辽宁省鞍山市2018-2019学年八年级下期末数学试卷及答案
辽宁省鞍山市八年级下学期数学期末考试试卷
辽宁省鞍山市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)十名工人某天生产同一零件,生产的件数是:15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A . a>b>cB . c>b>aC . c>a>bD . b>c>a2. (2分)在根式①,②,③,④中,最简二次根式是()A . ①②B . ②④C . ①③D . ①④3. (2分)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .B .C .D .4. (2分)已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A . m>B . m<C . m>1D . m<15. (2分)(2016·崂山模拟) 如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=3 ,BC=9,则DF等于()A .B .C . 4D . 36. (2分) (2017九上·南山月考) 将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A . 1B .C .D . 47. (2分) (2016九上·福州开学考) 如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2 ,则y关于x的函数的图象大致为()A .B .C .D .8. (2分) (2020八上·青山期末) 一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的()A .B .C .D .9. (2分)在背面完全相同的6张卡片的正面分别印有:;;;;;,把正面向下洗匀后,从中任抽两张,抽出的卡片上的函数当时,y随x的增大而减小的概率是()A .B .C .D .10. (2分)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A . 3cmB . 4cmC . 5cmD . 6cm二、填空题 (共5题;共7分)11. (1分)(2017·合肥模拟) 能够使代数式有意义的x的取值范围是________.12. (1分) (2019九下·温州竞赛) 如图,在平面直角坐标系中,点F的坐标为(12,0),点E的坐标为(0,6),直线l1经过点F和点E,直线l1与真线l2:y= x相交于点G,矩形ABCD的顶点A与点O重合,边CD∥x 轴,边BC∥y轴,且AB=3,AD=2,将矩形ABCD沿射线OG以每秒5个单位的速度匀速移动,则经过________秒,点B落在直线l1上。
鞍山市八年级下学期数学期末考试试卷
鞍山市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若最简二次根式与是同类二次根式,则a的值为()A .B .C .D .2. (2分)给出下列四个函数:①y=-x;②y=x;③y=;④y=x2 . x<0时,y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个3. (2分)一组数据1,﹣1,0,﹣1,1的方差和标准差分别是()A . 0,0B . 0.8,0.64C . 1,1D . 0.8,4. (2分)下列各式中无意义的式子是()A . ﹣B . ±C .D .5. (2分)下面说法正确的个数有()①若m>n,则ma2>na2;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果△ABC的三个内角满足∠A=∠C﹣∠B,那么△ABC一定是直角三角形;④各边都相等的多边形是正多边形.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A . 1个B . 2个C . 3个D . 4 个6. (2分) (2020八下·重庆月考) 如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A . 20B . 24C . 30D . 367. (2分)观察函数y1和y2的图象,当x=1,两个函数值的大小为()A . y1>y2B . y1<y2C . y1=y2D . y1≥y28. (2分)下列各等式成立的是()A .B .C .D .9. (2分)在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能是下列数中的()A . 5B . 4C . 3D . 110. (2分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A . ∠A:∠B:∠C=l:2:3B . 三边长为a,b,c的值为1,2,C . 三边长为a,b,c的值为, 2,4D . a2=(c+b)(c﹣b)11. (2分)如图,在△ABC中,AD⊥BC于点D,DB=DC,若BC=6,AD=5,则图中阴影部分的面积为()A . 30B . 15C . 7.5D . 612. (2分) (2019八下·北京期中) 如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x ,△MNR的面积为y ,如果y关于x的函数图象如图2所示,则下列说法错误的是()A . 当x=2时,y=5B . 矩形MNPQ的面积是20C . 当x=6时,y=10D . 当y=时,x=10二、填空题 (共6题;共6分)13. (1分)计算:3 ﹣ =________.14. (1分) (2019八下·黄陂月考) 已知直角三角形的两条直角边是3和5,则第三条边是________15. (1分) (2019八下·雁江期中) 直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是________.16. (1分) (2016八下·固始期末) 已知是正整数,则实数n的最大值为________.17. (1分)(2016·黔西南) 如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省________元.18. (1分) (2018八上·武汉期中) 在平面直角坐标系中,A(2,0),∠BAO=75°,AB=6 ,以AB为斜边作等腰直角△ABC,如图所示,则C点坐标为________.三、解答题 (共6题;共64分)19. (15分)计算。
辽宁省鞍山市八年级下学期数学期末考试试卷
辽宁省鞍山市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分.) (共12题;共36分)1. (3分)如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC 的周长比为()A . 4:1B . 3:1C . 2:1D . :12. (3分)下列函数(其中x是自变量)中,不是正比例函数的个数有()(1)y=-x;(2)y+2=2(x+1);(3)y=k2x(k是常数);(4)y2=x2A . 1个B . 2个C . 3个D . 4个3. (3分)下列二次根式中,是最简二次根式的为()A .B .C .D .4. (3分) (2019八下·吴兴期末) 湖州是“两山”理论发源地在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为()A . 93分,92分B . 94分,92分C . 94分,93分D . 95分,95分5. (3分) (2015八下·浏阳期中) 下列各曲线中不能表示y是x的函数的是()A .B .C .D .6. (3分)如图,D、E分别是△ABC两边的中点,△ADE的面积记为S1 ,四边形DBCE的面积记为S2 ,则下列结论正确的是()A . S1=S2B . S2=2S1C . S2=3S1D . S2=4S17. (3分)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A . 1:2B . 1:4C . 2:5D . 2:38. (3分)计算的结果是()A .B .C .D .9. (3分)(2019·秦安模拟) 一组数据、、、、;它们的平均数为,则这组数据的方差为()A .B .C .D .10. (3分)如图矩形ABCD中,折叠矩形一边AD,使点D落在BC边的点F处,已知折痕AE=cm,且CE:CF=3:4,则矩形ABCD的周长为()A . 36cmB . 36cmC . 72cmD . 72cm11. (3分) (2017八下·常熟期中) 已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y= (x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A . (5,8)B . (5,10)C . (4,8)D . (3,10)12. (3分)(2017·西湖模拟) 如图,在△ABC中,∠ACB=90°,AC=BC=2.E,F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分.) (共6题;共18分)13. (3分)若式子有意义,则x的取值范围是________ .14. (3分)数学小组五名同学在一次测试中的数学成绩分别为98,96,97,100,99,则该小组五名同学该次测试数学成绩的方差为________15. (3分)练习本的总价和本数的比值是1.5元。
辽宁省鞍山市2018-2019学年八年级下学期期末考试数学试题
第1页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………辽宁省鞍山市2018-2019学年八年级下学期期末考试数学试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 函数的自变量取值范围是( )A .B .C .D .2. 下列计算正确的是( )A .B .C .D .3. 宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的( )A .中位数B .众数C .加权平均数D .方差 4. 等腰三角形的底边和腰长分别是10和12,则底边上的高是( )A .13B .8C .D .5. 下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有( )A .1个B .2个C .3个D .4个6. 若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .7. 当时,化为最简二次根式的结果是( )答案第2页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D . 8. 我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米9. 如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是( )A .B .C .D .10. 如图,在四边形中,,且,,给出以下判断:①四边形是菱形;②四边形的面积;③顺次连接四边形的四边中点得到的四边形是正方形;④将沿直线对折,点落在点处,连接并延长交于点,当时,点到直线的距离为;其中真确的是( )A .①③B .①④C .②③D .②④第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共8题)。
辽宁省鞍山市数学八年级下学期期末考试试卷
辽宁省鞍山市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八下·扬州期中) 下列图形:线段、角、等边三角形,平行四边形、矩形、菱形中是轴对称但不是中心对称的图形有()A . 1个B . 2个C . 3个D . 4个2. (2分)在①正三角形、②正方形、③正六边形中能密铺平面的是()A . ①②③B . ②③C . ①③D . 以上都不对3. (2分)多项式49a3bc3+14a2b2c2在分解因式时应提取的公因式是()A . 7a3bc3B . 7a2b2c2C . 7ab2c2D . 7a2bc24. (2分)如图,将某不等式解集在数轴上表示,则该不等式可能是()A .B .C .D .5. (2分)(2018·温州模拟) 如图,将△ABC向右平移5个单位长度得到△DEF,且点B,E,C,F在同一条直线上.若EC= ,则BC的长度是()A . 8B . 9C . 10D . 116. (2分) (2018八上·四平期末) 由下列条件不能判定为直角三角形的是()A .B .C .D . ,,7. (2分) (2015八上·阿拉善左旗期末) 根据分式的基本性质,分式可变形为()A .B .C .D .8. (2分)(2018·福田模拟) 某单位向一所希望小学赠送1080 件文具,现用 A,B 两种不同的包装箱进行包装,已知每个B型包装箱比 A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为()A .B .C .D .9. (2分)(2017·黑龙江模拟) 如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A . 100°B . 105°C . 115°D . 120°10. (2分) (2018·达州) 如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF= AC.连接DE,DF 并延长,分别交AB,BC于点G,H,连接GH,则的值为()A .B .C .D . 1二、填空题 (共6题;共7分)11. (1分) (2017八上·安定期末) 分式的值为零,那么a的值为________.12. (2分)把16x5﹣4x3分解因式的结果是________ .13. (1分) (2018八上·黔南期末) 如图l所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A十∠B+∠C+∠D+∠E+∠F+∠G= ________14. (1分) (2017八下·安岳期中) 若,则分式的值是________;15. (1分) (2016八上·徐闻期中) 如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是________.16. (1分) (2016八上·安陆期中) 如图,已知∠AOB=60°,点P是OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN=2cm,则ON=________cm.三、综合题 (共9题;共66分)17. (5分) (2017八上·钦州期末) 若|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.18. (5分) (2017七下·德惠期末) 解不等式组:.19. (5分)(2017·吴忠模拟) 解方程:﹣ =1.20. (11分) (2019八下·镇江月考) 如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).①将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.②)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.③若将△A1B1C绕某一点旋转可得到△A2B2C2 ,请直接写出旋转中心的坐标.21. (5分)先化简,再求值:(﹣)÷,其中x=tan60°+2.22. (5分)如图,四边形ABCD中,AD∥BC,∠A=∠C,试判别四边形ABCD的形状,并说明理由.23. (10分)(2017·重庆) 对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k= ,当F(s)+F(t)=18时,求k的最大值.24. (10分)(2017·建昌模拟) 我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?25. (10分)(2013·衢州) 在平面直角坐标系xOy中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC 的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=﹣(x﹣t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、综合题 (共9题;共66分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-3、。
