高中数学-二项分布与正态分布复习

合集下载

2021年新课标新高考数学复习课件:§11.3 条件概率、二项分布及正态分布

2021年新课标新高考数学复习课件:§11.3 条件概率、二项分布及正态分布

②根据题意得X~B
4,
1 2
,P(X=0)=
C04
1 2
4
=
1 16
;
P(X=1)=
C14
1 2
4
=
1 4
;P(X=2)=
C24
1 2
4
=
3 8
;
P(X=3)=
C34
1 2
4
=
1 4
;P(X=4)=
C44
1 2
4
=
1 16
.∴X的分布列为
X
0
1
2
3
4
P
1
1
3
1
1
16
4
解析 (1)所抽取的100包速冻水饺该项质量指标值的平均数x=5×0.1+15×
0.2+25×0.3+35×0.25+45×0.15=26.5.
(2)①∵Z服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,∴P(14.55<Z<38.45)=P(26.5-
11.95<Z<26.5+11.95)=0.682 6,∴Z落在(14.55,38.45)内的概率是0.682 6.
(2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w定为 多少?(精确到小数点后2位) (3)若将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量 不超过2.5立方米的人数记为X,求其分布列及均值. 解题导引
(2)利用频率分布直方图估计w.
解析 (1)∵前二项分布
1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率

新高考一轮复习人教版 二项分布与正态分布 作业

新高考一轮复习人教版 二项分布与正态分布 作业

11.3 二项分布与正态分布基础篇 固本夯基考点一 条件概率、相互独立事件及二项分布、全概率公式1.(2022届长沙长郡中学月考,7)某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别为23,34,只有通过前一关才能进入下一关,每一关都有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进人第三关的概率为( ) A.12B.56C.89D.1516答案 B2.(2022届武汉部分学校质检,5)在一次试验中,随机事件A,B 满足P(A)=P(B)=23,则( ) A.事件A,B 一定互斥 B.事件A,B 一定不互斥 C.事件A,B 一定互相独立 D.事件A,B 一定不互相独立 答案 B3.(2021新高考Ⅰ,8,5分)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立 答案 B4.(2018课标Ⅲ,8,5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 答案 B5.(2021辽宁丹东质检,2)10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回地抽取一张奖券,甲先抽,乙后抽,在甲中奖的条件下,乙没有中奖的概率为( ) A.35B.23C.34D.4156.(2021江苏徐州第三次调研,2)清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共10人进入决赛,其中高一年级2人,高二年级3人,高三年级5人,现采取抽签的方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级2人不相邻的概率为( ) A.112 B.13 C.12 D.34答案 D7.(多选)(2021福建厦门外国语学校月考,12)甲罐中有4个红球,3个白球和3个黑球;乙罐中有5个红球,3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以M 表示由乙罐取出的球是红球的事件,下列结论正确的为( ) A.P(M)=12B.P(M|A 1)=611 C.事件M 与事件A 1不相互独立 D.A 1,A 2,A 3是两两互斥的事件 答案 BCD8.(2022届山东济宁一中开学考试,14)已知随机变量ξ~B (6,13),则P(ξ=4)= ,D(ξ)= .(用数字作答) 答案20243;439.(2022届山东潍坊10月段考,15)一项过关游戏规则规定:在第n 关要抛掷一颗质地均匀的骰子n 次,如果这n 次抛掷所出现的点数之和大于2n,则算过关.甲同学参加了该游戏,他连过前两关的概率是 .答案5910.(2020天津,13,5分)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为 ;甲、乙两球至少有一个落入盒子的概率为 . 答案16;2311.(2019课标Ⅰ,15,5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是 .12.(2022届江苏苏州调研,19)某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为34,且甲、乙两人是否答对每个试题互不影响. (1)试通过计算,分析甲、乙两人谁通过自主招生初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为Y,求Y 的分布列及数学期望和方差. 解析 (1)∵在8个试题中甲能答对6个,∴甲通过自主招生初试的概率P 1=C 63C 21C 84+C 64C 84=1114,又∵乙能答对每个试题的概率为34, ∴乙通过自主招生初试的概率P 2=C 43(34)314+C 44(34)4=189256,∵P 1>P 2,∴甲通过自主招生初试的可能性更大.(2)由题意可知,乙答对题的个数X 的可能取值为0,1,2,3,4,X~B (4,34), P(X=k)=C 4k (34)k (14)4−k(k=0,1,2,3,4)且Y=5X, 故Y 的分布列为∴E(Y)=E(5X)=5E(X)=5×4×34=15, D(Y)=D(5X)=52D(X)=25×4×34×(1−34)=754. 13. (2022届山东潍坊阶段测,20)智能体温计测温方便、快捷,已经逐渐代替水银体温计应用于日常体温测量.调查发现,使用水银体温计测温结果与人体的真实体温基本一致,而使用智能体温计测量体温可能会产生误差.对同一人而言,如果用智能体温计与水银体温计测温结果相同,我们认为智能体温计“测温准确”;否则,我们认为智能体温计“测温失误”.现在某社区随机抽取了20人用两种体温计测量体温,数据如下:(1)试估计用智能体温计测量该社区1人“测温准确”的概率;(2)从该社区中任意抽查3人用智能体温计测量体温,设随机变量X 为使用智能体温计“测温准确”的人数,求X 的分布列与数学期望.解析 (1)题表20人的体温数据中,用智能体温计与水银体温计测温结果相同的序号是01,04,06,07,09,12,13,14,16,18,19,20,共有12个, 由此估计所求概率为1220=35. (2)随机变量X 的所有可能取值为0,1,2,3.由(1)可知,用智能体温计测量该社区1人“测温准确”的概率为35. 所以P(X=0)=C 30(35)0(1−35)3=8125, P(X=1)=C 31(35)1(1−35)2=36125, P(X=2)=C 32(35)2(1−35)1=54125, P(X=3)=C 33(35)3(1−35)0=27125, 所以X 的分布列为故X 的数学期望E(X)=0×8125+1×36125+2×54125+3×27125=225125=95. 14.(2019课标Ⅱ,18,12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解析 (1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.考点二 正态分布1.(2022届河北邢台9月联考,6)已知随机变量ξ服从正态分布N(3,4),若P(ξ>2c+1)=P(ξ<2c-1),则c 的值为( )A.32 B.2 C.1 D.12答案 A2.(2021广东深圳一模,5)已知随机变量ξ~N(μ,σ2),有下列四个命题: 甲:P(ξ<a-1)>P(ξ>a+2). 乙:P(ξ>a)=0.5. 丙:P(ξ≤a)=0.5.丁:P(a<ξ<a+1)<P(a+1<ξ<a+2).如果只有一个假命题,则该命题为( ) A.甲 B.乙 C.丙 D.丁 答案 D3.(2020广东深圳七中月考,5)某班有60名学生,一次考试后数学成绩符合ξ~N(110,σ2),若P(100≤ξ≤110)=0.35,则估计该班学生数学成绩在120分以上的人数为( ) A.10 B.9 C.8 D.7 答案 B4.(2021江苏七市第二次调研,13)已知随机变量X~N(2,σ2),P(X>0)=0.9,则P(2<X ≤4)= . 答案 0.45.(2021广东韶关一模,20)在一次大范围的随机知识问卷调查中,通过随机抽样,得到参加问卷调查的100人的得分统计结果如下表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分ξ~N(μ,196),μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表). ①求μ的值;②若P(ξ>2a-5)=P(ξ<a+3),求a 的值;(2)在(1)的条件下,为此次参加问卷调查的市民制订如下奖励方案:①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.解析 (1)①由题意得30×2+40×13+50×21+60×25+70×24+80×11+90×4100=60.5,∴μ=60.5.②由题意得2a-5+a+3=2×60.5,解得a=41.(2)由题意知P(ξ<μ)=P(ξ≥μ)=12,获赠话费X(单位:元)的可能取值为20,40,50,70,100, P(X=20)=12×34=38,P(X=40)=12×34×34=932,P(X=50)=12×14=18,P(X=70)=12×34×14+12×14×34=316,P(X=100)=12×14×14=132,∴X 的分布列为∴E(X)=20×38+40×932+50×18+70×316+100×132=1654. 综合篇 知能转换考法一 条件概率的求法1.(2021广东二模,3)2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动.甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P(B|A)=( ) A.13B.12C.23D.34答案 D2.(2022届全国学业质量检测,9)某公司为方便员工停车,租了6个停车位,编号如图所示,公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位,记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P(A|B)=( ) A.16B.310 C.12 D.35答案 D3.(多选)(2021江苏海安高级中学月考,7)已知A ,B 分别为随机事件A,B 的对立事件,P(A)>0,P(B)>0,则下列说法正确的是( ) A.P(B|A)+P(B |A)=P(A) B.P(B|A)+P(B |A)=1C.若A,B 独立,则P(A|B)=P(A)D.若A,B 互斥,则P(A|B)=P(B|A) 答案 BCD考法二 n 重伯努利试验及二项分布问题的求解方法1.(2021广东深圳外国语学校月考,5)某同学进行3分投篮训练,若该同学投中的概率为12,他连续投篮n 次至少得到3分的概率大于0.9,那么n 的最小值是( ) A.3 B.4 C.5 D.6 答案 B2.(2020辽宁葫芦岛兴城高级中学模拟)一个袋中有大小、形状相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为ξ1;当无放回依次取出两个小球时,记取出的红球数为ξ2,则 ( ) A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)=E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)=E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2) 答案 B3.(多选)(2022届山东济宁一中开学考,11)某单位举行建党100周年党史知识竞赛,在必答题环节共设置了5道题,每道题答对得20分,答错扣10分(每道题都必须回答,但相互不影响).设某选手每道题答对的概率均为23,其必答题环节的总得分为X,则( ) A.该选手恰好答对2道题的概率为49B.E(X)=50C.D(X)=1003D.P(X>60)=112243答案 BD4.(2017课标Ⅱ,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX= . 答案 1.965.(2022届山东济宁一中开学考试,21)由于抵抗力差的人感染新冠肺炎的可能性相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多.为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质.通过统计每周到活动中心运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老年人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为ξ,求ξ的分布列和期望;(2)将某人的每周活动时间量与所有老年人的每周平均活动时间量比较,当超出所有老年人的每周平均活动时间量不少于0.74h 时,称该老年人为“活动爱好者”,从参加活动的老年人中随机抽取10人,且抽到k 人为“活动爱好者”的可能性最大,试求k 的值.(每组数据以区间的中点值为代表)解析 (1)由题图可知,从到活动中心参加活动的老年人中任意选取1人,每周活动时间在[8,9)(单位:h)的概率为25.①记“至少有3人每周活动时间在[8,9)(单位:h)”为事件A, 则P(A)=C 53·(25)3·(1−25)2+C 54·(25)4·(1−25)+C 55(25)5=9923 125.②随机变量ξ所有可能的取值为0,1,2,P(ξ=0)=C 33C 53=110,P(ξ=1)=C 32C 21C 53=35,P(ξ=2)=C 31C 22C 3=310,则ξ的分布列如下:故E(ξ)=0×110+1×35+2×310=65. (2)老年人的每周活动时间的平均值为6.5×0.06+7.5×0.35+8.5×0.4+9.5×0.15+10.5×0.04=8.26(h),则老年人中“活动爱好者”的活动时间为[9,11](单位:h),参加活动的老年人中为“活动爱好者”的概率为p=0.19,若从参加活动的老年人中随机抽取10人,且抽到X 人为“活动爱好者”,则X~B(10,0.19), 若k 人的可能性最大,则P(X=k)=C 10k p k(1-p)10-k,k=0,1,2,3, (10)由题意有{P(X =k)≥P(X =k −1),P(X =k)≥P(X =k +1),即{C 10k (0.19)k (0.81)10−k ≥C 10k−1(0.19)k−1(0.81)11−k ,C 10k (0.19)k (0.81)10−k ≥C 10k+1(0.19)k+1(0.81)9−k , 解得1.09≤k ≤2.09,由k ∈N *,得k=2.6.(2022届广东汕头金山中学期中,19)如图,李先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有L 1、L 2两条路线,L 1路线上有A 1、A 2、A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1、B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条较好的上班路线,并说明理由.解析 (1)设“走L 1路线最多遇到1次红灯”为事件A,则P(A)=C 30×(12)3+C 31×12×(1−12)2=12, 所以走L 1路线,最多遇到1次红灯的概率为12. (2)依题意,X 的可能取值为0,1,2. P(X=0)=(1−34)×(1−35)=110,P(X=1)=34×(1−35)+(1−34)×35=920,P(X=2)=34×35=920. 随机变量X 的分布列为所以E(X)=0×110+1×920+2×920=2720. (3)设选择L 1路线遇到红灯次数为Y,随机变量Y 服从二项分布Y~B (3,12),所以E(Y)=3×12=32. 因为E(X)<E(Y),所以选择L 2路线上班较好.7.(2019天津,16,13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解析 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B (3,23),从而P(X=k)=C 3k ·(23)k (13)3−k ,k=0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}. 由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立, 从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)=827×29+49×127=20243. 8.(2018课标Ⅰ,20,12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是不是不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 解析 (1)20件产品中恰有2件不合格品的概率为f(p)=C 202p 2(1-p)18.因此f'(p)=C 202[2p(1-p)18-18p 2(1-p)17]=2C 202p(1-p)17(1-10p).令f'(p)=0,得p=0.1,当p ∈(0,0.1)时,f'(p)>0; 当p ∈(0.1,1)时,f'(p)<0. 所以f(p)的最大值点为p 0=0.1. (2)由(1)知,p=0.1,(i)令Y 表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y, 所以EX=E(40+25Y)=40+25EY=490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于EX>400,故应该对余下的产品作检验.考法三 正态分布问题的求解方法1.(2022届江苏苏州调研,3)已知随机变量ξ服从正态分布N(0,1),如果P(ξ≤1)=0.84,则P(-1<ξ≤0)=( )A.0.34B.0.68C.0.15D.0.07 答案 A2.(2022届江苏徐州期中,5)某单位招聘员工,先对应聘者的简历进行评分,评分达标者进入面试环节,现有1000人应聘,他们的简历评分X 服从正态分布N(60,102),若80分及以上为达标,则估计进入面试环节的人数为( )(附:若随机变量X~N(μ,σ2),则P(μ-σ<X<μ+σ)≈0.6827,P(μ-2σ<X<μ+2σ)≈0.9545,P(μ-3σ<X<μ+3σ)≈0.9973)A.12B.23C.46D.159 答案 B3.(多选)(2022届湖南湘潭9月模拟,10)已知随机变量X 服从正态分布N(0,22),则( ) A.X 的数学期望为E(X)=0 B.X 的方差为D(X)=2 C.P(X>0)=12D.P(X>2)=12 答案 AC4.(2022届河北9月开学摸底联考,7)含有海藻碘浓缩液的海藻碘盐,是新一代的碘盐产品.海藻中的碘80%为无机碘,10%~20%为有机碘,海藻碘盐兼备无机碘和有机碘的优点.某超市销售的袋装海藻碘食用盐的质量X(单位:克)服从正态分布N(400,4),某顾客购买了4袋海藻碘食用盐,则至少有2袋的质量超过400克的概率为( ) A.1116 B.34 C.58 D.516答案 A5.(2022届(新高考)第一次月考,19)数学建模是高中数学核心素养的一个组成部分,数学建模能力是应用意识和创新意识的重要表现.为全面推动数学建模活动的开展,某学校举行了一次数学建模竞赛活动,已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图.(1)为了对数据进行分析,将60分以下的成绩定为不合格,60分以上(含60分)的成绩定为合格.为科学评估该校学生数学建模水平,决定利用分层随机抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会.记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列和数学期望;(2)已知这60名学生的数学建模竞赛成绩X 服从正态分布N(μ,σ2),其中μ可用样本平均数近似代替,σ2可用样本方差近似代替(每组数据以区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,试估计此次竞赛受到奖励的人数.(结果根据四舍五入保留到整数位)若随机变量X~N(μ,σ2),则P(μ-σ<X ≤μ+σ)≈0.6827,P(μ-2σ<X ≤μ+2σ)≈0.9545,P(μ-3σ<X ≤μ+3σ)≈0.9973.解析 (1)由题中频率分布直方图和分层随机抽样的方法,可知抽取的10人中合格的人数为(0.01+0.02)×20×10=6,不合格的人数为10-6=4. 因此,ξ的可能值为0,1,2,3,4,P(ξ=0)=C 64C 104=114,P(ξ=1)=C 41C 63C 104=821,P(ξ=2)=C 42C 62C 104=37,P(ξ=3)=C 43C 61C 104=435,P(ξ=4)=C 44C 104=1210.故ξ的分布列为所以ξ的数学期望E(ξ)=0×114+1×821+2×37+3×435+4×1210=85. (2)由题意可知,μ=(30×0.005+50×0.015+70×0.02+90×0.01)×20=64,σ2=(30-64)2×0.1+(50-64)2×0.3+(70-64)2×0.4+(90-64)2×0.2=324,所以σ=18.由X 服从正态分布N(μ,σ2),得P(64-18<X ≤64+18)=P(46<X ≤82)≈0.6827,则P(X>82)=12(1-0.6827)=0.15865,P(X>46)=0.6827+0.15865=0.84135,60×0.84135≈50,所以估计此次竞赛受到奖励的人数为50.6.(2022届辽宁渤海大学附中考试,20)随着我国国民消费水平的不断提升,进口水果受到了人们的喜爱,世界各地鲜果纷纷从空中、海上汇聚中国:泰国的榴莲、山竹、椰青,厄瓜多尔的香蕉,智利的车厘子等水果走进了千家万户.某种水果按照果径大小可分为五个等级:特等、一等、二等、三等和等外.某水果进口商从采购的一批水果中随机抽取500个,利用水果的等级分类标准得到的数据如下:(1)若将样本频率视为概率,从这批水果中随机抽取6个,求恰好有3个水果是二等级别的概率; (2)若水果进口商进口时将特等级别与一等级别的水果标注为优级水果,则用分层随机抽样的方法从这500个水果中抽取10个,再从抽取的10个水果中随机抽取3个,Y 表示抽取的优级水果的数量,求Y 的分布列及数学期望E(Y).解析 (1)设从500个水果中随机抽取一个,抽到二等级别水果的事件为A,则P(A)=250500=12, 随机抽取6个,设抽到二等级别水果的个数为X,则X~B (6,12), 所以恰好抽到3个二等级别水果的概率为P(X=3)=C 63(12)3(12)3=516.(2)用分层随机抽样的方法从500个水果中抽取10个, 其中优级水果有3个,非优级水果有7个. 则Y 所有可能的取值为0,1,2,3.P(Y=0)=C 73C 103=724,P(Y=1)=C 72C 31C 103=2140,P(Y=2)=C 71C 32C 103=740,P(Y=3)=C 33C 103=1120.所以Y 的分布列为所以E(Y)=0×724+1×2140+2×740+3×1120=910.7.(2017课标Ⅰ,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性;(ii)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.9 5经计算得x=116∑i=116x i=9.97,s=√116∑i=116(x i−x)2=√116(∑i=116x i2−16x2)≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974.0.997416≈0.9592,√0.008≈0.09.解析(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望为EX=16×0.0026=0.0416.(2)(i)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由x =9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查. 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008, 因此σ的估计值为√0.008≈0.09.。

