七年级数学导学案《有理数的乘方》

合集下载

有理数的乘方(教案)-2020年秋人教版七年级数学上册

有理数的乘方(教案)-2020年秋人教版七年级数学上册
有理数的乘方(教案)-2020年秋人教版七年级数学上册
一、教学内容
本节课选自2020年秋人教版七年级数学上册第四章《有理数的乘方》。
教学内容如下:
1.掌握有理数的乘方的定义,理解乘பைடு நூலகம்的意义。
2.学会计算正整数指数幂、0指数幂以及负整数指数幂。
3.掌握有理数乘方的运算法则,能熟练进行乘方运算。
4.了解乘方在实际问题中的应用,并能解决相关问题。
-解决实际问题中的乘方运算:学生可能难以将乘方知识应用到实际问题中,需要教师引导和示范。
举例解释:
-对于负整数指数幂,可以使用分数的倒数关系来解释,例如:2^(-3) = 1/(2^3),通过具体数值计算让学生理解其含义。
-针对乘方的运算法则,设计不同难度的练习题,让学生通过实践掌握规则,特别是对零指数幂的理解,如:a^0 = 1(a≠0)。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数感和符号意识。
2.培养学生逻辑推理能力和抽象思维能力,提高解决乘方问题的效率。
3.培养学生合作交流意识,通过小组讨论,提高发现问题和解决问题的能力。
4.培养学生创新意识和实践能力,将乘方知识应用于实际情境,感受数学在生活中的价值。
三、教学难点与重点
2.增加课堂互动,通过游戏、竞赛等形式提高学生的参与度和积极性。

1.5.1有理数的乘方(2)(导学案)

1.5.1有理数的乘方(2)(导学案)

.
4 、 若 a,b 互 为 相 反 数 , c,d 互 为 倒 数 , 且 a 0 , 则
(a b)
2007
ቤተ መጻሕፍቲ ባይዱ
( cd )
2008
(
a b
)
2009

.
2009
5、 x 1 6 的最小值是 ●体验中招
,此时 x
=

2
6、 已知有理数 x , y , z , x 3 2 y 1 7 ( 2 z 1) =0, x y z 且 求
3
当 堂 测 试

2、对任意实数 a,下列各式一定不成立的是( A 、 a ( a )
2
2
) D、 a
2
3、 ( 2 )
2003
(2)
2002
2
B、 a ( a )
3
3
C、 a a
3
0
3、 x 9 , x 得值是 若 则
; a 8 , a 得值是 若 则
分析:在有关乘方的计算中,最易出现错误的是“符号问题” ,解决问 题的关键是准确理解幂的概念,头脑时刻保持清醒,不要随意的增减 和变换符号,更不要“ 跳步” ,严格按照运算法则进行。 解: 2 ( 2 ) 2 ( 2 ) 2
2 2 3 3
(2 ) ___________________________________________________________; (3) _________________________________________________________
2
5 ] 3 9 2
(3) ( 10 ) [( 4 ) ( 3 3 ) 2 ] ;

1.5_有理数的乘方_近似数自主学习导学案(共5课时)

1.5_有理数的乘方_近似数自主学习导学案(共5课时)

课题:7.5.1有理数的乘方(第1课时)【学习目标】1.知道有理数乘方的意义;2.会用有理数乘方运算的符号法则,能熟练进行有理数乘方的运算;3.通过乘方的意义,感悟乘方符号的简洁美,并在有理数的运算过程中增强数感.一.导入新课 1二.自主学习,反馈交流14阅读课本P41例1以上部分的内容,回答下列问题.1.什么叫做乘方?什么是幂?什么是底数?什么是指数?在课本上画出来,并在关键词下做记号...2.把下列各式用幂的形式表示(1)(-1)·(-1)·(-1)·(-1)·(-1)= ;(2)xy·xy·xy·xy= ;(3)x·x·x·y·y·y= .3.在49中,底数是____,指数是_______,意义是____________,读作;在2(3)-中,底数是____,指数是______,意义是____________,读作;在23-中,底数是____,指数是________,意义是___________,读作;32 3与32()3意义一样吗?三.自主探究,展示提升16探究要求:利用乘方意义进行计算,并探究乘方的符号法则自学课本P41的例1,仿照例题的格式,计算下列式子:(1)22;(2)332⎪⎭⎫⎝⎛;(3)()33;(4)()22-;(5)()25.0-;(6)()33-.小组合作探究:观察上面各题的结果,说说幂的符号与底数的符号和指数存在着怎样的关系?四.自主小结本节课所学到的知识,教师点评.5五.课堂检测反馈101.填空(1)在6(2)-中,指数为,底数为;在-26中,指数为,底数为.(2)若a2=16,则a= .(3)平方等于本身的数为,立方等于本身的数为.2.计算:(1)3(3)-;(2)4(2)-;(3)3(2)--;(4)22(2)(3)--.3.将(-5)·(-5)·(-5)·(-5)·(-5)写成乘方的形式为;将423-写成乘法的形式为.4.(-3)4表示,底数是,指数是,读作:.5.计算:(1)-32= ;(2)33--= ;(3)3(2)3--= ;6.比较大小:21()3-31()2-;31()3-31()2-.测试评价:2组内互批,教师点评。

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a 叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