鞍山市八年级下学期数学期末考试试卷
鞍山市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,从左面看圆柱,则图中圆柱的投影是()A . 圆B . 矩形C . 梯形D . 圆柱2. (2分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=()A . ﹣2B . 0C . 3D . 53. (2分) (2018八下·萧山期末) 已知反比例函数y (k≠0),当x 时y=﹣2.则k的值为()A . ﹣1B . ﹣4C .D . 14. (2分) (2018八下·萧山期末) 随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的 .设这种电子产品的价格在这两年中平均每年下降x,则根据题意可列出方程()A . 1﹣2xB . 2(1﹣x)C . (1﹣x)2D . x(1﹣x)5. (2分) (2018八下·萧山期末) 如表记录了甲、乙、丙、丁四名学生最近几次数学综合测试成绩的平均数与方差:根据表中数据,要从中选择一名成好且发挥稳定的同学参加竟赛,应该选择()A . 甲B . 乙C . 丙D . 丁6. (2分) (2018八下·萧山期末) 给出下列化简①()2=2:② 2;③12 ;④ ,其中正确的是()A . ①②③④B . ①②③C . ①②D . ③④7. (2分) (2018八下·昆明期末) 一张矩形纸片ABCD,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段DG长为()A . 2B .C . 2D . 18. (2分) (2018八下·萧山期末) 已知点P(a,m),Q(b,n)是反比例函数y 图象上两个不同的点,则下列说法不正确的是()A . am=2B . 若a+b=0,则m+n=0C . 若b=3a,则n mD . 若a<b,则m>n9. (2分) (2018八下·萧山期末) 已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是()A . 2B . ﹣2C . 2或﹣2D . 任意实数10. (2分) (2018八下·萧山期末) 如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABE S菱形ABCD下列判断正确的是()A . ①,②都对B . ①,②都错C . ①对,②错D . ①错,②对二、填空题 (共6题;共8分)11. (1分) (2018七上·松滋期末) 如图所示,用圆圈拼成的图案,图1由一个圆圈组成,图2由5个圆圈组成,图3由13个圆圈组成,依此规律,第8个图案一共由________个圆圈组成,第n个由________个组成.12. (1分) (2020八上·洛宁期末) 实数,,,,中,其中无理数出现的频数是________.13. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.14. (1分) (2018八下·萧山期末) 已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQ cm时,点C到PQ的距离为________.15. (2分) (2018八下·萧山期末) 如图,在平面直角坐标系xOy中,函数y1 的图象与直线y2=x+1交于点A(1,a).则:(1) k的值为________;(2)当x满足________时,y1>y2.16. (2分) (2018八下·萧山期末) 如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8 ,点M,P,N 分别是边AB,BC,AC上任意一点,则:(1) AB的长为________.(2) PM+PN的最小值为________.三、解答题 (共7题;共75分)17. (10分) (2017八下·禅城期末) 计算下列各式:(1) 1﹣(2)(1﹣)(1﹣)(3)(1﹣)(1﹣)(1﹣)(4)请你根据上面算式所得的简便方法计算下式:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)18. (10分) (2019七下·丹江口期中) 解方程:(1) 3(x-2)2=27(2) 2(x-1)3+16=0.19. (10分) (2018八下·萧山期末) 为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.20. (10分) (2018八下·萧山期末) 把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t﹣5t2.(1)经多少秒后足球回到地面?(2)试问足球的高度能否达到25米?请说明理由.21. (10分) (2018八下·韶关期末) 如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.22. (15分) (2018八下·萧山期末) 记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)写出y关于x的函数表达式及自变量x的取值范围;(2)在如图直角坐标系中,用描点法画出所求函数图象;(3)若平行四边形的一边长为4cm,一条对角线长为 cm,请直接写出此平行四边形的周长.23. (10分) (2018八下·萧山期末) 正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)已知点F在线段BC上.①若AB=BE,求∠DAE度数;②求证:CE=EF;(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、15-2、16-1、16-2、三、解答题 (共7题;共75分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
鞍山市八年级下学期数学期末考试试卷
鞍山市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)不等式的解集是()A .B .C .D .2. (2分)使分式有意义的x的取值范围是()A . x≠0B . x=0C . x≠2D . x=23. (2分) (2017九上·北海期末) 把方程x2﹣6x+4=0的左边配成完全平方,正确的变形是()A . (x﹣3)2=9B . (x﹣3)2=13C . (x+3)2=5D . (x﹣3)2=54. (2分)计算,结果是()A . x﹣2B . x+2C .D .5. (2分)下列计算错误的是()A . =B . =C . =D . - =-6. (2分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C .D .7. (2分) (2019八下·下陆期末) 对角线相等且互相平分的四边形是()A . 一般四边形B . 平行四边形C . 矩形D . 菱形8. (2分) (2018八上·白城期中) 过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的()A . 4倍B . 5倍C . 6倍D . 3倍9. (2分) (2018八上·四平期末) 由下列条件不能判定为直角三角形的是()A .B .C .D . ,,10. (2分) (2017九上·定州期末) 如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是()A . ①②B . ①③C . ②③D . ②④二、填空题 (共6题;共7分)11. (1分)若Z=,分解因式:x3y2﹣ax=________ .12. (1分) (2019七下·桂林期末) 如图,三角形ABC的面积为1,将三角形ABC沿着过AB的中点D的直线折叠,使点A落在BC边上的A1处,折痕为DE,若此时点E是AC的中点,则图中阴影部分的面积为 ________。
2018-2019学年八年级下期末数学试卷及答案
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
鞍山市八年级下学期数学期末试卷
鞍山市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)分式的值是零,那么x的值是()A . -1B . 0C . 1D . ±12. (2分) (2019八下·长春月考) 花粉的质量很小.一粒某种植物花粉的质量约为0.000 037毫克,0.000 037这个数用科学记数法表示为()A .B .C .D .3. (2分)如图,已知A1(1,0),A2(1,1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…则点A2010的坐标是()A . (502,502)B . (﹣501,﹣501)C . (503,﹣503)D . (﹣501,501)4. (2分) (2016九上·岳池期末) 若反比例函数y= 的图象经过(﹣2,5),则该反比例函数的图象在()A . 第一、二象限B . 第一、三象限C . 第二、三象限D . 第二、四象限5. (2分) (2019八下·浏阳期中) 在 ABCD中,∠A:∠B:∠C:∠D的度数比值可能是()A . 1:2:3:4B . 1:2:2:1C . 1:1:2:2D . 2:1:2:16. (2分) (2016八上·扬州期末) 给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形.②对角线相等的四边形是矩形.③对角形互相垂直且相等的四边形是正方形.④有一条对角线平分一个内角的平行四边形为菱形.其中,不正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()A . 矩形B . 菱形C . 正方形D . 梯形8. (2分) (2018九上·和平期末) 下列命题是真命题的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 对角线互相垂直的平行四边形是矩形C . 正方形是轴对称图形,但不是中心对称图形D . 四条边相等的四边形是萎形9. (2分)(2013·衢州) 一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是()A . 80,2B . 80,C . 78,2D . 78,10. (2分) (2019九下·宜昌期中) 甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是,,,;则成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁二、填空题 (共5题;共5分)11. (1分) (2018八下·东台期中) 的最简公分母是________12. (1分)(2018·遵义模拟) 如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为________;抛物线C8的顶点坐标为________.13. (1分) (2017八下·邵东期中) 在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是________(只需写出一种情况).14. (1分)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1 ,作正方形A1B1C1C,延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…按这样的规律进行下去,第2012个正方形的面积为________ .15. (1分)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是________.三、解答题 (共10题;共87分)16. (15分)(2018·长春) 先化简,再求值:,其中x= ﹣1.17. (5分) (2019八下·河南期中) 解分式方程: .18. (15分) (2017九上·怀柔期末) 在等边△ABC中,E为BC边上一点,G为BC延长线上一点,过点E作∠AEM=60°,交∠ACG的平分线于点M.(1)如图(1),当点E在BC边的中点位置时,通过测量AE,EM的长度,猜想AE与EM满足的数量关系是________;(2)如图(2),小晏通过观察、实验,提出猜想:当点E在BC边的任意位置时,始终有AE=EM.小晏把这个猜想与同学进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:在BA上取一点H使AH=CE,连接EH,要证AE=EM,只需证△AHE≌△ECM.想法2:找点A关于直线BC的对称点F,连接AF,CF,EF.(易证∠BCF+∠BCA+ACM=180°,所以M,C,F三点在同一直线上)要证AE=EM,只需证△MEF为等腰三角形.想法3:将线段BE绕点B顺时针旋转60°,得到线段BF,连接CF,EF,要证AE=EM,只需证四边形MCFE为平行四边形.请你参考上面的想法,帮助小晏证明AE=EM.(一种方法即可)19. (15分)(2016·百色) △ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.20. (5分) (2019八上·下陆期末) 为了出行方便,现在很多家庭都购买了小汽车.又由于能源紧张和环境保护,石油的市场价格常常波动.为了在价格的波动中尽可能减少损失,常常有两种加油方案.方案一:每次加50元的油.方案二:每次加50升的油.请同学们以2次加油为例(第一次油价为a元/升,第二次油价为b元/升,a>0,b>0且a≠b),计算这两种方案中,哪种加油方案更实惠便宜(平均单价小的便宜)?21. (5分)如图,∠DBC=90°,四边形ABCD是平行四边形吗?为什么?22. (5分)如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知AD=10cm,BF=6cm,求图中阴影部分的面积.23. (5分)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边得中点位置时:①通过测量DE、EF的长度,猜想DE与EF满足的数量关系②连接点E与AD边的中点N,猜想NE与BF满足的数量关系,请证明你的猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.24. (15分)(2018·宣化模拟) 为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25500.05第二组25≤x<30a0.35第三组35≤x<353000.3第四组35≤x<40200b第五组40≤x≤451000.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.25. (2分)(2018·建湖模拟) 3月初某商品价格上涨,每件价格上涨 20%.用 3000 元买到的该商品件数比涨价前少 20 件.3 月下旬该商品开始降价,经过两次降价后,该商品价格为每件 19.2 元.(1)求 3 月初该商品上涨后的价格;(2)若该商品两次降价率相同,求该商品价格的平均降价率.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共10题;共87分)16-1、17-1、18-1、19-1、19-2、20-1、21-1、22-1、24-1、24-2、24-3、25-1、25-2、。
