热力学第二定律优秀课件

合集下载

热力学第二定律ppt优秀课件

热力学第二定律ppt优秀课件

1824 年,法国工程师
N.L.S.Carnot (1796~1832)
设计了一个循环,以理想气
体为工作物质,从高温热源
吸收的热量,一部分通过理
想热机用来对外做功,另一
部分的热量放给低温热源。
卡诺
这种循环称为卡诺循环。
⑴恒温可逆膨胀
Q 1 W 1V V 1 2pdVnR T 1lnV 2/V 1 ΔU= 0
❖ 热力学第二定律是实践经验的总结,反过来,它指 导生产实践活动
❖ 热力学第二定律关于某过程不能发生的断言是十分 肯定的。而关于某过程可能发生的断言则仅指有发生 的可能性,它不涉及速率问题。
§3.1 自发过程及热力学第二定律
100 oC 0 oC
水从高处
50 oC
低处
N2 O2 N2 + O2
.........
irW Q1Q1Q 1Q21Q Q1 2
r
1Q2 Q1
1-T2 T1
结论:
QQ
1 2 0 TT
可逆循环取等号
1
2
• 循环过程是可以对外做功的.
• 理想气体卡诺热机的效率η恒小于1, 且只与两个热源的温度 (T1, T2)有关, 温差愈大, η愈高。也就是说,卡诺热机要对外
自发性、非自发性与可逆性、不可逆性的关系: 过程是否自发,取决于体系的始、终态;过程是否可逆取决
于对过程的具体安排。 不论自发还是非自发过程,一切实际过程都是不可逆的。若
施以适当的控制,在理论上都能成为可逆过程。
2.热力学第二定律
克劳修斯:热从低温物体传 给高温物体而不产生其它变 化是不可能的。
开尔文:从一个热源吸热,使 之完全转化为功,而不产生其 它变化是不可能的。

(完整版)热力学第二定律.ppt

(完整版)热力学第二定律.ppt

热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度 变化的规律。 •功转换为热:大量分子的有序运动向无序运动转化, 是可 能的;而相反的过程,是不可能的。
•热传导:大量分子运动的无序性由于热传导而增大了。 •自由膨胀:大量分子向体积大的空间扩散,无序性增大。
不可能从单一热源吸收热量,使它
Q
完全转变为功而不引起其它变化。
热源
A. 从单一热源吸收热量,使它完全转变为功,一定要引起 其它变化。
特例:等温过程从单一热源吸收热量,并完全用来做功, 必导致系统体积变化。
B. 第二类永动机不可能制成。
η 100% 2.克劳修斯表述
热量不能自动地从低温物体传向高温物体。
讨论: A.没有外界做功,不可能从低温热源将
热量传输到高温热源。 B.第二类永动机不可能制成。
高温热源 Q1 A
Q2 低温热源
热力学第二定律是研究热机效率和制冷系数时提 出的。对热机,不可能吸收的热量全部用来对外 作功;对制冷机,若无外界作功,热量不可能从 低温物体传到高温物体。热力学第二定律的两种 表述形式,解决了物理过程进行的方向问题。
S 0
(孤立系, 自然过程)ห้องสมุดไป่ตู้
§8-6 热力学过程的不可逆性
广义定义:假设所考虑的系统由一个状态出发
经过某一过程达到另一状态,如果存在另一个 过程,它能使系统和外界完全复原(即系统回 到原来状态,同时原过程对外界引起的一切影 响)则原来的过程称为可逆过程;反之,如果 用任何曲折复杂的方法都不能使系统和外界完 全复员,则称为不可逆过程。
各种宏观态不是等几率的。那种宏观态包含的微观态 数多,这种宏观态出现的可能性就大。