(4)乘方是一种运算,幂是乘方运算的结果。

(三)应用迁移,巩固提高(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

(2)注意(-2)4与-24的区别。

数学七年级上册第15课时《有理数的乘方(1)》导学案

数学七年级上册第15课时《有理数的乘方(1)》导学案

第15课时 第2章第7节 有理数的乘方(1)【学习目标】1、理解乘方的意义,会进行有理数乘方运算。

2、在学习有理数乘方法则的过程中,体会“特殊到一般”的数学思想。

【活动方案】活动一 问题引入手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?活动二 乘方的有关概念1.试一试:将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.2.你还能举出类似的实例吗?2×2×2×2×2×2记作26,读作“2的6次方”;7×7×7可记作73;读作“7的3次方”.3.归纳:一般地,n a a a a a ⋅⋅⋅⋅个记作a n ,读作“a 的n 次方”. 求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.26、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的6次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数.4. 思考:(1).(-4)3的底数是什么?指数是什么?幂是多少?(2).23和32的意义相同吗?(3).(-2)3、-23、-(-2)3分别表示什么意义?(4).(-23 )4、-243分别表示什么意义? 活动三 实践应用1 计算:(1)①37;②73;③(-3)4;④(-4)3.(2)①(12 )5;②(35 )3;③(-23)4.2 计算并思考幂的符号如何确定:(1)52、0.23、(23)4; (2)(-4)3、(-23)5、(-1)7; (3)(-1)4、(-3)2、(-12)6.3. 口答(1)(-5)3; (2)(-12 )5; (3)(-13)4; (4)-53; (5)0.14; (6)18.4.如果你第1个月存2元.从第2个月起每个月的存款都是上个月的2倍.那么第6个月要存多少钱?第12个月呢?[检测反馈]1、(-3)4表示 ( )A.4个(-3)相乘的积B. -3乘4的积C.3个(-4) 相乘的积D. 4个(-3)相加的积2、关于式子(-3)4,正确的说法是 ( )A.(-3)是底数,4是幂B.3是底数,4是幂C.3是底数,4是指数D.(-3)是底数,4是指数3、 求 的运算叫做乘方,乘方的结果叫做4、 3)2(-的底数是 ,指数是 ,它表示 ,运算的结果是5、32-的底数是 ,指数是 ,它表示 ,运算的结果是6、把下列各式写成乘方运算的形式:6×6×6= (-3) (-3) (-3) (-3)=2.1×2.1×2.1×2.1×2.1= ⨯21⨯21⨯21⨯21⨯2121= 7、 把下列各式写成乘法运算的形式:34 = ,43=(-1)4= ,3)32(-=8、思考:(-2)3与 –23的意义相同么?为什么?9、计算:=-4)1( ,=-3)1( ,=-4)2( ,-24=(1)(-1 )10,(-1)7,(-21)4,(-21)5是正数还是负数? (2)负数的幂的符号如何确定?【巩固提升】1、()20063-是 ( )A.负数B.正数C.非负数D.以上都不对2、计算()20082007)1(1-+-的值是 ( )A.0B.-1C.1D.23、 下列各式中,不相等的是 ( )A 、(-3)2和-32B 、(-3)2和32C 、(-2)3和-23D 、|-2|3和|-23|4、任何一个数的偶次幂都是 ( )A.正数B.负数C.非正数D.非负数5、一根一米长的绳子,第一次截去一半,第二次截去剩下的一半,如此下去,第六次剩下的绳子的长度为 ( ) A.3)21(米 B.5)21(米 C. 6)21(米 D. 12)21(米6、如果n 为正整数,则=-n 2)1( ; 如果n 为非负整数,则12)1(+-n = .7、一个数的平方等于49 ,这个数是 。

有理数的乘方

有理数的乘方

《有理数的乘方》导学案2
班级小组姓名小组评价_________教师评价_______
学习目标:
熟练进行有理数的乘方运算
重难点:运用有理数乘方的法则,准确的进行运算
1、预习导学
(1)纸的厚度为0.1mm ,对折一次后,厚度为2*0.1mm,对折两次后,
厚度为多少毫米?
(2)对折20次后,厚度为多少毫米?
(3)若每层楼高度为3米,这张纸对折20次后约有多少层楼高?
(4)通过活动,你从中得到了什么启示?
对折2次厚度为_______mm,
对折3次厚度为_______mm,
对折4次厚度为_______mm,
… … … …
对折20次厚度为_______mm.
2.课堂研讨
⑴ (-1/3 )3 = ⑵-32×23=
⑶ (-3)2×(-2)3
⑷-2×32= ⑸ (-2×3)2=
⑹ (-2)14×(-1/2)15=
⑺-(-2)4= ⑻ (-1)2001=
⑼-23+(-3)2=
⑽ (-2)2· (-3)2=
3、课堂达标
(1)310的意义是个3相乘.
(2)平方等于它本身的数是 .立方等于它本身的数是 .
(3)一个数的15次幂是负数,那么这个数的2003次幂是 .
(4)(-2)6中指数是,底数是 .
(5)平方等于1/64的数是,立方等于1/64 的数是 .
4、学习反思。

有理数乘方导学案

有理数乘方导学案

第二章有理数及其运算9.有理数的乘方(一)一、教学目标:1、在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;2、掌握有理数乘方的概念,能进行有理数的乘方运算;3、经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。