鞍山市八年级下学期期末测试数学卷
鞍山市八年级下学期期末测试数学卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 4 的平方根是()A . 2B . 16C . ±2D . ±162. (2分) (2017八下·昌江期中) 如图,一次函数y1=x+b与y2=kx﹣2的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A . x>﹣2B . x>0C . x>1D . x<13. (2分)在Rt中,∠B=90°,AC=5,AB=3,则的值为().A .B .C .D .4. (2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A . 16aB . 12aC . 8aD . 4a5. (2分) (2019八下·邓州期末) 八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示甲乙丙丁平均数85939386方差33 3.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A . 甲B . 乙C . 丙D . 丁6. (2分)二次根式中字母x的取值范围是()A . x≥2B . x>2C . x≤2D . x<27. (2分)已知点(a,a),给出下列变换:①关于x轴的轴对称变换;②关于直线y=﹣x的轴对称变换;③关于原点的中心对称变换;④绕原点旋转180°.其中通过变换能得到像的坐标为(﹣a,﹣a)的变换是()A . ①②④B . ②③④C . ③④D . ②③8. (2分)点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1 , y2 , y3的大小关系是()A . y3<y2<y1B . y2<y3<y1C . y1<y2<y3D . y1<y3<y29. (2分) (2018九上·唐河期末) 如图,在的正方形方格中,的顶点都在边长为的小正方形的顶点上,作一个与相似的,使它的三个顶点都在小正方形的顶点上,则的最大面积是()A .B .C .D .10. (2分)已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AC等于()A . 6B .C . 10D . 12二、填空题 (共10题;共14分)11. (1分)(2016·南京模拟) 计算﹣的结果是________.12. (1分) (2019八下·交城期中) 计算: = ________.13. (1分) (2020七下·涿鹿期中) 课间操时,小华、小军、小刚的位置如图,小军对小华说,如果我的位置用(0,﹣2)表示,小刚的位置用(2,0)表示,那么你的位置可以表示为________.14. (1分) (2016八上·扬州期末) 函数y=-3x+2的图像上存在点P,使得P到x轴的距离等于3,则点P 的坐标为________.15. (1分) (2018·阜新) 甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是________km/h.16. (1分)如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND 的面积比为________.17. (1分) (2015九上·龙华期末) 某路基的横截面如图所示,路基高BC=1m,斜坡AB的坡度为1:2,则斜坡AB的长为________ m.18. (1分)(2017·磴口模拟) 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼高________ m(结果保留根号).19. (1分) (2016九上·武威期中) 如图,△ABC绕着点C顺时针旋转35°得到△A1B1C,若A1B1⊥AC,则∠A的度数是________.20. (5分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别身高(cm)A x<150B150≤x<155C155≤x<160D160≤x<165E x≥165根据图表中信息,回答下列问题:(1)在样本中,男生身高的中位数落在________ 组(填组别序号),女生身高在B组的人数有________ 人;(2)在样本中,身高在150≤x<155之间的人数共有________ 人,身高人数最多的在________ 组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生约有________ 人.三、解答题 (共8题;共70分)21. (10分) (2019八上·龙岗期末) 计算:(1)(2)22. (10分)计算:(1)(2)23. (5分) (2019七下·莲湖期末) 已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数.24. (5分)如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.求证:△ABD∽△DCE.25. (15分)(2018·天水) 某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)26. (5分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).27. (5分)(2019·邵阳模拟) 一艘航母在海上由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后达到B处,测得小岛C位于它的北偏东37°方向,如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长。
辽宁省鞍山市八年级下学期数学期末考试试卷
辽宁省鞍山市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列关系中,y不是x的函数关系的是()A . 长方形的长一定时,其面积y与宽xB . 高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC . y=|x|D . |y|=x【考点】2. (2分) (2019八下·宣州期中) 下列各式运算正确是()A .B .C .D .【考点】3. (2分)下列各组数中以a,b,c为边的三角形不是直角三角形的是()A . a=2,b=3,c=4B . a=7,b=24,c=25C . a=6,b=8,c=10D . a=3,b=4,c=5【考点】4. (2分) (2019八下·泉港期末) 如图,▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,AB=9,AF=12,AE=8.则BC等于()A . 20B .C .D . 17【考点】5. (2分) (2017九上·钦南开学考) 在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c 的大致图象可能是()A .B .C .D .【考点】6. (2分) (2019九上·郑州期中) 如图,Rt△ABC中,∠ACB=90°,CD为斜边上的高,AC=2,AD=1,则BC 的长是()A . 4B . 3C .D .【考点】7. (2分)(2017·兰州模拟) 如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是()A . 2B . 4C . 2D . 4【考点】8. (2分) (2018九上·宜阳期末) 如图,在中,AD⊥BC于 D, AB=3,DB=2,DC=1,则AC等于()A . 6B .C .D . 4【考点】9. (2分) (2020七上·重庆月考) 如图,由AB∥CD,可以得到()A . ∠1=∠2B . ∠2=∠3C . ∠1=∠4D . ∠3=∠4【考点】10. (2分) (2017八下·无锡期中) 正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 ,…按如图的方式放置.点A1 , A2 , A3 ,…和点C1 , C2 , C3 ,…分别在直线y=x+1和x轴上,则点Bn的坐标是()A .B .C .D .【考点】二、填空题 (共10题;共11分)11. (1分)(2018·玄武模拟) 若式子在实数范围内有意义,则x的取值范围是________.【考点】12. (2分)已知x= +1,则x2﹣2x﹣3=________.【考点】13. (1分)(2019·荆门) 如图,在平面直角坐标系中,函数的图象与等边三角形的边,分别交于点 , ,且 ,若 ,那么点的横坐标为________.【考点】14. (1分)(2019·北京模拟) 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB 于点E,若CD=2,BD=4,则AE的长是________.【考点】15. (1分)已知函数,当 =________时,它为正比例函数.【考点】16. (1分) (2019九上·上街期末) 如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD的内部,将AF延长后交边BC于点G,且,则的值为________.【考点】17. (1分)(2018·东胜模拟) 如图,在周长为20cm的□ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为________cm.【考点】18. (1分)(2019·泰兴模拟) 如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为________.【考点】19. (1分)(2017·新化模拟) 已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为________.【考点】20. (1分) (2017八下·邵阳期末) 如图,在矩形 ABCD中,AB =8,点E是AD上一点,AE=4,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G,若G是CD的中点,则BC的长是________。
辽宁省鞍山市八年级下学期期末数学试卷解析版
辽宁省鞍山市八年级(下)期末数学试卷、选择(每题2分,共20 分)1 .下列二次根式是最简二次根式的是()A . *:-B •灵丄-T. C. "一组数据11、12、15、12、11,下列说法正确的是(A .中位数是15_ _ (2).X •= 6 : C. : = 2 匚=2 :-D. - . = — 1 一次函数y= kx+b的图象如图所示,贝U k、b的值为()已知四边形ABCD是任意四边形,若在下列条件中任取两个,使四边形①AB// CD ;②BC// AD ,③AB = CD ;④BC = AD,则符合条件的选择有(A . 2组B . 3组C . 4组D . 6组&如图,数轴上点A表示的数为(0 1A2 3A .血B .並C .區D. n4.5.C.中位数是11、12 D .众数是11、12CD 是AB 边上的高,若AB = 1.5, BC= 0.9, AC= 1.2,贝U CD 的值是()如图,△ ABC中,A . 0.72 B.2.0 C. 1.125 D .不能确定F列计算正确的是(B . k>0, b v 0C. k v 0, b>0D. k v 0, b v 0C. D. x= 33.B .众数是12A .二-二=6.ABCD是平行四边形,2. 中自变量x的取值范围是B . x w 2 且X M— 39.李雷同学周末晨练,他从家里出发,跑步到公园,然后在公园玩一会儿篮球,再走路回家,那么, 他与自己家的距离y (米)与时间x (分钟)之间的关系的大致图象是()点D的对应点是F,连接AF,当△AEF是直角三角形时,AF的值是()、填空题:(每题2分,共16 分)11 •正比例函数y= kx经过点(-1, 2),则它的函数解析式为 ______________12. 某初中校女子排球队队员的年龄分布:年龄/13141516(岁)频数1452该校女子排球队队员的平均年龄是 _________ 岁.(结果精确到0.1)13. 如图,菱形ABCD中,对角线AC、BD相交于点O,且AC= 24, BD = 10,若点E是BC边的中点,贝U OE的长是 ______14. _____________________________________________ 已知x= ! - 1,则代数式X2+5X - 6的值是.15. 气象观测小组进行活动,一号探测气球从海拔5米处出发,以1 m/min速度上升,气球所在位置的海拔y (单位:m)与上升时间x (单位:min)的函数关系式为 _______________ .A . 4B . 2 —C. 4, 2 —D. 4, 5, 2 —BC =8,将厶CDE沿CE翻折,16 •学校校园歌手大奖赛共有 12位选手入围,按成绩取前 6位进入决赛•如果王晓鸥同学知道了自己的成绩,要判断能否进入决赛,用数据分析的观点看,她还需要知道的数据是这 12位同学的 _______ .17.如图,在△ ABC 中,BC = 9, AD 是BC 边上的高,M 、N 分别是AB 、AC 边的中点,DM = 5,DN = 3,则△ ABC 的周长是 _______ .18•如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正19. ( 6 分)计算:(2 7+3 _) 2-2 — X 十 5 —.20. ( 8分)如图,?ABCD 中,在对角线 BD 上取E 、F 两点,使BE = DF ,连AE , CF ,过点E 作EN 丄FC 交FC 于点N ,过点F 作FM 丄AE 交AE 于点M ; (1) 求证:△ ABECDF ;(2) 判断四边形 ENFM 的形状,并说明理由.21.