大学物理 物理学 课件 动量守恒定律

合集下载

大学物理动量守衡定律

大学物理动量守衡定律
感谢您的观看
VS
促进基础研究
动量守恒定律不仅在实践中有重要应用, 同时也是物理学基础研究的重要组成部分 。通过深入研究和理解动量守恒定律,科 学家们可以探索物质的本质和宇宙的奥秘 ,推动物理学理论的进步和创新。
06 结论
动量守恒定律的重要性
在物理学中的基础
地位
动量守恒定律是物理学中的基本 定律之一,是理解和分析力学系 统的基础。
推导过程
牛顿第三定律
作用力和反作用力大小相等 、方向相反。
速度守恒定律
在无外力作的平移定理
力是矢量,可以平移而不改 变其效果。
适用范围
惯性参考系
动量守恒定律只在惯性参考系中成立。
封闭系统
只考虑系统内的物体,忽略外界对系统的作用 力。
无外力作用
系统内的物体间相互作用力不受到外界力的影响。
探索动量守恒定律在复杂系统中的应用
随着科技的发展,越来越多的复杂系统需要用到动量守恒定律,如何将其应用到这些系统中是一个值 得研究的方向。
动量守恒定律与其他物理规律的相互作用
动量守恒定律并不是孤立的,它与其他物理规律之间存在相互作用和影响,研究这些相互作用有助于 更深入地理解物理世界的规律。
THANKS FOR WATCHING
动量守恒定律在经典力学、相对论和 量子力学中都有应用,是物理学中非 常重要的一个概念。
学习目标
01 理解动量守恒定律的物理意义和适用范围。
02
掌握动量守恒定律的数学表达形式和推导过 程。
03
能够应用动量守恒定律解决实际问题,如碰 撞、火箭推进等。
04
了解动量守恒定律在科学技术中的应用,如 原子核物理、天体物理等领域。
04 动量守恒定律的实例和应 用

大学物理:2-2 动量守恒定律

大学物理:2-2 动量守恒定律

y P
rP
F
O
地球
r
C
Q
rQ x
7
3、保守力 (conservation force)
物体在某种力的作用下, 沿任意闭合路径绕行一周所 作的功恒等于零,即
Q
CD
E
F
P
F dl 0
具有这种特性的力,称为保守力;不具有这种特 性的力称为非保守力。
8
四、 机械能守恒定律
1、功能原理 由 n 个相互作用着的质点所组成的质点系。系统中
Q
A
Q Q
AaPdFv,d
r
P
dr
ma d r
vdt
F
Q
m
d
vdtv
d
t
P dt
Q P
mv
d
v
1 2
mvQ2
1 2
P
mvP2
vdPr
质点的动能(kinetic energy)定义:质点的质量与
其运动速率平方的乘积的一半。
用Ek表示,即
Ek
1 2
mv2
5
所以有 A Ek Q Ek P 动能定理:作用于质点的合力所作的功,等于质点
0
mivi 恒矢量
i 1
在外力的矢量和为零的情况下,质点系的总动量
不随时间变化——动量守恒定律。
其分量式
n
mi vix 恒量
i 1 n
mi viy 恒量
i 1 n
mi viz 恒量
i 1
n
(当 Fix 0 时)
i 1
n
(当 Fiy 0 时)
i 1
n
(当 Fiz 0 时)
i 1

大学物理3-4质心 质心运动定理 动量守恒定律

大学物理3-4质心 质心运动定理 动量守恒定律
§3-4 质心 质心运动定理 动量守恒定律
1. 质心
Y
质点系(或物体) 的质量中心,简称 质心。
C
O
X
抛手榴弹的过程
质心运动反映了质点系的整体运动趋势。
质心
对于N个质点组成的质点系:
m1, m2,, mi ,mN M mi 系统总质量
r1, r2, , ri , rN
直角坐标系中 质心的定义:
F1
f12
f13
f1n
m2a2
m2
d v2 dt
F2
f21
f23
f2n
mnan
mn
d vn dt
Fn
fn1
fn2
fn3
fnn1
质心运动定理
对于内力 f12 f21 0,, fin fni 0,
ac
mi
ai miai mi
F
i
ac
Fi mi
Fi
M
质心运
条件 定律
vc
Fi
0
mivi
M
=常矢量
P
mi vi
Mvc
=常矢量
i
动量守恒定律
直角坐标系下的分量形式
m1v1x m2v2x mnvnx =常量 m1v1y m2v2 y mnvny=常量 m1v1z m2v2z mnvnz =常量
动量守恒定律
例题3-8 如图所示,设炮车以仰角 发射一炮弹,炮车
线分布 d m dl 面分布 d m d S 体分布 d m dV
质心
注意:
质心的位矢与参考系的选取有关。
刚体的质心相对自身的位置确定不变。
质量均匀的规则物体的质心在几何中心。