二、教学过程第一环节:引入情境,导入新课活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.活动的注意事项:在活动中需要运用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成 2 个,第 2 次分裂成 2× 2 个,第三次分裂成 2× 2× 2 个 . 因为五小时要分裂 10 次,所以第十次分裂成 2× 2× 2⋯⋯⋯× 2×2 个 . 得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实. 二是要指出这种表示方法很复杂,为了简便,可将它写成210,表示 10 个 2 相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方 .第二环节:定义乘方,熟悉概念活动内容: 1. 归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。

指数a n运算的结果叫做幂底数2.通过练习熟悉乘方运算的有关概念.填空:(1)(-2 )10的底数是 _______,指数是 ________,读作 _________(2)(-3)12表示 ______个 _______相乘 , 读作 _________,(3)( 1/3)8的指数是 ________, 底数是 ________读作 _______,(4)3.65的指数是 _________, 底数是 ________, 读作 _______,x m表示 ____个 _____相乘 ,指数是 ______, 底数是 _______, 读作 _________.把下列各式写成乘方的形式:(1)6×6×6; (2)2.1 × 2.1;(3)(-3)( -3)( -3)( -3) ;(4)111112222.2活动的注意事项:教科书在给出乘方运算的概念后,有关练习放在随堂练习的第一题中. 为了及时消化新知识, 要完成活动中的填空练习及乘方与乘法的相互转换, 真正弄清楚幂的读法和写法,区分幂的指数和底数.第三环节:例题练习,乘方运算活动内容:教科书例 1,例 2 分别计算:例 1:① 5 3;②(-3)4;③(-1/2)3.例 2:①( 2)3;②24;③32.4活动的注意事项:例题讲解时要让学生明确有理数的乘方运算是由有理数的乘法来进行的,例2 指明当底数是负数或分数时,书写时一定要用括号把底数括起来,再把指数写在右上角 . 如( -3 )4不能写成-3 4,( -1/2) 3 不能写成-1/23.要引导学生不断地回顾幂的意义.第四环节:课堂演练,符号法则活动内容:计算:( 4)﹣(﹣ 3)2;( 5)﹣(﹣ 2)3。

七年级数学上册《有理数的乘方》教案、教学设计

七年级数学上册《有理数的乘方》教案、教学设计
2.针对学生运算能力的差异,设计不同难度的练习题,使学生在分层练习中逐步提高运算能力。
3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。

人教版数学七年级上1.5.1有理数的乘方(教案)

人教版数学七年级上1.5.1有理数的乘方(教案)
人教版数学七年级上1.5.1有理数的乘方(教案)
一、教学内容
本节课选自人教版数学七年级上册第1章《有理数》1.5节《有理数的乘方》,主要包括以下内容:
1.有理数的乘方的定义及意义;
2.正整数指数幂的性质;
3.负整数指数幂的性质;
4.有理数的乘方的运算方法;
5.乘方的实际应用。
二、核心素养目标
1.让学生掌握有理数乘方的概念和性质,培养他们的数学抽象和逻辑推理能力;
同时,关注学生的个体差异。在教学中,我发现部分学生对乘方的理解速度较慢,运算能力较弱。针对这一问题,我将在课后对这些学生进行个别辅导,提高他们的乘方运算能力。
此外,注重教学评价与反馈。在本次教学中,我及时给予了学生评价和反馈,但部分学生对此并不够重视。为了提高教学效果,我将在今后的教学中,更加注重评价与反馈的针对性和实效性,让学生能够真正认识到自己的不足,从而提高学习效果。
其次,注重乘方运算规律的讲解与练习。在讲授过程中,我发现学生对正整数指数幂的性质掌握较好,但对负整数指数幂的运算规律掌握不够熟练。因此,我将在今后的教学中,增加对负整数指数幂的讲解和练习,帮助学生巩固知识点。
此外,加强小组合作与讨论。在实践活动和小组讨论环节,学生们的参与度较高,能够积极发表自己的观点。但我也发现,部分学生在讨论过程中存在依赖心理,不够积极主动。因此,我将在今后的教学中,加强对学生的引导,鼓励他们独立思考,提高小组合作的效果。
2.培养学生运用有理数乘方解决实际问题的能力,提升数学建模和数学应用的核心素养;
3.引导学生通过探索有理数乘方的规律,培养数据分析与数学运算的核心素养;
4.通过小组合作交流,培养学生沟通与合作的能力,提高数学交流的核心素养。
三、教学难点与重点