( 10分)如图是甲、乙两名射击运动员的 5次训练成绩的折线统计图:(1) 分别计算甲、乙运动员射击环数; (2) 分别计算甲、乙运动员射击成绩的方差;A ,B ,C ,D 的面积的和为(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.22. ( 10分)某港口P位于东西方向的海岸线上.在港口P北偏东25°方向上有一座小岛A,且距离港口20海里;在港口与小岛的东部海域上有一座灯塔B,A PAB恰好是等腰直角三角形,其中/ B是直角;(1)在图中补全图形,画出灯塔B的位置;(保留作图痕迹)(2)一艘货船C从港口P出发,以每小时15海里的速度,沿北偏西20°的方向航行,请求出123. ( 10分)甲、乙两车间同时开始加工一批服装•从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x (时),y与x之间的函数图象如图所示.(1) _________________________________ 甲车间每小时加工服装件数为___ 件;这批服装的总件数为_________________________________________ 件.(2)求乙车间维修设备后,乙车间加工服装数量y与x 之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.24. (10分)如图①,正方形ABCD中,点E、F都在AD边上,且AE = FD,分别连接BE、FC, 对角线BD交FC于点P,连接AP,交BE于点G;(1)试判断AP与BE的位置关系;(2)如图②,再过点P作PH丄AP,交BC于点H,连接AH,分别交BE、BD于点N, M,请直接写出图②中有哪些等腰三角形.25. (10分)如图,在平面直角坐标系中,直线y==x+2与x 轴、y轴的交点分别为A、B,直线y=-2x+12交x轴于C,两条直线的交点为 D ;点P是线段DC上的一个动点,过点P作PE丄x 轴,交x轴于点E,连接BP ;(1)求厶DAC的面积;(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;(3)若四边形BOEP的面积为S,设P点的坐标为(x, y),求出S关于x的函数关系式,并写出自变量x的取值范围.辽宁省鞍山市八年级(下)期末数学试卷参考答案与试题解析一、选择题:(每题2分,共20分)1. 【分析】根据最简二次根式的定义逐个判断即可.【解答】解:A、 =-= 2 r:不符合题意;B、—是最简二次根式,符合题意;C、— = 3 •—,不符合题意;D、一= ,不符合题意;故选:B.【点评】本题考查了最简二次根式,能熟记最简二次根式的定义是解此题的关键,注意:①被开方数中不含有能开得尽方的因式或因数,②被开方数中不含有分母,符合以上两点的二次根式叫最简二次根式.2. 【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得2 - x> 0 且x+3 工0,解得X W 2且X M- 3,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.3. 【分析】根据中位数、众数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:11、11、12、12、15,则中位数是12,众数是11、12.故选:D.【点评】本题考查了中位数、众数的知识,掌握各知识点的概念是解答本题的关键.4. 【分析】先根据勾股定理的逆定理证明厶ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD .【解答】解:I AB= 1.5, BC= 0.9 , AC = 1.2,时,函数图象过一、三象限,当b > 0时,函数图象与 y 轴的正半轴相交.AB 2= 1.52= 2.25, BC 2+AC 2= 0.92 + 1.22= 2.25, AB 2= BC 2+AC 2,•••/ ACB = 90°,•/ CD 是AB 边上的高, • S A=1A>L :71.5CD = 1.2x 0.9, CD = 0.72, 故选:A .【点评】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运 用勾股定理首先证明△ ABC 为直角三角形;解题的关键是灵活运用三角形的面积公式来解答. 5.【分析】利用二次根式的加减法对 A 进行判定;根据二次根式的乘法法则对 B 进行判断;根据二次根式的除法法则对 C 进行判断;利用分母有理化可对 D 进行判断.【解答】解:A 、原式=2J'.';-*「= *「,所以A 选项错误; 故选:B .【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式 的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的 性质,选择恰当的解题途径,往往能事半功倍.6. 【分析】先根据一次函数 y — kx+b 的图象过一、三象限可知 k >0,由函数的图象与 y 轴的正半轴 相交可知b >0,进而可得出结论.【解答】解:•一次函数 y — kx+b 的图象过一、三象限, • k > 0,•••函数的图象与y 轴的正半轴相交, • b > 0. 故选:A .【点评】本题考查的是一次函数的图象与系数的关系,即一次函数 7. 【分析】由平行四边形的判定方法即可解决问题.B 、原式=C 、原式=D 、原式= 2二X 3 了= 6乙所以B 选项正确; 尸:,所以C 选项错误;2(荷-<)Vs-l 站⑴c 、用命洋泪,一,所以D 选项错误.(V5+1)2y — kx+b (k z 0)中,当 k >0【解答】解:I AB// CD , BC// AD,•••四边形ABCD是平行四边形;•/ AB// CD , AB = CD,•••四边形ABCD是平行四边形;•/ BC// AD , BC = AD,•••四边形ABCD是平行四边形;•/ BC= AD , AB = CD,•四边形ABCD是平行四边形;即使得ABCD是平行四边形,一共有4种不同的组合;故选:C.【点评】本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法是解决问题的关键. 8. 【分析】根据勾股定理,可得答案.【解答】解:=了,勺打.r ;";::-,A点表示的数是二,故选:B.【点评】本题考查了实数与数轴,利用勾股定理是解题关键.9. 【分析】他跑步到离家较远的公园,打了一会儿篮球后慢步回家,去的时候速度快,用的时间少,然后在公园打篮球路程是不变的,回家慢步用的时间多•据此解答.【解答】解:根据以上分析可知能大致反映当天李雷同学离家的距离y与时间x的关系的是B.故选:B.【点评】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系是解答本题的关键.10. 【分析】当/AFE = 90°时,由/ AFE = Z EFC = 90°可知点F在AC上,先依据勾股定理求得AC的长,然后结合条件FC = DC = 6,可求得AF的长;当/ AFE = 90°,可证明四边形CDEF 为正方形,则EF = 6, AE = 2,最后,依据勾股定理求解即可.【解答】解:如下图所示:当点F在AC上时.•/ AB= 6, BC = 8,••• AC= 10.由翻折的性质可知:/ EFC = Z D = 90 °, CF = CD = 6,••• AF = 4.如下图所示:•••/ FED = Z D=Z DCF = 90°,•四边形CDEF为矩形.由翻折的性质可知EF = DE ,•••四边形CDEF为正方形.••• DE = EF = 6.••• AE= 2.•-AF J . | =2.综上所述,AF的长为4或2 —.故选:C.【点评】本题主要考查的是翻折的性质,依据题意画出符合题意的图形是解题的关键.二、填空题:(每题2分,共16分)11. 【分析】利用待定系数法把(-1, 2)代入正比例函数y= kx中计算出k即可得到解析式.【解答】解:•••正比例函数y= kx经过点(-1, 2),• 2=- 1?k,解得:k=- 2,•••这个正比例函数的解析式为:y=- 2x.故答案为:y=- 2x.【点评】此题主要考查了待定系数法求正比例函数解析式,题目比较简单,关键是能正确代入即可.12. 【分析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】解:该校女子排球队队员的平均年龄是—' 八U —八〜14.7(岁),1+4+5+2故答案为:14.7.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.13. 【分析】根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质0E= , BC,即可求出0E的长.【解答】解:•••四边形ABCD是菱形,••• AC丄BD , OA = AC= 12 , OD = BD = 5,, : , / ,在Rt△ BOC 中,BC = | [ . I = 13,•••点E是BC边的中点,OE= BC = 6.5,2故答案为:6.5.【点评】此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO = , BC是解题关键.14. 【分析】直接把x的值代入原式进而求出答案.【解答】解:••• x= T- 1,• 2 L C…x +5x— 6=(「- 1)2+5 (7—1)—6=5+1 —..+5r:. - —5 —6=3「-5.故答案为:3 " —5.【点评】此题主要考查了二次根式的化简求值,正确应用公式是解题关键.15. 【分析】直接利用原高度+上升的时间X 1=海拔高度,进而得出答案.【解答】解:气球所在位置的海拔y (单位:m)与上升时间x (单位:min)的函数关系式为:y =x+5 .故答案为:y= x+5.【点评】此题主要考查了函数关系式,正确表示出上升的高度是解题关键.16. 【分析】参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【解答】解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较•故应知道中位数的多少.故答案为:中位数.【点评】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.17. 【分析】由直角三角形斜边上的中线求得AB = 2DM , AC = 2DN,结合三角形的周长公式解答.【解答】解:如图,•••在△ ABC中,AD是BC边上的高,M、N分别是AB、AC边的中点,••• AB= 2DM = 10, AC = 2DN = 6,又BC = 9,• △ ABC 的周长是:AB +AC +BC = 10+6+9 = 25.【点评】此题主要考查了三角形的中位线定理:直角三角形斜边上的中线等于斜边的一半.18. 【分析】根据题意仔细观察可得到正方形A, B, C, D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.【解答】解:由图可看出,A, B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C, D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A, B, C, D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A, B, C, D的面积的和为25. 故答案为25.【点评】此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.三、解答题:(本题共44分)19.【分析】根据完全平方公式、二次根式的乘除法和减法可以解答本题.【解答】解: (2 _+3 _) 2- 2『| "二十 5 -=;-[厂匕- 7^-=35+12【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 20.【分析】(1)根据SAS 即可证明;(2)只要证明三个角是直角即可解决问题;【解答】解: (1)证明:•••四边形 ABCD 是平行四边形,••• AB // CD , AB = CD•••/ ABD = Z CDB ,又 T BE = DF ,• △ ABE 也厶 CDF (SAS ).(2)由(1)得,•/ AEB = Z CFD ,•••/ AED = Z CFB ,••• AE // CF又••• EN 丄 CF ,/ AEN = Z ENF = 90°,又••• FM 丄AE ,/ FME = 90°,•四边形ENFM 是矩形.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】(1)由折线统计图得出甲、乙两人的具体成绩,利用平均数公式计算可得;(2)根据方差计算公式计算可得;(3)答案不唯一,可从方差的意义解答或从成绩上升趋势解答均可.【解答】解: (1):,二= — X( 6+6+9+9+10 ) = 8 (环),5二:」=I X( 9+7+8+7+9 ) = 8 (环);=,x [ (9-8) 2X 2+ (7-8) 2X 2+ (8 - 8) 2] = 0.8;(3)选择甲,因为成绩呈上升趋势;2X 2+ ( 9- 8) 2X 2+ (10- 8) 2] = 2.8,(6 - 8)选择乙,因为成绩稳定.【点评】本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及平均数、方差的计算公式. 22.【分析】 (1)轨迹题意画出图形即可;(2)首先证明/ CPB = 90°,求出PB 、PC 利用勾股定理即可解决问题;(2)如图,/ CPN = 20°,/ NPA = 25° ,/ APB = 45°,/ CPB = 90°在 Rt △ ABP 中,T AP = 20, BA = BP ,••• PB = 10 -在Rt △ PCB 中,由勾股定理得,CB = )「;〕辻「=寸|厂:「门箱了= 〒=5 r,•出发1小时后,货船 C 与灯塔B 的距离为5 ■—海里.【点评】此题是一道方向角问题, 结合航海中的实际问题, 将解直角三角形的相关知识有机结合, 体现了数学应用于实际生活的思想.23. 【分析】(1)根据工作效率=工作总量十工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数 +乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量十工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量十工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率x 工作时间,即可求出乙车间维修设备后,乙车间加工服装数量 y 与x 之 间的函数关系式;(3)根据加工的服装总件数=工作效率x 工作时间, 求出甲车间加工服装数量 y 与x 之间的函数 关系式,将甲、乙两关系式相加令其等于 1000,求出 x 值,此题得解.【解答】解:(1)甲车间每小时加工服装件数为720+ 9 = 80 (件),这批服装的总件数为 720+420 = 1140 (件). B 即为所求故答案为:80;1140.(2)乙车间每小时加工服装件数为120+ 2= 60 (件),乙车间修好设备的时间为9-( 420 - 120)+ 60= 4 (时).•••乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y= 120+60 (x-4)= 60x -120 (4< x W 9).(3)甲车间加工服装数量y与x之间的函数关系式为y= 80x,当80x+60x- 120=1000 时,x=8.答:甲、乙两车间共同加工完1000 件服装时甲车间所用的时间为8小时.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:( 1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.四、综合题:(本题共20 分)24. 【分析】(1)由题意可证△ ADP◎△ DPC , △ AEB BA DFC 可得/ DAP =Z DCF = Z ABE,通过角的换算可证AP丄BE .(2)根据正方形的性质可得厶ABD , △ BCD是等腰△,由AP丄PH,/ ABC = 90°可得A, B,H , P四点共圆,可证△ APH , △ PHC是等腰△【解答】解:( 1)垂直,理由是•••四边形ABCD是正方形,AD = CD = AB,/ BAD = Z CDA = 90°,/ ADB = Z CDB = 45。
