实践小组组织“义卖活动”,计划从批发店购进甲、乙两类益智拼图,已知甲类拼图每盒进价比乙类拼图多5元,若购进甲类拼图20盒,乙类拼图30盒,则费用为600元.(1)求甲、乙两类拼图的每盒进价分别是多少元?(2)甲、乙两类拼图每盒售价分别为25元和18元.该班计划购进这两类拼图总费用不低于2100元且不超过2200元.若购进的甲、乙两类拼图共200盒,且全部售出,则甲类拼图为多少盒时,所获得总利润最大?最大利润为多少元?15.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?16. 某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?17.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.18. 假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?19.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?20.穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.(1)求甲乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,能够比原来少用多少天完成任务?21.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?22. 湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?23.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?24.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?25.某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分;3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队啦啦队队员小黄说:“我们甲队输了!”小汪说:“小黄的话不一定对!”请你举一例说明“小黄的话”有何不对.。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)二元一次方程组练习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二元一次方程组练习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二元一次方程组练习题(含答案)的全部内容。

12二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3) (4)(5) (6).(7) (8)(9)(10)2.求适合的x,y 的值.)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132yx y x3.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?1.解下列方程组(1)(2);(3); (4)(5).(6)(7)(8)(9)(10)3;2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.4二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,5①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.6点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:7(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点这类题目的解题关键是理解解方程组的基本思想是消元,掌握评:消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.8分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)9考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y 的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.1013.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点用加减法解二元一次方程组的一般步骤:评:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。

已知关于x,y的二元一次方程y=kx+b的解有和。

1)求k,b的值。

2)当x=2时,y的值。

3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。

又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。

二元一次方程组(例题、解方程组、练习及答案)

二元一次方程组(例题、解方程组、练习及答案)

的x. y 的值.s+y=l 2x+y=3⑵2K -3y=-52y —12弩=4Cx-1)-2(2y+l)=43.解方程组:举-4y=24.解方程组: x+1.y~1 ~2'玄-11-L 2-2(x+2y)=3⑵L L1K +4(x+2y)=45解二元一次方程组练习及答案专题一:二元一次方程组解法精练一.解答题(共16小题)2.解下列方程组(s _t)-2(s+t)=10 5.解方程组上(日一t)+2Cs+t)=266.已知关于x,y 的二元一次方程y 二kx+b 的解有 (1)求k,b 的值. ⑵当x=2时,y 的值. ⑶当x 为何值时,y=3?7.解方程组:2y=3“至_y_7⑴[电文-10;=13_X "12,乙看错了方程组中的b.蓋二- £时,由于粗心,甲看错了方程组中的a,而得解为 (沪5而得解为尸°.(1)甲把a 看成了什么,乙把b 看成了什么? (2)求出原方程组的正确解.亠一空二5 14.I X0.315.解下列方程组:8.解方程组:卩(旳)(K -3y)=159.解方程组:10.解下列方程组: fs-y=4 ⑴4贵 11.解方程组: "T⑵[4(葢十7)-5(K-y)=212.解二元一次方程组: f 9s+2y=20(1).办十4尸10;乜(K -1)-4(y-4)=0⑵占〔厂"二3匕+5)鮎曲+5尸1013.在解方程组(1) 匹站3y=15 “x+1_y+4 ⑵f2x+y=4 16.解下列方程组:(1)时戈产5 p+y=l(2)■20^1+30^25^X2专题二:方程组解法强化训练 ■>二1+尸j3^-2/=6 2(右十为*175x+y+z=145 15 3.x+y —2z-5 仝%+4®二1124.5. 17 r0.25x+3ty+3)=156.匚(工十1)—1.5(^十刀二35 r 3(x-y 十E 二0'mJ4耳+2了+£=3i4 l 税25t+5v+z=6O 盲8.9.—2 4 J2 3 XH -/=60 J y +z =40 x+i=50 10. H 十JJ-H-Z=11<3A +J 二25z=4^11.L》+z -了工二号 5-3^+4-7y=1121」心+5我彳z +z-3j=5 13.乐十》)-4&p )二4土+二=118.21. fi-2j=7y x+1—二36y-1=3fx+|)16.y—1x二y-I2_y+2.2x=+13T" 33(x-0=4(卩一4)17.+500,[60%^+80%-7=500x72%.19.宝”一1)=3(兀+5)20.卜223A-3J-9=^±13r2(z+^+3(x-y)=1322.j-2z+3y=1123.尸(*)亠4决2刃=8724. 25. 弘+»=198jc-3y=6727. =-1=4IZ尹-1=128.30. SI兰工_气2十3-5巧P=〔23-_答案专题一1.x=6"X=1 「K=3、「K=3「⑵•卄8•解万程组:9•解方程组:1歼-1(y=0\y=0工二3114V——3⑷•y=-3•解方程组fl4•解方程组:鳥I尸4,尸亍6••(1)求k,b的值.k二言,b二号•7⑵当x=2时,y的值•把x=2代入,得y=p•(3)当x为何值时,y=3?把y=3代入,得x=1 7•解方程组:10•解下列方程组:17 \=60:'尸-2411•解方程组:⑴12⑵¥二广1712•解二元一次方程组:13.(1)甲把a看成了什么,乙把b看成了什么?fa=-2 [b=6(2)求出原方程组的正确解.P=152•解下列方程组专题二:=50rz=4rz=5K=5[75rz=-70rA=61.2.3.4.5.6.g1715•解下列方程组:⑴16•解下列方程组:⑴rx=-2cm =49.严=35L=2510.厂=30 12.J=_10 严=-17/4K=_19/413r=_5厂=17/15 厂1=714."11⑴15.J=-316.=1厂=20017.J=300 18. J -A =-1/4丫尹=3/819.29/6 -7/422. 23.CI ;rz =2324.f A =-11/2 25.f A =826.5=-127.rz=428.J -A =4.5 29.rz=6.530.。