人教版初中七年级上册数学《有理数的乘方》导学案

人教版初中七年级上册数学《有理数的乘方》导学案

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方一、新课导入1.课题导入:大家都见过拉面师傅拉面,一次小明看到拉面师傅拉了6次,一碗面就拉好了,你能列出算式,帮他算算这碗面共有多少根吗?这个问题就是这节课我们要学习的乘方(板书课题).2.三维目标:(1)知识与技能正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.(2)过程与方法①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.②已知一个数,会求出它的正整数指数幂,渗透转化思想.(3)情感态度培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.3.学习重、难点:重点:知道有理数乘方的意义.难点:能合理地进行乘方运算.二、分层学习1.自学指导:(1)自学内容:教材第41页的内容.(2)自学时间:5分钟.(3)自学要求:注意积中各因数的特点,结合乘法算式,找出相同因数的个数与指数的关系.理解乘方、幂、底数、指数的意义.(4)自学参考提纲:①2×2×2×2×2应记作25,读作2的五次方;12×12×12×12×12应记作125,读作12的5次方;(-3)×(-3)×(-3)×(-3)应记作(-3)4,读作-3的4次方;(-0.3)×(-0.3)×(-0.3)应记作(-0.3)3,读作-0.3的3次方;猜想:a·a·a…a的结果?n个a②一般地,n个相同因数a相乘,即a·a·a…a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫作乘方,乘方的结果叫做幂.在a n中,a做底数,n叫作指数.当a n看作a的n次方的结果时,也可读作a的n 次幂.特别地,一个数也可以看作这个数本身的一次方,如5就是5的一次方,即5=51,指数为1,通常省略不写.③-24与(-2)4相等吗?为什么?不相等,虽然绝对值相等,但符号不同.④你能解决之前的“拉面问题”吗?其结果是多少?26=642.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题和疑点.a.负数和分数的乘方的记法;b.-24与(-2)4的区别.②差异指导:对学习有困难的学生进行学法指导.(2)生助生:学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)有理数乘方意义的理解:①乘方是一种运算(乘法运算的特例),即求n个相同因数的积的简便算式;②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③乘方具有双重含义:既表示一种乘法运算,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用括号把底数括起来,以体现底数的整体性.(2)在-(-2)5中,底数是-2 ,指数是5,计算的结果是32.1.自学指导:(1)自学内容:教材第42页的例1、例2.(2)自学时间:5分钟.(3)自学要求:观察例1的计算过程和结果,相互交流自己的收获.(4)自学参考提纲:①例1的计算依据是什么?乘方的定义②完成思考并填空.③底数为-1,0,1,10,0.1的幂的特性:0n=0(n为正整数);1n=1(n为整数);10n=100……0(1后面有n个0);0.1n=0.00…01(小数部分1前面有n-1个0)④由②、③可得乘方的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.⑤试确定下列算式的结果是正还是负?a.(-3)×(-3)×…×(-3)共100个(-3)b.(-2)11 c.-(-1)153正;负;正.⑥仿例2用计算器作乘方运算:a.(-11)3 b.(-0.52)4-1331;0.07311616.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题.②差异指导:指导学生的自学方法,帮助学困生解决学习中的疑难问题.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)乘方的符号法则.(2)练习:)4;-(-2)3①计算:(-1);83;(-5)3;0.13;(-10)4;-32;(-12;8.解:1;512;-125;0.001;10000;-9;116②已知n是正整数,那么(-1)2n=1 ,(-1)2n+1=-1.三、评价1.学生的自我评价(围绕三维目标):谈自己在本节学习中的收获和存在的不足之处.2.教师对学生的评价:(1)表现性评价:对本节课学习中大家的态度、方法和成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(15分)在(-2)5中,底数是-2,指数是5,结果是-32.2.(15分)在-24中,底数是2,指数是4,结果是-16.3.(20分)下列各数相等的是(C)A.-33与-23B.32与-23C.-32与-(-3)2D. (-3)2与-324.(20分)计算.(1)(-3)3(2)(-2)4(3)(-1.7)2(4)(-43)3(5)-(-2)3(6)(-2)2×(-3)2 (7)-353(8)-32×(-2)3解:(1)-27;(2)16;(3)2.89;(4)-6427;(5)8;(6)36;(7)-1253;(8)72.二、综合应用(每题15分,共30分)5.(10分)平方等于9的数是几?立方等于27的数是几?解:±3;36.(10分)(1)计算0.12,12,102,1002,观察这些结果,底数的小数点向左(或右)移动一位时,平方数的小数点有什么移动规律?(2)计算0.13,13,103,1003,观察这些结果,底数的小数点向左(或右)移动一位时,立方数的小数点有什么移动规律?解:(1)平方数的小数点向左(向右)移动2位.(2)立方数的小数点向左(向右)移动3位.三、拓展延伸(20分)7.(10分)计算:(-2)2,22,(-2)3,23联系这类具体的数的乘方,你认为当a<0时,下列各式是否成立?(1)a2>0;(2)a2=(-a)2;(3)a2=-a2;(4)a3=-a3.解:4;4;-8;8.(1)(2)成立,(3)(4)不成立.作者留言:非常感谢!您浏览到此文档。

七年级有理数乘方教案

七年级有理数乘方教案

七年级有理数乘方教案【篇一:七年级数学有理数的乘方教学设计】七年级数学《有理数的乘方》教学设计刘永洪一、内容分析有理数的乘方是初中数学人教版七年级上册的第一章的一个内容,是小学生升入初中学习遇过的第一种新运算,且乘方运算的运用却贯穿初中数学学习的始终,可以说乘方运算在初中数学中非常重要。

虽然它的意义与计算都比较简单,但学生学起来有很多地方易出错。

通过学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透细心的重要性,渗透数学的简洁美。

重点:乘方的意义及用乘方的定义正确地进行乘方运算;难点:能准确无误地说出乘方中的底数以及进行乘方运算;教学关健:乘方的意义及幂的结果的符号确定的规律探索和运用。

二、学情分析学生刚进初中,在前面已学过有理数的加、减、乘、除四种运算,这四种运算在小学就已熟悉了,而乘方是到初中学的第一种全新的运算,因此本课引入时要让学生觉得本课内容虽是新知识但其实也很简单,只是旧知识的引伸得来的。