火箭 03-3动量守恒定律()大学物理

火箭 03-3动量守恒定律()大学物理

由此得
v2

mu
(M m)v2 M m
mu 1 1 M m M 2m
v1和v2相比,可知 v1<v2
3.3 动量守恒定律
3.3.2 火箭飞行
设火箭在外层空间飞 行,空气阻力和重力不计, 动量守恒定律适用。
“长征二号E” 运 载火箭
3.3 动量守恒定律
在t0时刻的速度为v0,火箭(包括燃料)的总质 量为M0,热气体相对火箭的喷射速度为u。随着燃 料消耗,火箭质量不断减少。
动画演示:在两球对心碰撞过程中动量的转移
3.3 动量守恒定律
例题1 一辆停在直轨道上质量为M 的平板车上站着 两个人,当他们从车上沿同方向跳下后,车获得了 一定的速度。设两个人的质量均为m ,跳下时相对 于车的水平分速度均为u。试比较两人同时跳下和两 人依次跳下两种情况下,车所获得的速度的大小。
解 以人离开车的速度水平分量方向为正,车的速 度方向沿负方向。当两人同时跳下车时,对人和车 这个系统而言,在水平方向上动量守恒,因而有
可能发生变化。 在碰撞、打击、爆炸等相互作用时间极短的
过程中,由于系统内部相互作用力远大于合 外力,往往可忽略外力,系统动量守恒近似 成立。 动量守恒可在某一方向上成立。
3.3 动量守恒定律
在应用动量守恒定律时,要注意以下几点: 定律中的速度应是对同一惯性系的速度, 动量和应是同一时刻的动量之和。 动量守恒定律在微观和高速范围仍适用。 动量守恒定律只适用于惯性系。
• 一般多采用多级火箭来提高速度
v1 u ln N1 v2 v1 u ln N2
vn vn1 u ln Nn
u ln( N1 N2 Nn )
3.3 动量守恒定律

大学物理课件 第3章 动量 角动量

大学物理课件 第3章   动量   角动量

例 如图所示,一个有四分之一圆弧光滑槽的大物体,质量为 M, 置于 光滑的水平面上。另一质量为m的小物体从圆弧顶点由静止开始下滑。 求当小物体m滑到底时,M滑槽在水平上移动的距离。
解 以 M和 m 为研究对象,其在水平方向不受外力(所受外力都 在竖直方向),故水平方向动量守恒。
设在下滑过程中,m相对于M的滑动速度为m , M 对地速 度为 M ,并以水平方向右为正,则有
t
问题 结果与m与槽M间是否存在摩擦有关系吗?
3. 质心运动定理
C
mii mc m i 1 质点系的动量 p mc
i 1
m
n
rC
mi ri
n i 1
m
n
i i
质点系的动量等于质点系的质量乘以质心的速度。 注 质点系的动量的两种表达式
n p mii , p mc
pA m j ,
pB mi
y
B
I AB pB pA m (i j )
C
pC m j
o
A
x
I AC pC pA 2m j
质点的动量定理
例 一质量为10kg的物体沿x轴无摩擦地运动,设t=0时,物体 位于原点,速度为零。设物体在力(F=3+4t)N作用下运动了3秒, 求此时它的速度和加速度。 解
3.2
角动量定理 角动量守恒定律
3.2.1 质点的角动量定理及守恒定律
1. 力矩
讨论
力F 对定点O 的力矩 Mo F r F
单位:牛 米(N m)
(1)力矩的大小和方向
所组成的平面,指向是由 180 的角转到 F 时的右手螺旋前进的方向
①方向垂直于 r 和 F o
r 经小于
x 方向: m sin m0 sin 0 y 方向: ( f mg )t m cos m0 cos sin 由第一式 0 sin