鞍山市数学八年级下学期期末考试试卷
鞍山市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2018·广州模拟) 已知点A(a,2017)与点A′(-2018,b)是关于原点O的对称点,则的值为()A . 1B . 5C . 6D . 42. (2分)在Rt△ABC中,∠A=90°,AC=a,∠ACB=θ,那么下面各式正确的是()A . ;B . ;C . ;D . .3. (2分)已知E是矩形ABCD的边BC的中点,那么S△AED=________S矩形ABCD()A .B .C .D .4. (2分) (2019九上·黄浦期末) 已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A . 18米B . 4.5米C . 9 米D . 9 米.5. (2分)二次函数y=x2-2x+2与y轴交点坐标为()A . (0,1)B . (0,2)C . (0,-1)D . (0,-2)6. (2分)(2018·来宾模拟) 某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x名同学,根据题意,列出方程为()A . x(x+1)=1892B . x(x−1)=1892×2C . x(x−1)=1892D . 2x(x+1)=18927. (2分) (2019九上·慈溪期中) 如图,扇形AOB的圆心角为90°,四边形OCDE是边长为1的正方形,点C、E、D分别在OA、OB、AB上,过A作AF⊥ED交ED的延长线于点F ,那么图中阴影部分的面积为().A .B . -1C . 2-D .8. (2分) (2019九上·南开月考) 如果要得到y=x2-6x+7的图象,需将y=x2的图象().A . 由向左平移3个单位,再向上平移2个单位B . 由向右平移3个单位,再向下平移2个单位C . 由向右平移3个单位,再向上平移2个单位D . 由向左平移3个单位,再向下平移2个单位二、填空题 (共6题;共6分)9. (1分)(2020·南岗模拟) 抛物线y=﹣2x2+8x﹣3的对称轴直线是________.10. (1分) (2016九下·黑龙江开学考) 二次函数y=x2+4x﹣7的对称轴是直线________.11. (1分)(2018·惠州模拟) 已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.12. (1分)(2018·青浦模拟) 如果两个相似三角形周长的比是2:3,那么它们面积的比是________.13. (1分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为________.14. (1分) (2019九上·香坊月考) 在△ABC中,∠ABC=30°,AD⊥AB,交直线BC于点D,若AB=4 ,CD=1,则AC的长为________.三、综合题 (共10题;共84分)15. (5分)(2020·满洲里模拟) 计算:(﹣1)2018﹣ +(π﹣3)0+4cos45°.16. (5分) (2019九上·宜兴月考) 解一元二次方程:(1) (x+1)2-144=0(2) x2-4x-32=0(3) x(x﹣5)=2(x﹣5)(4)17. (6分)(2018·南宁) 如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)①将△ABC向下平移5个单位后得到△A1B1C1 ,请画出△A1B1C1;②将△ABC绕原点O逆时针旋转90°后得到△A2B2C2 ,请画出△A2B2C2;(2)判断以O,A1 , B为顶点的三角形的形状.(无须说明理由)18. (6分) (2018九上·丹江口期中) 已知y关于x二次函数y=x2﹣(2k+1)x+(k2+5k+9)与x轴有交点.(1)求k的取值范围;(2)若x1 , x2是关于x的方程x2﹣(2k+1)x+(k2+5k+9)=0的两个实数根,且x12+x22=39,求k的值.19. (10分) (2017九上·召陵期末) 在如图的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出平面直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系,以B为位似中心,做△BA2C2 ,使△BA2C2与△ABC位似,且△BA2C2与△ABC位似比为2:1,并直接写出A2的坐标.20. (5分)(2011·河南) 如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.(参考数据:≈1.732,≈1.414.结果精确到0.1米)21. (10分)(2012·南通) 如图,经过点A(0,﹣4)的抛物线y= x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y= x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.22. (6分)(2017·黔东南模拟) 如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有一点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径R=3,求BE的长.23. (16分)(2019·青海) 如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点、、三点.(1)求抛物线的解析式和对称轴;(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点 E ,使四边形 OEBF 是以 OB 为对角线且面积为12的平行四边形?若存在,请求出点 E 坐标,若不存在请说明理由(请在图2中探索)24. (15分)(1)尝试探究如图- ,在△ABC中,∠C=90°,∠A=30°,点E、F分别是BC、AC边上的点,且EF//BC.① 的值为________;②直线与直线的位置关系为________;(2)类比延伸如图②,若将图①中的绕点顺时针旋转,连接,则在旋转的过程中,请判断的值及直线与直线的位置关系,并说明理由;(3)拓展运用若,在旋转过程中,当三点在同一直线上时,请直接写出此时线段的长.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、综合题 (共10题;共84分)15-1、16-1、16-2、16-3、16-4、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
2018-2019学年八年级下期末数学试卷含答案解析
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
(解析版)辽宁鞍山2018-2019学度初二下年末数学试卷.doc
(解析版)辽宁鞍山2018-2019学度初二下年末数学试卷【一】选择题〔共8小题,每题2分,总分值16分〕1、〔2018春•鞍山期末〕以下计算正确的选项是〔〕A、+=B、=﹣2C、÷3=D、 3﹣=2考点:二次根式的混合运算、分析:利用二次根式的性质分别化简求出即可、解答:解:A、+=2+,故此选项错误;B、=2,故此选项错误;C、÷3=,故此选项错误;D、3﹣=2,正确、应选:D、点评:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键、2、〔2018春•鞍山期末〕由以下三条线段组成的三角形不是直角三角形的是〔〕A、,,B、 0、9,1、2,1、5C、,,D、,4,5考点:勾股定理的逆定理、分析:根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案、解答:解:A、〔〕2+〔〕2≠〔〕2,不符合勾股定理的逆定理,不是直角三角形;B、0、92+1、22≠1、52,符合勾股定理的逆定理,是直角三角形;C、〔〕2+〔〕2=〔〕2,符合勾股定理的逆定理,是直角三角形;D、42+52=〔〕2,符合勾股定理的逆定理,是直角三角形、应选:A、点评:此题主要考查了勾股定理的逆定理:用到的知识点是△ABC的三边满足A2+B2=C2,那么△ABC是直角三角形、3、〔2018•怀化〕某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间〔小时〕 5 6 7 8人数 2 6 5 2那么这15名同学一周在校参加体育锻炼时间的中位数和众数分别是〔〕A、 6,7B、 7,7C、 7,6D、 6,6考点:众数;中位数、分析:根据中位数和众数的定义分别进行解答即可、解答:解:∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,那么众数是6;应选:D、点评:此题考查了中位数和众数,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数;众数是一组数据中出现次数最多的数、4、〔2018春•鞍山期末〕在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,那么∠D=〔〕A、 36°B、 108°C、 72°D、 60°考点:平行四边形的性质、分析:利用平行四边形的内角和是360度,平行四边形对角相等,那么平行四边形的四个角之比为,∠A:∠B:∠C:∠D=2:3:2:3,那么∠D的值可求出、解答:解:在▱ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,设每份比为X,那么得到2X+3X+2X+3X=360°,解得X=36°那么∠D=108°、应选B、点评:题考查四边形的内角和定理及平行四边形的性质,平行四边形的对角相等,邻角互补、5、〔2017•河西区二模〕如图的四个图象中,不表示某一函数图象的是〔〕A、B、C、D、考点:函数的图象;函数的概念、分析:根据函数的定义,对于自变量X的某一取值,函数Y都有唯一值与之对应,判断函数图象、解答:解:由函数的定义可知A、C、D的图象满足函数的定义,B的图象中,对于自变量X的某一取值,Y有两个值与之对应,不是函数图象、应选B、点评:此题考查了函数的概念及其图象、关键是根据函数的定义,判断函数图象、6、〔2018•昌宁县二模〕一次函数Y=KX+B的图象如图,那么K、B的符号是〔〕A、 K》0,B》0B、 K》0,B《0C、 K《0,B》0D、 K《0,B《0考点:一次函数图象与系数的关系、分析:由图可知,一次函数Y=KX+B的图象经过【二】【三】四象限,根据一次函数图象在坐标平面内的位置与K、B的关系作答、解答:解:由一次函数Y=KX+B的图象经过【二】【三】四象限,又有K《0时,直线必经过【二】四象限,故知K《0,再由图象过【三】四象限,即直线与Y轴负半轴相交,所以B《0、应选D、点评:此题主要考查一次函数图象在坐标平面内的位置与K、B的关系、解答此题注意理解:直线Y=KX+B所在的位置与K、B的符号有直接的关系、K》0时,直线必经过【一】三象限;K《0时,直线必经过【二】四象限;B》0时,直线与Y轴正半轴相交;B=0时,直线过原点;B《0时,直线与Y轴负半轴相交、A、有两个角相等的平行四边形是正方形B、有一个角是直角的四边形是矩形C、四个角相等的菱形是正方形D、两条对角线互相垂直且相等的四边形是正方形应选C、8、〔2018•衡阳〕小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离S〔米〕与散步所用时间T 〔分〕之间的函数关系,根据图象,以下信息错误的选项是〔〕A、小明看报用时8分钟B、公共阅报栏距小明家200米C、小明离家最远的距离为400米D、小明从出发到回家共用时16分钟考点:函数的图象、分析:A、从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B、4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C、据图形知,12分钟时离家最远,小明离家最远的距离为400米;D、据图知小明从出发到回家共用时16分钟、解答:解:A、小明看报用时8﹣4=4分钟,本项错误;B、公共阅报栏距小明家200米,本项正确;C、据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D、据图知小明从出发到回家共用时16分钟,本项正确、应选:A、点评:此题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决、【二】填空题〔共10小题,每题2分,总分值20分〕9、〔2018春•鞍山期末〕当X≤2、5时,二次根式有意义、考点:二次根式有意义的条件、分析:根据二次根式的性质和意义,被开方数大于或等于0,可以求出X的范围、解答:解:根据题意得:5﹣2X≥0,解得X≤2、5、故答案为:≤2、5、点评:此题考查二次根式有意义的条件,关键是熟悉二次根式的被开方数是非负数的知识点、10、〔2018春•鞍山期末〕一组数据3,3,4,6,9的方差是26、考点:方差、分析:根据平均数和方差的公式〔S2=【〔X1﹣〕2+〔X2﹣〕2+…+〔XN﹣〕2】〕计算、解答:解:数据3,3,4,6,9的平均数=〔3+3+4+6+9〕=5,方差S2=【〔3﹣5〕2+〔3﹣5〕2+〔4﹣5〕2+〔6﹣5〕2+〔9﹣5〕2】=26,故答案为:26、点评:此题考查方差的定义与意义:一般地设N个数据,X1,X2,…XN的平均数为,那么方差S2=【〔X1﹣〕2+〔X2﹣〕2+…+〔XN﹣〕2】,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立、11、〔2018春•鞍山期末〕冷冻一个0℃的物体、使它每分钟下降2℃,物体的温度T〔单位℃〕与冷冻时间T〔单位:分〕的函数关系式是T=﹣2T、考点:函数关系式、分析:根据它每分下降2℃,可得T分钟下降2T℃,然后用它加上物体开始的温度,求出物体的温度T即可、解答:解:T=0+〔﹣2T〕=﹣2T,故答案为:T=﹣2T、点评:此题考查了函数关系式,解决此题的关键