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是() (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于()(A )a =-3,b =-14 (B )a =3,b =-7(C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4□x +5y =13 ①4x -□y =-2 ②25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

二元一次方程组 同步练习(含答案) 人教版数学七年级下册

二元一次方程组 同步练习(含答案) 人教版数学七年级下册

《8.1二元一次方程组》同步练习(后附答案)一、选择题1. 下列方程是二元一次方程的是( ) A. x −xy =1B. x 2−y −2x =1C. 3x −y =1D. 1x −2y =12. 某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得−2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. x −y =20B. x +y =20C. 5x −2y =60D. 5x +2y =603. 下列各组数值是二元一次方程x −3y =4的解的是( ) A. {x =1y =−1B. {x =2y =1 C. {x =−1y =−2 D. {x =4y =−1 4. 把方程2x +y =3改写成用含x 的式子表示y 为( ) A. y =2x 3B. y =3−2xC. x =3−y2D. x =3−2y5. 二元一次方程x −2y =1有无数多个解,下列四组数值中,不是该方程的解的是( ) A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−16. 下列方程组中,属于二元一次方程组的是( )A. {x +y =11x −2y=0B. {x 2+y =1x +2y =4C. {x +3y =5xy =8D. {y +2=13x −4y =07. 《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A. {x3=y +2x2+9=y B. {x3=y −2x−92=yC. {x 3=y +2x−92=yD. {x3=y −2x2−9=y 8. 小王在解关于x ,y 的二元一次方程组{x −y =△3x −2y =14时,解得{x =∗y =2,则△和∗分别代表的数是( )A. 2,6B. 4,6C. 6,2D. 6,4二、填空题9. 已知{x =1y =2是关于x ,y 的二元一次方程3mx −2y =2的解,则m = . 10. 将方程3x −y =5变形为用含x 的式子表示y ,那么y = .11. 笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多购买钢笔______支.12. 由方程组{x +m =−4y −3=m 可得x 与y 之间的关系式是 (用含x 的代数式表示y). 13. 已知二元一次方程2x −3y −5=0的一组解为{x =ay =3,则2a −9=______.三、计算题14. (1)填表,使上下每对x ,y 的值是方程3x +y =5的解15. 已知关于x ,y 的二元一次方程x +y =m , {x =1y =a +8与{x =2ay =1 都是该方程的解. (1)求a 的值;(2){x =by =b也是该方程的一个解,求b 的值.答案1.C2.C3.A4.B5.B6.D7.B8.B9.2 10.3x −5 11.10 12.y =−1−x 13.514.(1)53, 23 ,11 ,3.8;(2) x =1、y =215.解:(1){x =1y =a +8与{x =2ay =1都是关于x ,y 的二元一次方程x +y =m 的解.可得{1+a +8=m 2a +1=m则有1+a +8=2a +1 解得a =8;(2)当a =8时,二元一次方程的解为{x =1y =16{x =16y =1 可得m =x +y =17,{x =b y =b 也是x +y =17的解,可得b +b =17, 即b =172.。