专题17.5 二项分布与正态分布(精讲精析篇)(解析版)

专题17.5 二项分布与正态分布(精讲精析篇)(解析版)

专题17.5 二项分布与正态分布(精讲精析篇)提纲挈领点点突破热门考点01 独立重复试验的概率n次独立重复试验(1)定义一般地,在相同条件下重复地做n次试验,各次试验的结果相互独立,称为n次独立重复试验.(2)公式一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k,(k=0,1,2,…,n).【典例1】(2015·全国高考真题(理))投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【答案】A【解析】该同学通过测试的概率为,故选A.【典例2】(多选题)(2020·襄阳市第一中学月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为80243;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 则其中正确命题的序号是()A .①B .②C .③D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是21423635C C p C ==故正确; ②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为2163p ==,则恰好有两次白球的概率为4226218033243p C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故正确; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为1143114535C C C C =,故错误; ④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为4263p ==:则至少有一次取到红球的概率为3031261327p C ⎛⎫=-= ⎪⎝⎭,故正确.故选:ABD. 【总结提升】 1独立重复试验的特点(1)每次试验中,事件发生的概率是相同的.(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例.2.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解;在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.3.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验; 4.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.热门考点02 二项分布及其应用1.若将事件A 发生的次数设为X ,发生的概率为P ,不发生的概率q =1-p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是P (X =k )=C k n p k qn -k(k =0,1,2,…,n ) 于是得到X 的分布列(q +p )n =C 0n p 0q n +C 1n p 1q n -1+…+C k n p k qn -k +…+C n n p n q 0各对应项的值,称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).【典例3】(2020·科尔沁左翼后旗甘旗卡第二高级中学高二期末(理))已知随机变量ξ服从二项分布14,3B ξ⎛⎫~ ⎪⎝⎭,则(3)P ξ==( ).A .3281B .1681C .2481D .881【答案】D 【解析】14,3B ξ⎛⎫~ ⎪⎝⎭表示做了4次独立实验,每次试验成功概率为13,则31341228(3)4338181P C ξ⎛⎫⎛⎫==⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.选D .【典例4】为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(1)试计算表中编号为10的用电户本年度应交电费多少元?(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列; (3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.【答案】见解析【解析】(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210,故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B ⎝⎛⎭⎫10,25,可知P (X =k )=C k 10⎝⎛⎭⎫25k ·⎝⎛⎭⎫3510-k (k =0,1,2,3,…,10).由⎩⎨⎧C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k ,Ck 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.【规律方法】1.判断随机变量X 服从二项分布的条件(X ~B (n ,p )) (1)X 的取值为0,1,2,…,n . (2)P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ,p 为试验成功的概率).提醒:在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布. 2. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数. 3.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0p A p =>.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.在n 次独立重复试验中,每次试验事件A 发生的概率均为()01p p <<,即()p A p =,()1p A p q =-=.由于试验的独立性,n 次试验中,事件A 在某指定的k 次发生,而在其余n k -次不发生的概率为k n kp q -.而在n 次试验中,事件A 恰好发生()0k k n ≤≤次的概率为()kkn kn n P k C p q-=,0,1,2,,k n =.它恰好是()np q +的二项展开式中的第1k +项.4. 牢记且理解事件中常见词语的含义: (1) A 、B 中至少有一个发生的事件为A B ;(2) A 、B 都发生的事件为AB ; (3) A 、B 都不发生的事件为AB ; (4) A 、B 恰有一个发生的事件为AB AB ; (5) A 、B 至多一个发生的事件为ABABAB .热门考点03 与二项分布有关的均值与方差二项分布的期望、方差: 若(),X B n p ,则()E X np =. 若(),XB n p ,则()()1D X np p =-.【典例5】(2019·天津高考真题(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(Ⅰ)见解析;(Ⅱ)20243【解析】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23, 故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为:X0 1 2 3P127 2949 827随机变量X 的数学期望2()323E X =⨯=. (Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====.由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立, 从而由(Ⅰ)知:{}{}()()3,12,0P M P X Y X Y =====()()3,12,0P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 【典例6】(2019·河北高二期末(理))互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率; (2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望. 【答案】(1)291494;(2)440 【解析】(1)设事件A 表示至少有1人的年龄低于45岁,则()3303402911494C P A C =-=.(2)由题意知,以手机支付作为首选支付方式的概率为6031005=.设X 表示销售的10件商品中以手机支付为首选支付的商品件数,则3~10,5X B ⎛⎫ ⎪⎝⎭, 设Y 表示销售额,则()40501050010Y X X X =+-=-, 所以销售额Y 的数学期望35001050010104405EY EX =-=-⨯⨯=(元). 【总结提升】与二项分布有关的期望、方差的求法(1)求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B (n ,p ),则用公式E (ξ)=np ,D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ),同样还可求出D (aξ+b ).热门考点04 正态曲线及其性质1.正态曲线及其性质 (1)正态曲线:函数φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值12πσ; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中,如图乙所示:甲 乙 2.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布(normal distribution).正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2). 3.正态总体三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 4.3σ原则通常服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.【典例7】(2020·湖北十堰·期末)设某地胡柚(把胡柚近似看成球体)的直径(单位:)mm 服从正态分布(75,16)N ,则在随机抽取的1000个胡柚中,直径在(79,83]内的个数约为( ) 附:若2~(,)X N μσ,则()0.6827P X μσμσ-<+=,(22)0.9545P X μσμσ-<+=. A .134 B .136 C .817 D .819【答案】B 【解析】由题意,75μ=,4σ=,则1(7983)[(22)()]2P X P X P X μσμσμσμσ<=-<+-+<+1(0.95450.6827)0.13592=⨯-=. 故直径在(79,83]内的个数约为0.135********.9136⨯=≈. 故选:B .【典例8】(多选题)(2020·辽宁省本溪满族自治县高级中学高二期末)若随机变量()0,1N ξ,()()x P x φξ=≤,其中0x >,下列等式成立有( )A .()()1x x φφ-=-B .()()22x x φφ=C .()()21P x x ξφ<=- D .()()2P x x ξφ>=-【答案】AC 【解析】随机变量ξ服从标准正态分布(0,1)N ,∴正态曲线关于0ξ=对称,()(x P x φξ=,0)x >,根据曲线的对称性可得:A.()()1()x x x φφξφ-=≥=-,所以该命题正确;B.(2)(2),2()2()x x x x φφξφφξ=≤=≤,所以()()22x x φφ=错误;C.(||)=()12()12[1()]2()1P x P x x x x x ξξφφφ<-≤≤=--=--=-,所以该命题正确;D.(||)(P x P x ξξ>=>或)=1()()1()1()22()x x x x x x ξφφφφφ<--+-=-+-=-,所以该命题错误. 故选:AC . 【规律方法】1.求正态曲线的两个方法(1)图解法:明确顶点坐标即可,横坐标为样本的均值μ,纵坐标为12πσ. (2)待定系数法:求出μ,σ便可. 2.正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个. 3.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线对称性和曲线与x 轴之间面积为1.(2)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. (3)注意概率值的求解转化: ①P (X <a )=1-P (X ≥a ); ②P (X <μ-a )=P (X ≥μ+a );③若b <μ,则P (X <b )=1-P μ-b <X <μ+b2.特别提醒:正态曲线,并非都关于y 轴对称,只有标准正态分布曲线才关于y 轴对称.热门考点05 正态分布及其应用【典例9】(2020·开封模拟)某商场经营的某种包装的大米质量ξ(单位:kg)服从正态分布N (10,σ2),根据检测结果可知P (9.9≤ξ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1 000名职工,则分发到的大米质量在9.9 kg 以下的职工数大约为( )A .10B .20C .20D .40【答案】B【解析】由已知得P (ξ<9.9)=1-P 9.9≤ξ≤10.12=1-0.962=0.02,所以分发到的大米质量在9.9 kg 以下的职工数大约为1 000×0.02=20.故选B.【典例10】(2020·全国高三其他(理))某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测100株树苗的高度,经数据处理得到如图(1)所示的频率分布直方图,其中最高的16株树苗的高度的茎叶图如图(2)所示,以这100株树苗的高度的频率估计整批树苗高度的概率.(1)求这批树苗的高度高于1.60米的概率,并求图(1)中a ,b ,c 的值;(2)若从这批树苗中随机选取3株,记ξ为高度在(]1.40,1.60的树苗数量,求ξ的分布列和数学期望; (3)若变量S 满足()06826P S μσμσ-<≤+>.且()220.9544P S μσμσ-<≤+>,则称变量S 满足近似于正态分布()2,N μσ的概率分布.如果这批树苗的高度满足近似于正态分布()1.5,0.01N 的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗能否被签收? 【答案】(1)概率为0.15,0.2a =, 1.3b =, 3.5c =;(2)分布列答案见解析,数学期望2.1;(3)被签收. 【解析】(1)由题图(2)可知,100株样本树苗中高度高于1.60米的共有15株, 以样本的频率估计总体的概率,可得这批树苗的高度高于1.60米的概率为0.15. 记X 为树苗的高度,结合题图(1)(2)可得:()()21.20 1.30 1.70 1.800.02100P X P X ≤≤=<≤==, ()()131.30 1.40 1.60 1.700.13100P X P X <≤=<≤==,()()()11.40 1.50 1.50 1.60120.0220.130.352P X P X <≤=<≤=-⨯-⨯=. 因为组距为0.1,所以0.2a =, 1.3b =, 3.5c =.(2)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在(]1.40,1.60的概率为()()()1.40 1.60 1.40 1.50 1.50 1.600.7P X P X P X <≤=<≤+<≤=.