是根据题意列出函数关系式、12、〔2018春•鞍山期末〕平面直角坐标系中,点A〔﹣1,﹣3〕和点B〔1,﹣2〕,那么线段AB的长为、考点:坐标与图形性质、专题:计算题、分析:直接根据两点间的距离公式求解、解答:解:∵点A〔﹣1,﹣3〕和点B〔1,﹣2〕,∴AB==、故答案为、点评:此题考查了坐标与图形性质:利用点的坐标计算出线段的长和确定线段与坐标轴的平行关系、也考查了两点间的距离公式、13、〔2018•昆明〕甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8、5环,方差分别是:S甲2=2,S乙2=1、5,那么射击成绩较稳定的是乙〔填“甲”或“乙“〕、考点:方差、分析:直接根据方差的意义求解、解答:解:∵S甲2=2,S乙2=1、5,∴S甲2》S乙2,∴乙的射击成绩较稳定、故答案为:乙、点评:此题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差、方差通常用S2来表示,计算公式是:S2=【〔X1﹣X¯〕2+〔X2﹣X¯〕2+…+〔XN﹣X¯〕2】;方差是反映一组数据的波动大小的一个量、方差越大,那么平均值的离散程度越大,稳定性也越小;反之,那么它与其平均值的离散程度越小,稳定性越好、14、〔2018春•鞍山期末〕自由落体的公式是H=GT2〔G为重力加速度,G=9、8M/S2〕,假设物体下落的高度H为88、2米,那么下落的时间为秒、考点:算术平方根、分析:把物体下落的高度为88、2M代入计算即可、解答:解:把物体下落的高度为88、2M代入,可得×9、8×T2=88、2,解得:T=±,因为下落的时间是正数,所以下落的时间是秒,故答案为:、点评:此题考查算术平方根,关键是根据实际问题分析、15、〔2018•福州〕如图,在RT△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC、假设AB=10,那么EF的长是5、考点:平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理、专题:压轴题、分析:根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案、解答:解:如图,连接DC、DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC、∵DC是RT△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5、点评:此题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半、16、〔2018春•鞍山期末〕X=+1,Y=﹣1,那么代数式+的值是4、考点:分式的化简求值;二次根式的化简求值、专题:计算题、分析:由X与Y的值求出X+Y与XY的值,原式通分并利用同分母分式的加法法那么计算,将各自的值代入计算即可求出值、解答:解:∵X=+1,Y=﹣1,∴X+Y=2,XY=2,那么原式====4,故答案为:4、点评:此题考查了分式的化简求值,以及二次根式的化简求值,熟练掌握运算法那么是解此题的关键、17、〔2018•烟台〕如图,函数Y=2X+B与函数Y=KX﹣3的图象交于点P,那么不等式KX ﹣3》2X+B的解集是X《4、考点:一次函数与一元一次不等式、专题:数形结合、分析:把P分别代入函数Y=2X+B与函数Y=KX﹣3求出K,B的值,再求不等式KX﹣3》2X+B的解集、解答:解:把P〔4,﹣6〕代入Y=2X+B得,﹣6=2×4+B解得,B=﹣14把P〔4,﹣6〕代入Y=KX﹣3解得,K=﹣把B=﹣14,K=﹣代入KX﹣3》2X+B得,﹣X﹣3》2X﹣14解得,X《4、故答案为:X《4、点评:此题主要考查一次函数和一元一次不等式,解题的关键是求出K,B的值求解集、18、〔2018•盘锦〕如图,在平面直角坐标系中,点A和点B分别在X轴和Y轴的正半轴上,OA=OB=A,以线段AB为边在第一象限作正方形ABCD,CD的延长线交X轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,那么第N个正方形的边长是A•2N﹣1、考点:正方形的性质;坐标与图形性质;等腰直角三角形、专题:规律型、分析:判断出△AOB是等腰直角三角形,根据等腰直角三角形的性质求出第一个正方形的边长AB,然后判断出△ADE是等腰直角三角形,再求出AD=DE,从而求出第二个正方形的边长等于第一个正方形的边长的2倍,同理可得后一个正方形的边长等于前一个正方形的边长的2倍,然后求解即可、解答:解:∵OA=OB,∴△AOB是等腰直角三角形,∴第一个正方形的边长AB=A,∠OAB=45°,∴∠DAE=180°﹣45°﹣90°=45°,∴△ADE是等腰直角三角形,∴AD=DE,∴第二个正方形的边长CE=CD+DE=2AB,…,后一个正方形的边长等于前一个正方形的边长的2倍,所以,第N个正方形的边长=2N﹣1AB=A•2N﹣1、故答案为:A•2N﹣1、点评:此题考查了正方形的性质,等腰直角三角形的判定与性质,判断出后一个正方形的边长等于前一个正方形的边长的2倍是解题的关键、【三】解答题〔共5小题,总分值42分〕19、〔6分〕〔2018春•鞍山期末〕计算:2×÷5﹣〔+〕考点:二次根式的混合运算、分析:直接利用二次根式的乘除运算法那么化简二次根式进而求出即可、解答:解:原式=4××﹣﹣3=﹣﹣3=﹣﹣=﹣、点评:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键、20、〔8分〕〔2018春•鞍山期末〕如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按以下要求画图:〔1〕在图①中画一条线段MN,使MN=;〔2〕在图②中画一个△ABC,使其三边长分别为3,,、考点:勾股定理、专题:作图题、分析:〔1〕如图①,在直角三角形MQN中,利用勾股定理求出MN的长为,故MN为所求线段;〔2〕如图②,分别利用勾股定理求出AB,AC,以及BC的长,即可确定出所求△ABC、解答:解:〔1〕如图①所示,在RT△MQN中,MQ=2,NQ=1,根据勾股定理得:MN==,那么线段MN为所求的线段;〔2〕如图②所示,AB=3,AC==,BC==,那么△ABC为所求三角形、点评:此题考查了勾股定理,熟练掌握勾股定理是解此题的关键、21、〔8分〕〔2017•泰州〕如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°、〔1〕求证:AC∥DE;〔2〕过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由、考点:矩形的性质;平行线的判定;全等三角形的判定与性质;平行四边形的判定、专题:综合题、分析:〔1〕要证AC∥DE,只要证明,∠EDC=∠ACD即可;〔2〕要判断四边形BCEF的形状,可以先猜后证,利用三角形的全等,证明四边形的两组对边分别相等、解答:〔1〕证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠ACD,∴AC∥DE;〔2〕解:四边形BCEF是平行四边形、理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF〔AAS〕,∴CE=BF,DE=AF〔全等三角形的对应边相等〕,∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形〔两组对边分别相等的四边形是平行四边形〕、点评:此题所考查的知识点:三角形全等、平行四边形的判定,矩形的性质;综合性好,难度中等、22、〔10分〕〔2018春•鞍山期末〕某公司招聘人才,共有50人进入复试、对应聘者分别进行阅读能力、思维能力和表达能力三项侧试,甲、乙两人的成绩如表〔单位:分〕:项目人员阅读思维表达甲93 86 73乙95 81 79〔1〕根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2确定每人的最后成绩,假设按此成绩在甲、乙两人中录用一人,谁将被录用?〔2〕公司按照〔1〕中的成绩计算方法,将每位应聘者的最后成绩绘制成如下图的频数分布直方图,请计算此次参加复试人员的平均分、考点:频数〔率〕分布直方图;加权平均数、分析:〔1〕利用加权平均数公式求得各自的成绩,然后进行比较即可确定;〔2〕利用加权平均数公式即可求解、解答:解:〔1〕=93×0、3+86×0、5+73×0、2=85、5〔分〕=95×0、3+81×0、5+79×0、2=84、8〔分〕,∴甲将被录用〔5分〕〔2〕=〔45×6+55×13+65×14+75×10+85×7〕÷50=64、8〔分〕、点评:此题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题、23、〔10分〕〔2018春•鞍山期末〕某学校开展“科技创新大赛”活动,设计遥控车沿直线轨道做匀速直线运动的模型、现在甲、乙两车同时分别从不同起点A,B出发,沿同一轨道到达C处、设T〔分〕后甲、乙两遥控车与B处的距离分别为D1,D2,且D1,D2与T的函数关系如图,假设甲的速度是乙的速度的1、5倍,试根据图象解决以下问题:〔1〕填空:乙的速度是40米/分;〔2〕写出D1与T的函数关系式;〔3〕假设甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用、分析:〔1〕根据路程与时间的关系,可得答案;〔2〕根据甲的速度是乙的速度的1、5倍,可得甲的速度,根据路程与时间的关系,可得A的值,根据待定系数法,可得答案;〔3〕根据两车的距离,可得不等式,根据解不等式,可得答案、解答:解:〔1〕乙的速度V2=120÷3=40〔米/分〕,故答案为:40;〔2〕由图象A=1,设函数解析式为D1=KX+B,0≤T≤1时,把〔0,60〕和〔1,0〕代入得D1=﹣60T+60,1《T≤3时,把〔1,0〕和〔3,120〕代入得D1=60T﹣60;〔3〕D2=40T,当0≤T《1时,D2+D1》10,即﹣60T+60+40T》10,解得0≤T《2、5,∵0≤T《1,∴当0≤T《1时,两遥控车的信号不会产生相互干扰;当1≤T≤3时,D2﹣D1》10,即40T﹣〔60T﹣60〕》10,当1≤T《2、5时,两遥控车的信号不会产生相互干扰综上所述:当0≤T《2、5时,两遥控车的信号不会产生相互干扰点评:此题考查了一次函数的应用,〔1〕利用了路程速度时间三者的关系,〔2〕分段函数分别利用待定系数法求解,〔3〕当0≤T《1时,D2﹣D1》10;当1≤T≤3时,D1﹣D2》10,分类讨论是解题关键、【四】综合题〔共2题,总分值22分〕24、〔10分〕〔2018春•鞍山期末〕提出问题:如图①,在正方形ABCD中,点P,F分别在边BC、AB上,假设AP⊥DF于点H,那么AP=DF、类比探究:〔1〕如图②,在正方形ABCD中,点P、F、、G分别在边BC、AB、AD上,假设GP⊥DF于点H,探究线段GP与DF的数量关系,并说明理由;〔2〕如图③,在正方形ABCD中,点P、F、G分别在边BC、AB、AD上,GP⊥DF于点H,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF,假设四边形DFEP为菱形,探究DG和PC 的数量关系,并说明理由、考点:四边形综合题、分析:〔1〕如答图1,过点A作AM⊥DF交BC于点M、通过证明△BAM≌△ADF得到其对应边相等:AM=DF,那么又由平行四边形的性质推知AM=GP,那么GP=DF;〔2〕如答图2,过点P作FN⊥AD与点N、根据菱形的性质、等腰三角形的“三线合一”的性质推知DG=2DN,然后结合矩形DNPC的性质得到:DG=2PC、解答:解:〔1〕GP=DF、理由如下:如答图1,过点A作AM⊥DF交BC于点M、∵四边形ABCD是正方形,∴AD=AB,∠B═90°,∴∠BAM=∠ADF,在△BAM与△ADF中,,∴△BAM≌△ADF〔ASA〕,∴AM=DF又∵四边形AMPG为平行四边形,∴AM=GP,即GP=DF;〔2〕DG=2PC、理由如下:如答图2,过点P作FN⊥AD与点N、假设四边形DFEP为菱形,那么DP=DF,∵DP=DF,∴DP=GP,即DG=2DN、∵四边形DNPC为矩形,∴PC=DN,∴DG=2PC、点评:此题考查了四边形综合题,解答此题要充分利用正方形的特殊性质、注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,有助于提高解题速度和准确率、25、〔12分〕〔2018春•鞍山期末〕:如图,直线Y=﹣X+4与X轴相交于点A,与直线Y=X交于点P、〔1〕求点P的坐标、〔2〕动点F从原点O出发,以每秒1个单位的速度在线段OA上向点A作匀速运动,连接PF,设运动时间为T秒,△PFA的面积为S,求出S关于T的函数关系式、〔3〕假设点M是Y轴上任意一点,点N是坐标平面内任意一点,假设以O、M、N、P为顶点的四边形是菱形,请直接写出点N的坐标、考点:一次函数综合题、分析:〔1〕联立两直线的解析式求出X、Y的值即可得出P点坐标;〔2〕先求出A点坐标,再根据三角形的面积公式即可得出结论;〔3〕分OP为菱形的边与对角线两种情况进行讨论、解答:解:〔1〕∵由,解得,∴P点坐标〔2,〕;〔2〕∵直线Y=﹣X+4中,当Y=0时,X=4,∴OA=4,∴S=〔OA﹣T〕×=〔4﹣T〕×=2﹣T〔0≤T《4〕;〔3〕如图,当OP为平行四边形的边时,∵P〔2,2〕,∴OP==4,∴N1〔2,2﹣4〕,N2〔2,2+4〕,N3〔﹣2,2〕;当OP为对角线时,设M〔0,A〕,那么MP=A,即22+〔2﹣A〕2=A2,解得A=,∴N点的纵坐标=2﹣=,∴N4〔2,〕、综上所示,N点坐标为N1〔2,2﹣4〕,N2〔2,2+4〕,N3〔﹣2,2〕,N4〔2,〕、点评:此题考查的是一次函数综合题,涉及到菱形的性质与一次函数的交点问题,根据题意画出图形,利用数形结合求解是解答此题的关键、。
八年级下册数学鞍山数学期末试卷检测题(Word版含答案)