人教版七年级数学下册二元一次方程组同步习题(附答案)

人教版七年级数学下册二元一次方程组同步习题(附答案)

8.1 二元一次方程组同步习题一.选择题(共10小题)1.下列方程中,为二元一次方程的是()A.3x=2y B.3x﹣6=0C.2x﹣3y=xy D.x﹣=02.若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或23.下列方程组中,是二元一次方程组的是()A.B.C.D.4.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x5.二元一次方程x+y=8的一个解是()A.B.C.D.6.下列各组数中,是方程2x+y=7的解的是()A.B.C.D.7.二元一次方程2x+y=5的正整数解有()组.A.1B.2C.3D.48.若是方程ay﹣x=3的解,则a的取值是()A.5B.﹣5C.2D.19.已知和都是方程y=ax+b的解,则a和b的值是()A.B.C.D.10.我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=9的正整数解得组数是()A.27B.28C.29D.30二.填空题(共7小题)11.若是方程2x﹣ay=5的一个解,则a=.12.已知,方程2x3﹣m+3y2n﹣1=5是二元一次方程,则m+n=.13.已知x+2y=1,用含x的代数式表示y为.14.已知A为第二象限内一点,且点的A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标(写出一个即可).15.按如图的运算程序,请写出一组能使输出结果为3的x,y的值:.16.观察下列方程组:①;②;③;…若第④方程组满足上述方程组的数字规律,则第④方程组为.17.若是关于x,y的二元一次方程组,则a=,b=,c =.三.解答题(共5小题)18.若方程2x2m+3+3y5n﹣9=4是关于x,y的二元一次方程,求(m+n)2020的值.19.写出二元一次方程2x﹣3y=1的两个解.20.检验下列各组数是不是方程2x﹣3y=1的解.(1);(2);(3).21.写出满足x+2y=0的所有非正整数解.22.若a的两个平方根是方程3x+2y=2的一组解.(1)求a的值;(2)求a2的算术平方根.参考答案一.选择题(共10小题)1.【解答】解:A、符合二元一次方程的定义;B、是一元一次方程,不符合二元一次方程的定义;C、未知数的项的最高次数是2,不符合二元一次方程的定义;D、是分式方程,不符合二元一次方程的定义;故选:A.2.【解答】解:根据题意可知:|2m﹣3|=1,解得:m=2或m=1,m﹣2≠0,m≠2,∴m=1.故选:A.3.【解答】解:A、不是二元一次方程组,故此选项错误;B、不是二元一次方程组,故此选项错误;C、不是二元一次方程组,故此选项错误;D、是二元一次方程组,故此选项正确;故选:D.4.【解答】解:由2x﹣y=3知2x﹣3=y,即y=2x﹣3,故选:C.5.【解答】解:方程x+y=8,变形得:y=﹣x+8,当x=2时,y=6,则方程x+y=8的一个解为,故选:D.6.【解答】解:把x=1,y=5代入方程左边得:2+5=7,右边=7,∴左边=右边,则是方程2x+y=7的解.故选:C.7.【解答】解:方程2x+y=5,解得:y=﹣2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2组.故选:B.8.【解答】解:将x=2,y=1代入方程得:a﹣2=3,解得:a=5,故选:A.9.【解答】解:将和代入y=ax+b得:,②﹣①得:3a=3,即a=1,将a=1代入①得:﹣1+b=0,即b=1.故选:B.10.【解答】解:令x+y=t(t≥2),则t+z=9的正整数解有8组(t=2,t=3,t=4,……t =8)其中t=x+y=2的正整数解有1组,t=x+y=3的正整数解有2组,t=x+y=4的正整数解有3组,……t=x+y=8的正整数解有7组,∴总的正整数解组数为:1+2+3+……+7=28故选:B.二.填空题(共7小题)11.【解答】解:把代入方程2x﹣ay=5,得:4+a=5,解得:a=1.故答案为:1.12.【解答】解:由2x3﹣m+3y2n﹣1=5是二元一次方程,得m﹣1=1,2n﹣1=1.解得m=2,n=1,m+n=3,故答案为:3.13.【解答】解:∵x+2y=1,∴2y=1﹣x,∴y=0.5﹣0.5x.故答案为:y=0.5﹣0.5x.14.【解答】解:令x=﹣1,得﹣1+y=0,即y=1,则A的坐标为(﹣1,1)(答案不唯一),故答案为:(﹣1,1)(答案不唯一)15.【解答】解:根据题意得:2x﹣y=3,当x=1时,y=﹣1.故答案为:x=1,y=﹣1.16.【解答】解:第二个方程:①2x+y=1,②3x+2y=2,③4x+3y=3,根据规律得:x的系数加一,y的系数加一,常数项加一,即第④个方程组的第二个方程为:5x+4y=4,根据题意得:第一个方程x的系数为1,y的系数为第二个方程y的系数的相反数,常数项是第二个方程常数项的序号加一倍,即第④个方程组的第一个方程为:x﹣4y=20,故答案为:.17.【解答】解:∵是关于x,y的二元一次方程组,∴c+3=0,a﹣2=1或0,b+3=1,解得:a=3或2,b=﹣2,c=﹣3,故答案为:3或2,﹣2,﹣3三.解答题(共5小题)18.【解答】解:根据二元一次方程的定义,得2m+3=1,5n﹣9=1解得m=﹣1,n=2所以(m+n)2020=1.19.【解答】解:方程2x﹣3y=1,解得:x=,当y=0时,x=;当y=1时,x=2,则方程的两个解为,.20.【解答】解:(1)∵把代入方程2x﹣3y=1,左边=右边,∴是方程2x﹣3y=1的解;(2)∵把代入方程2x﹣3y=1,左边=右边,∴是方程2x﹣3y=1的解;(3)∵把代入方程2x﹣3y=1,左边≠右边,∴是方程2x﹣3y=1的解.21.【解答】解:方程x+2y=0,解得:x=﹣2y,则方程的非正整数解为.22.【解答】解:由题意,得y=﹣x.3x﹣2x=2,解得x=2,a=x2=4,(2)a2=16,==4.。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a;2) 4x + 3y - 1 = 0,2x + y - 2 = 0;3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2;4) x - y/2 = 1,x + y/2 = 3.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1;2) x + 2y = 5,2x + y = 7;3) 3x + 2y = 8,4x - 3y = -11.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。

