第二章 参数估计.pdf
数理统计: 参数估计方法
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ
1 n
n i 1
Xi
X
(
x)
1
e
x
,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi
X
2
;
s
1 n1
n i 1
( xi
第二章多元正态分布的参数估计
就是剔除了 X2 Xk1, , X p 得(线性)影响之后,Xi和
Xj之间得协方差。
给定X2时Xi 和Xj得偏相关系数(partial correlation
coefficient)定义为: ij k1, , p
ij k1, , p
,
ii k1, , p jj k1, , p
其中 Σ11 2 ij k1, , p 。
μ12
μ1
Σ12
Σ
1 22
x2 μ2
Σ112
Σ11
Σ12
Σ
1 22
Σ
21
μ1·2和Σ11·2分别就是条件数学期望和条件协方差矩
阵,Σ11·2通常称为偏协方差矩阵。
这一性质表明,对于多元正态变量,其子向量得条件分布仍
就是(多元)正态得。
例5 设X~N3(μ, Σ),其中
1
16 4 2
μ
0 2
μ(1) μ(2)
11 Σ 21
31
12 22 32
13 23 33
Σ11
Σ
21
Σ12
22
则
X (1)
X1
X
2
~
N2 ( μ(1) ,
Σ11)
其中
μ (1)
1
2
Σ11
11 21
12
22
在此我们应该注意到,如果 X ( X1, X 2 , , X p ) 服从 p
aX
(0,1,
0)
X
2
X2
~
N (aμ, aΣa)
X3
1
aμ
(0,1,
0)
2
2
3
11 12 aΣa (0,1, 0) 21 22
第二章 多元正态分布及参数的估计
27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
第二章参数估计
第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。
解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。
从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。
应用数理统计第二章
□
例2.1.11 总体 X ~ U (θ,θ +1) , θ 是未知参数, X1,…,Xn 是一组样本,求θ 的极大似然估计。 解. 总体的密度函数为: f(x,θ ) = 1, θ < x1,…,xn < θ +1 显然不能对参数 θ 求导,无法建立似然方程 注意到这个似然函数不是 0 就是 1 ,利用 顺序统计量,把似然函数改写成如下形式:
f(x,θ ) = 1, θ < x(1) <… < x(n) < θ +1 因此只要 θ < x(1) 并且 x(n) < θ +1 同时满足, 似然函数就可以达到极大值 1 。 所以 U (θ,θ +1) 中参数θ 的极大似然估计 可以是区间 ( x(n) - 1 ,x(1) ) 里的任意一个点 。 说明 MLE 可以不唯一,甚至有无穷多个 同理,总体 U (a,b) 左右端点 a 、b 的MLE 分别就是两个极值统计量 x(1) 、x(n) 。
k =1
n
注意这里总体参数 θ 是一个向量 (µ,σ2 ) , 因此对于似然函数取对数后分别对 µ,σ2 求导, 建立对数似然方程组:
1
σ
−
2
(x − µ) = 0 n + 1 2(σ 2 )2 ( xk − µ )2 = 0 ∑
k =1 n
2σ 2
解方程组得到正态总体两个参数的MLE
ˆ µ=X
1 n n−1 2 ˆ σ 2 = ∑ ( X k − X )2 = S n k =1 n
⎛ N ⎞ ∑ xk nN − ∑ xk L ( x ,θ ) = [ ∏ ⎜ ⎟ ] p (1 − p ) ⎝ xk ⎠
这里每一个 xk = 0、1、…、N 中的某个值
2多元正态分布及参数估计
定X (2) X ,, X f x (2) 0 r 1 p 2
的条件下,
f x | x
(1)
(2)
f 2 x (2)
12
f x
4、独立性
设 X 1 , X 2 , , X p 是 p 个随机变量, Xi的分布函数记为 Fi(xi)
(i=1,2,…,p); F ( x1 , x2 ,, x p ) 是 ( X 1 , X 2 ,, X p ) ' 的联合分布