八年级下册数学鞍山数学期末试卷检测题(Word 版含答案) 一、选择题 1.式子3x -在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≥3C .x ≤3D .x >32.如图,正方形网格中的ABC ,若小方格边长为1,则ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对3.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CDD .AO=CO 4.校篮球队所买10双运动鞋的尺码统计如表,则这10双运动鞋尺码的众数和中位数分别为( )尺码(cm )25 25.5 26 26.5 27 购买量(双) 1 1 2 4 2A .4 cm ,26 cmB .4 cm ,26.5 cmC .26.5 cm ,26.5 cmD .26.5 cm ,26 cm 5.如图,E ,F ,G ,H 分别在四边形ABCD 在AB ,BC ,CD ,DA 的边上,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形B .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形C .当E ,F ,G ,H 是各边中点,且AC =BD 时,四边形EFGH 为菱形D .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形6.如图,在菱形ABCD 中,AC AB =,则ABC ∠=( )A .30B .45C .60D .757.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .68.如图,已知A (3,1)与B (1,0),PQ 是直线y x =上的一条动线段且PQ 2=(Q 在P 的下方),当AP+PQ+QB 最小时,Q 点坐标为( )A .(23,23)B .(23,23)C .(0,0)D .(1,1)二、填空题9.若()233a a -=-,则a 与3的大小关系是______.10.若菱形的周长为20cm ,一个内角为60︒,则菱形的面积为___________. 11.若直角三角形的三边分别为x ,8,10,则2x =__________.12.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O .若AB =5,AD =12,则OC =______.13.定义:对于一次函数y =kx +b ,我们把点(b ,k )称为这个一次函数的伴随点.已知一次函数y =﹣2x +m 的伴随点在它的图象上,则m =_____.14.如图,矩形ABCD 中,AB =2,AD =2.点E 是BC 边上的一个动点,连接AE ,过点D 作DF ⊥AE 于点F .当△CDF 是等腰三角形时,BE 的长为_____.15.如图,在平面直角坐标系中,点A ,A 1,A 2,…在x 轴上,点P ,P 1,P 2,…在直线l :y=kx +34(k >0)上,∠OPA =90°,点P (1,1),A (2,0),且AP 1,A 1P 2,…均与OP 平行,A 1P 1,A 2P 2,…均与AP 平行,则有下列结论:①直线AP 1的函数解析式为y =x ﹣2;②点P 2的纵坐标是259;③点P 2021的纵坐标为(53)2021.其中正确的是_____(填序号).16.如图所示,四边形ABCD 是长方形,把ACD △沿AC 折叠到ACD ',AD 与BC 交于点E ,若4,3AD DC ==,则BE 的长为________.三、解答题17.计算:(1)(25﹣2)0+|2﹣5|+(﹣1)2021;(2)(6+3)(6﹣3)+14÷7.18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为_________.(2)如下图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点). ①在图1中,分别画三条线段AB 、CD 、EF ,使AB =5、CD =22、EF =13. ②在图2中,画三角形ABC ,使AB =3、BC =22、CA =5.③在图3中,画平行四边形ABCD ,使45A ∠=︒,且面积为6.20.如图,在ABC 中,3AB =,4BC =,5AC =,2BD =,EF 是ABC 的中位线.求证:四边形BDFE 是矩形.21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一5353333⨯=⨯ (二231)3131(31)(31)-=++-(; (三22(3)1(31)(31)3131313131-+-=++++. 以上这种化简的方法叫分母有理化.(1)5+3:①参照(二)式化简25+3=__________.②参照(三)式化简25+3=_____________(2)化简:1111++++315+37+599+97.22.振兴加工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数解析式;(2)求出图中a的值及乙组更换设备后加工零件的数量y与时间x之间的函数解析式.23.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,,点为边上一定点,点B为边上一动点,以AB为一边在∠MON的内部作正方形ABCD,过点C作,垂足为点F(在点O、之间),交BD与点E,试探究的周长与的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段、、EF和的长,他们猜想的周长是长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图,过点C 作,垂足为点G则又四边形ABCD 正方形,,则在与中,(类比探究,拓展延伸) (3)如图,当点F 在线段的延长线上时,直接写出线段、EF 、与长度之间的等量关系为 . 24.如图,在平面直角坐标系xOy 中,直线384y x =-+分别交x 、y 轴于点A 、B ,将正比例函数2y x =的图像沿y 轴向下平移3个单位长度得到直线l ,直线l 分别交x 、y 轴于点C 、D ,交直线AB 于点E .(1)直线l 对应的函数表达式是__________,点E 的坐标是__________;(2)在直线AB 上存在点F (不与点E 重合),使BF BE =,求点F 的坐标;(3)在x 轴上是否存在点P ,使2PDO PBO ∠=∠?若存在,求点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,点A (1,4),点B (3,2),连接OA ,OB .(1)求直线OB 与AB 的解析式;(2)求△AOB 的面积.(3)下面两道小题,任选一道作答.作答时,请注明题号,若多做,则按首做题计入总分.①在y 轴上是否存在一点P ,使△PAB 周长最小.若存在,请直接写出....点P 坐标;若不存在,请说明理由.②在平面内是否存在一点C ,使以A ,O ,C ,B 为顶点的四边形是平行四边形.若存在,请直接写出....点C 坐标;若不存在,请说明理由. 【参考答案】一、选择题1.B解析:B【分析】直接利用二次根式有意义的条件分析得出答案.【详解】 3x -在实数范围内有意义,故x ﹣3≥0,则x 的取值范围是:x ≥3.故选:B .【点睛】考核知识点:二次根式的意义.理解二次根式被开方数是非负数.2.A解析:A【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【详解】解:∵正方形小方格边长为1,∴BC 22442,AC=AB=在△ABC中,∵BC2+AC2=32+18=50,AB2=50,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点睛】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.4.C解析:C【解析】【分析】根据众数的含义及中位数的求法进行即可.【详解】在这一组数据中26.5是出现次数最多的,故众数是26.5cm;处于这组数据中间位置的数是26.5、26.5,那么中位数的定义可知,这组数据的中位数是(26.5+26.5)÷2=26.5cm.故选C.【点睛】本题考查了众数及中位数,一组数据中出现次数最多的数称为众数,一组数据的众数可以不止一个,把一组数据按大小排列,中间位置一个数或两个数的平均数是这组数据的中位数;掌握它们的含义是关键.5.A解析:A【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【详解】解:A、如图所示,若EF=F G=GH=HE,则四边形EFGH为菱形,此时E、 F、G、H不是四边形ABCD各边中点,此选项错误,符合题意;B、如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,E、 F、G、H不是四边形ABCD各边中点,此选项正确,不符合题意;C、当E、F、G、H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,此选项正确,不符合题意;D、当E、F、G、H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,此选项正确,不符合题意;故选A.【点睛】本题主要考查了平行四边形、菱形、矩形的判定,解题的关键在于能够熟练掌握相关知识进行判断求解.6.C解析:C【解析】【分析】根据菱形的四条边都相等可得AB=BC ,然后判断出△ABC 是等边三角形,再根据等边三角形的性质解答.【详解】解:在菱形ABCD 中,AB=BC ,∵AC=AB ,∴AB=BC=AC ,∴△ABC 是等边三角形,∴∠ABC=60°.故选:C .【点睛】本题考查了菱形的性质,主要利用了菱形的四条边都相等的性质,熟记性质并判断出△ABC 是等边三角形是解题的关键.7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中'''C D AB C ED AEB C A =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.A解析:A【分析】作点B 关于直线y=x 的对称点'B (0,1),过点A 作直线MN ,使得MN 平行于直线y=x ,并沿MN 向下平移2单位后,得'A (2,0),连接''A B 交直线y=x 于点Q ,求出直线''A B 解析式,与y=x 组成方程组,即可求出Q 点的坐标.【详解】解:作点B 关于直线y=x 的对称点'B (0,1),过点A 作直线MN ,使得MN 平行于直线y=x ,并沿MN 向下平移2单位后,得'A (2,0),连接''A B 交直线y=x 于点Q ,如下图所示.∵'2AA PQ ==,'//AA PQ ,∴四边形'APQA 是平行四边形,∴'AP A Q =,∵''AP PQ QB B Q A Q PQ ++=++且2PQ =,∴当''A Q B Q +值最小时,AP PQ QB ++值最小.根据两点之间线段最短,即''A Q B 、、三点共线时,''A Q B Q +值最小.∵'B (0,1),'A (2,0),∴直线''A B 的解析式112y x =-+, ∴112x x =-+,即23x =, ∴Q 点的坐标为(23,23). 故答案选A .【点睛】本题主要考查了一次函数图像上点的坐标特征、最短路径问题.二、填空题9.a ≤3【解析】【分析】根据算术平方根是非负数列式计算即可得解.【详解】解:根据题意,3﹣a ≥0,解得a ≤3.故答案为:a ≤3.【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.10.A解析:2253cm 2【解析】【分析】由菱形的性质和已知条件得出AB =BC =CD =DA =5cm ,AC ⊥BD ,由含30°角的直角三角形的性质得出BO =12AB =52cm ,由勾股定理求出OA ,可得BD ,AC 的长度,由菱形的面积公式可求解.【详解】解:如图所示:∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,∠BAO =12∠BAD =30°,AC ⊥BD ,OA =12AC ,BO =DO ∵菱形的周长为20cm ,∴AB =BC =CD =DA =5cm ,∴BO =12AB =52cm , ∴OA 22AB OB -532cm ), ∴AC =2OA =53cm ,BD =2BO =5cm∴菱形ABCD 的面积=12AC ×BD 2253. 2253. 【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.36或164【解析】【分析】根据直角三角形斜边的情况分类讨论,然后根据勾股定理即可求出2x .【详解】解:若10为斜边的长度,根据勾股定理:22210836x =-=;若x 为斜边的长度,根据勾股定理:222108164x =+=.综上所述:2x=36或164故答案为36或164.【点睛】此题考查的是勾股定理,根据直角三角形斜边的情况分类讨论和用勾股定理解直角三角形是解决此题的关键.12.B解析:5【分析】根据勾股定理得出BD,进而利用矩形的性质得出OC即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,OC=OA,在Rt△ABD中,BD13,∴OC=12AC=12BD=.113652⨯=.故答案为:6.5.【点睛】此题考查矩形的性质和勾股定理,解答此题的关键是由矩形的性质和根据勾股定理得出BD 解答.13.2【分析】根据题意可以求得一次函数y=﹣2x+m的伴随点,然后根据一次函数y=﹣2x+m的伴随点在它的图象上,从而可以求得m的值.【详解】解:由题意可得,y=﹣2x+m的伴随点是(m,﹣2),∵一次函数y=﹣2x+m的伴随点在它的图象上,∴﹣2=﹣2m+m,解得,m=2,故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.14.C【分析】过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF =CD 时,过点C 作CM ⊥DF ,垂足为点M ,则CM ∥AE ,DM =MF ,延长CM 交AD 于点G ,∴AG =GD =1,∴CE =1,∵CG ∥AE ,AD ∥BC ,∴四边形AGCE 是平行四边形,∴CE =AG =1,∴BE =1∴当BE =1时,△CDF 是等腰三角形;②DF =DC 时,则DC =DF =2, ∵DF ⊥AE ,AD =2, ∴∠DAE =45°,则BE =2,∴当BE =2时,△CDF 是等腰三角形;③FD =FC 时,则点F 在CD 的垂直平分线上,故F 为AE 中点.∵AB =2,BE =x ,∴AE =22+x ,AF =22+2x , ∵△ADF ∽△EAB ,∴AD AF AE EB=, 222222x x x +=+, x 2﹣4x +2=0,解得:x =2±2,∴当BE =2﹣2时,△CDF 是等腰三角形.综上,当BE =1、2、2﹣2时,△CDF 是等腰三角形.故答案为1、2、2﹣2.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.15.①②③【分析】由已知易求得直线的解析式为:,直线为:,进而根据待定系数法可求得 的解析式为:即可判断①;解析式联立构成方程组可求得 的坐标,同理求得 的坐标,即可判断②;由、的坐标得出规律即可得解析:①②③【分析】由已知易求得直线OP 的解析式为:y x =,直线l 为:1344y x =+,进而根据待定系数法可求得 1AP 的解析式为:2y x =-即可判断①;解析式联立构成方程组可求得 1P 的坐标,同理求得 2P 的坐标,即可判断②;由1P 、2P 的坐标得出规律即可得出点 2021P 的纵坐标为202153⎛⎫ ⎪⎝⎭,即可判断③.【详解】解:设1AP 的解析式为y kx b =+,∵P (1,1),∴直线OP 为y x =,∵AP 1∥OP ,∴k =1,即y x b =+,∵A (2,0),∴2+b =0,解得b =﹣2,∴AP 1的解析式为2y x =-,故①正确;∵点P ,P 1,P 2,…在直线l :34y kx =+(k >0)上,∴1=k +34,解得k =14, ∴直线l 为:1344y x =+, 解21344y x y x =-⎧⎪⎨=+⎪⎩得11353x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴115133P ⎛⎫ ⎪⎝⎭,, 设11A P 的解析式为y x b =-+, 代入111533P ⎛⎫ ⎪⎝⎭,可得,11A P 的解析式为:163y x =-+, ∴A 1的坐标为(163,0), 同理求得A 1P 2的解析式为:163y x =-, 解1631344y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得739259x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 2纵坐标为259,故②正确; ∵P 1纵坐标为53,P 2纵坐标为259=(53)2, 以此类推,点P 2021的纵坐标为(53)2021.