因为从这批树苗中随机选取3株,相当于三次独立重复试验, 所以随机变量ξ服从二项分布()3,0.7B , 故ξ的分布列为()()330.30.70,1,2,3nnn P n C n ξ-==⨯⨯=,即ξ0 1 2 3()P ξ0.027 0.189 0.441 0.343()00.02710.18920.44130.343 2.1E x =⨯+⨯+⨯+⨯=(或()30.7 2.1E ξ=⨯=).(3)由()1.5,0.01N ,取 1.50μ=,0.1σ=,由(2)可知,()()1.40 1.600.70.6826P X P X μσμσ-<≤+=<≤=>, 又结合(1),可得()()22 1.30 1.70P X P X μσμσ-<≤+=<≤()()2 1.60 1.70 1.40 1.60P X P X =⨯<≤+<≤ 0.960.9544=>,所以这批树苗的高度满足近似于正态分布()1.5,0.01N 的概率分布, 应认为这批树苗是合格的,将顺利被该公司签收. 【规律方法】1.在解决有关问题时,通常认为服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.如果服从正态分布的随机变量的某些取值超出了这个范围就说明出现了意外情况.2.求正态变量X 在某区间内取值的概率的基本方法: (1)根据题目中给出的条件确定μ与σ的值.(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化; (3)利用X 在上述区间的概率、正态曲线的对称性和曲线与x 轴之间的面积为1求出最后结果. 3.假设检验的思想(1)统计中假设检验的基本思想:根据小概率事件在一次试验中几乎不可能发生的原则和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设.(2)若随机变量ξ服从正态分布N (μ,σ2),则ξ落在区间(μ-3σ,μ+3σ]内的概率为0.9974,亦即落在区间(μ-3σ,μ+3σ]之外的概率为0.0026,此为小概率事件.如果此事件发生了,就说明ξ不服从正态分布. (3)对于小概率事件要有一个正确的理解:小概率事件是指发生的概率小于3%的事件.对于这类事件来说,在大量重复试验中,平均每试验大约33次,才发生1次,所以认为在一次试验中该事件是几乎不可能发生的.不过应注意两点:一是这里的“几乎不可能发生”是针对“一次试验”来说的,如果试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,也有3%犯错的可能性.巩固提升1.(2020·山东济宁·期末)若随机变量()23,X N σ,且()50.2P X ≥=,则()15P X ≤≤等于( )A .0.6B .0.5C .0.4D .0.3【答案】A【解析】 由于()23,XN σ,则正态密度曲线关于直线3x =对称,所以()()15125120.20.6P X P X ≤≤=-≥=-⨯=,故选A.2.(2020·四川泸州·期末(理))设()()1122~,,~,X N Y N μσμσ,这两个正态分布密度曲线如图所示,则下列结论中正确的是( )A .1212,μμσσ><B .1212,μμσσ<<C .1212,μμσσ<>D .1212,μμσσ>>【答案】B 【解析】由图可得:X 的正态分布密度曲线更“瘦高”,且对称轴偏左, 结合正态分布密度曲线性质可得:1212,μμσσ<<. 故选:B3.(2020·江苏苏州·高二期末)现有5个人独立地破译某个密码,已知每人单独译出密码的概率均为p ,且112p <<,则恰有三个人译出密码的概率是( ) A .335C p B .2235(1)C p p -C .3325(1)C p p -D .2251(1)C p --【答案】C 【解析】由题意可知,恰有三个人译出密码的概率为3325(1)P C p p =-故选:C4.(2019·广东高二期末(理))从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是( )A .235499⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B .23255499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .234599⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .32355499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】每次抽到奇数的概率都相等,为59, 故恰好有2次抽到奇数的概率是25C •259⎛⎫ ⎪⎝⎭•349⎛⎫ ⎪⎝⎭, 故选:B .5.(多选题)(2020·江苏省海头高级中学高二月考)海头高级中学高二年级组织了一次调研考试,考试后统计的数学成绩服从正态分布,其密度函数2(100)200(),x P x x R --=∈,则下列命题正确的是( )A .这次考试的数学平均成绩为100B .分数在120分以上的人数与分数在90分以下的人数相同C .分数在130分以上的人数与分数在70分以下的人数大致相同D .这次考试的数学成绩方差为10 【答案】AC 【解析】因为数学成绩服从正态分布,其密度函数()2(100)200--=x P x ,x ∈R ,所以100μ=,22200σ=,即10σ=.所以这次考试的平均成绩为100,标准差为10,故A 正确,D 错误. 因为正态曲线的对称轴为100x =,所以分数在120分以上的人数与分数在90分以下的人数不相同,故B 错误; 分数在130分以上的人数与分数在70分以下的人数大致相同,故C 正确.6.(2020·黑龙江爱民·牡丹江一中开学考试(理))2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标()~15,0.0025N ξ,单位为g ,该厂每天生产的质量在()14.9,15.05g g 的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g 以上的口罩数量为( ) 参考数据:若()2~,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=,()330.9973P μσξμσ-<<+=.A .158 700B .22 750C .2 700D .1 350【答案】D 【解析】由题意知,()~15,0.0025N ξ,即15μ=,20.0025σ=,即0.05σ=; 所以()()0.68270.954514.915.0520.81862P P ξμσξμσ+<<=-<<+==,所以该厂每天生产的口罩总量为8186000.81861000000÷=(件), 又()()10.997315.1532P P ξξμσ->=>+=, 所以估计该厂每天生产的质量在15.15g 以上的口罩数量为10.9973100000013502-⨯=(件). 故选:D7.(2020·营口市第二高级中学高二期末)荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .23B .14C .13D .34【答案】C 【解析】设按照顺时针跳的概率为p ,则逆时针方向跳的概率为2p ,则p +2p =3p =1,解得p =13,即按照顺时针跳的概率为13,则逆时针方向跳的概率为23, 若青蛙在A 叶上,则跳3次之后停在A 叶上, 则满足3次逆时针或者3次顺时针,①若先按逆时针开始从A →B ,则对应的概率为23×23×23=827, ②若先按顺时针开始从A →C ,则对应的概率为13×13×13=127,则概率为827+127=927=13, 故选:C.8.(2020·江苏张家港·期中)某篮球运动员每次投篮投中的概率是45,每次投篮的结果相互独立,那么在他10次投篮中,记最有可能投中的次数为m ,则m 的值为( ) A .5 B .6C .7D .8【答案】D 【解析】记投篮命中的次数为随机变量X , 由题意,410,5XB ⎛⎫ ⎪⎝⎭, 则投篮命中m 次的概率为()10101010101044441155555mmm mm mm m C P X m C C --⋅⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅-=⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 由1110101010111010101044554455m m m m m m m m C C C C ++--⎧⋅⋅≥⎪⎪⎨⋅⋅⎪≥⎪⎩得110101101044m m m m C C C C +-⎧≥⎨≥⎩,即1101011110101144m m m m m m m m m m mm A A A A A A A A +++---⎧≥⎪⎪⎨⎪≥⎪⎩,即()()4101141011m m m m ⎧-≥⎪⎪+⎨-+⎪≥⎪⎩, 解得394455m ≤≤,又m N ∈, 因此8m =时,()101045mmC P X m ⋅==取最大值. 即该运动员10次投篮中,最有可能投中的次数为8次. 故选:D.9.(2019·湖北高二期末)NBA 总决赛采用7场4胜制,2018年总决赛两支球队分别为勇士和骑士,假设每场比赛勇士获胜的概率为0.6,骑士获胜的概率为0.4,且每场比赛的结果相互独立,则恰好5场比赛决出总冠军的概率为_______. 【答案】0.2688 【解析】恰好5场比赛决出总冠军的情况有两种:一种情况是前4局勇士队3胜一负,第5局勇士胜, 另一种情况是前4局骑士队3胜一负,第5局骑士胜,∴恰好5场比赛决出总冠军的概率为:331344060.40.60.6040.40.2688p C C =⨯⋅⨯⨯+⨯⨯⋅⨯=.故答案为:0.2688.10.(2020·天津南开�高三一模)甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____. 【答案】125 6364【解析】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45, 则甲击中的次数43,5XB ⎛⎫ ⎪⎝⎭, ∴甲三次射击命中次数的期望为()412355E X =⨯=, 乙第一次射击的命中率为78, 第一次未射中,则乙进行第二次射击,射击的命中率为34, 如果又未中,则乙进行第三次射击,射击的命中率为12, 乙若射中,则不再继续射击, 则乙射中的概率为:7131116388484264P =+⨯+⨯⨯=. 故答案为:125,6364.11.(2018·浙江下城·杭州高级中学高三其他)一个盒子中有大小形状完全相同的m 个红球和6个黄球,现从中有放回的摸取5次,每次随机摸出一个球,设摸到红球的个数为X ,若()3E X =,则m =________,(2)P X ==________.【答案】9 144625【解析】由题意知每次随机抽出1个球为红球的概率为6m m +,所以~5,6m X B m ⎛⎫ ⎪+⎝⎭,则由()3E X =,得536m m ⋅=+,解得9m =,所以365m m =+, 所以232533144(2)155625P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:9;14462512.(2019·浙江高三其他)已知随机变量()~X B n p ,,且X 的数学期望()2E X =,方差()23D X =,则p =____________,()2P X == ____________.【答案】23 49【解析】由二项分布的期望和方差的计算公式知,()2,2()(1),3E X np D X np p ==⎧⎪⎨=-=⎪⎩解得2,33,p n ⎧=⎪⎨⎪=⎩ 则223214(2)339P X C ⎛⎫==⨯= ⎪⎝⎭. 故答案为:23;49. 13.(2019·济南市学习质量评估)某医药公司研发生产一种新的保健产品,从一批产品中随机抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:(1)求a,并试估计这200盒产品的该项指标值的平均值.(2)①由样本估计总体,结合频率分布直方图认为该产品的该项质量指标值ξ服从正态分布N(μ,102),计算该批产品该项指标值落在(180,220]上的概率;②国家有关部门规定每盒产品该项指标值不低于150均为合格,且按该项指标值从低到高依次分为:合格、优良、优秀三个等级,其中(180,220]为优良,不高于180为合格,高于200为优秀,在①的条件下,设该公司生产该产品1万盒的成本为15万元,市场上各等级每盒该产品的售价(单位:元)如表,求该公司每万盒的平均利润.等级合格优良优秀售价102030附:若ξ~N(μ,δ2),则P(μ-δ<ξ≤μ+δ)≈0.682 7,P(μ-2δ<ξ≤μ+2δ)≈0.954 5.【答案】见解析【解析】(1)由10×(2×0.002+0.008+0.009+0.022+0.024+a)=1,解得a=0.033,则平均值x=10×0.002×170+10×0.009×180+10×0.022×190+10×0.033×200+10×0.024×210+10×0.008×220+10×0.002×230=200,即这200盒产品的该项指标值的平均值约为200.(2)①由题意可得μ=x=200,δ=10,则P(μ-2δ<ξ≤μ+2δ)=P(180<ξ≤220)≈0.954 5,则该批产品指标值落在(180,220]上的概率为0.954 5.②设每盒该产品的售价为X元,由①可得X的分布列为X 102030P 0.022 750.954 50.022 75则每盒该产品的平均售价为E(X)=10×0.022 75+20×0.954 5+30×0.022 75=20,故每万盒的平均利润为20-15=5(万元).14.(辽宁高考真题(理))一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ). 【答案】(1)0.108.(2) 1.8,0.72. 【解析】(1)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=. 2()0.003500.15P A =⨯=. ()0.60.60.1520.108P B =⨯⨯⨯=.(2)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=, 123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为因为()~3,0.6X B ,所以期望为()30.6 1.830.610.60.72E X D X =⨯==⨯⨯-=,方差()().15.(2020·浙江)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每21 次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==,所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=;(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===,()12173********C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,所以()0500700100091012012040120E X =⨯+⨯+⨯+⨯=(元).若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~3,10Y B ⎛⎫ ⎪⎝⎭,故()3931010E Y =⨯=,所以()()()10002001000200820E Z E Y E Y =-=-=(元).因为()()E X E Z >,所以该顾客选择第二种抽奖方案更合算.。