1) 求k,b的值;2) 当x = 2时,y的值;3) 当y = 3/5时,x的值。

4.在解方程组2x + y = 5,x - y = 1时,甲看错了方程组中的a,而得到解x = 2,y = 1.乙看错了方程组中的b,而得到解x = 3,y = -1.1) 甲把a看成了什么,乙把b看成了什么?2) 求出原方程组的正确解。

参考答案与解析:1.解下列方程组:1) 5x + 2y = 11a,-4y = 6a。

将第二个方程式化简为y = -3/2a,代入第一个方程式中得到5x + 2(-3/2a) = 11a,化简得到x = (23/10)a,y = (-9/5)a。

2) 4x + 3y - 1 = 0,2x + y - 2 = 0.将第二个方程式中的y用第一个方程式中的x表示,得到y = 2 - 2x,代入第一个方程式中得到4x + 3(2 - 2x) - 1 = 0,化简得到x = 1/2,y = 1.3) x + 2y/3 - 1/3 = 2,x/3 + 1 - y/2 = 1/2.将第二个方程式中的x用第一个方程式中的y表示,得到x = 6 - 2y,代入第一个方程式中得到6 - 4y/3 = 2,化简得到y = 3/2,x = 0.4) x - y/2 = 1,x + y/2 = 3.将两个方程式相加得到2x = 4,化简得到x = 2,代入第一个方程式中得到y = 2.2.求解以下方程组:1) 2x + 3y = 7,x - y = 1.将第二个方程式中的x用第一个方程式中的y表示,得到x = y + 1,代入第一个方程式中得到2(y + 1) + 3y = 7,化简得到y = 1,x = 2.2) x + 2y = 5,2x + y = 7.将第一个方程式中的x用第二个方程式中的y表示,得到x = (7 - y)/2,代入第一个方程式中得到(7 - y)/2 + 2y = 5,化简得到y = 1,x = 2.3) 3x + 2y = 8,4x - 3y = -11.将第一个方程式中的x用第二个方程式中的y表示,得到x = (3y - 11)/4,代入第一个方程式中得到3(3y - 11)/4 + 2y = 8,化简得到y = 1,x = 1.3.已知二元一次方程y = kx + b的解有(2,5)和(-1,0)。

