电机原理及拖动ppt课件

合集下载

《电机及拖动基础》课件第1章

《电机及拖动基础》课件第1章

图1-14 直流电动机的气隙磁场分布示意图 (a) 主极磁场 ;(b) 电枢磁场;(c) 气隙磁场
1.4 直流电机的基本公式
直流电机的电枢是实现机电能量转换的核心,一台直流电 机运行时,无论是作为发电机还是作为电动机,电枢绕组中都 要因切割磁感应线而产生感应电动势,同时载流的电枢导体与 气隙磁场相互作用产生电磁转矩。
f=Bxli
(1-2)
图1-2 直流电动机的工作原理图 (a) ab边在N极下、cd边在S极下的电流方向;(b) 转子转过180°后的电流方向
例1.2 电动机拖动的生产设备常常需要作正转和反转的 运动,例如龙门刨床工作台的往复运动、电力机车的前行和倒 退等,那么图1-2所示的直流电动机怎样才能顺时针旋转呢?
3) 额定电流IN 额定电流是指额定电压和额定负载时,允许电机电刷两端 长期输出(发电机)或输入(电动机)的电流,单位为A。 对发电机,有
对电动机,有
PN=UNIN
PN=UNINηN
式中:ηN——额定效率。
4) 额定转速nN 额定转速是指电机在额定运行条件下的旋转速度,单位为 r/min。 此外,铭牌上还标有励磁方式、工作方式、绝缘等级、重 量等参数。还有一些额定值,如额定效率ηN、额定转矩TN、额 定温升τN,一般不标注在铭牌上。
定律告诉我们,在均匀磁场中,当导体切割磁感应线时,导体 中就有感应电动势产生。若磁感应线、导体及其运动方向三者 相互垂直,则导体中产生的感应电动势e的大小为
e=Bxlv
(1-1)
图 1-1 直流发电机的工作原理图 (a) ab边在N极下、cd边在S极下的电动势方向;(b) 转子转过180°后的电动势方向
2. 转子部分 1) 电枢铁芯 电枢铁芯由硅钢片叠成。为了减小涡流损耗,电枢铁芯 通常采用 0.35~0.5 mm厚且两面涂有绝缘漆的硅钢冲片叠压 而成。有时为了加强电机冷却,在电枢铁芯上冲制轴向通风孔, 在较大型电机的电枢铁芯上还设有径向通风道,用通风道将铁 芯沿轴向分成数段。整个铁芯固定在转轴上,与转轴一起旋转。 电枢铁芯及冲片形状如图1-9所示,电枢边缘的槽供安放电枢 绕组用。

电机及拖动PPT课件

电机及拖动PPT课件

A、增大励磁电流
B、减小励磁电流
C、保持励磁电流不变 D、使励磁电流为零
答案: C
2.2.2 反接制动
*电压反接制动 电压反接制动时接线如图所示。
开关S投向“电动”侧时,电枢接正极
电压,电机处于电动状态。进行制动时,开
关投向“制动”侧,电枢回路串入制动电R阻B 后,接上极性相反的电源电压,电枢回路内
定义:当 U 、U N I f时,I fN n f(I a )
由方程式可得
n
UN CeΦ
Ra CeΦ
Ia
Tn
Tem
n
T2
T0
0
Ia
)。 A、n=(U-IaRa)/Ceφ B、n=(U+IaRa)/Ceφ C、n=Ceφ/(U-IaRa) D、n=Ceφ/(U+IaRa) 答案: A
第二章直流电动机的电力拖动
电机及拖动
绪论 第一章 直流电机 第二章 直流电动机的电力拖动 第三章 三相异步电动机 第四章 三相异步电动机的电力拖动
为什么要学电机?
请同学们就电机的相关应用举例。
绪论
电机是利用电磁感应原理工作的机械。 电机常用的分类是按功能分,有发电机、电动机、变压器和 控制电机四大类;
归纳如下:
电机
变压器 直流电机
把电刷A、B接到直流电源 力形成逆时针方向的电磁转矩。
上,电刷A接正极,电刷B接负 当电磁转矩大于阻转矩时,电机
极。此时电枢线圈中将电流流过。转子逆时针方向旋转。
当电枢旋转到右图所示位置时
原N极性下导体ab转到S极下, 受力方向从左向右,原S 极下 导体cd转到N极下,受力方向 从右向左。该电磁力形成逆时 针方向的电磁转矩。线圈在该 电磁力形成的电磁转矩作用下 继续逆时针方向旋转。