从思想方法上说,可以通过学生动脑动手来培养学生探索精神和观察、分析、辩别、归纳的能力,以及逻辑思维能力、推理论证能力。

通过实际有趣的问题的分析培养学生的数感。

三、教学目标1.认知目标理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。

2.能力目标(1)使学生能够灵活地进行乘方运算。

(2)通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

3.情感目标(1)通过对实例的讲解,让学生体会数学与生活的密切联系。

(2)学会数学的转化思想,培养学生灵活处理现实问题的能力。

过程与方法:1、通过对乘方义意义的引入及幂的符号法则的探索培养学生积极探索和观察分析的能力2、通过对乘方的运算及实际问题的运用培养学生的逻辑思维能力四、教学重点、难点1.教学重点:正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则。

七年级(人教版)数学上册导学案:1.5.1乘方(1)

七年级(人教版)数学上册导学案:1.5.1乘方(1)

=⋅⋅⋅⋅个n a a a a一、前置性研究准备一张纸,动手折纸。

对折1次后,纸变成了几层?对折2次后变成几层?按照刚才折纸的规律,将一张足够长的纸连续20次,应该是多少层? 第1次对折的层数是: 第2次对折的层数是: 第3次对折的层数是: 第20次对折的层数是:20个2相乘的结果是多少?如果这张纸的厚度为0.1毫米,那么折纸的高度比我们学校的教学楼要高得多,你相信吗? 二、归纳总结1、乘方、幂、底数、指数的概念读作 . 定义:这种求n 个 的积的运算,叫做 ,乘方的结果叫做 ,在n a 中a 叫做 ,n 叫做 。

a n 读作a 的n 次幂(或a 的n 次方).2、巩固练习科目 数学班级: 学生姓名课题 1.5.1有理数的乘方(1) 课 型 新授课时 第一节 主备教师备课组长学习目标:1、理解有理数乘方的概念,并能确定乘方的底数、指数、幂;会准确进行乘方运算。

2、经历有理数乘方的推导过程,体验乘方的概念与乘法间的联系,3、培养学生善于总结规律的习惯,在探究生活中乘方的过程中,培养学生数学学习的兴趣。

学习重点 理解有理数乘方的概念,并能确定乘方的底数、指数、幂;会准确进行乘方运算。

学习难点会进行有理数的乘方运算,特别是符号的确定.(1)在49中,底数是____,指数是____,意义是 ,读作 ; (2)在2(3)-中,底数是____,指数是_____,意义是____________,读作 ;(3)在432⎪⎭⎫ ⎝⎛中,底数是____,指数是_____,意义是___________,读作 ;(4)在5中,底数是____,指数是________,3、利用乘方意义进行计算,并探究乘方的符号法则计算(1)43= (2) 24 =(3)0.12 = (4)(32-)3 =(5)(-2)4 = (6)(-0.1)2 =(7)()510-= (8)30= 结论:负数的 是负数,负数的 是正数;正数的 都是 ,0的 都是 . 三、合作探究、展示交流1、 32与2×3有没有区别?意义一样吗?结果呢?2、2(3)-与23- 意义一样吗?结果呢?3、323与32()3意义一样吗?结果呢?四、随堂检测1. 将(-5)·(-5)·(-5)·(-5)写成乘方的形式为 。

1.5.1有理数的乘方(1)(导学案)

1.5.1有理数的乘方(1)(导学案)
(1) ;
((1) ;
(2) ;

当堂测试
1、填空:
(1) 的底数是,指数是,结果是 ;
(2) 的底数是,指数是,结果是;
(3) 的底数是,指数是,结果是。
2、填空:
(1) ; ;
; ;
(2) ; ;
; 。
(3) ; ;
; .
3、计算:
(1) (2)
课后反思
学案
备注栏

自主学习
教师导学
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
负数的奇次幂是数,负数的偶次幂是数,
正数的任何次幂都是数,0的任何正整次幂都是;
3、思考:(—2)4和—24意义一样吗?为什么?
4、自学例2(教师指导)
课堂练习完成P42页1,2.
【要点归纳】:

学生展示
教师激励
1、我们已经学习了五种运算,请把下表补充完整:
运算




乘方
运算结果

2、用乘方的意义计算下列各式:
3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;
2、新知应用
1、将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)=.
(2)、(— )×(— )×(— )×(— )=;
(3) • •• ••……• (2010个)=
2、例题,P41例1师生共同完成

七年级数学导学案《有理数的乘方》

七年级数学导学案《有理数的乘方》

《有理数的乘方》导学案1班级 姓名学习目标1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算2、通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。

重点:乘方的意义及运算难点:乘方的运算1、预习导学:(1)一般地,几个相同因数a 相乘,即........a a a ,记作 ,读作 求n 个相同因数的 ,叫作乘方,乘方的结果叫做 。

在n a 中,a 叫做 ,n 叫作 。

当n a 看作a 的n 次方的结果时,也可读作 。

特别地一个数也可以看作这数本身的一次方,如5就是5的一次,即155=,指数为1通常 不写。

(2)警示:①乘方是一种运算(乘法运算的特例),即求n 个相同因数连乘的简便形式; ②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③书写格式:若底数是负数、分数或含运算关系的式子时,必须要用 把底数括起来,以体现底数的整体性。