二元一次方程组同步测试题

二元一次方程组同步测试题

第八章二元一次方程组8.1 二元一次方程组要点感知 1 含有__________未知数,并且含有未知数的项的次数都是__________的方程叫做二元一次方程.预习练习1-1 下列各式中是二元一次方程的是( )A.6x-y=7B.15x-1y=0 C.4x-xy=5 D.x2+x+1=0要点感知2 含有__________个未知数,并且每个未知数的项的次数都是__________,将这样的__________方程合在一起组成的方程组叫做二元一次方程组.预习练习2-1 下列方程组是二元一次方程组的是( )A.12x yxy-==⎧⎨⎩B.4123x yy x-=-=+⎧⎨⎩C.2201x xy x--==+⎧⎨⎩D.1130y xx y-=+=⎧⎪⎨⎪⎩要点感知 3 使二元一次方程两边的值__________的两个未知数的值,叫做二元一次方程的解.预习练习3-1 请写出二元一次方程x+3y=5的一组解:__________.要点感知4 二元一次方程组的两个方程的__________叫做二元一次方程组的解.预习练习4-1下列哪组数是二元一次方程组3,24x yx+==⎧⎨⎩的解( )A.3xy==⎧⎨⎩B.12xy==⎧⎨⎩C.52xy==-⎧⎨⎩D.21xy==⎧⎨⎩知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是( )A.3x-2y=4zB.6xy+9=0C.1x+4y=6D.4x=2 4 y-2.下列方程组中,是二元一次方程组的是( )A.4237x y x y +=+=⎧⎨⎩B.2311546a b b c -=-=⎧⎨⎩ C.292x y x==⎧⎨⎩D.284x y x y +=-=⎧⎨⎩ 3.写出一个未知数为a,b 的二元一次方程组:____________________. 4.已知方程x m-3+y 2-n =6是二元一次方程,则m-n=__________.5.已知x m+n y 2与xy m-n 的和是单项式,则可列得二元一次方程组____________________. 知识点2 二元一次方程(组)的解6.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )A.012x y ⎧==-⎪⎨⎪⎩ B.11x y ==⎧⎨⎩ C.10x y ==⎧⎨⎩ D.11x y =-=-⎧⎨⎩ 7.若1,2x y ==⎧⎨⎩是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为( )A.-5B.-1C.2D.78.请写出一个二元一次方程组_______________,使它的解是21.x y ==-⎧⎨⎩,9.若,x a y b==⎧⎨⎩是方程2x+y=0的解,则4x+2b+1=__________.10.下列方程组中,是二元一次方程组的是( )A.411 9x y x y ⎧+=+=⎪⎨⎪⎩B.57x y y z +=+=⎧⎨⎩C.1326x x y =-=⎧⎨⎩D.2130x a x y +=-=⎧⎨⎩11.下列哪组数是二元一次方程组2102x y y x+==⎧⎨⎩,的解( )A.43x y ==⎧⎨⎩B.36x y ==⎧⎨⎩C.24x y ==⎧⎨⎩D.42x y ==⎧⎨⎩12.若方程6kx-2y =8有一组解3,2,x y =-=⎧⎨⎩则k 的值等于( )A.-16 B.16 C.23 D.-2313.写出方程x+2y=6的正整数解:__________. 14.已知方程(2m-6)x |m-2|+(n-2)23ny -=0是二元一次方程,求m,n 的值.15.已知两个二元一次方程:①3x-y=0,②7x-2y=2.(1)(2)请你写出方程组30,722x y x y -=-=⎧⎨⎩的解.16.二元一次方程组()437,13x y kx k y +=+-=⎧⎨⎩的解x ,y 的值相等,求k.17.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?挑战自我18.甲、乙两人共同解方程组515,4 2.ax y x by +==-⎨-⎧⎩①②由于甲看错了方程①中的a ,得到方程组的解为3,1;xy=-=-⎧⎨⎩乙看错了方程②中的b,得到方程组的解为5,4.xy==⎧⎨⎩试计算a2 013+(-110b)2 014.参考答案课前预习要点感知1两个 1预习练习1-1 A要点感知2两 1 两个预习练习2-1 B要点感知3相等预习练习3-1如x=2,y=1要点感知4公共解预习练习4-1 D当堂训练1.D2.A3.答案不唯一,如21,2a ba b+=-=⎧⎨⎩等 4.3 5.12m nm n+=-=⎧⎨⎩,6.B7.D8.答案不唯一,如:13x yx y+=-=⎧⎨⎩,9.1课后作业10.C 11.C 12.D 13.2,2,xy==⎧⎨⎩4,1xy==⎧⎨⎩14.根据题意,得221, 3 1.m n -= -=⎧⎨⎩且260,20.mn-≠-≠⎧⎨⎩∴m=1,n=-2.15.(1)-6 -3 0 3 6 9 12 -8 -4.5 -1 2.5 6 9.5 13(2)2,6. xy==⎧⎨⎩16.由题意可知x=y,∴4x+3y=7可化为4x+3x=7.∴x=1,y=1.将x=1,y=1代入kx+(k-1)y=3中,得k+k-1=3,∴k=2.17.(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得13,0.8220.x y x y +=+=⎧⎨⎩(2)设有x 只鸡,y 个笼,根据题意得()41,51.y x y x +=-=⎧⎨⎩18.把3,1x y =-=-⎧⎨⎩代入方程②中,得4×(-3)-b ×(-1)=-2,解这个方程,得b=10.把5,4x y ==⎧⎨⎩代入方程①中,得5a+5×4=15,解这个方程,得a=-1. 所以a 2 013+(-110b)2 014=(-1)2 013+(-110×10)2 014=0.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃ B .8℃ C .-8℃D .11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( ) A .x -y =6 B .x -2=x C .x 2+3x =1D .1+x =34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( ) A .0.108×106 B .10.8×104 C .1.08×106D .1.08×1055.