电机及拖动课件PPT

电机及拖动课件PPT

已知总槽数Z、极对数p和相数m为,则
电机绕组: 产生感应电势、产生磁势
电角度表示,定义为360°空间电角度。
每一相绕组都有首端,又有末端,以A相为例,则三相绕组A-X、B-Y、C-Z、在空间上分布为A-Z-B-X-C-Y共有六部分,即总的绕组应
分为六部分,分属AZBXCY,每一部分在每极下占有的电角度称为相带,一般用600相带
定义( n0- n )为转差,把转差与同步转速n0 之比的百分值 叫做转差率S。即:
S= ( n0 -n )/ n0 *100%
N
如果用一原动机或其它
T
转矩去拖动异步电动机,
使它的转速超过同步转速,
n >n0 ,S<0,旋转磁场切割转
n0
子导体的
n
方向相反,导体中的电动势与电流方向都反向。由左手 定则知电磁力与旋转磁场和转子的旋转方向相反,这是制动 转矩。这时原动机对异步电动机输入机械功率,而通过电磁 感应由定子向电网输送电功率,电动机处在发电机状态。
• 每个极面下每相占有的槽数。已知总槽数Z、 极对数p和相数m为,则
q Z 2 pm
q>1——分布绕组 整数槽绕组——q为整数 分数槽绕组——q为分数
槽距角
• 相邻两槽之间的电角度
已知总槽数Z、极对数p:α=(P×360)/Z
N
S
N
S
α
A Z B X C Y A ZB X C Y
槽电动势星形图
E E 0
所以该电机被称为异步机q1,也叫感y应1 电机。
E y1
E y1(q
1)
Eq1 qEy1kq1
一个线圈组电动势的有效值为 9异步电动机的参数测定
绘出短路特性曲线IK =f(UK)和PK = f(UK)。

电机拖动-09-1PPT课件

电机拖动-09-1PPT课件

电机短路或断路
04
检查电机接线是否正确,排除短路或断路故障, 保证电机正常运行。
电机拖动系统的维修与更换
维修
对于出现故障的电机,应根据故障类 型和程度进行相应的维修,如更换轴 承、修理绕组等。
更换
对于无法维修或维修成本过高的电机, 应及时更换。在更换时,应选择与原 电机型号、规格相符合的电机,以确 保系统的正常运行。
组成
电机拖动系统通常由电机、传动 装置、生产机械或设备以及控制 系统等部分组成。
电机拖动系统的分类
按电机类型分类
直流电机拖动系统和交流电机拖动系统是两种主要的分类方式。直流电机拖动系统包括直流电动机和直流发电机, 交流电机拖动系统包括交流电动机和交流发电机。
按控制方式分类
电机拖动系统可以分为开环控制和闭环控制两大类。开环控制是指系统中没有反馈环节,控制信号从控制系统发 出后,不返回控制系统进行比较和修正;闭环控制则是指系统中存在反馈环节,控制信号在系统中循环,通过反 馈环节与设定值进行比较和修正,以达到更好的控制效果。
确保电机接线盒内的接线端子无 松动、无氧化,保证电机安全运
行。
电机拖动系统的常见故障与排除方法
电机无法启动
01
电机过热
02
检查电源是否正常,电机接线是否牢固,排除 故障后重新启动电机。
检查电机散热片是否清洁,润滑油是否充足, 如有问题及时处理。
电机运行异常
03
检查电机是否有异常声音或振动,如有异常及 时停机检查。
电机正常工作时的
电压和电流值。
02
功率与效率
电机的输出功率和 能量转换效率。
04
工作温度与环境
电机正常工作允许
03
的温度范围和适应

电机原理及拖动第二章课件

电机原理及拖动第二章课件

T
TL
J
d dt
2 n / 60
J m 2 G ( D )2 GD 2
g 2 4g
动态转矩Td=
T
TL
J
d dt
GD2 375
dn dt
g: 重力加速度, 9.8米/秒2;GD2:系统的飞轮矩(牛·米2); n: 转速(转/分); T、TL :转矩(牛·米)
6
2、转动惯量与飞轮力矩
对于电动机来说,提升负
载与下降负载转矩之差: 2T
T Gm R ( 1 1)
j c
25
四、负载的机械特性
生产机械负载特性是指生产机械负载转矩与转速 之间的函数关系. 涉及转矩:Tm—Tmeq—△T—TL—T0
负载轴: Tm f (n) 折算后: Tmeq f (n) 考虑T0: TL f (n)
n △T
将负载转矩折算到电动机轴
上= Tm (绿色虚线) j
Tm/j
Tmeq T
如果还考虑电机的空载损耗T0: TL=Tmeq+T0(红实线)
27
(二)位能性恒负载转矩
nm Tm T
考虑传动机构的损耗: Tmeq= Tm/j +△T(黑实线)
n △T
Tm/j
将负载转矩折算到电动机轴
上= Tm (绿色虚线) j
=2n/60
Tmeq =9.55
FmVm
n
考虑传动损耗 Tmeq =9.55
FmVm
nC
16
2、平移部件质量的折算
电机与拖动
折算原则:系统动能不变 折算前运动部件动能为:
1
mv
2 m
1
Gm vm2
2
2g
折算后运动部件动能为:

《电机及拖动》课件

《电机及拖动》课件
在这一部分,我们将深入了解电机工作的基本原理,包括电磁感应和电流互 动的原理。
不同类型的电机
探索不同类型的电机,如直流电机、交流电机和步进电机。了解它们的特点、 用于各个领域,如工业制造、交通运输和家用电器。在本节中,我们将详细了解电机在不同领域中 的具体应用。
拖动系统的组成
深入了解拖动系统的组成部分,如电源、控制器和传动装置。了解它们的作 用和相互关系。
拖动系统的原理
在本节中,我们将探索拖动系统的工作原理,包括转动力的传递和变速机制。
电机及拖动的发展趋势
了解电机技术的发展趋势,包括智能化、高效能和环境友好型电机的出现。探索电机技术的未来!
《电机及拖动》PPT课件
欢迎来到《电机及拖动》PPT课件!在本课程中,我们将探索电机的基础原理 和应用,以及拖动系统的组成和原理。加入我们,探索电机技术的发展趋势!
电机及拖动的介绍
在本节中,我们将对电机及拖动进行全面介绍。了解电机的基本概念和工作 原理,以及拖动系统的作用和重要性。
电机的基本原理

电机原理与拖动课件

电机原理与拖动课件

二、电磁理论的基本定律
1.全电流定律 在电机中通常都是由线圈通电来建立磁场,电流大小和方向决定 着它所产生磁场的强弱和方向。 (1)右手螺旋定则 电流与它所产生的磁场,两者的方向关系用右手螺旋定则来判 定。判定通电直导线所产生磁场的方向时,用大拇指代表电流方 向,其他四指所指的环绕方向则为磁力线方向(见图(a))。 判定通电线圈所产生磁场的方向时,用四指环绕方向代表线圈中 电流方向,则大拇指所指方向即线圈内部的磁场方向(见图 (b)),图(c)是图(b)的一种示意图。
在上式中,若 0 t 则
ev N dx N v x dt x
eb 称为变压器电势。
ev 称为速度电势,在电机理论中,也
称为旋转电势。 3.电磁力定律 通电导体在磁场中将受到力的作用, 这种力称作电磁力。 当电流方向与磁场方向互相垂直时, 如图1-7(a)所示,电磁力的大小 为 f Bxli 式中, i —导体中电流。 电磁力的方向用左手定则来判定: 手心迎着磁场方向,四指代表电流 方向,则大拇指所指方向为电磁力 方向,如图1-7(b)所示。同样, 要求 Bx 、 i 和 f 三者空间方向应相 互垂直。
电机原理
内容介绍
绪论 电磁理论基础知识 变压器
交流电机基础及三相异步电动机
三相异步电动机的电力拖动
内容介绍
同步电机 直流电机 直流电动机的电力拖动
特种电机
电力拖动系统中电动机的选择
绪论
一、电机发展简况
1.初期发展时期: 电磁感应定律的发现:1821年电动机作用原理,1831年电磁感应 定律 直流电动机的发展:电磁铁->永久磁铁,发电机->化学电池 单相交流电的应用:交流电用于照明,闭合磁路的变压器制成 三相交流电的应用:二相交流电动机,三相交流电动机,三相变 压器 2.近代发展时期: 1920年用于家用电器的单相交流电机诞生,各种主要电机有成型 设计,开始了电动机的近代发展时期。