大学物理之3-2动量守恒定律

大学物理之3-2动量守恒定律

实验器材与步骤
• 实验器材:滑块、气垫导轨、挡光板、光电门、天平、砝 码、小车等。
实验器材与步骤
实验步骤 1. 将滑块放置在气垫导轨上,调整挡光板的位置,使滑块能够顺利通过光电门。
2. 使用天平测量滑块和小车的质量,并记录下来。
实验器材与步骤
01
3. 将小车从静止状态释放,使其与滑块发生碰撞。
04 动量守恒定律的推导与证 明
推导过程
01
牛顿第二定律:物体受到的合外 力等于其质量与加速度的乘积。
02
定义动量为物体的质量与速度的 乘积,即$p=mv$。
根据牛顿第二定律,物体受到的 合外力等于其动量的变化率,即 $frac{dp}{dt}=ma$。
03
当合外力为零时,动量守恒,即 $frac{dp}{dt}=0$。
02
4. 使用光电门测量小车和滑块碰撞前后的速度,并记录下来。
5. 根据测量数据计算系统在碰撞前后的动量变化,验证动量守
03
恒定律。
实验结果与结论
实验结果
通过测量和计算,发现系统在碰撞前后的动量变化符合动量守恒定律。
实验结论
实验验证了动量守恒定律的正确性,加深了对动量守恒定律的理解。同时,实验过程中需要注意控制 实验条件,保证测量数据的准确性和可靠性。
能量守恒定律
在某些条件下,动量守恒定律和能量守恒定律可以 结合起来使用,如碰撞过程中动能和动量的关系。
角动量守恒定律
当系统受到的力矩为零时,系统的角动量保 持不变,与动量守恒定律一起描述了机械运 动的守恒规律。
在现代物理学中的应用
01
基本粒子
在研究基本粒子的相互作用和演 化过程中,动量守恒定律是重要 的理论基础。

大学物理课件角动量守恒定律

大学物理课件角动量守恒定律

只要整个系统受到的合外力矩为0,则系统 只要整个系统受到的合外力矩为 , 的总角动量守恒, 的总角动量守恒,即: 恒量 比如:当研究质点与刚体的碰撞问题 质点与刚体的碰撞问题时 比如:当研究质点与刚体的碰撞问题时,可以把质 点和刚体看成一个系统,在碰撞过程中, 点和刚体看成一个系统,在碰撞过程中,系统所受 的合外力矩为零,所以系统的角动量守恒 系统的角动量守恒。 的合外力矩为零,所以系统的角动量守恒。
刚体定轴转动的角动量定理 三、刚体定轴转动的角动量守恒定律 若 ,则
当刚体受到的合外力矩为0 时,其角动量保持不变。 其角动量保持不变。 当刚体受到的合外力矩为 讨论 Ø 内力矩不改变系统的角动量。 内力矩不改变系统的角动量。 Ø 在冲击等问题中 冲击等问题中 常量
Ø 角动量守恒定律是自然界的一个基本定律。 角动量守恒定律是自然界的一个基本定律。
可得:质点系的角动量守恒定律: 可得:质点系的角动量守恒定律: 若: 则: 或:
当质点系所受的合外力矩为零时,其角动量守恒。 当质点系所受的合外力矩为零时,其角动量守恒。
二、刚体定轴转动的角动量定理角动量守恒定律 刚体定轴转动的角动量定理角动量守恒定律 质点对点的角动量: 质点对点的角动量: 作圆周运动的质点的角动量: 作圆周运动的质点的角动量: 1、刚体定轴转动的角动量
( 海豚 Ⅱ )
(支奴干 CH47)
装置反向转动的双旋翼产生 反向角动量而相互抵消
用两个对转的顶浆
自然界中存在多种守恒定律 2 动量守恒定律 2 能量守恒定律 2 角动量守恒定律 2 电荷守恒定律 2 质量守恒定律 2 宇称守恒定律等
例:人与转盘的转动惯量J0,伸臂时 人与转盘的转动惯量 , 臂长为 l1,收臂时臂长为 l2。人站在 , 。 不计摩擦的自由转动的圆盘中心上, 不计摩擦的自由转动的圆盘中心上, 的哑铃。 每只手抓有质量为 m的哑铃。伸臂时 的哑铃 转动角速度为 1, , 求:收臂时的角速度 2 。 解:整个过程合外力矩为0, 整个过程合外力矩为 , 角动量守恒, 角动量守恒,