(31,0,1,10,0.1的幂的特性:(1)n -= 0n = (n 为正整数) 1n = (n 为整数) 10n =____个0), 0.1n =0.00…01 (1前面有______个0)(4)乘方的符号法则:负数的奇次幂是 数,负数的偶次幂是 数。

正数的任何次幂都是 数,0的任何正整数次幂都是 。

(5)参照乘法运算的方法进行乘方运算。

(6)用计算器作乘方运算。

2、课堂研讨1、计算:2010(1)- = 5(2)- = 38 =3(5)- = 41()2- = 4(10)- = 3(2)--= 223-×=2、2(3)-= ;23______-=3、已知n 是正整数,那么2(1)n -= ,21(1)n +-=4、平方等于9的数是 ,立方等于27的数是 ,平方等于本身的数是 ,立方等于本身的数是3、学以致用:1、把333()444-××写成乘方形式 。

2、计算:232-= ,22()3-= ,22()3-= 3、下列运算正确的是 。

《有理数的乘方》 导学案

《有理数的乘方》 导学案

《有理数的乘方》导学案一、学习目标1、理解有理数乘方的意义。

2、掌握有理数乘方的运算。

3、能熟练进行有理数的乘方运算,并能解决实际问题。

二、学习重点1、有理数乘方的意义。

2、有理数乘方的运算。

三、学习难点1、负数和分数的乘方运算。

2、乘方运算的符号确定。

四、知识回顾1、乘法运算:几个相同的数相加可以用乘法来简便计算,例如:5 + 5 + 5 = 5×3。

2、乘法的运算律:交换律 a×b = b×a,结合律(a×b)×c = a×(b×c),分配律 a×(b + c) = a×b + a×c 。

五、新课导入同学们,我们已经学习了有理数的加法、减法、乘法和除法运算。

今天,我们要一起来学习一种新的运算——有理数的乘方。

想象一下,如果有一张厚度为 01 毫米的纸,将它对折 1 次,它的厚度变为 02 毫米;对折 2 次,厚度变为 04 毫米;对折 3 次,厚度变为 08 毫米……那么对折 20 次,它的厚度会是多少呢?这就需要用到我们今天要学习的有理数的乘方知识来解决。

六、知识讲解1、乘方的概念一般地,n 个相同的因数 a 相乘,即,记作,读作“a 的 n 次方”。

其中,a 叫做底数,n 叫做指数,的结果叫做幂。

例如,,读作“2 的 5 次方”,其中 2 是底数,5 是指数,32 是幂。

特别地,当时,,一个数的 1 次方等于它本身。

2、乘方的运算(1)正数的任何次幂都是正数。

例如,,。

(2)负数的奇次幂是负数,负数的偶次幂是正数。

例如,,。

(3)0 的任何正整数次幂都是 0。

例如,。

3、有理数的乘方运算顺序先确定幂的符号,再计算幂的绝对值。

七、例题讲解例 1:计算(1);(2);(3)。

解:(1);(2);(3)。

例 2:用计算器计算(1);(2)。

解:(1)在计算器上依次按键:,显示结果为 243。

(2)在计算器上依次按键:,显示结果为-128。

新苏科版七年级数学上册:2.7.2《有理数的乘方》导学案

新苏科版七年级数学上册:2.7.2《有理数的乘方》导学案

2.7.2 有理数的乘方班级学号____________ 姓名________________一、【学习目标】:掌握科学记数法的表示方法,知道科学记数法的必要性。

二、【学习重难点】:会用科学记数法表示大数。

三、【自主学习】:1、自学课本P52到P53,完成练一练。

2、一般地,这种计数法称为科学计数法。

3、105=100000 ,106=1000000 ,1010= 1012=观察10n的特点,你发现了什么规律?四、【合作探究】“先见闪电,后闻雷声”,这个现象的解释是:光的传播速度大约为300000000m/s,而声音在常温下的传播速度大约为340m/s。

可见光的速度大大快于声音的速度。

日常生活中我们还会遇到一些特别大的数,如有人体中大约有25000000000000个红细胞。

全世界人口大约是6100000000人地球的陆地面积约为149000000千米2地球的海洋面积约为361000000千米2算一算5000000×5000000可以发现一些足够大的数在读、写、算都不方便,根据10n的特点,我们可以这样来表示这些较大的数。

300000000=3×100000000=3×10825000000000000=2.5×10000000000000=2.5×1013一般地,一个大于10的数可以写成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法称为科学记数法。

例1、1972年3月发射的“先驱者10号”是人类发往太阳系外的第一艘人造太空探测器,至2003年2月人们最后一次收到它发回的信号时,它以飞离地球12200000000km,用科学记数法表示。

解:12200000000km =1.22×1010km例2、用科学记数法表示下列各数:(1)400320 (2)1000000 (3)-726.4 (4)0.31×104例3、下列各数的原数是多少?(1)1.25×104(2)-3.03×102(3)3×105(4)-4.2378×103五、【达标巩固】1.用科学记数法记出下列各数:(1) 7 000 000 (2) 92 000 (3) 63 000 000 (4) 304 0002.下列用科学记数法记出的数,写出原数.(1)2×106= (2)9.6×105= (3)7.58×107=;3.用科学记数法记出下列各数:(1)地球离太阳约有一亿五千万千米;(2)地球上煤的储量估计为15万亿吨以上;(3)月球的质量约是7 340 000 000 000 000万吨;(4)银河系中的恒星数约是160 000 000 000个;(5)地球绕太阳公转的轨道半径约是149 000 000千米;(6)1cm3的空气中约有 25 000 000 000 000 000 000个分子.4.在69600000000的以下各表示方法中,是科学记数法的为 ( )(A)696×108(B)69.6×109(C)6.96 ×1011(D)0.696×10125.我国是一个水资源严重缺乏的国家,我们平时应倍加珍惜水资源,节约用水.据测试,一只拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.小鹏洗手后,没有把水龙头拧紧,当他离开5小时后水龙头流失了______毫升水(用科学记数法表示)。