故③正确. 故答案为:①②③.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,总结出点的纵坐标的规律是解题的关键.16.【分析】根据矩形性质得AB =DC =3,BC =AD =4,AD ∥BC ,∠B =90°,再根据折叠性质得∠DAC =∠D′AC ,而∠DAC =∠ACB ,则∠D′AC =∠ACB ,所以AE =EC ,设BE =x ,则 解析:78【分析】根据矩形性质得AB =DC =3,BC =AD =4,AD ∥BC ,∠B =90°,再根据折叠性质得∠DAC =∠D ′AC ,而∠DAC =∠ACB ,则∠D ′AC =∠ACB ,所以AE =EC ,设BE =x ,则EC =4﹣x ,AE =4﹣x ,然后在Rt △ABE 中利用勾股定理可计算出BE .【详解】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°.∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC.设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=78,即BE的长为78.故答案为:78.【点睛】本题考查了折叠的性质、矩形的性质和勾股定理,解题关键是设未知数,表示线段长,利用勾股定理列方程.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a+b)(a﹣b)=a2﹣b2的结构是解题关键.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1);(2)①见解析;②见解析;③见解析【解析】【分析】(1)根据勾股定理计算即可;(2)答案不唯一,根据勾股定理计算画出即可.【详解】(1)∵长方形的长为3,宽为2,∴对角线的长为解析:(12)①见解析;②见解析;③见解析【解析】【分析】(1)根据勾股定理计算即可;(2)答案不唯一,根据勾股定理计算画出即可.【详解】(1)∵长方形的长为3,宽为2,∴(2)只要画图正确可(不唯一)①三条线段AB、CD、EF如图1所示:②三角形ABC如图2所示:③平行四边形ABCD如图3 所示:.【点睛】本题考查了勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定与性质是解题的关键.20.见解析【分析】根据中位线的性质得出、,进而得出四边形是平行四边形,再根据勾股定理的逆定理得出是直角三角形,且,则四边形是矩形.【详解】证明:∵是的中位线,∴,.∵,∴.∴四边形是平行四解析:见解析【分析】根据中位线的性质得出//EF BC 、EF BD =,进而得出四边形BDFE 是平行四边形,再根据勾股定理的逆定理得出ABC 是直角三角形,且90B ∠=︒,则四边形BDFE 是矩形.【详解】证明:∵EF 是ABC 的中位线,∴//EF BC ,122EF BC ==. ∵2BD =,∴EF BD =.∴四边形BDFE 是平行四边形.∵3AB =,4BC =,5AC =,∴222AB BC AC +=.∴ABC 是直角三角形,且90B ∠=︒.∴四边形BDFE 是矩形.【点睛】本题考查了三角形的中位线、勾股定理的逆定理,平行四边形的判定、矩形的判定等知识点,熟悉并运用以上性质定理是解题的关键.21.见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;解析:见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.(1)y=70x;(2)a=320,y=100x﹣280【分析】(1)利用待定系数法求一次函数解析式即可;(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度即可.【详解】解:(1)∵解析:(1)y=70x;(2)a=320,y=100x﹣280【分析】(1)利用待定系数法求一次函数解析式即可;(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度即可.【详解】解:(1)∵图象经过原点及(6,420),∴设解析式为:y=kx,∴6k=420,解得:k=70,∴y=70x;(2)乙3小时加工120件,∴乙的加工速度是:每小时40件,∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.∴更换设备后,乙组的工作速度是:每小时加工40×2.5=100(件),a=120+100×(6﹣4)=320;乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=120+100(x﹣4)=100x﹣280.【点睛】本题考查了一次函数的应用,解题的关键是根据题意得出函数关系式以及数形结合.23.(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA.【分析】(1)通过测量可得;(2)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由解析:(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA.【分析】(1)通过测量可得;(2)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由SAS可证△ABE≌△CBE,可得AE=CE,由线段的和差关系可得结论;(3)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由SAS可证△ABE≌△CBE,可得AE=CE,可得结论.【详解】解:(1)△AEF的周长是OA长的2倍,故答案为:2;(2)如图4,过点C作CG⊥ON,垂足为点G,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO,在△BCG与△ABO中,,∴△BCG≌△ABO(AAS),∴BG=AO,CG=BO,∵∠AOB=90°=∠CGB=∠CFO,∴四边形CGOF是矩形,∴CF=GO,CG=OF=OB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∴△AEF的周长=AE+EF+AF=CE+EF+AF=CF+AF=GO+AF=BG+BO+AF=2AO;(3)如图5,过点C作CG⊥ON于点G,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO,在△BCG与△ABO中,∴△BCG≌△ABO(AAS),∴BG=AO,BO=CG,∵∠AOB=90°=∠CGB=∠CFO,∴四边形CGOF是矩形,∴CF=GO,CG=OF=OB,在△ABE和△CBE中,,∴△ABE ≌△CBE (SAS ),∴AE=CE ,∴AE+EF-AF=EF+CE-AF=NB+BO-(OF-AO )=OA+OB-(OB-OA )=2OA .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,矩形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.24.(1),;(2)存在,;(3)或【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作轴于M ,轴于N ,利用,得到F 点的横坐标,再代解析:(1)23y x =-,()4,5;(2)存在,()4,11F -;(3)()4,0P 或()4,0-【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作EM y ⊥轴于M ,FN y ⊥轴于N ,利用()EBM FBN AAS ≌,得到F 点的横坐标,再代入解析式求出F 点纵坐标即可;(3)在y 轴正半轴上取一点Q ,使3OQ OD ==,利用等腰三角形的性质得PBO BPQ ∠=∠,即可求出5PQ BQ ==,再由勾股定理求出OP 的长,得到点P 坐标.【详解】解:(1)正比例函数2y x =的图像沿y 轴向下平移3个单位长度,得23y x =-, 联立两个直线解析式,得38423y x y x ⎧=-+⎪⎨⎪=-⎩,解得45x y =⎧⎨=⎩, ∴()4,5E ,故答案是:23y x =-,()4,5;(2)如图,作EM y ⊥轴于M ,FN y ⊥轴于N ,∴4EM =,90EMB FNB ∠=∠=︒,∵BE BF =,EBM FBN ∠=∠,∴()EBM FBN AAS ≌,∴4FN EM ==, 在384y x =-+中,当4x =-时,11y =, ∴()4,11F -;(3)易知()0,8B ,()0,3D -,∴8OB =,3OD =,如图,在y 轴正半轴上取一点Q ,使3OQ OD ==,∵90POB ∠=︒,OQ OD =,∴PQ PD =,∴PDO PQO PBO BPQ ∠=∠=∠+∠,∵2PDO PBO ∠=∠,∴PBO BPQ ∠=∠,∴5PQ BQ ==,∴由勾股定理得:4OP =,∴()4,0P 或()4,0-.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求法,以及利用数形结合思想解决一次函数与几何综合问题.25.(1)直线OB 的解析式为,直线AB 的解析式为y= -x+5(2)5;(3)①存在,(0,);②存在,(2,-2)或(4,6)或(-2,2)【分析】(1)根据题意分别设出两直线的解析式,代入直线上解析:(1)直线OB 的解析式为23y x =,直线AB 的解析式为y = -x +5(2)5;(3)①存在,(0,72);②存在,(2,-2)或(4,6)或(-2,2) 【分析】(1)根据题意分别设出两直线的解析式,代入直线上两点坐标即可求出直线OB 与AB 的解析式;(2)延长线段AB 交x 轴于点D ,求出D 的坐标,分别求出AOD S ∆、BOD S ∆由AOB AOD BOD S S S ∆∆∆=-即可求得;(3)①根据两点之间线段最短,A 、B 在y 轴同侧,作出点A 关于y 的对称点A ',连接A 'B 与y 轴的交点即为所求点P ;②使以A ,O ,C ,B 为顶点的四边形是平行四边形,则分三种情况分析,分别以OA 、AB 、OB 为对角线作出平行四边形,利用中点坐标公式代入求解即可.【详解】解:(1)设直线OB 的解析式为y =mx ,∵点B (3,2), ∴2223,,33m m y x === , ∴直线OB 的解析式为23y x =, 设直线AB 的解析式为y =kx +b ,根据题意可得:432k b k b +=⎧⎨+=⎩解之得15k b =-⎧⎨=⎩ ∴直线AB 的解析式为y = -x +5.故答案为:直线OB 的解析式为23y x =,直线AB 的解析式为y = -x +5; (2)如图,延长线段AB 交x 轴于点D ,当y =0时,-x +5=0,x =5,∴点D 横坐标为5,OD =5, ∴11541022AOD A S OD y ∆=⨯⨯=⨯⨯=, 11525,22BOD B S OD y ∆=⨯⨯=⨯⨯= ∴5AOB AOD BOD S S S ∆∆∆=-=,故答案为:5.(3)①存在,(0,72); 过点A 作y 轴的对称点A ',连接A 'B ,交y 轴与点P ,则点P 即为使△PAB 周长最小的点, 由作图可知,点A '坐标为(1,4)-,又点B (3,2)则直线A 'B 的解析式为:1722y x =-+, ∴点P 坐标为7(0,)2, 故答案为:7(0,)2;②存在. (2,2)- 或(4,6)或(2,2)-.有三种情况,如图所示:设点C 坐标为(,)x y ,当平行四边形以AO 为对角线时,由中点坐标公式可知,AO 的中点坐标和BC 中点坐标相同,∴310240x y +=+⎧⎨+=+⎩解得22x y =-⎧⎨=⎩∴点1C 坐标为(2,2)-,当平行四边形以AB 为对角线时,AB 的中点坐标和OC 的中点坐标相同,则031024x y +=+⎧⎨+=+⎩46x y =⎧⎨=⎩∴点2C 的坐标为(4,6),当平行四边形以BO 为对角线时,BO 的中点坐标和AC 的中点坐标相同,则130420x y +=+⎧⎨+=+⎩ 解得22x y =⎧⎨=-⎩∴点3C 坐标为(2,2)-,故答案为:存在,(2,2)-或(4,6)或(2,2)-.【点睛】本题考查了直线解析式的求法,列二元一次方程组求解问题,割补法求三角形的面积,两点之间线段最短,“将军饮马”模型的应用,添加点构造平行四边形,利用中点坐标公式求点坐标题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2019第二学期期末质量检测八年级数学参考答案
一.选择题(每题2分,共16分)
1. C ;
2.B ;
3. B ;
4. B ;
5. A ;
6. C ;
7. A ;
8. C ;
二.填空题(每题2分,共16分)
9.3; 10.-2≤X <3; 11. 1㎝; 12. X >1;
13. 20; 14. Y =2X-4; 15. 17120
; 16
23n -;
三. 解答题(17题;18题每题4分,共8分)
17. 1)25+3
3(过程正确2分,结果正确2分) 18. 原式=ab 4(3分)结果83(1分)
四.(19题,20题,21题,22题,23题各8分,24题,25题各10分,共60分)
19. (1)当m <-2且n 为任意实数时,y 随x 的增大而减小;(3分)
(2)当m ≠-2且n <4时函数图象与y 轴的交点在x 轴的下方;(6分)
(3)当m ≠-2且n=4时函数图象经过原点.(8分)
20. (1)参加这次会议的总人数为50人;圆心角度数是36°;图略; (3分)
(2)平均每人浪费矿泉水量约为183毫升;(6分)
(3)该单位每年参加此类会议的总人数约为2400人—3600人;
则 浪费矿泉水约为2
6040+×60×183÷500=1098(瓶)(8分) 21 .求出AC=5 (3分);求出CF=13(6分);正方形面积为169.(8分)
22. (1)证明: ∵矩形ABCD ∴AB=CD ∠A=∠D=90°(1分)
∵M 是AD 的中点 ∴AM=DM ∴△ABM ≌△DCM (2分)
(2)四边形MENF 是菱形(3分)
证明
同理 NF=EM ∴EM=MF=EN=NF ∴四边形MENF 是菱形(7分)
( 3 ) 2:1 (8分)
23.解:(1)根据函数图像可得日销量的最大值为120千克(2分 ) (2)日销量y 千
克与上市时间x 元的函数解析式为
⎩⎨⎧≤〈+-≤≤=)
2012(30015)120(10x x x x y (5分) (3)第10天销售金额多,理由正确 (8分)
24.(1)证明:∵正方形ABCD ∴BC=CD ∠ACB=∠ACD=45°
又∵PC=PC ° ∴ △BCP ≌△DCP (4分)
(2)证明:由(1)得△BCP ≌△DCP ∴∠CBP=∠CDP (5分)
∵PE=PB ∴∠CBP=∠E ∴∠E=∠CDP )(6分)
∵∠DFP=∠CFE ∴180°-∠DFP-∠CDP=180°-∠CFE-∠E ∴∠DPE=∠DCE (7分 )∵AB ∥CD ∴∠DCE=∠ABC
∴∠DPE=∠ABC(8分)
(3)58°(10分)。