热力学第二定律-PPT课件

热力学第二定律-PPT课件

答案 C
18
典例精析 二、热力学第一定律和热力学第二定律
返回
【例3】 关于热力学第一定律和热力学第二定律,下列论述正 确的是( ) A.热力学第一定律指出内能可以与其他形式的能相互转化,
而热力学第二定律则指出内能不可能完全转化为其他形式 的能,故这两条定律是相互矛盾的 B.内能可以全部转化为其他形式的能,只是会产生其他影响, 故两条定律并不矛盾
答案 B
15
典例精析 一、热力学第二定律的基本考查 返回
【例2】 如图1中汽缸内盛有一定质量的理想气体,汽缸壁是 导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的, 但不漏气,现将活塞杆缓慢向右移动,这样气体将等温膨胀并 通过活塞对外做功.若已知理想气体的内能只与温度有关,则 下列说法正确的是( )
的是( D )
A.随着低温技术的发展,我们可以使温度逐渐降低,并最终达 到绝对零度
B.热量是不可能从低温物体传递给高温物体的 C.第二类永动机遵从能量守恒定律,故能制成 D.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,同时空
气向外界放出热量1.5×105 J,则空气的内能增加了0.5×105 J
解析 由于汽缸壁是导热的,外界温度不变,活塞杆与外界连 接并使其缓慢地向右移动过程中,有足够时间进行热交换,所 以汽缸内的气体温度也不变,要保持其内能不变,该过程气体 是从单一热源即外部环境吸收热量,即全部用来对外做功才能 保证内能不变,但此过程不违反热力学第二定律.此过程由外 力对活塞做功来维持,如果没有外力对活塞做功,此过程不可 能发生.
程都具有
,都是不可逆的.
方向性
7
一、热力学第二定律 返回 延伸思考
热传导的方向性能否简单理解为“热量不会从低温物体传给高温物 体”? 答案 不能.

热力学第二定律ppt课件

热力学第二定律ppt课件

从单一热源吸收热量,全 部用来做功而不引起其它 变化叫做第二类永动机。
热力学第二定律的另一种表述就是: 第二类永动机不可能制成。
P61
对宏观过程方向的说明,都可以作为热二的表述。 例如:气体向真空的自由膨胀不可逆;
一切宏观自然过程的进行都具有方向性。
P61
柴薪时期
煤炭时期
石油时期
P61-62
Q2=Q1+W Q1=Q2+W
热机工作时能否将从高温热 库吸收的热量全部用来做功?
不能,从高温热库吸收的热量的一部分 用来做功,剩余的部分释放到低温热库。

Q1
热机工作:
P60
燃料燃烧 冷凝器或大气
漏气热损 散热热损 摩擦热损
燃料产生的 热量Q
输出机械功W
W< Q
P60
P61
对周围环境不产生 热力学方面的影响, 如吸热、放热、做 功、压强变化等。
P59
适用于宏观过程对微观过程不适用
P59
电冰箱通电后箱内温度低于箱外温度,并且还会 继续降温,直至达到设定的温度。显然这是热量从低 温物体传递到了高温物体。这一现象是否违背热力学 第二定律呢?
不违背。电冰箱能实现热量从低温物体传给高温 物体,但这不是自发地进行的,需要消耗电能。
制冷机工作时热量是自发地 从低温热库传到高温热库吗? 不是,有外界做功。
3.4 热力学第二定律
P59
可能发生这样的逆过程吗? 热量自发地由高温物体向低温物体传递的过程是不可逆的
可能发生这样的逆过程吗?
功可以自动转化为热 , 但热却不能自动转化为功。 通过摩擦而使功转变为热的过程是不可逆的。
热现象
物体间的传热 气体的膨胀

热力学第二定律ppt课件

热力学第二定律ppt课件
热力学第二定律的开尔文表述
不可能从单一热源吸收热量,使之全部变成 功 ,而不产生其他影响。 1.热机效率无法达到100%,总会有热损 2.任何热机都不可能把内能全部转化机械能
第二类永机不可制成,不可以制成的原因:违背热力学第二定律 热力学第二定律的各种表述都是的 等价 ,并可从一种表述导出另一种表述
C.电冰箱的工作原理不违反热力学第一定律
D.电冰箱的工作原理违反热力学第二定律
三、 热力学第二定律的开尔文表述
②不可能从单一热源吸收热量,使之全部变成 功,而不产生其他影响
机械能
全部转化(自发)
转化中有其他影响 (要向低温热库放热)
内能(热)
不产生其他影响:对周围环境不产生热力学方面的影响,如吸热、放 热、做功等
不会 因为分子的扩散运动是从密度较大的区域向密度较小的区域进行 并且这个过程是不可逆
一、自然界中宏观过程的方向性
情景二:将一块烧红的铁块投入冷水中,会发生什 么现象?
铁块放热,温度降低,水吸热,温度升高;最终两 者温度相同。
问题:一段时间后会不会出现铁块温度升高,水的温度 降低的情况?
不会出现;说明热量可以自发地从高温物体传到低温物体 而不可以自发地从低温物体传到高温物体
生其它影响。此时热机的效率η=1(100%), η=1的热机称为第二类永动机。
下列说法正确的有( D )
A.第二类永动机和第一类永动机一样,都违背了能量守恒定律,因此 不可能制成
B.根据能量守恒定律,经过不断地技术改进,热机的效率可以达到 100%
C.因为能量守恒,所以“能源危机”是不可能真正出现的
(多选)下图为电冰箱的工作原理示意图.压缩机工作时,强迫制冷剂在 冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热 量,经过冷凝器时制冷剂液化,放出热量到箱体外。下列说法正确的 是( BC )