高考数学第一轮复习:《二项分布与正态分布》

高考数学第一轮复习:《二项分布与正态分布》

高考数学第一轮复习:《二项分布与正态分布》最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.4.能解决一些简单的实际问题.【教材导读】1.条件概率和一般概率的关系是什么?提示:一般概率的性质对条件概率都适用,是特殊与一般的关系.2.事件A,B相互独立的意义是什么?提示:一个事件发生的概率对另一个事件发生的概率没有影响.3.在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A恰好发生k次的概率值为什么是C k n p k(1-p)n-k?提示:n次恰好发生k次,为C k n个互斥事件之和,每个互斥事件发生的概率为p k(1-p)k,故有上述结论.4.正态分布中最为重要的是什么?提示:概念以及正态分布密度曲线的对称性.1.条件概率及其性质条件概率的定义条件概率的性质一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义设A、B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)与对立事件的关系如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,设在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图(1)所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图(2)所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ <X≤μ+σ)=0.6826;②P(μ-2σ <X≤μ+2σ)=0.9544;③P(μ-3σ <X≤μ+3σ)=0.9974.【重要结论】1.P(A)=a,P(B)=b,P(C)=c,则事件A,B.C至少有一个发生的概率为1-(1-a)(1-b)(1-c).2.X~N(μ,σ),若P(X<a)=P(X>b),则正态密度曲线关于直线x=a+b2对称.1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()(A)1 (B)5 3(C)5 (D)9B解析:因为μ=2,根据正态分布的性质得a+2+2a-32=2,解得a=53.2.已知随机变量X服从正态分布N(2,32),且P(X≤1)=0.30,则P(2<X<3)等于() (A)0.20 (B)0.50(C)0.70 (D)0.80A 解析:∵该正态密度曲线的对称轴方程为x =2, ∴P(X ≥3)=P(X ≤1)=0.30,∴P (1<X <3)=1-P(X ≥3)-P(X ≤1)=1-2×0.30=0.40,∴P (2<X <3)=12P (1<X <3)=0.20. 3.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )(A)56 (B)45 (C)3132(D)12C 解析: ∵函数f(x)=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12,∴P(X ≤4)=1-P(X =5)=1-125=3132.4.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长幼苗的概率为________.答案:0.725.在一次高三数学模拟考试中,第22题和23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12,则其中甲、乙两名学生选做同一道题的概率为________.答案:12考点一 条件概率(1)某射击手射击一次命中的概率是0.7,两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )(A)710 (B)67 (C)47(D)25(2)把一枚硬币任意抛掷三次,事件A 为“至少一次出现反面”,事件B 为“恰有一次出现正面”,则P(B|A)=________.解析:(1)设第一次射中为事件A 、随后一次射中为事件B , 则P(A)=0.7,P(AB)=0.4,所以P(B|A)=P (AB )P (A )=0.40.7=47. (2)由题意,知P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P (AB )P (A )=3878=37.答案:(1)C (2)37【反思归纳】 (1)一般情况下条件概率的计算只能按照条件概率的定义套用公式进行,在计算时要注意搞清楚问题的事件含义,特别注意在事件A 包含事件B 时,AB =B.(2)对于古典概型的条件概率,计算方法有两种:可采用缩减基本事件全体的办法计算P(B|A)=n (AB )n (A );直接利用定义计算P(B|A)=P (AB )P (A ). 【即时训练】 (1)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.(2)某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率是________.解析:(1)解法一 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P(AB)=C 55C 2100,所以P(B|A)=P (AB )P (A )=5×4100×995100=499.解法二 第一次取到不合格产品后,也就是在第二次取之前,还有99件产品,其中有4件不合格的,因此第二次取到不合格品的概率为499.(2)记事件A 为这个家用电器使用了三年, 事件B 为这个家用电器使用到四年,显然事件B A ,即事件AB =B ,故P(A)=0.8,P(AB)=0.4, 所以P(B|A)=P (AB )P (A )=0.5. 答案:(1)499 (2)0.5考点二独立事件的概率甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解析:设A k,B k分别表示“甲、乙在第k次投篮投中”,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(A3)=13+23×12×13+(23)2×(12)2×13=13+19+127=1327.(2)ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P(ξ=2)=P(A1B1A2)+P(A1B1A2B2)=23×12×13+(23)2×(12)2=29,P(ξ=3)=P(A1B1A2B2)=(23)2×(12)2=19.综上知,ξ的分布列为ξ 1 2 3P 232919所以E(ξ)=1×23+2×29+3×19=139.【反思归纳】概率计算的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.【即时训练】 某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列. 解:(1)甲、乙所付费用可以为10元、20元、30元. 甲、乙两人所付费用都是10元的概率为 P 1=13×12=16,甲、乙两人所付费用都是20元的概率为 P 1=12×13=16,甲、乙两人所付费用都是30元的概率为 P 1=1-13-12×1-12-13=136故甲、乙两人所付费用相等的概率为 P =P 1+P 2+P 3=1336.(2)随机变量ξ的取值可以为20,30,40,50,60. P(ξ=20)=12×13=16P(ξ=30)=13×13+12×12=1336P(ξ=40)=12×13+1-12-13×13+1-13-12×12=1136P(ξ=50)=12×1-12-13+1-12-13×13=536P(ξ=60)=1-12-13×1-12-13=136 故ξ的分布列为:P16 1336 1136 536 136考点三 二项分布京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值;(2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.解:(1)根据正态曲线的对称性,由P(ξ<38)=P(ξ>68),得μ=38+682=53. 再由频率分布直方图得⎩⎪⎨⎪⎧(0.01+0.03+b +0.02+a )×10=1,0.1×35+0.3×45+10b ×55+0.2×65+10a ×75=53, 解得⎩⎪⎨⎪⎧a =0.005,b =0.035.(2)样本年龄在[70,80]的票友共有0.05×100=5(人), 由题意η=0,1,2,3,4,5,所以P(η=0)=C 05⎝ ⎛⎭⎪⎫1-235=1243, P(η=1)=C 15⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫1-234=10243, P(η=2)=C 25⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-233=40243, P(η=3)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫1-232=80243, P(η=4)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫1-231=80243, P(η=5)=C 55⎝ ⎛⎭⎪⎫235=32243, 所以η的分布列为η 012345 P1243 10243 40243 80243 8024332243所以E(η)=0×1243+1×10243+2×40243+3×80243+4×80243+5×32243=103,或根据题设,η~B ⎝ ⎛⎭⎪⎫5,23,P(η=k )=C k 5⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-235-k (k =0,1,2,3,4,5), 所以E(η)=5×23=103.【反思归纳】 在实际问题中具体列出服从二项分布的随机变量的概率分布列对解决问题有直观作用,求解服从二项分布的随机变量的概率分布列和数学期望,只要按照公式计算即可.【即时训练】 某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数所进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.解:(1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一 ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340. P(ξ=0)=C 02×⎝ ⎛⎭⎪⎫37402=13691600,P(ξ=1)=C 12×340×3740=111800, P(ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91600,故所求分布列为X 0 12P13691600111800 91600ξ的均值为E(ξ)=0×13691600+1×111800+2×91600=320,ξ的方差为D(ξ)=⎝ ⎛⎭⎪⎫0-3202×13691600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91600=111800.解法二 求ξ的分布列同解法一.ξ的均值为E(ξ)=2×340=320,ξ的方差为D(ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.考点四 正态分布(1)在某项测量中,测量结果ξ服从正态分布N (4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为( )(A)0.2 (B)0.4 (C )0.8(D)0.9(2)已知三个正态分布密度函数f i (x)=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3(B)μ1>μ2=μ3,σ1=σ2<σ3(C)μ1=μ2<μ3,σ1<σ2=σ3(D)μ1<μ2=μ3,σ1=σ2<σ3(3)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()(A)73(B)53(C)5 (D)3解析:(1)∵ξ服从正态分布N(4,σ2)(σ>0),∴曲线的对称轴是直线x=4,∴ξ在(4,+∞)内取值的概率为0.5.∵ξ在(0,4)内取值的概率为0.4,∴ξ在(0,+∞)内取值的概率为0.5+0.4=0.9.(2)正态分布密度函数f2(x)和f3(x)的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又f2(x)的对称轴的横坐标值比f1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数f1(x)和f2(x)的图像一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.故选D.(3)因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3+a+22=3,解得:a=73.故选A.答案:(1)D(2)D(3)A【反思归纳】(1)在计算服从正态分布的随机变量在特殊区间上的概率时要充分利用正态密度曲线的对称性,将所求的概率转化到我们已知区间上概率.(2)根据正态密度曲线的对称性,当P(ξ>x1)=P(ξ<x2)时必然有x1+x22=μ.【即时训练】为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中体重属于正常情况的人数是()(A)997 (B)954(C)819 (D)683解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ≤X≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.答案:D正态分布与二项分布的综合某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?审题指导满分展示:解:解答:(1)解:20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)解:由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于EX>400,故应该对余下的产品作检验.命题意图:本题考查二项分布、数学期望等基础知识,考查综合运用概率统计知识分析问题和解决问题的能力.课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)=()(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P (AB )P (A )=1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P (AB )P (A )=12×1212=12.故选B.6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得:C k 512k ×125-k =C k +1512k +1×124-k ,解得k =2.故选C.7.某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1(B)0.2(C)0.7 (D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D.9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200. 答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2 .依题意,X ~B ⎝ ⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( ) (A)5 (B)10 (C)15(D)20 B 解析:因为ξ~Bn ,12, 所以E (ξ)=n2, 又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924 C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X-N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=________.解析:∵随机变量X~N(3,σ2),∴P(X>3)=P(X<3)=0.5,∵P(X>m)=0.3,∴P(X>6-m)=P(X<m)=1-P(X>m)=1-0.3=0.7.答案:0.714.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P(0<ξ<3)=P(ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850(n ≤16,n ∈N *),850(n ≥17,n ∈N *).(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P(B|A)=P(AB)P(A)=0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X表示当天的利润(单位:元),X的分布列为E(X)=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y表示当天的利润(单位:元),Y的分布列为:E(Y)=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E(X)>E(Y),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。