有理数的乘方教案

有理数的乘方教案

有理数的乘方教案
教学目标:
1. 理解有理数的乘方的概念和性质。

2. 能够计算有理数的乘方运算。

3. 能够应用有理数的乘方解决实际问题。

教学步骤:
引入:让学生回顾一下幂的概念,并且了解一些特殊的幂,如0的任意次方等。

1. 定义有理数的乘方:有理数a的n次方,表示a与自身连乘n次的结果。

解释乘方的特性,如a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。

2. 引导学生进行简单的乘方计算,如2^3 = 2 * 2 * 2 = 8,(-
3)^4 = (-3) * (-3) * (-3) * (-3) = 81。

3. 结合实际问题,让学生应用乘方计算。

例如,假设一辆汽车每小时行驶60公里,问3小时后汽车行驶的总距离是多少?解答:汽车每小时行驶60公里,3小时后行驶的总距离为
60^3 = 60 * 60 *60 = 216000公里。

4. 引导学生讨论一些有理数乘方的特殊情况,如0的正整数次方为0,0的零次方没有意义。

让学生思考并解释这些特殊情况的原因。

5. 组织学生进行习题训练,巩固他们对有理数乘方的理解和运算能力。

6. 总结归纳乘方的运算规律,强调在进行乘方运算时,要注意有理数的正负及零次方的特殊情况。

7. 布置课后作业,要求学生练习乘方的运算和解答乘方问题。

8. 下节课开始时进行乘方的复习和巩固,解答学生所遇到的问题。

教学资源:教材、习题册。

教学评价:观察学生的课堂表现,包括学习态度、参与度、乘方运算的准确性和解决实际问题的能力。

对学生完成的作业进行评价和批改。

2.7《有理数的乘方》教案

2.7《有理数的乘方》教案
另外,我发现学生们在分组讨论和实践活动中表现得相当积极,他们能够将乘方的知识应用到解决实际问题中,这让我感到很欣慰。不过,我也注意到,在小组讨论的过程中,有些学生参与度不高,可能是由于他们对乘方的知识掌握得不够牢固,导致在讨论中缺乏自信。因此,我计划在下一节课前,对这部分学生进行一些额外的辅导和鼓励,帮助他们建立起信心。
1.数学抽象:通过有理数乘方的学习,使学生能够从具体实例中抽象出乘方的概念,理解数学表达式的内涵,发展数学抽象能力。
2.逻辑推理:引导学生运用已知的数学性质和定理,推理出有理数乘方的相关性质,培养逻辑思维和推理能力。
3.数学建模:结合实际例题,培养学生运用乘方知识建立数学模型,解决现实问题的能力,增强数学应用意识。
(1)有理数乘方的定义:理解有理数乘方的概念,掌握乘方的表示方法,如a^n(a为有理数,n为整数)。
举例:教师可以通过具体的实例,如2的3次方(2^3),让学生理解乘方的意义,即2自乘3次。
(2)有理数乘方的性质:掌握负数的奇数次幂和偶数次幂的性质,以及非零有理数的零次幂等于1。
举例:教师可引导学生通过计算-2的奇数次幂(如-2^3)和偶数次幂(如-2^4),让学生发现性质并加以总结。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相同数的连乘的情况?”比如,计算一块正方体木块的体积,就需要用到2的3次方。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
在今天《有理数的乘方》这节课的教学过程中,我注意到了几个值得反思的地方。首先,学生们对于乘方的概念理解整体上是顺利的,但仍有部分学生在具体的运算过程中出现了混淆。特别是在处理负数的奇数次幂和偶数次幂时,一些学生还是容易犯错。这让我意识到,在今后的教学中,我需要更多地将理论讲解与实际例题结合起来,通过具体案例来加深学生对乘方性质的理解。

人教版七年级上数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)(附模拟试卷含答案)

人教版七年级上数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)(附模拟试卷含答案)

数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)【学习目标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重点难点】:有理数乘方的运算。