第六章 热力学第二定律.ppt

第六章 热力学第二定律.ppt
热一律一切热力学过程都应满足能量守恒。 但满足能量守恒的过程是否一定都能进行?
热二律满足能量守恒的过程不一定都能进行! 过程的进行还有个方向性的问题。
§1.热力学第二定律
热力学第二定律的表述
热力学第二定律以否定的语言说出一条确定的规律.
1.开尔文(Kelvin)表述: 不可能从单一热源吸取热量,使之完全变为有
N
A


1 261023

0



1 2
N
A


1 261023

0
这种宏观状态虽原则上可出现,
但实际上不可能出现.
例.用铅字随机排版出一百万字小说的概率


1

106
106



1 106106


1 23.326106

1 22107
0
自然过程的方向性的定量描述:
T称为热力学温标 或开尔文温标
( ) 为普适函数,所以热力学温标与测温物质的性质无关。
用热力学温标所表示的温度写为xK,这里x为温度数值。
水的三相点的热力学温度规定为273.16 K 。
热力学温度的单位——开尔文(K)就是水三相点的热力
学温度的 1 。 273.16
热力学温标和理想气体温标中水的三相点温度值都定为 273.16K,可见在理想气体温标能确定的范围内,热力学 温标与理想气体温标的测得值相等。
A A
Q1 Q2 A
A A
Q1 Q2 A
若甲做正循环,乙做逆循环,则η不大于η´ 若甲做逆循环,乙做正循环,则η ´不大于η

即:所有工作于相同高温热源和相同的低温热源之间的一切可 逆热机,其效率都相等。

热力学第二定律PPT课件

热力学第二定律PPT课件

WR1 5743J
WI3 44.90103 J
上一页
WR2 5743J
I1+R2: Q=-W=-WI1-WR2 =-5743J (系统放热,得功)
I2+R2: Q=-W=-WI2-WR2 =-3498J (系统放热,得功)
R1+R2: Q=-W=-WR1-WR2 = 0
I3+R2: Q=-W=-WI3-WR2 = 39.16×103J
克劳修斯:热从低温物体传给高温物体而不产生其
它变化是不可能的。
T1
反 证

Q1

Q2
热机 W
两 种
Q2
说 法
T2
等 价
T1
Q1 W
热机
Q1 Q3
制冷机
Q3
T2
开尔文:从一个热源吸热,使之完全转化为功,而
不产生其它变化是不可能的。
3.热力学第二定律(the second law of thermodynamics) 克劳修斯:热从低温物体传给高温物体而不产生其
它变化是不可能的. 开尔文:从一个热源吸热,使之完全转化为功,而不
产生其它变化是不可能的。
注意不要把开尔文说法说成:功可以完全转化为热,
而热不能完全转化为功。遗留的其他变化很重要。
理想气体恒温膨胀时,它所吸收的热全部用来做功,
这是否违背开尔文说法?
不违背
它没有否定还有其它变化,此时附带的另一变化是 气体的体积变大,即系统的状态改变了
过程——体系状态随时间发生变化。
平衡态——在没有外部影响的条件下,系统的所 有宏观性质不随时间变化的状态。
平衡体系的状态得以发生变化依赖环境的影 响,只有来自于体系外部的影响才能使处于平衡 态的体系发生变化。