概述电机及其拖动PPT课件

概述电机及其拖动PPT课件

(1—3)
磁场强度单位为安/米(A/m)。
第14页/共26页
(4)磁动势F
F I W (1—4)
磁动势的方向由产生它的线圈电流按右手螺旋定则确定。磁动势的单位是安匝或 安。
(5)磁阻Rm 磁阻与磁路的平均长l,磁路截面S及磁路的磁导率μ有关,即
(1—5)
R
l
S
第15页/共26页
2.磁性材料 可分为磁性材料与非磁性材料两大类。
描述磁场强弱及方向的物理量是 磁感应强度B。
第13页/共26页
(2)磁通
用Φ表示 Φ=BS 及 B=Φ/S (1—1)
当截面S与不垂直,S的法线与B的夹角
为α,则 BS cos
(1—2)
磁通的单位为韦伯(Wb) 1T=1Wb/m2
(3)磁场强度H
导介率质μ中之某比点。H的磁感B应强/ 度B与介质磁

m
F
i f
(1—11)
式中:Rm为l段的磁阻,单位为1/H;
Rm l / S, m 1/ Rm
为l段的磁导,单位为H。
第21页/共26页
m
6.电磁感应定律 当感应电动势的正方向与产生它的磁通正方向符合右手螺旋定则时,见图1-6(a)及
图1-7。感应电动势e可用下式表示: (1—12)
e W d dt

式中,将1穿入闭合面的2 磁
3
通取正号,穿出闭合面的
磁通取负号。
1 2 3 0
(1—8)
称为磁路基尔霍夫第一定
律 。 0
第20页/共26页
(2)磁路基尔霍夫第二定律
(1—9)
称为磁路基尔霍夫第二定律。
F
Hl

5.磁路的欧姆定律

电机与电力拖动基础 (全)课件

电机与电力拖动基础 (全)课件

智能家居领域
在智能家居领域,电机控制技 术主要用于智能家电、智能照 明、智能安防等系统中,提高 家居生活的便利性和舒适性。
电动汽车领域
在电动汽车领域,电机控制技 术是实现车辆稳定运行和高效 驱动的关键技术之一,对于提 高电动汽车的性能和降低能耗 具有重要意义。
04
电机与电力拖动系统的维护与检修
维护与检修概述
电机与电力拖动基础 (全)课件

CONTENCT

• 电机学基础 • 电力拖动基础 • 电机控制技术 • 电机与电力拖动系统的维护与检修 • 电机与电力拖动系统的设计
01
电机学基础
电机概述
电机是利用电磁感应原理实现电能与机械能转换的 装置。
电机广泛应用于工业、农业、交通运输、国防等领 域。
电机主要由定子和转子组成,通过磁场相互作用产 生旋转运动。
工作机
被拖动的机械设备,如机床、 泵等。
电力拖动系统的特性
80%
调速性能
通过改变电动机的输入电压或电 流,可以方便地调节电动机的转 速,从而实现对工作机的速度控 制。
100%
启动和制动性能
通过控制装置可以实现对电动机 的启动和制动控制,以满足工作 机在各种工况下的运动需求。
80%
负载特性
工作机的负载特性对电力拖动系 统的性能有很大影响,不同的负 载特性需要选择不同类型的电动 机和控制装置。
THANK YOU
感谢聆听
状态监测
通过各种传感器和检测 设备实时监测设备的运 行状态,及时发现异常

故障诊断
根据设备运行数据和故 障现象,分析故障原因
,确定维修方案。
修复性维修
对已经发生的故障进行 修复,恢复设备性能。

《电机拖动原理》课件

《电机拖动原理》课件
电机拖动原理
电机拖动在工业生产中起着重要作用。本课件介绍电机拖动的原理和分类, 以及其在实际应用中的问题和优化方法。
引言
应用广泛
电机拖动在工业生产中的应用领域多种多样。
原理简单
电机拖动的基本原理通常易于理解和实现。
电机的工作原理
1 感应电机
2 直流电机
利用磁场的感应原理实现转动。
通过电枢和磁场之间的相互作用实现转动。
电机的分类
使用电源
交流电机和直流电机
工作方式
单相电机和三相电机
结构形式
异步电机和同步电机
电机拖动的实现
1
基本形式
直接驱动和间接驱动
2
பைடு நூலகம்
控制方式
速度控制和力矩控制
3
注意事项
温度控制和维护保养
电机拖动的优化
提高电机效率
设计和改进电机以提高能源利用效率。
能源转换机制
深入理解电机拖动过程中能源的转换和利用。
电机拖动实验
1 实验目的
验证电机拖动原理的实际效果和特性。
2 实验内容
使用不同类型的电机进行实际测试和观察。
3 实验步骤
准备设备,建立实验电路,记录结果。
总结
应用前景
电机拖动将在工业领域继续发挥重要作用。
发展趋势
电机效率和智能化控制是未来的发展方向。