C OV X , Y X D X D D Y Y C OV Y , X
21
第二章 多元正态分布及参数的估计
§2.1 随 机 向 量
三﹑ 协方差阵的性质 (1) 设X,Y为随机向量(矩阵) D(AX+b)=A· D(X)· A' COV(AX,BY)=A· COV(X,Y)· B'
17
2、协方差矩阵
协方差定义为
Cov X , Y E ( X E ( X ))(Y E (Y ))
ห้องสมุดไป่ตู้
若Cov(X,Y)=0,则称X和Y不相关。 两个独立的随机变量必然不相关,但两个不相关的 随机变量未必独立。 当X=Y时,协方差即为方差,也就是
Cov X , X Var X D ( X ) 和Y Y ,Y ,,Y X X 1 , X 2 ,, X p 1 2 q 的协方差矩
19
X和Y的协方差矩阵与Y和X的协差阵互为转置关系,即有 若COV(X,Y)=0,则称X和Y不相关。 两个独立的随机向量必然不相关,但两个不相关的随机向量未必独 立。 X=Y时的协差阵COV(X,X)称为X的协差阵,记作D(X),即
多元正态分布及参数估计
2019/11/6
应用统计方法
22
2、性质 1) 设为常数,则 E (a X )a(E X ); 2)设 A,B,C 分别为常数矩阵,则
E ( A C X ) A E ( X B ) B C
3)设 X 1,X 2, ,X n为 n个同阶矩阵,则
E ( X 1 X 2 X n ) E X 1 E X 2 E X n
对一切 x、y成立,则称 x和 y相互独立。
2、设 x和 y是两个连续随机向量, x和 y相互
独立,当且仅当
f(x|y)fx(x)或 F (x ,y ) F x(x )F y(y )
对一切
2019/11/6
x
、y
成立。 应用统计方法
19
3、设 x1,x2, ,xn是 n个随机向量,若
F ( x 1 , x 2 , , x m ) F 1 ( x 1 ) F 2 ( x 2 ) F m ( x m ) mn
2019/11/6
应用统计方法
23
二、协方差矩阵
1、定义:设 x (x 1 ,x2, ,xp)和 y (y 1 ,y2, ,y q)分 别为 p维和 q维随机向量,则其协方差矩阵为
Exx2 1 E E ((xx1 2))y1E(y1)
y2E(y2) yqE(yq)
降的右连续函数;
2019/11/6
应用统计方法
4
② 分布函数的取值范围为[0,1],即
0F(a1,a2, ,ap)1
③ 分布函数当变量取值为无穷大时,函数值收敛到1,即
F(,, ,)1
2019/11/6
应用统计方法
5
二、两个常用的离散多元分布
数值分析答案第二章参数估计习题
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ
−
x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =
用
X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α
第二章 参数估计
0
x 2de
x
2xe
x
dx
2
xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak
1 n
n i 1
X
k i
的矩估计量是
约定:若
是未知参数的矩估计,则u()的矩
估计为u(
),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。
参数估计2
n
e n
i
x !
i 1 n i 1
ii ) ln L( x1 , x 2 ,..., x n ; ) xi ln n ln xi !
i 1
xi ln L( x1 , x2 ,...,xn ; ) i 1 n 0 iii)令 : 1 n iv)解之得 : xi x为 的极大似然估计值 , n i 1 1 n X i X 为 的极大似然估计量 . n i 1
(1)正态分布N (u, 2 ) (2)指数分布Z ( ) (3)均匀分布U (a, b) (4)二项分布B(n, p) (3)泊松分布 ( ) 试求其中未知参数的矩 估计. 解 : (1)
因为X ~ N ( , 2 ), E ( X ) , D( X ) 2 故有 X ,
注2
若 为 的矩估计量, g ( )为 的连续函数, 亦称g ( )为g ( )
2 2 例如S n 为总体方差D( X )的矩估计量, 则S n S n 为标准差 D( X )
的矩估计量. 的矩估计量.