2023年高考数学(理科)一轮复习——二项分布与正态分布

2023年高考数学(理科)一轮复习——二项分布与正态分布
索引
5.(2021·天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一
方猜错,则猜对的一方获胜,否则本次平局.已知每次活动中,甲、乙猜对的
概率分别为65和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影 2
响,则一次活动中,甲获胜的概率为____3____,3 次活动中,甲至少获胜 2 次 20
1 式,得 P(B|A)=PP((AAB))=120=14.
5
索引
法二 事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB发生的结果只有(2,4)一种情形,即n(AB)=1. 故由古典概型概率 P(B|A)=nn((AAB))=41.
索引
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机
②P(μ-2σ<X≤μ+2σ)=__0_._9_5_4_5____;
③P(μ-3σ<X≤μ+3σ)=___0_.9_9_7__3___.
索引
常用结论
1.相互独立事件与互斥事件的区别 相互独立事件是指两个试验中,两个事件发生的概率互不影响,计算式为 P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计 算公式为P(A∪B)=P(A)+P(B).
次数的概率分布.( √ )
(3)n 次独立重复试验要满足:①每次试验只有两个相互对立的结果,可以分别 称为“成功”和“失败”;②每次试验“成功”的概率为 p,“失败”的概率
为 1-p;③各次试验是相互独立的.( √ )
(4)正态分布中的参数 μ 和 σ 完全确定了正态分布,参数 μ 是正态分布的期望,
2.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线关于直线x=μ对称 和曲线与x轴之间的面积为1解题.

高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).

高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).

第8讲二项分布与正态分布一、选择题1.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6 B.0.7C.0.8 D.0.66解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,∴P(B|A)=P ABP A=0.120.2=0.6.答案 A2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A.512B.12C.712D.34解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=12,P(B)=16,则事件A,B至少有一件发生的概率是1-P(A)·P(B)=1-12×56=712.答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是().A.[0.4,1] B.(0,0.4]C.(0,0.6] D.[0.6,1]解析设事件A发生的概率为p,则C14p(1-p)3≤C24p2(1-p)2,解得p≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B5.在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.0026 解析 ∵μ=0,σ=13∴P (X <1或x >1)=1-P (-1≤x ≤1)=1-P (μ-3σ≤X ≤μ+3σ)=1-0.997 4=0.002 6. 答案 D6.已知三个正态分布密度函数φi (x )=12πσi·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则 ( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 二、填空题7.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.解析设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.50,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案 0.098.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=________.解析∵P(X≤1)=0.841 3,∴P(X>1)=1-P(X≤1)=1-0.841 3=0.158 7.∵X~N(0,1),∴μ=0.∴P(X<-1)=P(X>1)=0.158 7,∴P(-1<X<1)=1-P(X<-1)-P(X>1)=0.682 6.∴P(-1<X<0)=12P(-1<X<1)=0.341 3.答案0.341 39.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论:①Φ(0)=0.5;②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1.则正确结论的序号是________.答案①②③10.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________.解析P(9.8<X<10.2)=P(10-0.2<X<10+0.2)=0.954 4.答案0.954 4三、解答题11.设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.12.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?解设学生的得分情况为随机变量X,X~N(60,100).则μ=60,σ=10.(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.∴P(X>90)=12[1-P(30<X≤90)]=0.001 3∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x.则P(X≥x0)=0.022 8.∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4. 又知P(60-2×10<x<60+2×10)=0.954 4.∴x0=60+2×10=80(分).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.14.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13;P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。

高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布

高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布

正态曲线: =
1


⋅e
− 2
22
, ∈ ,其中 ∈ , > 0为参数,称
正态密度曲线
为正态密度函数,函数 的图象为_________________,简称正态曲线.
(2)
正态曲线的特点
=
①曲线是单峰的,它关于直线________对称.

=
1
曲线在________处达到峰值
3
[思路点拨](1)由题可求出一次试验成功的概率,设试验成功的次数为,可
知服从二项分布,再利用方差的性质即可求解.
[解析] 由题意得,启动一次出现的数字为 = 1010的概率 =
设试验成功的次数为,则~
所以的方差 = 54 ×
2
27
×
25
27
2
54,
27
=
2
1
3
2
3
× =
2
.
记选出女生的人数为,则服从超几何分布,③满足题意;
盒中有4个白球和3个黑球,每次从中随机摸出1个球且不放回,
记第一次摸出黑球时摸取的次数为,
则不服从超几何分布,④不满足题意.故填③.
5.已知随机变量 ∼
2
2,
0.35
, ≤ 0 = 0.15,则 2 ≤ ≤ 4 =______.
0 < < 1 ,用表示事件发生的次数,则的分布列为( = ) =


C 1 −
_________________________,
= 0,1,2,⋯ ,,称随机变量服从二项分布,记作
∼ , .
(2)
1 −

知识讲解_高考总复习:二项分布与正态分布(基础)

知识讲解_高考总复习:二项分布与正态分布(基础)

高考总复习:二项分布与正态分布【考纲要求】一、二项分布及其应用1、了解条件概率和两个事件相互独立的概念;2、理解n次独立重复试验的模型及二项分布;3、能解决一些简单的实际问题。

二、正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

【知识网络】【考点梳理】考点一、条件概率1.条件概率的定义设A、B为两个事件,且P(A)>0,称P(B|A)=P(AB)/P(A)为在事件A发生的条件下,事件B 发生的条件概率。

要点诠释:条件概率不一定等于非条件概率。

若A,B相互独立,则P(B|A)=P(B)。

2.条件概率的性质①0≤P(B|A)≤1;②如果B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)。

考点二、独立重复试验及其概率公式1.事件的相互独立性设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。

2.判断相互独立事件的方法(1)利用定义:事件A、B相互独立,则P(AB)=P(A)·P(B);反之亦然。

(2)利用性质:A 与B 相互独立,则A 与B ,A 与B , A 与B 也都相互独立. (3)具体模型①有放回地摸球,每次摸球结果是相互独立的.②当产品数量很大时,不放回抽样也可近似看作独立重复试验. 要点诠释:要明确“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的含义。

已知两个事件A 、B ,则A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ; A 、B 都不发生的事件为AB ;A 、B 恰有一个发生的事件为AB ∪AB ;A 、B 中至多有一个发生的事件为AB ∪AB ∪AB 。

3.独立重复试验 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用(1,2,,)i A i n =表示第i 次试验结果,则123123()()()()()n n P A A A A P A A A A =(2)独立重复试验的概率公式如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k k n k n n P k C P p -=-。

高考数学总复习之二项分布与正态分布

高考数学总复习之二项分布与正态分布

由题意可知随机变量X的正态曲线关于x=1对称, A
则P(X≤0)=P(X≥2),所以a-2=2,a=4.
抓住3个考点
突破3个考向
揭秘3年高考
5.(2012· 新课标全国)某一部件由三个
电子元件按如图所示方式连接而 成,元件1或元件2正常工作,且元 件3正常工作,则部件正常工作.设三个电子元件的使用 寿命(单位:小时)均服从正态分布N(1 000,502),且各个元 件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.
抓住3个考点 突破3个考向 揭秘3年高考
2.独立重复试验与二项分布 (1)独立重复试验 独立重复试验是指在相同条件下可重复进行的,各次之间 两种 相互独立的一种试验,在这种试验中每一次试验只有____ 结果,即要么发生,要么不发生,且任何一次试验中发生 一样 的. 的概率都是______ (2)二项分布 进行n次试验,如果满足以下条件: ①每次试验只有两个相互独立的结果,可以分别称为“成 功”和“失败”;
抓住3个考点
突破3个考向
揭秘3年高考
解析
设元件 1,2,3 的使用寿命超过 1 000 小时的事件
1 分别记为 A,B,C,显然 P(A)=P(B)=P(C)= ,∴该 2 - - 部件的使用寿命超过 1 000 小时的事件为(A B + A B+ AB)C,∴该部件的使用寿命超过 1 000 小时的概率
②每次试验“成功”的概率均为p,“失败”的概率均为1-
p;
抓住3个考点 突破3个考向 揭秘3年高考
③各次试验是相互对立的. k 用 X 表示这 n 次试验中成功的次数, 则 P(X=k)=Ck p n (1 - -p)n k(k=0,1,2,„,n).若一个随机变量 X 的分布 列如上所述,称 X 服从参数为 n,p 的二项分布,简记 为 X~B(n,p).