大学物理之3-2 动量守恒定律

大学物理之3-2 动量守恒定律

3-2 动量守恒定律 -
pe(电子) pe = 1.2 ×10 kg m s 电子) 23 1 pν = 6.4 ×10 kg m s pN α θ 解 pe + pν + pN = 0 pν(中微子) 中微子) pe ⊥ pν 2 2 12 ∴ p N = ( pe + pν ) 22 1 = 1 .36 × 10 kg m s pe o = 61.9 图中 α = arctan pν 或 θ = 180o 61.9o = 118.1o
(3) 若 F )
ex
= ∑ Fi ≠ 0 ,但满足 F
ex
ex x
=0
有 px =
∑m v
i i
i
ix
= Cx
i
F
F
F
ex x
ex y
= 0,
= 0,
= 0,
p x = ∑ mi vix = C x
p y = ∑ mi viy = C y
p z = ∑ mi viz = C z
i
i
ex z
动量守恒定律是物理学最普遍 最普遍, (4) 动量守恒定律是物理学最普遍,最基 本的定律之一. 本的定律之一.
3-2 动量守恒定律 -
已知 v = 2.5 ×10 m s
3
1
v'= 1.0 × 10 m s
3
1
m1 = 100 kg

m2 = 200 kg
v1 , v 2
y
s
v
o
y'
s'
m2
v'
m1
z
o'
z'
x x'

大学普通物理省名师优质课赛课获奖课件市赛课一等奖课件

大学普通物理省名师优质课赛课获奖课件市赛课一等奖课件

➢ 冲量(矢量) I
t2
Fdt
t1
冲量旳方向——速度增量旳方向.
第三章 动量守恒定律和能量守恒定律
I
t2 t1
Fdt
mv2
mv1
p矢2 量关系I
动量定理 在给定旳时间间隔内,外力作用在质 p1
点上旳冲量,等于质点在此时间内动量旳增量.
分量表达
I x
t2 t1
Fx
dt
mv2 x
mv1 x
解: F yg d(yv)
dt
F yg d(yv)
dt
yg y d v v d y
dt
dt
y F
y
yg ya v2
O
v 2 2ay
F y(g a) 2a y y(g 3a)
第三章 动量守恒定律和能量守恒定律
(2) 以恒定速度v竖直向上提绳,当提起旳高度为y
时,作用在绳端旳力又为多少?
第三章 动量守恒定律和能量守恒定律
一质量为1 kg旳物体,置于水平地面上,物体与地
面之间旳静摩擦系数m0=0.20,滑动摩擦系数m=0.16,
现对物体施一水平拉力F=t+0.96(SI),则2秒末物体旳 速度大小v=___0_.8_9__m_/_s_____.
参照解:在01 s内, F<m0mg ,未拉动物体.
起旳高度为y时,作用在绳端旳力为多少?(2)以恒定速
度v竖直向上提绳,当提起旳高度为y时,作用在绳端旳
力又为多少?(3)以恒定旳力F竖直向上提绳,当提起旳
高度为y时, 绳端旳速度为多少? y
F
y
O
第三章 动量守恒定律和能量守恒定律
(1) 以恒定加速度a从静止竖直向上提绳,当提起旳 高度为y时,作用在绳端旳力为多少?