例1.1
设X 1 , X 2 ,..., X n为来自正态总体 X 的样本, X的分布为
i 1 n n
( X为连续型)
(1.4) (1.5)
或
L( x1 , x2 ,..., xn ) PX i xi ;
i 1
( X为离散型)
达到最大值
L( x1 , x2 ,..., xn ; ) max L( x1 , x2 ,..., xn ; )
(1) 利用求导法求极大然估 计步骤 i )建立似然函数: L( x1 , x 2 ,..., x n ; 1 , 2 ,..., r ) f ( xi ; 1 , 2 ,..., r )
应用数理统计第二章参数估计(3)区间估计
例1 有一大批月饼,现从中随机地取16袋,称得重量(以克 计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 ,设袋装月饼的重量近似地服从正态 分布,试求总体均值的置信度为0.95的置信区间。 解: 2未知, 1-=0.95, /2=0.025,n-1=15, t0.975 (15) 2.1315 由已知的数据算得 x 503.75, S* 6.2022
n1 (n2 1) S12 12 n1 (n2 1) S12 P F (n 1, n1 1) 2 F (n 1, n1 1) 1 2 /2 2 2 1 / 2 2 2 n2 (n1 1) S2 n2 (n1 1) S2
10
得所求的标准差的置信区间为 (4.58, 9.60)
2.4.3 两个正态总体参数的区间估计
在实际中常遇到下面的问题:已知产品的某一质量指标 服从正态分布,但由于原料、设备条件、操作人员不同,或 工艺过程的改变等因素,引起总体均值、总体方差有所改变, 我们需要知道这些变化有多大,这就需要考虑两个正态总体 均值差或方差比的估计问题。
ˆ a ˆ b} {g(a) T ( X , X ,..., X ; ) g(b)} { 1 2 n
其中g ( x )为可逆的已知函数, T ( X 1 , X 2 ,..., X n ; 况
设总体X~N(,2),X1, X2, …,Xn是总体X的样本,求,2 /2 /2 的置信水平为(1)的置信区间.
求得 的置信水平为(1)的置信区间: ( 2未知)
S S* t1 2 (n 1) or X t1 2 (n 1) X n1 n
《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案
第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。
⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
第二章 参数估计
ˆ = q ( X , K , X ) , q k k 1 n
k = 1, 2, L , m
(2.2)
ˆ 为 q 的矩估计, g ( x 若 q ) 为连续函数,则也称 g (qˆ k k k ) 为 g (q k ) 的矩估计.
【例 2.1】 设总体 X 服从参数为 l 的泊松分布,X 1 , K , X n 为来自总体的样本, 求l 的 矩估计. 解: a1 = EX = l
i =1
定义 2.1:设总体 X 的概率函数为 f ( x;q ) , x1 ,L , x n 是来自总体的样本,则称
n
L(q ) = Õ f ( xi ;q )
i =1
(2.4)
为总体 X 对应样本 x1 ,L , x n 的似然函数.
L(q ) 越大,越有利于样本 x1 ,K , x n 被观察到.
-l ì l x e ï f ( x 0,1, 2, L 其它
或简写为
f ( x) =
-l l x e
x !
x = 0,1, 2, L
§2.1 点估计
我们经常会遇到这样的问题: 总体 X 的分布函数 F ( x,q ) 的形式已知, 但其中的参数q 未知, 希望利用 X 的样本 x1 ,K , x 这类问题称为参数的点估计 (point n 对 q 的值进行估计, estimation)问题. 比如,已知某种电子元件的寿命 X ~ N ( m , s ) ,即 X 的分布密度
P( X = xi ) = p( xi ,q ), i = 1, 2,L ,
其中q 为未知参数,q Î Q . 设 X 1 , K , X n 是来自总体 X 的一组样本, 观察值为 x1 ,K , x n .我们把观察到的样本看成 结果,而需要判断的是未知参数q 的取值,根据最大似然原理,应该选取一个最有利于结 果的发生的q 值作为 qˆ .