2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布

2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布

第1页共13页2023年高考数学一轮总复习第51讲:二项分布、超几何分布、正态分布【教材回扣】1.二项分布:(1)概念:一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=________________,k =0,1,2,…,n .如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从____________________,记作______________.(2)均值与方差:如果X ~B (n ,p ),那么E (X )=________,D (X )=________.2.超几何分布(1)概念:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=____________,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.(2)均值:E (X )=np .3.正态分布:(1)有关概念:对任意的x ∈R ,f (x )=1σ2πe -(x -μ)22σ2>0(μ∈R ,σ>0为参数),我们称f (x )为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,若随机变量X 的概率分布密度函数为f (x ),则称随机变量X 服从正态分布,记作__________________.特别地,当μ=__________,σ=________时称随机变量X 服从标准正态分布.(2)正态曲线的特点:①它的图象在□10________上方;②x 轴和曲线之间的区域的面积为□11________;③曲线是单峰的,它关于直线□12________对称;④曲线在x =μ处,达到峰值1σ2π;⑤当|x |无限增大时,曲线无限接近□13________.(3)均值与方差:若x ~N (μ,σ2),则E (X )=□14________,D (X )=□15________.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.()2.二项分布和超几何分布都是放回抽样.()3.正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()4.一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()题组二教材改编。

二项分布、超几何分布与正态分布 2025年高考数学基础专项复习

二项分布、超几何分布与正态分布 2025年高考数学基础专项复习
二项分布
则X的分布列为P(X=k)=C pk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p).
一般地,如果X~B(n,p),那么E(X)=np,D(X)=np(1-p).
教材素材变式
1
1.2
1.[人B选必二P83练习B第4题变式]设随机变量 ∼ , 0.4 , = 2 + 2,若 = 6,则 =___.
+ ) − 60 = 0,得
1
= 3,解得 = 3,故 = 2.所以 − = 1.
1

6
=1 =
C14 C15
C29
=
5

9
=0 =
C25
C29
5
= 18,所以
[多选]袋中有除颜色外完全相同的2个黑球和8个红球,现从中随机取出3个,记其中黑球的数量为,红球的数
量为,则以下结论正确的是(

超几何分布
教材知识萃取
一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取

定义 的n件产品中的次品数,则X的分布列为P(X=k)=C C−,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,
C

超几何
分布
n≤N,m=max{0,n-N+M},r=min{n,M},此时称随机变量X服从超几何分布.
3.[多选][人A选必三P81习题7.4第3题变式]某计算机程序每运行一次都会随机出现一个五位二进制数
1
2
= 1 2 3 4 5 (例如10100),其中1 = 1, = 2,3,4,5 出现0的概率为3,出现1的概率为3,记

二项分布、超几何分布与正态分布-高考数学复习

二项分布、超几何分布与正态分布-高考数学复习


其中 n , N , M ∈N*, M ≤ N , n ≤ N , m =max{0, n - N +
M }, r =min{ n , M }.如果随机变量 X 的分布列具有上式的形式,
那么称随机变量 X 服从超几何分布.
目录
提醒
超几何分布中的随机变量为抽到的某类个体的个数.主要特征
为:①考察对象分两类;②已知各类对象的个数;③从中抽取若干
对于超几何分布 X ~ H ( n , M , N ),则 E ( X )= , D




( X )= ·(1- )· .


−1
3. 对于正态分布 X ~ N (μ,σ2), E ( X )=μ, D ( X )=σ2.
目录
1. 已知一盒子中有棋子10粒,其中7粒黑子,3粒白子.任意取出2粒,
好 n , p 和 k 的值,再准确利用公式 P ( X = k )= pk (1-
p ) n - k , k =0,1,2,…, n 求概率.
目录
考向2 二项分布
【例2】
设甲、乙两位同学上学期间,每天7:30之前到校的概率均
2
为 ,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校
3
1
位,移动的方向为向上或向右,并且向上、向右移动的概率都是 .
2
5
则质点 P 移动五次后位于点(2,3)的概率是 16 .

解析:由于质点每次移动一个单位,移动的方向为向上或向右,移
动五次后位于点(2,3),所以质点 P 必须向右移动两次,向上移
1
1
1
5
3
3
3
2
5
动三次,故其概率为 5 ( ) ( ) = 5 ( ) = .

高三总复习数学课件 二项分布及其应用、正态分布

高三总复习数学课件 二项分布及其应用、正态分布

解析:根据n重伯努利试验公式得,该同学通过测试的概率为C×0.62×0.4+ 0.63=0.648.
答案:A
2.第六届世界互联网大会发布了 15 项“世界互联网领先科技成果”,其中有 5
项成果均属于芯片领域.现有 3 名学生从这 15 项“世界互联网领先科技成
果”中分别任选 1 项进行了解,且学生之间的选择互不影响,则恰好有 1 名
答案:B
2.(人教A版选择性必修第三册P77·T2改编)鸡接种一种疫苗后,有90%不会感
染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率
约为
()
A.0.33 B.0.66 C.0.5 D.0.45
答案:A
3.(湘教版选择性必修第二册 P130 ·例 4 改编)甲、乙两人进行乒乓球比赛,比
赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜
的概率均为23,则甲以 3∶1 的比分获胜的三册P87·习题T1改编)某学校高二年级数学学业质量 检测考试成绩X~N(80,25),如果规定大于或等于85分为A等,那么在参加考 试的学生中随机选择一名,他的成绩为A等的概率是________.(附:若X~ N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7) 解析:P(X≥85)=12[1-P(75≤ X< 85)]≈1-02.682 7≈0.158 7.
n重伯努利试验 ②特征:同一个伯努利试验重复做n次;各次试验的结
果_相__互__独__立___
2.二项分布 (1)二项分布的定义: 一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生的概率为 p(0<p<1), 用 X 表示事件 A 发生的次数,则 X 的分布列为 P(X=k)=_C_kn_p_k_(_1_-__p_)n_-_k_,k= 0,1,2,…,n.如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从 二项分布,记作 X~B(n,p) . (2)二项分布的均值与方差: 如果 X~B(n,p),那么 E(X)= np ,D(X)= np(1-p) .

2024年高考数学总复习第十二章概率与统计真题分类49二项分布与正态分布

2024年高考数学总复习第十二章概率与统计真题分类49二项分布与正态分布

则 P(Ai+1)=P(AiAi+1)+P(BiAi+1)=P(Ai)P(Ai+1|Ai)+P(Bi)P(Ai+1|Bi),
即 pi+1=0.6pi+(1-0.8)×(1-pi)=0.4pi+0.2, 构造等比数列{pi+λ},
设 pi+1+λ=25 (pi+λ),解得 λ=-13 ,
则 pi+1-13 =25 (pi-13 ),
高考·数学
4.(2023·新高考全国Ⅰ,21,12 分)甲、乙两人投篮,每次由其中一人投篮,规则如下:
若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的
命中率均为 0.6,乙每次投篮的命中率均为 0.8.由抽签确定第 1 次投篮的人选,第 1 次投篮
的人是甲、乙的概率各为 0.5.
=0.8.
故选 A.
第3页
返回层目录 返回目录
真题分类49 二项分布与正态分布
高考·数学
2.(2014·课标全国Ⅱ,5,5 分)某地区空气质量监测资料表明,一天的空气质量为优 良的概率是 0.75,连续两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一 天的空气质量为优良的概率是( )
附:K2=(a+b)(cn+(da)d-(bac+)c2)(b+d) ,
P(K2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
真题分类49 二项分布与正态分布
高考·数学
解:(1)记“第 i 次投篮的人是甲”为事件 Ai,“第 i 次投篮的人是乙”为事件 Bi,
所以 P(B2)=P(A1B2)+P(B1B2)=P(A1)P(B2|A1)+P(B1)P(B2|B1)
=0.5×(1-0.6)+0.5×0.8=0.6.

一轮复习指导资料-第章-第节(理)-二项分布和正态分布

一轮复习指导资料-第章-第节(理)-二项分布和正态分布

2.利用实际问题的直方图, 度曲线的特点及应用也是考 了解正态分布曲线的特点及 查的热点.
曲线所表示的意义.
2.从考查形式看,三种题型 都可能出现,属中档题.
新课标高考总复习·数学(RJA版)
基础知识回扣
热点考向聚焦
活页作业
新课标高考总复习·数学(RJA版)
基础知识回扣
热点考向聚焦
活页作业
一、条件概率及其性质
活页作业
2.正态分布
(1)一般地,如果对于任何实数 a,b(a<b),随机变量 X 满足 P(a<X≤b)=∫baφμ,σ(x)dx,则称随机变量 X 服从 正态分布 , 记作 X~N(μ,σ2).
(2)常用数据.
P(μ-σ<X≤μ+σ)= 0.6826
.
P(μ-2σ<X≤μ+2σ)= 0.9544
新课标高考总复习·数学(RJA版)
基础知识回扣
热点考向聚焦
活页作业
(1)解析:对于①,P(B)=CC11150×CC11511+CC11510×CC11141=292;对于 ②,P(B|A1)=CC11151=151;对于③,由 P(A1)=12,P(B)=292,
P(A1·B)=252,故 P(A1·B)≠P(A1)·P(B),因此事件 B 与事 件 A1 不是相互独立事件;对于④,从甲罐中只取一球,故取 出红球就不可能是他颜色的球,故两两互斥;对于⑤,由① 可算得.故②④正确.
新课标高考总复习·数学(RJA版)
基础知识回扣
热点考向聚焦
活页作业
【典例剖析】 (1)(2013·莆田模拟)甲罐中有5个红球,2个白球和3
个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随 机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是 红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示 由乙罐取出的球是红球的事件,则下列结论中正确的是 ________(写出所有正确结论的编号).