下列计算正确的是( ) A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +14ba =06.已知ax =ay ,下列各式中一定成立的是( ) A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x的方程2x+a=1与方程3x-1=2x+2的解相同,则a的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一:一、选择题1.既是方程23x y-=的解,又是方程3410x y+=的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.43xy=⎧⎨=⎩D.45xy=-⎧⎨=-⎩2.甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x,乙数为y,则方程组(1)1635x yx y+=⎧⎨=⎩,;(2)1653x yx y+=⎧⎨=⎩,;(3)16530x yy x-=⎧⎨-=⎩,;(4)1653y xx y-=⎧⎪⎨=⎪⎩,中,正确的有()A.1组B.2组C.3组D.4组3.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为()A.49B.101C.40D.1104.已知方程组2448x myx y+=⎧⎨+=⎩,的解是正整数,则m的值为()A.6B.4C.4-D.25.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是()A.1()()9x yx y y x-=⎧⎨+++=⎩,B.110()9x yx y y x=+⎧⎨+=++⎩,C.110109x yx y y x=+⎧⎨+=+-⎩,D.110109x yx y y x=+⎧⎨+=++⎩,6.在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到47,61,60,那么这三个人中最大年龄与最小年龄的差是()A.28B.27C.26D.25二、填空题7.在方程29x ay -=中,如果31x y =⎧⎨=⎩,是它的一个解,那么a 的值为______.8.大数和小数的差为12,这两个数的和为60,则大数是______,小数是______.9.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x 元,练习本每本y 元,写出以x 和y 为未知数的方程为______.10.甲、乙两人速度之比是2:3,则他们在相同时间内走过的路程之比是______,他们在走相同路程所需时间之比是______.11.羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,则白羊有______只,黑羊有______只.12.若01x y =⎧⎨=⎩,和12x y =⎧⎨=⎩,是方程3mx ny +=的两组解,则m =_____,n =_____.13.把面值为1元的纸币换为1角或5角的硬币,则换法共有_____种.14.两个水池共贮水40吨,如果甲池再注进水4吨,乙池再注进水8吨,则两池的水一样多,那么两池原来有水分别为_____.15.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子少了3尺,这根绳子长_____尺.16.古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就分有7人没地方住;若每间房住9人,则空出一间房.问有多少房间多少客人.)答:_______________.三、解答题17.(本题 8分)根据下图提供的信息,求每件T 恤衫和每瓶矿泉水的价格.18.(本题8 分)(08烟台市)据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94kg 的衣服放入最大容量为15kg 的洗衣机中,欲使洗衣机中洗衣粉的含量达到0.4%,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.02kg,假设洗衣机以最大容量洗涤)19.某中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样会使该中学在校生增加10%,这所中学现在的初、高中在校生分别是多少人?20.(本题12分)长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?21.(本题12分)有甲、乙、丙三种规格的钢条,已知甲种2根,乙种1根,丙种3根,共长23米;甲种1根,乙种4根,丙种5根共长36米,问甲1根,乙2根,丙3根共长多少?22.(本题14分)小明和小亮两个人做加法,小明将其中一个加数后面多写了一个0,得和为2340,小亮将同一个加数后面少写了一个0,所得和为63.求原来的两个加数.23.(本题16分)某工程由甲乙两队合做6天完成,厂家需付甲乙两队共8700元;乙丙两队合做10天完成,厂家需付乙丙两队共9500元;甲丙两队合做5天完成全部工程的23,厂家需付甲丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要求不超过15天完成全啊工程,问可由哪队单独完成此项工程花钱最少?答案一、选择题1.B 2.C 3.D 4.C 5.D 6.A二、填空题7.3- 8.36,24 9.146 5.4x y += 10.2:3,3:2 11.50,13 12.3-,3 13.3 14.22,18吨 15.25 16.8个房间,63个客人三、解答题17.20,218.【解】设洗衣机中需加入x 千克水,y 匙洗衣粉.由题意得0.02 4.94150.02150.4x y y ++=⎧⎨=⨯⎩,%.解得103x y =⎧⎨=⎩,. 所以,洗衣机中需加入10千克水,3匙洗衣粉.19.1400,2800 20.55,48 21.22米22.230,4023.(1)10,15,30;(2)甲单独完成此项工程花钱最少.练习二一、填空题1.长方形的周长是106厘米,长比宽的3倍多1厘米,则长方形的面积为 。