多元正态分布的参数估计
第一节 引言 第二节 基本概念 第三节 多元正态分布 第四节 多元正态分布的参数估计 第五节 多元正态分布参数估计的
实例与计算机实现
第一节 引言
多元统计分析涉及到的都是随机向量或多个随机向量放在一 起组成的随机矩阵。例如在研究公司的运营情况时,要考虑 公司的获利能力、资金周转能力、竞争能力以及偿债能力等 财务指标;又如在研究国家财政收入时,税收收入、企业收 入、债务收入、国家能源交通重点建设基金收入、基本建设 贷款归还收入、国家预算调节基金收入、其他收入等都是需 要同时考察的指标。
5
ቤተ መጻሕፍቲ ባይዱ
变量 序号
1 2
表 2.1 数据
X1
X2
X 11
X 12
X 21
X 22
n
X n1
X n2
在这里横看表 2.1,记为
X ( ) ( X1, X 2 , , X p ) , 1, 2, , n 表示第 个样品的观测值。竖看表 2.1,第 j 列
X j ( X1 j , X 2 j , , X nj ) , j 1, 2, , p
k
型随机变量,称 P( X xk ) pk ,(k 1, 2, ) 为 X 的概率分 布。设 X ~ F(x) ,若存在一个非负函数 f (x) ,使得一切实数
x
x 有: F(x) f (t)dt ,则称 f (x) 为 X 的分布密度函数,
简称为密度函数。
8
一个函数 f (x) 能作为某个随机变量 X 的分布密度函数的
显然,如果我们只研究一个指标或是将这些指标割裂开分别 研究,是不能从整体上把握研究问题的实质的,解决这些问 题就需要多元统计分析方法。为了更好的探讨这些问题,本 章我们首先论述有关随机向量的基本概念和性质。
应用数理统计吴翊李永乐第二章-参数估计课后习题参考答案
《应用数理统计》吴翊李永乐第二章-参数估计课后习题参考答案(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 参数估计课后习题参考答案设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12 解上述关于N 、p 的方程得:对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰2222()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) ,,,,,⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ,,,,,试用矩法估计测量的真值和方差(设仪器无系统差)。
解:()()()∑∑====-====ni ini i S XX nX D X X n X E 12210255.014025.2321设子样,,,,,是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
第2章 多元正态分布的参数估计
布函数即边缘分布函数为:
F ( x1 , x2 , , xq ) P( X 1 x1 , , X q xq ) P( X 1 x1 , , X q xq , X q 1 , , X p ) F ( x1 , x2 , , xq , , , )
机向量的密度函数的主要条件是:
p (1)f ( x1 , x2 ,, x p ) 0, ( x1 , x2 ,, x p ) R ;
(2)
f ( x , x ,, x
1 2
p
)dx1 dxp 1
2016/2/24
19
【例2.1】 试证函数 e ( x x ) , f ( x1 , x 2 ) 0,
1 2
x1 0, x 2 0 其它
为随机向量 X ( X1, X 2 ) 的密度函数。
证:只要验证满足密度函数两个条件即可
(1)显然,当 x1 0, x2 0 时有 f ( x1 , x2 ) 0
(2)
2016/2/24
( x1 x2 ) e dx1dx2
当 X 有分布密度 f ( x1 , x2 ,, x p ) 时(联合分布密 度),则 X (1)也有分布密度,即边缘密度函数为 :
f1 ( x1 , x2 ,, xq ) f ( x1 ,, x p )dxq1 ,, dxp
24
2016/2/24
例如:设随机变量X在1、2、3、4四个整数中等 可能地取值,另一个随机变量Y在1~X中等可能地 取一个整数值,则有边缘分布: X 1 Y 1
13,200 21,000 12,000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22、设总体 X 在区间 [, +1] 上服从均匀分布,则 的矩估计 ˆ =
;
3
D(ˆ) =
。
23、设总体 X ~ N(, 2 ) ,若 和 2 均未知, n 为样本容量,总体均值 的置 信水平为1 − 的置信区间为 (X − , X + ) ,则 的值为________;
24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置
解: E(ˆ1) = E(ˆ2), D(ˆ1) D(ˆ2) . 12、设ˆ1 和ˆ2 均是未知参数 的无偏估计量,且 E(ˆ12 ) E(ˆ22 ) ,则其中的统计
量 更有效。
13、在参数的区间估计 (1,2 ) 中,当样本容量 n 固定时,精度2 −1 提高时,置
信度1 −
。
14、设 X1, X 2 ,, X n 是来自总体 X ~ N(,1) 的样本,则 的置信度为 0.95 的置
9、什么是最优无偏估计量? 10、什么是一致最小方差无偏估计量? 11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。 14、试述评价一个置信区间好坏的标准。 15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题 1、设总体未知参数 的估计量 满足 E( ) = ,则 一定是 的( )
的关系为
。
6 、 称 统 计 量 T = T ( X1, X 2 ,, X n ) 为 可 估 函 数 g() 的 ( 弱 ) 一 致 估 计 量 是
指
。
7、判断对错:设总体 X ~ N(, 2 ) ,且 与 2 都未知,设 X1, X 2 ,..., X n 是来自
1
该总体的一个样本,设用矩法求得 的估计量为 ˆ1 、用极大似然法求得 的
估计量为 ˆ2 ,则 ˆ1 = ˆ2 。
_________________
8、ˆn 是总体未知参数 的相合估计量的一个充分条件是_______ .