大学物理 动量守恒

大学物理  动量守恒



y
v2
0.1 2 9.8 1.6 2 9.8 2.5 0.01 126 N (负号表示什么意思?)

v1
(一个馒头2两,重力约为1N)
撞击力126N,
约等于126个馒头的重力。
四、质点系 质点系动量守恒条件
质点系: 有相互作用的若干质点组成的系统。 内力 f : 质点系内质点之间的相互作用力。
二、力的叠加原理
如质点A与n个质点相互作用时,质点A 的动量的增量是所有n个质点传递给它的 动量的矢量和,用力来表示即: dp f1 f 2 ... f n F (叠加原理) dt “一个质点所受的合力等于所有其它质 点对它的作用力的矢量和” ——力的叠加原理
dp 由于 p mv 及 F dt dp d dv dm F (mv ) m v dt dt dt dt
……(牛顿第二定律) 牛 : 物体的动量对时间的变化率等于物 体所受的合力。
若只讨论低速运动情形(质量 近似为常 量), 就有: d m
将式(2)代入(1)得
m Vx u cos M m
负号代表什么意义?
(2)求发射过程中炮车移动的距离 炮车的移动过程非匀速的,也非匀变速的!
设发射过程中的某时刻 t : 炮车的移动速度为
炮弹相对炮车的速度为
V x (t )
u(t )
利用
m Vx (t ) u( t ) cos M m
§2.1 惯性
一、惯性定律(牛顿第一定律) 任何物体都保持静止或匀速直线运动的 状态,除非作用在它上面的力迫使它改 变这种状态。
数学形式:
F 0时, v 恒量

大学物理5.3角动量守恒定律解析课件

大学物理5.3角动量守恒定律解析课件

6.3kms1
➢ 增加通讯卫星的可利用率
探险者号卫星偏心率高
近地
h1 160.9km
v1 3.38104 kms1 t小很快掠过
远地
h1 2.03105 km v1 1225kms1 t大充分利用
第10页,共33页。
➢ 地球同步卫星的定点保持技术 卫星轨道平面与地球赤道平面倾角为零
严格同步条件 轨道严格为圆形 运行周期与地球自转周期完全相同 (23小时56分4秒)
第24页,共33页。
回顾作业 P72 4 -11
CB
Ny o Nx
F轴 0
M轴 0
A
A、B、C系统
p不守恒;
A、B、C系统对 o 轴角动量守恒
mA mB v1R mA mB mc vR
第25页,共33页。
练习:已知 m = 20 克,M = 980 克 ,v 0 =400米/秒,绳 不可伸长。求 m 射入M 后共同的 v =?
“1987超新星事件” 杨桢
第32页,共33页。
解:内核坍缩过程不受外力矩作用, 对自转轴的角动量守恒
2 5
mR020
2 5
mR2
得坍缩后的角速度为:
R0 R
2
0
2 107 6 103
2
45
2
24 3600
17.9
rad s-1
第33页,共33页。
Lz 恒量
第15页,共33页。
例.已知:两平行圆柱在水平面内转动,
m1 , R1 , 10 ; m2 , R2
求:接触且无相对滑动时
1 ? 2 ?
, 20
10
20
m1
.o1
R1

大学物理-第三章-动量守恒定律和能量守恒定律

大学物理-第三章-动量守恒定律和能量守恒定律

20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri

f ij

rij

rj
0


dW
jidWij

f
ji
dri
fij drj
f ji fij


fji f ji
(dd(rriidrrjj))

f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt

mv2

mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2


m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1

F

dr
F

dr

1 2
mv22

大学物理质点和质点系的动量定理 动量守恒定律

大学物理质点和质点系的动量定理 动量守恒定律
I z Fz dt mv2 z mv1z
t1 t2
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量.
F2 t1 ( F1 F12 )dt m1v1 m1v10 F21 F12 t2 F1 m2 ( F2 F21 )dt m2 v2 m2 v20 m1 t1 因为内力 F12 F21 0 ,故 t2 ( F1 F2 )dt (m1v1 m2 v2 ) (m1v10 m2 v20 )
注意:
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 . ex dp i ex 力的瞬时作用规律 F , F 0, P C dt
1)系统的动量守恒是指系统的总动量不变,系统 内任一物体的动量是可变的, 各物体的动量必相对于同 一惯性参考系 .
t0 i i i
可知
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 .
ex 力的瞬时作用规律 F ex dp , F 0, P C dt
i
2– 1 质点和质点系的动量定理 动量守恒定 律 动量守恒定律
I E
p mv
Fdt dp d (mv)
dp d (mv) F dt dt
t2 冲量 力对时间的积分(矢量) I Fdt
t1