电机拖动(动力学).课件

电机拖动(动力学).课件

电机拖动系统的智能控制
要点一
总结词
智能控制是一种新兴的控制方式,通过人工智能技术实现 对电机拖动系统的自动控制。
要点二
详细描述
智能控制系统结合了传统控制理论和人工智能技术,如模 糊控制、神经网络等,能够实现对电机拖动系统的自适应、 自学习和自调整控制。智能控制系统能够处理不确定性和 非线性问题,提高系统的鲁棒性和适应性。但智能控制系 统的实现需要较高的技术支持和成本投入,且在某些情况 下可能存在稳定性和可靠性问题。
调速控制的基本原理
通过改变电机的输入电压或电流,调节电机的输入功率,从而实 现调速控制。
调速控制的方法
包括变极调速、变频调速和变转差率调速等。
调速控制的实现
需要使用电力电子器件,如可控硅整流器、晶体管逆变器和直流 无换向器电机等。
05
电机拖动系统的设计与优化
电机拖动系统的设计原则与流程
满足工艺要求
需求分析
明确系统的工艺要求、负载特性和环 境条件,进行初步的方案设计。
方案设计
根据需求分析结果,选择合适的电机 类型、规格和传动方式,进行系统配置。
电机拖动系统的设计原则与流程
详细设计
根据方案设计结果,进行零部件设计和组装,完成整体设计。
测试与优化
对设计完成的电机拖动系统进行性能测试和优化,确保系统 性能达到预期要求。
的特性和应用场景。
直流电机的拖动特性
直流电机的机械特性
描述了电机的输出转矩与转速之间的关系, 包括硬机械特性和软机械特性。
直流电机的调速特性
通过改变输入到电机的电压或电流,可以 调节电机的转速,从而实现调速控制。
直流电机的制动特性
在电机停止运行时,可以通过改变电机的 输入电流或反接电机来使电机快速停止。

电机及拖动基础优秀PPT完整PPT

电机及拖动基础优秀PPT完整PPT
电机及拖动基础
iax I m
转子绕组作“两并一串”联接, 并且通入直流后所建立的磁动 势和磁场的基波分布图
iby
1 2
Im
icz
1 2
Im
绕线转子异步电动机的转子绕组通入直流电流 后,就成为一个电磁铁。
不论旋转磁极与电磁铁在起始时的相对位置如 何,结果总是旋转磁极的N极和S极分别与电磁铁 的S极和N极相吸。旋转磁极以同步转速旋转,则 必然拉着电磁铁也以同步转速旋转。这时异步电 动机就作同步运行。
恒功率、变励磁、不 计凸极效应时同步电 动机的电动势相量图
(二)转速特性及起动步骤
无平均电磁 转矩的情况
(s)t0
Te(t)
m UE0
Xds
sins
t
0
m U2
2s
1 Xq
1 Xd
sin2s
t
0
T
平均电磁转矩 Teav 0 Te(t)dt 0
第二节 无换向器电动机——自控式同步电动机 一、分类
串并联式
涡轮式
永磁同步电动机的转子结构图
2、磁路与参数问题 永磁体为横向结构的永磁同步电动机磁路示意图
3、起动问题
永磁同步电动机起动特性
1——异步转矩 2——发电机制动转矩 3——磁阻转矩 4——合成转矩
三、步进电动机
三相反应式步进电动机示意图
位置一
位置二
位置三
三相反应式步进电动 机的典型结构示意图
有最大电 磁转矩
无电磁转矩
有最大电 磁转矩
三、特点
1、维护简便 2、调速范围宽 3、控制方便 4、电动机能够使用于条件较恶劣的场合 5、快速性好
第三节 其他同步电动机
一、磁阻同步电动机

电机与电力拖动基础 (全)PPT教学课件

电机与电力拖动基础 (全)PPT教学课件

电枢反应为交轴电枢反应。 电机合成磁场Bδx= B0x+Bax
正方向规定:磁力线进入转子 为负,出来为正.
n
n
n
m
⊕N ⊙ ⊙ S ⊕
所以,主磁极磁通密度在N极 下为负,在S极下为正. 可知:磁场波形发生了畸变.
(1)发电机:前极尖增磁,后极 尖去磁.
⊕⊙⊙⊙ ⊙⊙⊙ ⊕⊕⊕⊕⊕⊕⊙
发电机
物几 理何 中中
三、直流电机的基本工作原理 1.直流发电机的基本工作原理
为了说明方便,作下列规定:
(1)N导体和S导体:在N极下的导体称为N导体;在S极
下的
导体称为S导体.
(2)符号 和符号 :导体中电势(电流)的方向进入
纸面时用 表示;导体中电势(电流)的方向由纸面出来
时用 表示.
S
a n
S b n
b
N
b2
b1
故电刷b1的极性恒为正;同理电刷b2的极性恒为负.
e
0
t
2.直流电动机的基本工作原理
S na
b N
a、b导体中电流方向如左所示 ,由左手定则可知S导体和N导 体受力均为逆时针方向,因而使 电枢逆时针方向旋转.
通过换向器的作用,使与 电源负极相接的电刷仅能 接通S导体,故S导体中的 电流方向恒为流出纸面, 而与电源正极相接电刷仅 能接通N导体,电流流入 纸面。故电机恒逆转。
a
N
b2
b1
基本原理: 由于导体切割了磁力线,因而在导体内将产生
感应电动势.根据右手定则,N导体中电势方向为 ;而S 导体中电势方向为 ;即二者方向相反.
N导体和S导体在交换(a和b位置),但是,b 1和b2极 性是恒定的,即b1恒为正,b2恒为负,故在电刷两端输出 脉动的直流电压.