解:
lim
n→
E
(ˆn
)
=
,
lim
n→
Var(ˆn
)
=
0
.
9 、 已 知 x1, x2 , x10 是 来 自 总 体 X 的 简 单 随 机 样 本 , EX = 。 令
第二章 参数估计
一、填空题
1、总体 X 的分布函数为 F(x; ),其中 为未知参数,则对 常用的点估计方法
有
,
。
2、设总体 X 的概=
e− 0,
(
x−
)
,x x
而 X1, X2, , Xn 是来自总体 X 的简单随机样本,则未知参数 的矩估计量为
_______
3、设 X1, X 2 , X 3 是来自总体 X 的简单随机样本,且 E(X ) = ,记
4
A 极大似然估计 B 矩估计 C 无偏估计
D 有效估计
2、设总体未知参数 的估计量 满足 E( ) ,则 一定是 的( )
A 极大似然估计 B 矩估计 C 有偏估计
D 有效估计
3、设 X1, X 2 ,, X n 为来自均值为 的总体的简单随机样本,则 X i (i = 1,2,, n) ()
置信区间长度小于等于 0.2,则样本容量 n 至少要取多大_______。
18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取 200 名同学进行调
查,结果发现有 68 个同学是近视眼。则大学生近视眼所占的百分比的 95%的置
信区间为
。
19、设总体 X 未知参数为 , X 为样本均值, 若 n X − 近似服从 N(0,1) , X(1− X)
ˆ
=
1 8
6 i=1
xi
+
10
A
i=7
xi
,则当
A
=
时, ˆ 为总体均值 的无偏估计。
10、 设总体 X ~ U (0, ),现从该总体中抽取容量为 10 的样本,样本值为
0.5, 1.3, 0.6, 1.7, 2.2, 1.2, 0.8, 1.5, 2.0, 1.6
则参数 的矩估计为
。
11、 设ˆ1 与ˆ2 都是总体未知参数 的估计,且ˆ1 比ˆ2 有效,则ˆ1 与ˆ2 的期望与 方差满足_______ .
信区间的长度愈 愈好。但当增大置信水平时,则相应的置信区间长度总
是
。
二、简述题 1、描述矩估计法的原理。 2、描述极大似然估计法的原理。 3、极大似然估计法的一般步骤是什么? 4、评价估计量好坏的标准有哪几个? 5、什么是无偏估计? 6、什么是较有效? 7、什么叫有效估计量? 8、判断可估函数 g() 是有效估计量的充要条件是什么?
信区间为
。
15、设 X1, X 2 ,, X n 是来自总体 X ~ N(, 2 ) 的样本,其中 2 未知,则 的置
2
信度为 0.95 的置信区间为
。
16、设 X1, X 2 ,, X n 是来自总体 X ~ N(, 2 ) 的样本,其中 未知,则 2 的置
信度为 0.95 的置信区间为
。
17、设 X 服从参数为 的指数分布,X1, X 2 ,, X n , (n 2) 是来自总体 X 的样本,
X 为其样本均值,则 2nX 服从
分布。
18、设总体服从正态分布 N(,1) ,且 未知,设 X1, X 2 ,..., X n 为来自该总体的一
个 样 本 , 记
X
=
1 n
n i=1
Xi
,则
的 置 信 水 平 为 1−
的置信区间公式是
___________________________________;若已知1− = 0.95 ,则要使上面这个
则 的一个双侧近似 1- 置信区间为
。
20、设总体 X ~ U ( , +1), X1, X2,..., Xn 为样本,则θ的矩估计量为
,
极大似然估计量为
。
21、设总体 X ~ N (, 2 ), X1, X 2,..., X n 为样本, 、 2 未知,则 2 的置信度为
1- 的置信区间为
。
1
=
1 3
X1
+
1 3
X2
+
1 3
X3, 2
=
1 4
X1
+
1 4
X2
+
1 2
X3
3
=
1 2
X1
+
1 2
X2,
4
=
1 4
X1
+
1 4
X2
+
1 4
X3
则哪个是 的有偏估计
,哪个是 的较有效估计 。
4、随机变量 X 的分布函数 F(x; )中未知参数 的有效估计量和极大似然估计量
的关系为
。
5、随机变量 X 的分布函数 F(x; )中未知参数 的有效估计量和最优无偏估计量