t2
t1
Fdt p2 p1 mv2 mv1
2– 1 质点和质点系的动量定理 动量守恒定 律
mv1
F

大学物理-角动量守恒定律 PPT

大学物理-角动量守恒定律 PPT

dt 12
dt
考虑到 t
dr g cost 7lg cos(12v0 t)
dt 2
24 v0
7l
37
例6 一杂技演员M由距水平跷板高为h 处 自由下落到跷板的一端A,并把跷板另一端 的演员N弹了起来.问演员N可弹起多高?
M
h
N
C
A
B
l/2
l
38
设跷板是匀质的,长度为l,质量为m',
6mv0
(M 3m)l
v0 m
31
例3 摩擦离合器 飞轮1:J1、 w1 摩擦轮2: J2 静止,两轮沿轴向结合,结合后两轮达到 的共同角速度。 解:两轮对共同转轴的角动量守恒
21
试与下例的齿轮啮合过程比较。
32
例4 两圆盘形齿轮半径r1 、 r2 ,对通过盘心
垂轮直以于0 盘转面动转,轴然的后转两动轮惯正量交为啮J1合、,J2求,啮开合始后1
点o的矢径为 r ,动量为 p ,如下图。在计算其
角动量时,注意有两个特点:
(1) o点到 p 方向的垂直距离 r sin 不变;
(2) L 方向不变;
p2
假如 p 的大小也不变, 显然L 的大小不变。这表
明,自由质点对任意参考 点的角动量保持不变。
p1
1 r1

2
r2
r sin o
5
1.5.2 质点角动量定理
必须指明是对哪个点而言的
注意两点:
(1) 质点的角动量是相对某一参考点而言的,因此
对不同的参考点,角动量 L 不同;
(2) L 的大小在0~ rp 之间变化,如果把动量分解
为径向分量 pcos 和横向分量 psin ,则仅横

大学物理课件考研备考期末复习 角动量 角动量守恒定律

大学物理课件考研备考期末复习 角动量 角动量守恒定律

解:对M:M =T1 R=J
J= 1 MR2 2
对m : mg T1 ma a R
解 方 程 得 :a
m
m M
2
g
v 2ah 4mgh 2m M
v 1 4mgh
R R 2m M
·R 绳 v0=0
m
th
2m g
r2 R2
dr
2 3
m gR
根据转动定律,得
M
2 3
m gR
4g
J
1 m R2
3R
2
角加速度为常量,且与ω0的方向相反,
表明圆盘作匀减速转动
0 t
当圆盘停止转动时,ω=0,则得
t 0 3R0 4g
一个质量为M、半径为R 的定滑轮 上面绕有细绳,绳的一端固定在滑轮边上, 另一端挂一质量为m 的物体而下垂。忽略 定轴O 轴处摩擦,求物体m由静止下落高度h时的 速度和此时滑轮的角速度。
Mdt
L2
L1
冲量矩
t2
M
dt
t1
质点的角动量定理:对同一参考点 O ,质点所 受的冲量矩等于质点角动量的增量.
3 质点的 角动量守恒定律 M 0, L 恒矢量
质点所受对参考点 O 的合力矩为零时,质点对该 参考点 O 的角动量为一恒矢量.

例1 一半径为 R 的光滑圆环置于竖直平面内.一质 量为 m 的小球穿在圆环上, 并可在圆环上滑动. 小球开始 时静止于圆环上的点 A (该点在通过环心 O 的水平面上), 然后从 A 点开始下滑.设小球与圆环间的摩擦略去不计.求 小球滑到点 B 时对环心 O 的角动量和角速度.
解 小虫与细杆的碰撞视为完全非弹性碰撞,碰撞 前后系统角动量守恒