高中数学选择性必修三 专题05二项分布、超几何分布与正态分布(含答案)高二数学下学期期中专项复习

高中数学选择性必修三 专题05二项分布、超几何分布与正态分布(含答案)高二数学下学期期中专项复习

专题05二项分布、超几何分布与正态分布一、单选题1.(2020·全国高二课时练习)抛掷一枚质地均匀的正方体骰子4次,设X 表示向上一面出现6点的次数,则X 的数学期望()E X 的值为( )A .13 B .49C .59D .23【答案】D 【详解】抛掷一枚质地均匀的正方体骰子1次,向上一面出现6点的概率为16()112(4,)4663XB E X ∴=⨯=故选:D2.(2020·全国高二课时练习)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数X 的数学期望是( ) A .43 B .119C .1D .89【答案】A 【详解】由题意可知:2~(2,)3X B ,因此面试结束后通过的人数X 的数学期望是242=33⨯. 故选:A3.(2021·河南驻马店市·高三期末(理))已知~(20,)X B p ,且()6E X =,则()D X =( ) A .1.8 B .6C .2.1D .4.2【答案】D 【详解】因为X 服从二项分布~(20,)X B p ,所以()206==E X p ,得0.3p =,故()(1)200.30.7 4.2=-=⨯⨯=D X np p .故选:D.4.(2021·山东德州市·高二期末)已知随机变量X 服从二项分布(),X B n p ,若()54E X =,()1516=D X ,则p =( ) A .14B .13C .34D .45【答案】A 【详解】由题意5415(1)16np np p ⎧=⎪⎪⎨⎪-=⎪⎩,解得145p n ⎧=⎪⎨⎪=⎩.故选:A .5.(2020·全国高二课时练习)已知圆2228130+--+=x y x y 的圆心到直线()10kx y k +-=∈Z 的距离为14,4XB ⎛⎫⎪⎝⎭,则使()P X k =的值为( ) A .23 B .35C .13D .2764【答案】D 【详解】由题意,知圆心坐标为()1,4,圆心到直线()10kxy k +-=∈Z 的距离为=17k =-或1k =.因为k Z ∈,所以1k =. 因为14,4XB ⎛⎫⎪⎝⎭, 所以()141141127114464P X C -⎛⎫⎛⎫==⋅⋅-=⎪ ⎪⎝⎭⎝⎭. 故选:D .6.(2021·辽宁大连市·高三期末)2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .35128【答案】C 【详解】小球从起点到第③个格子一共跳了7次,其中要向左边跳动5次,向右边跳动2次,而向左或向右的概率均为12,则向右的次数服从二项分布,所以所求的概率为2527112122128P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 故答案为:C.7.(2020·江苏省苏州中学园区校高二月考)设随机变量ξ服从正态分布(2,9)N ,若(21)(1)P m P m ξξ<+=>-,则实数m 的值是( )A .23B .43C .53D .2【答案】B 【详解】因为随机变量ξ服从正态分布(2,9)N ,(21)(1)P m P m ξξ<+=>-, 根据正态分布的特征,可得21122m m ++-=,解得43m =.故选:B .8.(多选)(2021·全国高二课时练习)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( ) A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128【答案】ACD 【详解】由题得小汽车的普及率为34, A. 这5个家庭均有小汽车的概率为53()4=2431024,所以该命题是真命题; B. 这5个家庭中,恰有三个家庭拥有小汽车的概率为332531135()()44512C =,所以该命题是假命题;C. 这5个家庭平均有3.75个家庭拥有小汽车,是真命题;D. 这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为4455313()()()444C +=81128,所以该命题是真命题. 故选:ACD.9.(多选)(2020·全国高三专题练习)某计算机程序每运行一次都随机出现一个五位二进制数12345A a a a a a =(例如10100)其中A 的各位数中()2,3,4,5k a k =出现0的概率为13,出现1的概率为23,记2345X a a a a =+++,则当程序运行一次时( )A .X 服从二项分布B .()8181P X ==C .X 的期望()83E X = D .X 的方差()83V X =【答案】ABC 【详解】解:由于二进制数A 的特点知每一个数位上的数字只能填0,1,且每个数位上的数字再填时互不影响,故以后的5位数中后4位的所有结果有4类: ①后4个数出现0,X 0=,记其概率为411(0)()381P X ===;②后4个数位只出现1个1,1X =,记其概率为134218(1)()()3381P X C ===; ③后4位数位出现2个1,2X =,记其概率为22242124(2)()()3381P X C ===, ④后4个数为上出现3个1,记其概率为3342132(3)()()3381P X C ===,⑤后4个数为都出现1,4X =,记其概率为4232(4)()381P X ===,故2~(4,)3X B ,故A 正确;又134218(1)()()3381P X C ===,故B 正确;2~(4,)3X B ,28()433E X ∴=⨯=,故C 正确;2~(4,)3X B ,X ∴的方差218()4339V X =⨯⨯=,故D 错误.故选:ABC .10.(2020·江苏南京市·南京田家炳高级中学高三期中)下列命题中,正确的命题是( ) A .已知随机变量服从二项分布(),B n p ,若()30E x =,()20D x =,则23p =B .已知34n n A C =,则27n =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为X ,()~10,0.8X B ,则当8X =时概率最大. 【答案】BCD 【详解】对于选项A :随机变量服从二项分布(),B n p ,()30E X =,()20D X =,可得30np =,()120np p -=,则13p =,故选项A 错误; 对于选项B :根据排列数和组合数的计算公式可得,()()()3!213!n n A n n n n ==---,()()()()4321!4!4!24n n n n n n C n ---=-=,因为34n n A C =,所以有()()()()()3212124n n n n n n n -----=,即3124n -= 解得27n =,故选项B 正确;对于选项C :随机变量ξ服从正态分布()0,1N ,则图象关于y 轴对称,若()1P p ξ>=,则()1012P p ξ<<=-,即()1102P p ξ-<<=-,故选项C 正确; 对于选项D :因为在10次射击中,击中目标的次数为X ,()~10,0,8X B , 当x k =时,对应的概率()10100.2kkkP x k C -==⨯0.8⨯,所以当1k时,()()()101011101104110.80.210.80.2kk kk k k P x k k C P x k C k----+=-⋅⋅===-⋅⋅, 由()()()41111P x k k P x k k =-=≥=-得444k k -≥,即4415k ≤≤,因为*k N ∈,所以18k ≤≤且*k N ∈, 即8k时,概率()8P x =最大,故选项D 正确.故选:BCD . 二、填空题11.(2021·江西高三其他模拟(理))已知随机变量ξ服从正态分布()23,N σ,()60.84P ξ≤=,则()0P ξ≤=______.【答案】0.16 【详解】因为随机变量ξ服从正态分布2(3,)N σ,所以(0)(6)P P ξξ≤=≥, 又(6)0.84P ξ≤=,所以(0)1(6)10.840.16P P ξξ≤=-≤=-=.故答案为:0.1612.(2020·福建三明市·高二期末)已知某批零件的长度误差X 服从正态分布()2,N μσ,其密度函数()()222,12x x e μσμσϕπσ--=的曲线如图所示,则σ=______;从中随机取一件,其长度误差落在()3,6内的概率为______.(附:若随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<≤+=,()220.9544P μσξμσ-<≤+=,()330.9974P μσξμσ-<≤+=.)【答案】3 0.1359 【详解】解:由图中密度函数解析式,可得3σ=;又由图象可知0μ=,则长度误差落在(3,6)内的概率为: 1(36)[(22)()]2P X P P μσξμσμσξμσ<<=-<+--<+1(0.95440.6826)0.13592=-=. 故答案为:3;0.1359. 三、解答题13.(2021·全国高二课时练习)某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率; (3)若规定分数在[80,90)为“良好”,[]90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X ,求X 的分布列和数学期望. 【答案】(1)180人(2)0.1(3)详见解析 【详解】解:(1)∵样本中男生有55人,则女生45人 ∴估计总体中女生人数45400180100⨯=人 (2)设“不及格”为事件A ,则“及格”为事件A ∴()1()1(0.20.40.20.1)0.1P A P A =-=-+++=(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+= 依题意可知:~(3,0.3)X B3(0)0.7P B ==,1123(1)0.30.7P X C == 22133(2)0.30.7,(3)0.3P X C X P ====所以,X 的分布列为 X 0 1 2 3 P0.3430.4410.1890.027()30.30.9E X np ==⨯=14.(2020·全国高三专题练习(理))袋子中有1个白球和2个红球. (1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列. 【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析. 【详解】(1)由题意,X 可能取值1,2,3. 则()113P X ==,()2112323P X ==⨯=,()211133213P X ==⨯⨯=,所以X 的分布列为(2)X 可能取值为1,2,3,4,5.则()113P X ==,()2122339P X ==⨯=,()221433327P X ⎛⎫==⨯= ⎪⎝⎭,()321843381P X ⎛⎫==⨯= ⎪⎝⎭,()42165381P X ⎛⎫=== ⎪⎝⎭,故X 的分布列为(3)由题意可得,15,3XB ⎛⎫ ⎪⎝⎭, 所以()551233kkk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4,5k =,则()320243P X ==,()801243P X ==,()802243P X ==,()403243P X ==,()104243P X ==,()15243P X ==, 所以X 的分布列为15.(2021·全国高三其他模拟)某商场举行有奖促销活动,凡10月13日当天消费每超过400元(含400元),均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折;若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若小方、小红均分别消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率. (2)若小勇消费恰好满600元,试比较说明小勇选择哪种方案更划算. 【答案】(1)825;(2)选择方案一更划算. 【详解】(1)由题意,设顾客享受到6折优惠为事件A ,则()232615C P A C ==.∴小方、小红两人其中有一人享受6折优惠的概率为()()22118[1]215525P C P A P A ⎛⎫=⋅⋅-=⨯⨯-=⎪⎝⎭. (2)若小勇选择方案一,设付款金额为X 元,则X 可能的取值为360,480,600.则()232613605C P X C ===,()11332634805C C P X C ===,()232616005C P X C ===. 故X 的分布列为∴()131360480600480555E X =⨯+⨯+⨯=(元).若小勇选择方案二,设摸到红球的个数为Y ,付款金额为Z 元,则600100Z Y =-. 由已知,可得12,2Y B ⎛⎫~ ⎪⎝⎭,故()1212E Y =⨯=, ∴()()()600100600100600100500E Z E Y E Y =-=-=-=(元).由上知:()()E X E Z <,故小勇选择方案一更划算.16.(2021·全国高二课时练习)第13届女排世界杯于2019年9月14日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKSA -V 200W ,已知这种球的质量指标ξ (单位:g )服从正态分布N (270,25 ).比赛赛制采取单循环方式,即每支球队进行11场比赛(采取5局3胜制),最后靠积分选出最后冠军积分规则如下:比赛中以3:0或3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.已知第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为p (0<p <1).(1)如果比赛准备了1000个排球,估计质量指标在(260,265]内的排球个数(计算结果取整数). (2)第10轮比赛中,记中国队3:1取胜的概率为()f p .(i )求出f (p )的最大值点0p ;(ii )若以0p 作为p 的值记第10轮比赛中,中国队所得积分为X ,求X 的分布列.参考数据:ζ ~N (u ,2σ),则p (μ-σ<X <μ+σ)≈0.6826,p (μ-2σ<X <μ+2σ)≈0.9644.【答案】(1)140;(2)(i )034p =;(ii )分布列见解析. 【详解】(1)因为ξ服从正态分布N (270,25 ),所以()0.96440.68262602650.14092P ξ-<<==, 所以质量指标在(260,265]内的排球个数为10000.1409140.9140⨯=≈个;(2)(i )()()()2333131f p C p p p p =-=-,()()()()2'2331+13334p p f p p p p ⎡⎤=-⨯-=-⎣⎦令()0f p '=,得34p =, 当3(0,)4p ∈时,()0f p '>,()f p 在3(0,)4上单调递增; 当3(,1)4p ∈时,()0f p '<,()f p 在3(,1)4上单调递减;所以()f p 的最大值点034p =; (ii )X 的可能取值为0,1,2,3.212313(0)(1)(1)256P X p C p p ==-+-=;223427(1)(1)512P X C p p ==-=; 222481(2)(1)512P X C p p p ==-=;2223189(3)(1)256P X p C p p p ==+-=; 所以X 的分布列为。

第十章 §10.6 二项分布、超几何分布与正态分布-2025届高中数学大一轮复习练习

第十章 §10.6 二项分布、超几何分布与正态分布-2025届高中数学大一轮复习练习

一、单项选择题1.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X =0)=49,则D (Y )等于()A.23B.43C.49D.892.(2023·福建名校联盟大联考)甲、乙两选手进行羽毛球单打比赛,如果每局比赛甲获胜的概率为23,乙获胜的概率为13,采用三局两胜制,则甲以2∶1获胜的概率为()A.827 B.427 C.49 D.293.(2023·枣庄模拟)某地区有20000名考生参加了高三第二次调研考试.经过数据分析,数学成绩X 近似服从正态分布N (72,82),则数学成绩位于(80,88]的人数约为()参考数据:P (μ-σ≤X ≤μ+σ)≈0.6827,P (μ-2σ≤X ≤μ+2σ)≈0.9545,P (μ-3σ≤X ≤μ+3σ)≈0.9973.A .455B .2718C .6346D .95454.已知5件产品中有2件次品,3件正品,检验员从中随机抽取2件进行检测,记取到的正品数为ξ,则均值E (ξ)为()A.45B.910C .1 D.655.32名业余棋手组队与甲、乙2名专业棋手进行车轮挑战赛,每名业余棋手随机选择一名专业棋手进行一盘比赛,每盘比赛结果相互独立,若获胜的业余棋手人数不少于10名,则业余棋手队获胜.已知每名业余棋手与甲比赛获胜的概率均为13,每名业余棋手与乙比赛获胜的概率均为14,若业余棋手队获胜,则选择与甲进行比赛的业余棋手人数至少为()A .24B .25C .26D .276.(2024·赤峰模拟)某商场推出一种抽奖活动:盒子中装有有奖券和无奖券共10张券,客户从中任意抽取2张,若至少抽中1张有奖券,则该客户中奖,否则不中奖.客户甲每天都参加1次抽奖活动,一个月(30天)下来,发现自己共中奖11次,根据这个结果,估计盒子中的有奖券有()A .1张B .2张C .3张D .4张二、多项选择题7.(2023·莆田模拟)“50米跑”是《国家学生体质健康标准》测试项目中的一项,某地区高三男生的“50米跑”测试成绩ξ(单位:秒)服从正态分布N (8,σ2),且P (ξ≤7)=0.2.从该地区高三男生的“50米跑”测试成绩中随机抽取3个,其中成绩在(7,9)的个数记为X,则() A.P(7<ξ<9)=0.8B.E(X)=1.8C.E(ξ)>E(5X)D.P(X≥1)>0.98.(2023·汕头模拟)一个袋子有10个大小相同的球,其中有4个红球,6个黑球,试验一:从中随机地有放回摸出3个球,记取到红球的个数为X1,均值和方差分别为E(X1),D(X1);试验二:从中随机地无放回摸出3个球,记取到红球的个数为X2,均值和方差分别为E(X2),D(X2),则()A.E(X1)=E(X2)B.E(X1)>E(X2)C.D(X1)>D(X2)D.D(X1)<D(X2)三、填空题9.(2023·石家庄模拟)某市中学举办了一次“亚运知识知多少”的知识竞赛.参赛选手从7道题(4道多选题,3道单选题)中随机抽题进行作答,若某选手先随机抽取2道题,再随机抽取1道题,则最后抽取到的题为多选题的概率为________.10.(2023·唐山模拟)近年来,理财成为了一种趋势,老黄在今年买进某个理财产品.设该产品每个季度的收益率为X,且各个季度的收益之间互不影响,根据该产品的历史记录,可得P(X>0)=2P(X≤0).若老黄准备在持有该理财产品4个季度之后卖出.则至少有3个季度的收益为正值的概率为________.11.(2024·南开模拟)一个盒子中装有5个电子产品,其中有3个一等品,2个二等品,从中每次抽取1个产品.若抽取后不再放回,则抽取三次,第三次才取得一等品的概率为________;若抽取后再放回,共抽取10次,则平均取得一等品________次.12.(2023·聊城模拟)某市统计高中生身体素质的状况,规定身体素质指标值不小于60就认为身体素质合格.现从全市随机抽取100名高中生的身体素质指标值x i(i=1,2,3,…,100),经计算错误!i=7200,错误!2i=100×(722+36).若该市高中生的身体素质指标值服从正态分布N(μ,σ2),则估计该市高中生身体素质的合格率为________.(用百分数作答,精确到0.1%)参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.四、解答题13.某家具城举办了一次家具有奖促销活动,消费每超过1万元(含1万元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状与大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到2个红球和1个白球,则打5折;若摸出2个红球和1个黑球,则打7折;若摸出1个白球2个黑球,则打9折,其余情况不打折.方案二:从装有10个形状与大小完全相同的小球(其中红球2个,黑球8个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减2000元.(1)若一位顾客消费了1万元,且选择抽奖方案一,试求该顾客享受7折优惠的概率;(2)若某顾客消费恰好满1万元,试从均值的角度比较该顾客选择哪一种抽奖方案更合算?14.某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛类奖励规则如下:得分在[70,80)内的学生获得三等奖,得分在[80,90)内的学生获得二等奖,得分在[90,100]内的学生获得一等奖,其他学生不得奖.为了解学生对相关知识的掌握情况,该市随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.若该市所有参赛学生的成绩X近似服从正态分布N(μ,σ2),其中σ≈15,μ为样本平均数的估计值,利用所得正态分布模型解决以下问题:(1)若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生人数(结果四舍五入到整数);(2)若从所有参赛学生中(参赛学生数大于10000)随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为ξ,求随机变量ξ的分布列和期望.参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.。