2.某船顺流航行36km ,用3小时,逆流航行24km ,用3小时,则水流速度为 ,船在静水中的速度为 。

3.小明解方程组⎩⎨⎧=-=+1533y x y x ■的解为⎩⎨⎧==★y x 4,由于不小心,滴上了两滴墨水,刚好遮住了两数■和★,请你帮她找回这两个数,■ = ,★ = 。

二、选择题4.4辆小卡车和5辆大卡车一次共可运货27吨,6辆小卡车和10辆大卡车一次共可运货51吨,则小卡车和大卡车每辆车每次可以各运货( )吨。

A.1.5 4.2B.1.5 4C.2 4D.2 4.25.两人练习跑步,如果乙先跑16米,甲8秒可追上乙,如果乙先跑2秒钟,则甲4秒可追上乙,求甲乙二人每秒各跑多少米?若设甲每秒跑x 米,乙每秒跑y 米,则所列方程组应该是( )。

A.⎩⎨⎧=+-=x y y x 4)42()(816B.⎩⎨⎧=-=-4441688y x y xC.⎩⎨⎧=-==2445168y x y x D.⎩⎨⎧=-+=y x y x 42416886. 某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班学生共用土筐59个,扁担36条,问抬土和挑土的学生各多少人?若设有x 人抬土,y 人挑土,则( )。