电机及拖动基础PPT课件

电机及拖动基础PPT课件

H1l1 H 2l2 215 15 10 2 A 32.25 A
(4)总的磁动势和励磁电流为
Ni H1L1 H 3 L3 2H (4818 87.75 32.25) A 4938 A
i Ni 4938 A 2.469 A N 2000
第四节 交流磁路的特
第九章 直流电动机的电力拖动
第十章 三相异步电机的机械特性及各种运行状 态
第十一章 三相异步电机的启动及启动设备的计 算
第十二章 三相异步电机的调速 第十三章 多电动机拖动系统
第十四章 电力拖动系统的电动机的选择
第1页/共30页
绪言
一、电机及电力拖动技术的发展概况
• 20世纪30年代:电动机-发电机组
图1-13简单串联磁路 a)串联磁路
b)模拟电路图
气隙有效面积长和宽
各增加一个 值。
第23页/共30页
解 铁心内的磁通密度
为:
BFe
AFe
0.0009 9 10 4
T
1T

由 应
图 的
1-10中的铸
H Fe 9 10 2 A /

m


Байду номын сангаас

线


,B与Fe

铁心段的磁压降: H FelFe 9 10 2 0.3A 270 A
A
磁导 1/ Rm
第10页/共30页
例题1-1
• 有一闭合铁心磁路,A 9 104 m2

,铁心Fe 的 5导00 磁o 率
磁路平均长l 0.3m (注意它仅仅
是一点,就是导磁率使得磁路不是线性的),套在
铁心上的励磁绕组500匝。求铁心产生1(T)的磁

电机与拖动课件

电机与拖动课件
拖动系统往往是复杂的,有的生产机械需要通过传动机构进行转 速匹配,因此增加了很多齿轮和传动轴;有的生产机械需要通过 传动机构把旋转运动变成直线运动,比如:刨床、起货机等。对 这样一些复杂的电力拖动系统,如何来研究其力学问题呢?一般 来说,有两种解决办法:
1)对拖动系统的每根轴分别列出其运动方程, 用连列方程 组来消除中间变量。这种解法会因方程较多,计算量大而比较繁 杂。
jL = /L = n / nL
如果要考虑传动机构的损耗,可以在折算公式中引入传动效
率c 。由于功率传送是有方向的,因此引入效率c 时必须注意:
要因功率传送方向的不同而不同。现分两种情况讨论:
1) 电动机工作在电动状态, 此时由电动机带动工作机构, 功率由电动机各工作机构传送,传动损耗由运动机构承担,即电

J L
1 jL
2
从式可知,折算到单轴拖动系统的等效转动惯量J等于折算前 拖动系统每一根轴的转动惯量除以该轴对电动机轴传动比jL 的平 方之和。当传动比jL 较大时,该轴的转动惯量折算到电动机轴上 后,其数值占整个系统的转动惯量的比重就很小。
根据式表示的GD2 = 4gJ 的关系,可以相应地得到折算到电动 机轴上的等效飞轮转矩
TL

TL jL

c
对于系统有多级齿轮或皮带轮变速的情况,设已知各级速比为j1, j2,…,jn,则总的速比为各级速比之积,即
n
j j1 j2 ... jn ji i 1
在多级传动时,如果已知各级的传递效率为: c1, c2,…, cn,则总效率 c 应为各级效率之积,即
n
c ci i 1
2.转动惯量和飞轮矩的折算 将图中 两轴系统中的电动机转动惯量 Je 和生产机械的负载 转动惯量JL,折算到电动机轴的等效系统的转动惯量J,其等效原 则是:折算前后系统的动能不变,即有