大学物理(上)课件-第02章质点动力学3-2

大学物理(上)课件-第02章质点动力学3-2

(
)
50
� � � dL � 质点系角动量定理: M = ∑ ri × Fi = dt
质点系对某一参考点的角动量随时间的变化率等 于系统所受各个外力对同一参考点力矩之矢量和。 质点系角动量定理的积分式:

t2
t1
� � � Mdt = L2 − L1
作用于质点系的冲量矩等于质点系在作用时 间内的角动量的增量 。
例6 宇宙飞船在宇宙尘埃中飞行,尘埃密度为ρ。如 果质量为mo的飞船以初速vo穿过尘埃,由于尘埃粘在 飞船上,致使飞船速度发生变化。求飞船的速度与其 在尘埃中飞行的时间的关系。(设飞船为横截面面积 为S的圆柱体) 解: 某时刻飞船速度: v,质量:m 动量守恒: 质量增量:
m0v0 = mv
dm = ρ Sv dt
2.质点系的动量定理:

t
t0
� � � � ∑ Fi dt = p − p0 = ∆p
� � dp ∑ Fi = dt
质点系统所受合外力的冲量等于系统总动量的增量。 微分式:
注意:系统的内力不能改变整个系统的总动量。
31
设 有n个质点构成一个系统 第i个质点: 质量
� � 内力 F 外力 Fi 内i
O
y
48
3. 质点的角动量定理
� � dL MO = dt
质点对某一参考点的角动量随时间的变化率等于 质点所受的合外力对同一参考点的力矩。 角动量定理的积分式:

t2
t1
� � � M O dt = L2 − L1

t2
t1
� M O dt
称为“冲量矩”
49
n � n � � � 质点系的角动量: L = ∑ Li = ∑ ( ri × pi ) i =1 i =1

【大学物理】第四章 动量 动量守恒定律

【大学物理】第四章 动量 动量守恒定律
15
o f
dv mg F k Av m dt v t mdv mg F k Av dt 0 0
m mg-F-k Av ln t kA mg F mg F k Av e mg F
kA t m
v
vm
t
kA t mg F m 1 e v kA
质心的运动 ~ 质点 质量 M 受力 F外
位于 rc
其运动与系统 内质点相互作 用无关
11
小结
质点
质点系
p mv dp F dt p pi Mvc dp F外 dt
i
v c F ma F外 Mac
基本方法:用质心作为物体(质点系)的代表, 描述质点系整体的平动。
f kmv
求: 轨道方程
解: 先建立 x,y 方向的运动微分方程, 受力情况如图:
y
dv x k mvx m dt k mvy mg m dv y dt
v0 f m
o

mg
17
x
dv x k mvx m dt k mvy mg m
用积分法求解
19
以地面为参考系, 列 M 的运动方程:
受力情况如图:
M

y Q
aM
x

Mg
N N
Fx N sin MaM Fy Q Mg N cos 0
(1) (2)
aM 0 , M不是惯性系。
20
以地面为参考系, 列 m 的运动方程: 由相对运动加速度关系, y
r2
rc
C
质心位矢是各质点 位矢的加权平均
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o
x
dx dx dP dt dt dt
11
根据动量定理,桌面对柔绳的冲力为:
dx dx dP 2 dt F= =-v dt dt
柔绳对桌面的冲力F=-F’ 即:
M 2 2 F v v 而v 2 gx F 2Mgx / L L
2
而已落到桌面上的柔绳的重量为
mg=Mgx/L
所以
2 vt2 v0 2as
F总=F+mg=2Mgx/L+Mgx/L=3mg
12
三、质心
1、引入
斜抛三角板
运动员跳水
投掷手榴弹
2、质心的计算
m i ri
i 1 n n
rc
m
i 1
i
代表质点系质量分布的 平均位置,质心可以代 表质点系的平动
13
质心位置矢量各分量的表达式
牛顿第二定律的另外一种表示方法
dv d dP F ma m ( mv ) dt dt dt
3
三、动量定理
P2 P1