A.⎪⎪⎩⎪⎪⎨⎧=+=+36259)2(2y x x y B.⎪⎪⎩⎪⎪⎨⎧=+=+3625922y x x y C.⎪⎩⎪⎨⎧=+=+3625922y x y x D.⎩⎨⎧=+=+362592y x y x 7.某乡中学现有学生500人,计划一年后在校女生增加3﹪,在校男生增加4﹪,这样,在校学生将增加3.6﹪,那么该学校现有男生和女生人数分别是( )A.200和300B.300和200C.320和180D.180和3208.为了改善住房条件,小亮的父母考察了某小区的A 、B 两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的总房价相同,第3层楼和第5层楼每平方米的价格分别是平均价格的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息得出了下列方程组,其中正确的是( )A.0.9 1.1,24x y y x =⎧⎨-=⎩B. 1.10.9,24x y x y =⎧⎨-=⎩C.0.9 1.1,24x y x y =⎧⎨-=⎩D. 1.10.9,24x y y x =⎧⎨-=⎩ 三、解答题9. 一个车间加工轴杆和轴承,每人每天可以加工轴杆12根,或者轴承15个,车间共90人,应该怎样调配人力,才能使每天生产的轴杆和轴承正好相等?10.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在树下觅食,树上的一只鸽子对树下觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个个群的31;若从树上飞下去一只,则树上、树下的鸽子就一样多拉。

”你知道树上、树下各有多少只鸽子吗?11.今年“五一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元. 该旅行社接待的一日游和三日游旅客各多少人?一、填空题1.标价a 为元的某商品,若8折销售,其销售价为 元,若买30件此商品需用 元。

2.某工厂去年结余100万元,今年比去年结余增加15℅,则该工厂今年结余 万元。

3.甲、乙两人共有图书80本,若甲赠给乙6本书,两人的图书就一样多,甲、乙两人原来各有几本书?如果设甲乙两人原来分别有x 本,y 本,那么甲赠给乙6本后,还剩 本,乙这时还有图书 本,依题意的方程组 。

二、选择题4. 某课外活动小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.求课外活动小组的人数x 和应分成的组数y ,依题意得方程组为( )A.7385y x y x =+⎧⎨+=⎩,.B.7385x y x y +=⎧⎨-=⎩,. C.7385y x y x =-⎧⎨=+⎩,. D.7385y x y x =+⎧⎨=+⎩,. 5.10年前,母亲的年龄是儿子的6倍;10年后,母亲的年龄是儿子的2倍.求母子现在的年龄.设母亲现年x 岁,儿子现年y 岁,列出的二元一次方程组是( )A.()()1061010210x y x y +=+⎧⎪⎨-=-⎪⎩,. B.106(10)102(10)x y x y -=-⎧⎨+=+⎩,. C.106(10)102(10)y x y x +=+⎧⎨-=-⎩,.D.106(10)102(10)y x y x -=+⎧⎨+=-⎩,.6.某商店在一次买卖中同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25﹪,另一件亏损25﹪,则这家商店在这次买卖中( )A.不赚不赔B.赚9元C.赔8元D.赔18元7.在中国足球超级联赛的前11轮比赛中,某队保持不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队胜得场数是( )A.4B.5C.6D.78.如图,射线OC 的端点O 在直线AB 上,1∠的度数x 比2∠的度数y 的 2倍多10度,则可列正确的方程组为( )A.⎩⎨⎧+==+10180y x y xB.⎩⎨⎧+==+102180y x y xC.⎩⎨⎧-==+y x y x 210180D.⎩⎨⎧-==+102180y x y x 三、解答题 9.有一个两位数,个位数字与十位数字之和为10,若将个位数字与十位数字互换,则所得新数比原数小18,求这个两位数?10.某储蓄所去年储户存款为2300万元,今年与去年相比,定期存款增加了25﹪,而活期存款减少了25﹪,但存款总额增加了15﹪,问今年的定期、活期存款各是多少?11.某班积极组织捐款支援灾区,该班55名同学共捐款274元,捐款情况如表所示。

相关文档
最新文档