《电机与拖动》PPT课件

《电机与拖动》PPT课件

在A点满足:
TA TLA
dTA dn

dTLA dn
A
A1
B B1 TL TL1 B点为不稳定运行点
B点稳定性分析:
负载受到干扰TL增大为TL1
TL T TL1 n T T0,n0 堵 转 干扰消失,恢复到TL T TL 电动机不能起动 在B点满足:
2.2 多轴电力拖动系统的简化
问题:全面分析多轴系统,必须列出每根轴的运动 方程式及各轴相互联系的方程式,分析复杂。
方法:通常把负载转矩与系统飞轮矩折算到电动机 轴上来,变多轴系统为单轴系统。
பைடு நூலகம் 折算的原则是:保持系统的功率传递关系及系统的 贮存动能不变。
电动机
工作机构
2.2.1 工作机构为转动情况时的折算
第二章 电力拖动系统动力学
2.1 电力拖动系统转动方程式 2.2 多轴电力拖动系统的简化 2.3 负载的转矩特性与电力拖动系统稳定运行的 条件
2.1电力拖动系统转动方程式
一. 典型生产机械的运动形式 1. 单轴旋转系统
电动机
工作机构
2. 多轴旋转系统
电动机
工作机构
3. 多轴旋转运动加平移运动系统
又由:
J m 2 GD 2 ; 2n
4g
60
m:系统转动部分的质量,kg
G:系统转动部分的重力,N
ρ :系统转动部分的转动惯性半径,m
D:系统转动部分的转动惯性直径,m
g:重力加速度,m/s2
d GD 2 2 dn GD 2 dn
T TL J
dt