dP
dP F dt
dP Fdt
t2 P2 P1 I = Fdt
t1

t2
t1
Fdt
0
t1
dt
t2
t
• •
冲量是表征力持续作用一段时间的累积效应; 矢量: 大小和方向; 过程量, 改变物体机械运动状态的原因。
2
二、动量
定义:物体的质量与速度的乘积叫做物体的动量
P mv
•动量是矢量,大小为 mv,方向就是速度的方向; • 表征了物体的运动状态
•单位: kg· m· s-1 •量纲:MLT-1
I Fdt=P P F= t
6
例3-1、质量为2.5g的乒乓球以10m/s的
速率飞来,被板推挡后,又以20m/s的速 率飞出。设两速度在垂直于板面的同一平 面内,且它们与板面法线的夹角分别为 45o和30o,求:(1)乒乓球得到的冲量; (2)若撞击时间为0.01s,求板施于球的 平均冲力的大小和方向。
t1
t2
F12 F21
t2 F1+F2 dt+ F12+F21 dt t1 t1
( m1v1 m 2 v 2 ) ( m1v10 m 2 v 20 )
t2
F1+F2 dt (m1v1 m2v2 ) (m1v10 m2v20 )
n
Fi内 0
i 0
t2
n n F外力dt mi vi mi vi 0 t1 i 1 i 1
I=P-P0
I x=Px-Px 0 I y=Py-Py 0 I z=Pz-Pz 0
作用在系统的合外力的冲量 等于质点系动量的增量—— 质点系的动量定理
v2 30o
45o
v1 y O
nபைடு நூலகம்
解:取挡板和球为研究对象,由于作用 时间很短,忽略重力影响。设挡板对球 的冲力为F则有:
v2 30o 45ox v1 n
I F dt mv2 mv1

I x Fx dt mv2 cos 30 (mv1 ) cos 45 Fx t
F为恒力时,可以得出I=F t F作用时间很短时,可用力的平均值来代替。
I Fdt=P I F t P
在运动过程中,作用于质点的合力在一段时间内的冲量 等于质点动量的增量——动量定理
4
说明
•冲量的方向不是与动量的方向相同,而是与动量增 量的方向相同 •动量定理说明质点动量的改变是由外力和外力作用 时间两个因素,即冲量决定的 •动量定理的分量式
I x Fx dt mv2 x mv1x
t t
I y Fy dt mv2 y mv1 y I z Fz dt mv2 z mv1z
t
•应用: 利用冲力:增大冲力,减小作用时间——冲床 5 避免冲力:减小冲力,增大作用时间——轮船靠岸时的缓冲
求作用力
t1
作用在两质点组成的系统的合外力的冲量等于系统内两质 点动量之和的增量,即系统动量的增量。 9
二、多个质点的情况
t2 t2 n n n Fi外 dt+ Fi内 dt mi vi mi vi 0 i 1 i 1 t1 i 1 t1 i 1 n
xc
m x
2 y 2
I
I I 6.14 10 Ns
2 x
tan
Iy

Ix
0.1148
6.54
为 I 与x方向的夹角。
8
§3-2 质点系动量定理
和质心运动定理
一、两个质点的情况 t2 F1+F12 dt m1v1 m1v10
t1 t2
F2+F21 dt m2v2 m2v20
10
例3-2、一质量均匀分布的柔软
细绳铅直地悬挂着,绳的下端刚好 触到水平桌面上,如果把绳的上端 放开,绳将落在桌面上。试证明: 在绳下落的过程中,任意时刻作用 于桌面的压力,等于已落到桌面上 的绳重量的三倍。 证明:取如图坐标,设t时刻已有x长 的柔绳落至桌面,随后的dt时间内将 有质量为dx(Mdx/L)的柔绳以dx/dt的 速率碰到桌面而停止,它的动量变化 率为:
第三章 动量守恒定律
• • • • §3-1 §3-2 §3-3 §3-4 动量和动量定理 质点系动量定理和质心运动定理 动量守恒定律 碰撞
1
§3-1 动量和动量定理
一、冲量(力的作用对时间的积累,矢量)
大小:
t2 I = Fdt
t1
F F
方向:速度变化的方向 单位:N· s 量纲:MLT-1 说明

I y Fy dt mv2 sin 30 mv1 sin 45 Fy t
7
t 0.01s v1 10m/s v2 20m/s m 2.5g
Fx 6.1N Fy 0.7N F F F 6.14N
2 x 2 y
I x 0.061Ns
I y 0.007Ns
相关文档
最新文档