高三数学一轮复习:1228二项分布与正态分布

高三数学一轮复习:1228二项分布与正态分布
二项分布与正态分布
1.条件概率及其性质 (1)对于任何两个事件 A 和 B,在已知事件 A 发生的条件下,事件 B 发生的概率叫做条件概率,用符号 P(B|A) 来表示,其公式为 P(B|A)=PPAAB(P(A)>0). 注:P(B|A)不同于 P(A|B),是在 A 发生的条件下 B 发生的概率 在古典概型中,若用 n(A)和 n(AB)分别表示事件 A 和事件 AB 所包含的基本事件的个数,则 P(B|A)=nnAAB. (2)条件概率具有的性质 ①0≤P(B|A)≤1. ②如果 B 和 C 是两个互斥事件,则 P(B∪C|A)=P(B|A)+P(C|A). 2.相互独立事件 (1)对于事件 A,B,若事件 A 的发生与事件 B 的发生互不影响,则称事件 A,B 是相互独立事件. (2)若 A 与 B 相互独立,则 P(B|A)=P(B).
取两张都是‘扫黑除恶利国利民’卡的概率是16.”(1)求抽奖者获奖的概率; (2)为了增加抽奖的趣味性,规定每个抽奖者先从装有 9 张卡片的盒中随机抽出 1 张不放回,再用剩下 8 张 卡片按照之前的抽奖规则进行抽奖,现有甲、乙、丙三人依次抽奖,用 X 表示获奖的人数,求 X 的概率分 布和均值.
例 5 (2019·天津)设甲、乙两位同学上学期间,每天 7:30 之前到校的概率均为23,假定甲、乙两位同学到校 情况互不影响,且任一同学每天到校情况相互独立. (1)用 X 表示甲同学上学期间的三天中 7:30 之前到校的天数,求随机变量 X 的概率分布和均值; (2)设 M 为事件“上学期间的三天中,甲同学在 7:30 之前到校的天数比乙同学在 7:30 之前到校的天数 恰好多 2”,求事件 M 发生的概率.
)
A.1 B.2 C.4 D.不能确定
(3)若 A 与 B 相互独立,则 A 与 B , A 与 B, A 与 B 也都相互独立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(A)P(B)
P( P(
) )
P(A)+P(B) 1
P(A)P( )+P( )P(B) 1-P(A)P(B)
4. 在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=

k=0,1,2,…,n,其中p是一次试验中该事件发生的概率.实际上,
正好是二项式[(1-p)+p]n的展开式中的第k+1项.
解答:(1)因为甲坑内的3粒种子都不发芽的概率为(1-0.5)3= ,
所以甲坑不需要补种的概率为1-
=0.875.
(2)3个坑恰有一个坑不需要补种的概率为
=0.041.
(3)解法一:因为3个坑都不需要补种的概率为( )3,
所以有坑需要补种的概率为1-( )3=0.330.
解法二:3个坑中恰有1个坑需要补种的概率为
敌机被击落,求敌机被击落的概率.
解答:解法一:本题等价于至少有1人射中的概率.而至少有1人射中的对立事 件是3人都未射中.设A、B、C表示3人射击1次都击中的事件,则
表示3人射击都未击中的事件.而至少有一人射中的概率为P.
∴P(
)=[1-P(A)][1-P(B)][1-P(C)]=
则P=1-P(
)=
10.9 二项分布与正态分布
(了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模 型及二项分布,并能解决一些简单的实际问题/利用实际问题的直方图, 了解正态分布曲线的特点及曲线所表示的意义)
1.相互独立事件的定义:设A,B为两个事件,如果P(A∩B)=P(A)P(B),则称 事件A与事件B相互独立.若A与B是相互独立事件,A与 , 与B, 与 也相互独立.
3.如果ξ~B
,则使P(ξ=k)取最大值的k值为( )
A.3 B.4 C.5 D.3或4
解析:采取特殊值法.
∵P(ξ=3)=
,P(ξ=4)=
,P(ξ=5)=
从而易知P(ξ=3)=P(ξ=4)>P(ξ=5).
答案:D
4.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种该疫苗,至少有3 人出现发热反应的概率为________.(精确到0.01) 解析:由已知p=0.80,则P5(3)+P5(4)+P5(5)=0.94. 答案:0.94
正态分布问题可利用变换公式转化为标准正态分布问题,标准正态分布可通过查 表(或提供的数据)进行求解. 正态分布有两个重要的参数,平均数(期望、数学期望)μ和标准差σ,我们不但要 明白μ和σ在统计上的意义,还要对应到正态曲线上的曲线几何意义,做到从概率、 统计、曲线、函数这四个方面来把握和理解,其中后两个方面是作为数学工具来 为前两个方面服务的.
因此,参赛总人数约为
≈526(人).
(2)假定设奖的分数线为x分,则
P(ξ≥x)=1-P(ξ<x)=1-F(90)=1-Φ(
)=
即Φ(
)=0.904 9,查表得
≈1.31,
解得x=83.1.故设奖得分数线约为83.1分.
=0.095 1,
【方法规律】
1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)=
【答题模板】
解答:设每只小白鼠服用A有效的概率为P1= ,服用B有效的概率为P2= , 一个试验组为甲类组的概率为P(A). (1)由已知条件:P(A)= = (2)
【分析点评】
1. 独立事件同时发生的概率及独立重复试验是高考考查概率问题的重点.多以解答 题形式进行考查,难度多为中低档.
2.本题考查典型的独立重复试验问题,首先计算一次试验事件发生的概率P,然后 求三次独立重复试验中事件至少有一个发生的概率1-P3(0)=1- (1-P)3.
1. 事件间的“互斥”与“相互独立”是两个不同的概念,常因为将它们弄混而 发生计算错误;两个相互独立事件不一定互斥即可能同时发生,而互斥事件 不可能同时发生.
2.再如三个事件两两独立,但三个条件不一定独立.
【例1】3名战士射击敌机,1人专射驾驶员,1人专射油箱,1人专射发动机,命中 的概率分别为 、 、 ,每个人射击是独立的,任1人射中,
A、B中至少有一个发生的事件为A UB;
A、B都发生的事件为A∩B;
A、B都不发生的事件为

A、B恰有一个发生的事件为

A、B中至多有一个发生的事件为
.
它们之间的概率关系如下表所示.
P(AU B) P(A∩ B)
P(
)
A、B互斥 P(A)+P(B)
0 1-[P(A)+P(B)]
A、B相互独立 1-
5
0.894 4 0.911 5 0.926 5 0.974 4 0.979 8 0.984 2
6
0.896 2 0.913 1 0.927 8 0.975 0 0.980 3 0.984 6
7
0.898 0 0.914 7 0.929 2 0.975 6 0.980 8 0.985 0
8
0.899 7 0.916 2 0.930 6 0.976 2 0.981 2 0.985 4
x0
1.2 1.3 1.4 1.9 2.0 2.1
0
1
2
3
4
0.884 9 0.886 9 0.888 0.890 7 0.892 5 0.903 2 0.904 9 0.906 6 0.908 2 0.909 9 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8
验.在这种试验中,每一次试验中只有两种结果,即某事件要么发生,要么 不发生,并且在任何一次试验中发生的概率都是一样的,牢记n次独立重复 试验中某事件恰好发生k次的概率计算公式.
【例2】9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5. 若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都 没发芽,则这个坑需要补种. (1)求甲坑不需要补种的概率; (2)求3个坑中恰有1个坑不需要补种的概率; (3)求有坑需要补种的概率.(精确到0.001)
概率的方法.
,其中,在实际应用中P(B|A)=
是一种重要的求条件
2.运用公式P(A∩B)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B 相互独立时,公式才成立.
3.在解题过程中,要明确事件中的“至少一个发生”、“至多有一个发生”、 “恰有一个发生”、“都发生”、“都不发生”、“不都发生”等词语的意 义, 已知两个事件A、B,它们的概率分别为P(A)、P(B),那么:
( 本 题 满 分 12 分 )A 、 B 是 治 疗 同 一 种 疾 病 的 两 种 药 , 用 若 干 试 验 组 进 行 对 比 试 验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗 效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试 验组为甲类组.设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 . (1)求一个试验组为甲类组的概率; (2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.
2.独立重复试验的定义 在相同条件下做的n次试验称为n次独立重复试验.
3.独立重复试验的概率公式
一般地,在n次独立重复试验中,设事件A发生的次数为X,如果在每次试验中
ห้องสมุดไป่ตู้
事件A发生的概率是p,那么在n次独立重复试验,事件A恰好发生k次的概率
P(X=k)=
.此时称随机变量X服从二项分布,记作X~B(n,p),
9
0.901 5 0.917 7 0.931 9 0.976 7 0.981 7 0.985 7
解答:(2)设参赛学生的分数为ξ,因为ξ~N(70,100),由条件知,P(ξ≥90)=1-
P(ξ<90)=1-F(90)=1-Φ(
)
=1-Φ(2)=1-0.9772=0.228.
这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,
=0.287,恰有
2个坑需要补种的概率为
=0.041,3个坑都需要补种的概率为
=0.002.所以有坑需要补种的概率为0.287+0.041+0.002=0.330.
变式2.甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都 为0.6,且参赛同学的成绩相互之间没有影响.求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 解答:(1)P1=C0.6×0.4C0.6×0.4=0.230 4. (2)P2=1-(1-0.6)4=0.974 4.
解法二:至少有1人击中包括3种情况:①1人击中;②2人击中;③3人都击中. ∵射击1次,∴以上3种情况互斥.∴敌机被击落的概率是: P=

变式1.在如右图所示的电路中,开关a,b,c开 或关的概率都为 ,且相互独立,求灯亮的概率.
解答:解法一:设事件A、B、C分别表示开关a,b,c关闭,则a,b同时关合或c 关合时灯亮,即A·B· ,A·B·C,或 ·B·C,A· ·C,
数.我们称φμ,σ的图象为正态密度曲线.
5.正态分布:一般地,如果对于任何实数a<b,随机变量X满足P(a<X≤b)=
φμ,σ(x)dx,则称X的分布为正态分布.记作N(μ,σ2).如果随机变量X服从正 态分布,则记为X~N(μ,σ2)
6.正态曲线的性质 (1)曲线在x轴的上方,与x轴不相交. (2)曲线是单峰的,它关于直线x=μ对称. (3)曲线在x=μ处达到峰值. (4)曲线与x轴之间的面积为1. (5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”, 总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中.
相关文档
最新文档