第三章 热力学第二定律-终ppt课件

第三章 热力学第二定律-终ppt课件
∴ 与例1中的末态能量相同 ∴ T2必与例1相同(理气):T2 = 262.5K
编辑版pppt
26
V20R030R00.041 m 30 1013 10 00 1300
p22R 0.02461 .520 10.46kP a
➢ 求熵变 S = S(He) + S(H2)
He:
200 K S(He) = ? 262.5 K
r
1
ir
2
2δ Q
r
1T
Sr SirS2S 1
δ Q
T
ir
(2) S是容量性质,J.K-1
编辑版pppt
12
二、热力学第二定律的数学表达式
(Mathematical expression of The Second Law)
对两个热源间的不可逆循环:热温商之和小于0
Qc Qh 0 Tc Th
P135-136
一、自发过程的方向和限度
➢ 自发过程(spontaneous process):在一定环境条件下, (环境)不作非体积功,系统中自动发生的过程。反之, 只有(环境)作非体积功方能发生的过程为非自发过程。 通常所说的“过程方向”即是指自发过程的方向。
举例:① 气流:高压
低压
② 传热:高温
编辑版pppt
28
二、相变过程的熵变 (Entropy change in a phase-transition)
1. 可逆相变 ∵ 一般可逆相变为等T,等p,W’=0的可逆过程 ∴ Qr = H
S相变 H相变 T相变
其中, H:可逆相变热 T:可逆相变温度
2. 不可逆相变 方法:设计可逆过程
编辑版pppt
101.3 kPa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W Q1
nR T1
T2
l
n
V V
2 1
n
R
T
1
ln
V V
2 1
T1 T2 T1
1
T2 T1
1
T2 T1
a. 卡诺热机效率仅与两个热源的温度有关。
要提高热机效率,应尽可能提高T1(高),降低T2(低)。 b. T2相同的条件下,则T1越高,热机效率越大意味着 从T1热源传出同样的热量时, T1越高,热机对环境所做
蒸汽热机能量转化总结果:
从高温热源吸收的热(Q1),一部分对外做了功( W),另一部分( Q2 )传给了低温热源(冷凝器)
热机效率:指热机对外做的功与从高温热源吸收的热量之比,即 W Q1
若热机不向低温热源散热,即吸收的热全部用来对外 做功,此时热机效率可达到100%,实践证明,这样的热 机第二类永动机是根本不能实现的。
第二类永动机的不可能性说明热转化为功是有限度的。
2. 热力学第二定律
❖热不能自动从低温物体传给高温物体而不产生其 他变化”。 Clausius说法
❖不可能从单一热源吸热使之全部对外做功而不产生其 他变化”(第二类永动机是不可能实现的)。 Kelvin说法
Clausius说法指明了高温向低温传热过程的不可逆性, Kelvin说法指明了功、热转换的不可逆性, 两种说法完全等价。
一切自发过程都是不可逆的。
不过要注意自发过程并非不可逆转,但必须 外力帮助 外界对之做功 。
例如: 用制冷机可以将热由低温物体转移到高温物体;
用压缩机可将气体由低压容器抽出,压入高压容器;
用水泵可以将水从低处打到高处。 但这一切外界必须付出代价,做出相应的功,而不是
自发逆转。也就是说,自发过程进行后,虽然可以逆转, 使系统恢复到原状,但环境必须消耗功。系统复原,但环 境不能复原。
§3.3 熵与克劳修斯不等式
1. 熵的导出
卡诺循环:
Q1 Q2 T1 T2
0
无限小的卡诺循环:
δQ1 T1
δQ2 T2
0
——任何卡诺循环的可逆热温商之和为零。
对任意可逆循环:可分成无限多的小卡诺循环。 每个小卡诺循环,有
❖ 热力学第二定律是实践经验的总结,反过来,它也 指导生产实践活动。
❖ 热力学第二定律关于某过程不能发生的断言是十分 肯定的。而关于某过程可能发生的断言则仅指有发生 的可能性,它不涉及速率问题。
1. 自发过程
§3.1 热力学第二定律
自发过程:在自然条件(不需外力帮助)下能 够自动发生的过程。
非自发过程:自发过程的逆过程。
nRT1lnV V21 nRT2lnV V34 因23过程和 过程为绝热可逆过程,应用理想气
体绝热可逆过程方程式,有
T 1 V 4R C V ,m T 2 V 1
V 3R C V ,m V 2