【导学指导】一、知识链接1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。

他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。

2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.二、合作探究1、分小组合作学习P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子an中 ,a叫做,n叫做2)式子an表示的意义是3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;2、新知应用1、将下列各式写成乘方(即幂)的形式:(1)(-2)×(-2)×(-2)×(-2)=.(2)、(—14)×(—14)×(—14)×(—14)=;(3)x•x•x•……•x(2010个)=2、例题,P41例1师生共同完成从例题1 可以得出:负数的奇次幂是数,负数的偶次幂是数,正数的任何次幂都是数,0的任何正整次幂都是;3、思考:(—2)4和—24意义一样吗?为什么? 4、自学例2 (教师指导)【课堂练习】完成P42页1,2.【要点归纳】:【拓展训练】1、我们已经学习了五种运算,请把下表补充完整:2、用乘方的意义计算下列各式: (1)42-;(2)323⎛⎫- ⎪⎝⎭; (3)223-;3.计算(1) 2221(2)2(10)4----⨯-; (2) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯- ⎪⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,点A 、B 在线段EF 上,点M 、N 分别是线段EA 、BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长是( )A.10 cmB.11 cmC.12 cmD.13 cm2.下列关于角的说法正确的是( ) A.两条射线组成的图形叫做角 B.角的大小与这个角的两边的长短无关 C.延长一个角的两边D.角的两边是射线,所以角不可度量3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天. A.10B.20C.30D.255.今年某月的月历上圈出了相邻的三个数a 、b 、c ,并求出了它们的和为39,这三个数在月历中的排布不可能是( )A. B. C. D.6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.﹣3x 2y+12x 2y 的结果为( )A .﹣52 x 4y 2B .52x 4y 2C .﹣52x 2y D .52x 2y 8.下列计算中,正确的是( ) A .x+x 2=x 3B .2x 2﹣x 2=1C .x 2y ﹣xy 2=0D .x 2﹣2x 2=﹣x 29.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 10.若与互为相反数,则的值为( )A .-bB .C .-8D .811.已知a 是有理数,则下列结论正确的是( )A .a≥0B .|a|>0C .﹣a <0D .|a|≥0 12.若2(1)210x y -++=,则x+y 的值为( ).A.12B.12-C.32D.32-二、填空题13.如图,∠AOB=72︒,射线OC 将∠AOB 分成两个角,且∠AOC:∠BOC=1:2,则∠BOC=_____.14.下列说法:①若a 与b 互为相反数,则a+b=0;②若ab=1,则a 与b 互为倒数;③两点之间,直线最短;④若∠α+∠β=90°,且β与γ互余,则∠α与∠γ互余;⑤若∠α为锐角,且∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ=90°.其中正确的有________.(填序号) 15.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____. 16.如果23x +与5互为相反数,那么x 等于___________. 17.化简:2(-a b )-(23a b +)= ____________.18.已知一列数-1,2,-1,2,2,-1,2,2,2,-1,…其中相邻的两个-1被2隔开,第n 对-1之问有n 个2,则第21个数是______,这一列数的前2019个数的和为______. 19.若m、n满足()2320m n -+-=,则()2007m n -的值等于_________.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、解答题21.(1)如图,点C、D在线段AB上,点C为线段AB的中点,若AC=5cm,BD=2cm,求线段CD的长.(2)如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.22.列代数式或方程:(1)a与b的平方和;(2)m的2倍与n的差的相反数;(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?(设男生人数为x人)23.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?24.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.25.已知多项式A、B,其中,某同学在计算A+B时,由于粗心把A+B看成了A-B求得结果为,请你算出A+B的正确结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有理数的乘方》导学案1
班级小组姓名小组评价_________教师评价_______使用说明及方法指导:
学生先自学课本,经历自主探索总结的过程,并独立完成自主学习部分,然后小组讨论交流,预习时间20分钟
学习目标
1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算
2、通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。

重点:乘方的意义及运算
难点:乘方的运算
一、自主学习:
1、复习加顾:
①乘法运算的符号法则及运算方法:
②多个不为0的数相乘,积的符号怎样确定?
2、导学:
(1)一般地,几个相同因数a相乘,即........
a a a,记作,读作
求n个相同因数的,叫作乘方,乘方的结果叫做。

在n a 中,a叫做,n叫作。

当n a看作a的n次方的结果时,也可读作。

特别地一个数也可以看作这数本身的一次方,如5就是5的一次,即1
55
=,指数为1通常不写。

(2)警示:
①乘方是一种运算(乘法运算的特例),即求n个相同因数连乘的简便形式;
②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;
③乘方具有双重含义:既表示一种,又表示乘方运算的结果;
④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用把
底数括起来,以体现底数的整体性。

(3
,0,1,10,0.1的幂的特性:
(1)n
-=0n=(n为正整数)1n=(n为整数) 10n=____个0), 0.1n=0.00…01 (1前面有______个0)(4)乘方的符号法则:
负数的奇次幂是数,负数的偶次幂是数。

正数的任何次幂都是数,0的任何正整数次幂都是。

(5)参照乘法运算的方法进行乘方运算。

(6)用计算器作乘方运算。

二、合作探究:
1、计算:
2010(1)- 5(2)- 38 3(5)- 41()2
- 4(10)- 3(2)-- 223-×
2、2(3)-= ;23______-=
3、已知n 是正整数,那么2(1)n -= ,21(1)n +-=
4、如果一个有理数的偶次幂是非负数,那么这个有理数是 。

A 、正数
B 、负数
C 、0
D 、任何有理数
5、平方等于9的数是 ,立方等于27的数是 ,平方等于本身的数是 ,立方等于本身的数是
三、学以致用:
1、把333()444
-××写成乘方形式 。

2、计算:232-= ,22()3-= ,22()3
-= 3、下列运算正确的是 。

A 、229()32=
B 、3327()22-=-
C 、239()24
-=- D 、3327()28
-=- 4、若249
x =,则x = 若327x =-,则x =
四、能力提升:
1、计算:23456789102222222222--------+
2、2
32______=,
3、观察下列数,根据规律写出横线上的数
12;34-;58;716-;______;第2010个数是____________。

相关文档
最新文档