4g
60 dt
0.6
267.38r / min s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)换向极:它位于相邻两主磁极之间,构造与主磁极相似,其 作用是为了消除在运行过程中换向器产生的火花. (3)机座:一般把厚钢板弯成圆筒形,然后再焊成机座,也可采 用铸钢件.其作用一方面是作为各磁极间的磁路,故 又称为磁轭,另一方面机座作为电机的机械支架,主 磁极和换向极就固定在磁轭上. (4)端盖:附有轴承的端盖安装在机座上以支持电枢,它可以 保持电枢表面和极掌表面相隔一个气隙,使电枢可 以自由旋转. (5)电刷装置:电刷是由石墨做成的导电块,将它套入刷握内, 用弹簧以一定压力将电刷压在换向器的表面 上.在电枢旋转时可以保持电刷固定不动.电刷 的作用是使电枢绕组和外电路接通,同时通过 换向器进行电流的换向. 电机原理及拖动
第一章 直流电机原理
1.1 直流电机的用途、结构及工作原理
一、直流电机的用途 1.直流电动机的用途:在工业生产中,利用电动机的轴上 转矩拖动生产机械,对产品进行加工. 2.直流发电机的用途:作为电源设备 二、直流电机的结构 1.静止部分 (1)主磁极:由极身和极掌组成,固定在磁轭 (机座)上.在磁极上套入激磁绕 组(线圈).主磁极总是偶数,且N 磁轭 极和S极相间出现.极掌对激磁 绕组起支撑作用,且使磁通在气 极身 线圈 极掌 隙中有较好的分布波形. 电机原理及拖动
n
a
n
b
b2
b N
b1
b2
N
a
b1
电机原理及拖动
基本原理: 由于导体切割了磁力线,因而在导体内将产生感 应电动势.根据右手定则,N导体中电势方向为 ;而S导 体中电势方向为 ;即二者方向相反. N导体和S导体在交换(a和b位置),但是,b 1和b2极性是 恒定的,即b1恒为正,b2恒为负,故在电刷两端输出脉动的 直流电压. 综上所述:线圈中的交变电势已变成刷间直流电压.通过换 向器使电刷b1仅能接通S导体,而S导体的电势方向恒为 故电刷b1的极性恒为正;同理电刷b2的极性恒为负. e
电机原理及拖动
1.2 直流Leabharlann 机的空载磁场发电机:由主磁极产生的气隙磁通与电枢绕组切割而产 生电势. 电动机:电枢电流与气隙磁通相互作用而产生电磁转矩. 分析电机磁场是分析电机运行状态的必要步骤. 空载磁场:电枢无电流时的磁场.它是电机中最基本的磁场. 一、电机的磁化曲线 主磁通(通过气隙进入电枢) 激磁磁势所产生的磁通 漏磁通(不经过电枢) 漏磁通不能在电枢中产生电势也不产生电磁转矩,但它存 在却增加了磁极和磁轭的饱和程度. 主磁通是实现机电能量转换所必需的. 电机原理及拖动
2 If
0
电机原理及拖动
二、主磁极磁势产生的气隙磁密在空间的分布 气隙磁密的概念: 是指穿过气隙进入电枢表面或由电枢表面出来的磁通。 因而气隙磁密实际上是指电枢表面的磁通密度。 气隙磁密=主磁极作用产生部分+电枢磁势作用部分 主磁极磁势单独作用(电枢电流为零时): 气隙在极掌下大致 是均匀的。但在极 δ 尖以外时,主磁通所 经气隙加大,磁密减 小,并在两主磁极中 Bδ 间的几何中线上下降 为零。 τ 电机原理及拖动
2.转动部分 (1)电枢铁心:电枢铁心由0.5毫米厚且冲有齿和槽的硅钢 片迭成.铁心钢片沿轴向迭装,以降低电枢铁 心在磁场中旋转时所产生的磁滞和涡流损 耗,从而提高电机的效率.电枢铁心一方面作 为电机磁路的一部分,另一方面便于将电枢 绕组安装在电枢铁心的槽内,起着固定电枢 绕组的作用. (2)电枢绕组:电枢绕组是电机产生感应电势和电磁转矩以 实现机电能量转换的重要部件.绕组是由绝 缘的圆形或矩形铜线绕成,嵌放于电枢铁心 的槽中.必须采用层间绝缘和绕组与铁心槽避 之间的槽绝缘. 电机原理及拖动
主磁通Φ所经磁路:两个气隙、两个电枢齿、一个电枢轭、 两个主磁极铁心和一个 主磁极轭等五段。 由磁路中的欧姆定律: wf If = ΣФRm wf —— 一个主磁极上激磁绕组的匝数; If —— 激磁绕组中的激磁电流; Rm —— 该段的磁组; Ф—— 磁通量 1 说明:当I较小时磁路的磁阻为气隙 Φ 磁阻且为常数,故If与Φ是线性的 If较大时铁心饱和,磁阻加大Φ增 加变慢If与Φ为非线性关系. 电机的饱和程度对电机的性能有很 大的影响.
电机原理及拖 动
电机原理及拖动
本课程的性质、任务及学习方法 1、性质:在工业电气自动化专业中,《电机原理 及拖动》是一门十分重要的专业基础课或称技术 基础课。 2、任务:我们所从事的专业决定了我们是从使用 的角度来研究电机的。因此,我们着重分析各种 电机的工作原理和运行特性,而对电机设计和制 造工艺涉及得不多。但对电机的结构还要有一定 深度的了解。 3、学习方法:要注意它既有基础理论的学习,又 有结合工程实际综合应用的性质。要逐渐地培养 学员的工程观点,掌握工程问题的处理方法。
电机原理及拖动
三、直流电机的基本工作原理 1.直流发电机的基本工作原理 为了说明方便,作下列规定: (1)N导体和S导体:在N极下的导体称为N导体;在S极下的 导体称为S导体. (2)符号 和符号 :导体中电势(电流)的方向进入纸 面时用 表示;导体中电势(电流)的方向由纸面出来时 用 表示. S S
电机原理及拖动

第一章 第二章 第三章 第四章 第五章 第六章

第七章
第八章 第九章
直流电机原理 电力拖动系统的动力学基础 直流电动机的电力拖动 变压器 三相异步电动机原理 三相异步电动机的电力拖动 同步电动机 控制电机 电力拖动系统中电动机的选择
电机原理及拖动
(3)换向器:其作用是使电枢绕组的绕组元件中的电流 进行 方向的交换,起着电流换向作用.电枢绕组元件 的引线就焊在换向片上. 3.气隙 在极掌和电枢之间有一空气隙.气隙是电机的重要 组成部分,它的大小和形状对电机 性能有很大的影响. 4.其他部分 (1)转轴和轴承:转子必须有转轴,以便电机 和生产机械 或原动机进行联接传递转矩和功率.中小型电机 一 般采用滚动轴承,大容量电机 ,采用支架式滑动轴承. (2).通风装置:作用是冷却电机.
0
t
电机原理及拖动
2.直流电动机的基本工作原理
n
S a
b N
a、b导体中电流方向如左所示, 由左手定则可知S导体和N 导体受力均为逆时针方向, 因而使电枢逆时针方向旋 转.
通过换向器的作用,使与电 源负极相接的电刷仅能接 通S导体,故S导体中的电 流方向恒为流出纸面,而 与电源正极相接电刷仅能 接通N导体,电流流入纸 面。故电机恒逆转。
相关文档
最新文档