V 4 V 3
V 3 V 2
V 1 V 2
V 4 V 1
Wn RT 1 T 2 lnV V 2 1
卡诺热机效率:
热力学第二定律

引言
热力学第一定律即能量转化与守恒原理。 违背热力学第一定律的变化与过程一定不能发生。 不违背热力学第一定律过程却未必能自动发生。 例如,两物体的传热问题,温度不同的两个物体相接 触,最后达到平衡态,两物体具有相同的温度。但其 逆过程是不可能的,即具有相同温度的两个物体,不 会自动回到温度不同的状态,尽管该逆过程不违背热 力学第一定律。
2. 卡诺定理
卡诺循环: 两个绝热可逆过程的功数值相等,符号相反。 两个恒温可逆过程的功则不同:
恒温可逆膨胀时因过程可逆使得热机对外做的功最大, 恒温可逆压缩时因过程可逆使系统从外界得的功最小, 故一个循环过程的总结果是热机以极限的做功能力向外界提 供了最大功,因而其效率是最大的。对此卡诺以定理形式给 出了如下表述: 在两个不同温度的热源之间工作的所有热机,以可逆热 机效率最大——卡诺定理。 卡诺定理的推论:在两个不同热源之间工作的所有可逆 热机中,其效率都相等,且与工作介质、变化的种类无关。
❖2 3,绝热可逆膨胀
W 2 U 2 n C V ,m(T 2 T 1 )
❖3 4,恒温可逆压缩
W3
U3 0 nRT2lnV V34
Q 2
W 3 nR T 2lnV V 3 4
❖4 1,绝热可逆压缩
W 4 U 4 n C V ,m(T 1 T 2)
整个过程系统对外做的功:
W W1 W2 W3 W4
所以一切自发过程都是不可逆的。
2. 热、功转换
热力学第二定律是人们在研究热机效率的基础上建立 起来的,所以早期的研究与热、功转换有关。
热功转换的方向性: 功可以全部转化为热, 热转化为功却是有限制的——热机效率问题
蒸汽热机工作原理:利用燃料煤燃烧产生的热,使水 (工作介质)在高压锅炉内变为高温、高压水蒸气,然 后进入绝热的气缸膨胀从而对外做功,而膨胀后的水蒸 气进入冷凝器降温并凝结为水(向冷凝器散热过程), 然后水又被泵入高压锅炉循环使用。
利用热力学第一定律并不能判断一定条件下什么过程不 可能进行,什么过程可能进行,进行的最大限度是什么。 要解决此类过程方向与限度的判断问题,就需要用到自然 界的另一普遍规律热力学第二定律。
热力学第二定律是随着蒸汽机的发明、应用及热机效率 等理论研究逐步发展、完善并建立起来的。卡诺 (Carnot)、克劳修斯(Clausius)、开尔文(Kelvin) 等在热力学第二定律的建立过程中做出了重要贡献。
的功越大能量除了有量的多少外,还有“品位”或 “质量”的高低,而热的“品位”或“质量”与温度有 关,温度越高,热的“品位”或“质量”越高。
c. 在卡诺循环中,可逆热温商之和等于零。 Q 1 Q 1 Q 2T 1 T 1 T 2 Q Q 2 1 T T 1 2 Q T 1 1Q T 2 20
d. 由于卡诺循环为可逆循环,故当所有四步都逆向进行时 , 环境对系统做功,可把热从低温物体转移到高温物体冷 冻机的工作原理。
§3.2 卡诺循环与卡诺定理
1. 卡诺循环
从理论上证明了热机效率的极限
卡诺循环 : 恒温可逆膨胀 绝热可逆膨胀 恒温可逆压缩 绝热可逆压缩
卡诺循环示意图
热机效率 Carnot 循环的热、功分析(理想气体为工作介质 )
❖12:恒温可逆膨胀
U1 0
W1
nRT1lnV V21
Q 1
W 1 nR T 1lnV V 2 1
相关文档
最新文档