郑州枫杨外国语小升初数学考试真题(含答案)

合集下载

郑州枫杨外国语学校小升初数学试题及答案

郑州枫杨外国语学校小升初数学试题及答案

枫杨2021年3月10日数学考试题6. 如图为手的示用意,在各个手指间标记字母A,B,C,D,请依照图中箭头所示方向从A开始持续的正整数一、二、3、4、五、六、…,A B C D C B A B C…当字母C第201次显现时,恰好数到的数是_______7. 一只电子跳蚤在ABCDE五点之间跳跃,有两种跳跃方式,一种是一次蹦一格,另一种是一次蹦两格,问总共有种不同的跳法。

(A、B、C、D、E 是一条直线上等间距的五个点)8. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现打算全数改换为新型的路灯,且相邻两盏灯的距离变成70米,那么需改换的新型节能灯有________盏。

9. 在长为10米,宽为8米的矩形空地中,沿平行于矩形各边的方向分割出三个完全相同的小矩形花园,其示用意如下图,那么花园的面积______平方米。

8米10.如图,甲、乙两人沿着边长为70米的边长,按逆时针的方向行走,甲从A 以65米/分的速度行走,乙从B以72米/分的速度行走,当乙第一次追上甲时,是在正方形的边______(AB、BC、CD或DA)上。

B CA D11. 2020年4月25日,全国人大常委会发布《中华人民共和国个人所得税法修正案(草案)》,向社会公布征集意见。

草案规定,公民全月工薪不超过3000元的部份没必要纳税,超过3000元的部份为全月应纳税所得额,此项税款按下表分段累进计算。

级数全月应纳税所得额税率1 不超过1500元的部份5%2 超过1500元至4500元的部份10%3 超过4500元至9000元的部份20% …………依据草案规定,解答以下问题:李工程师的月工薪8000元,那么他每一个月应当纳税_______元。

12.将正方体骰子(相对面上的点数别离为1和六、2和五、3和4)放置于水平桌面上,如图5,在图6中,将骰子向右翻腾90°,然后在桌面上按逆时针方向旋转90°,那么完成一次变换,假设骰子的初始位置为图5所示的状态,那么按上述规那么持续完成16次变换后,骰子朝上一面的点数是_________13. 一项工程,甲先单独做2天,然后与乙合作7天,如此才完成全工程的一半。

河南省郑州市枫杨外国语学校小升初数学试卷(含解析)

河南省郑州市枫杨外国语学校小升初数学试卷(含解析)

河南省郑州市枫杨外国语学校小升初数学试卷一.填空(共6题,每题5分)1.(5分)现在是4点20分,再过分时针和分针第一次的夹角为30度.2.(5分)现有甲3千克纯酒精,乙2千克纯水,从甲取a千克倒入乙杯,搅拌均匀后,再从乙取a千克到甲杯,这时,甲的纯净水比乙的酒精多千克.3.(5分)一个圆柱侧面展开长18.宽12的长方形,圆柱的体积是(π取3)4.(5分)一个工程队18天修了三分之一,如果做了3天后,效率提高五分之一,一共要天完成一半.5.(5分)若自然数n使得作连式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”,如因为12+13+14不产生进位现象,所以12是连绵数,但13+14+15产生进位现象,所以12是连绵数,则不超过200的连绵数有个.二.应用题(共6题,共55分)6.(7分)一个小孩拿40块糖说分给了9个人,每个人的糖都不一样.每人至少有一个,问成不成立.7.有一个商厦,进4万元的货,卖完之后,又进了8.8万元的货,进的货是第一次的两倍,并且每一次都比第一次贵4元,现在每件58元,卖完还剩150件时,打八折.问商厦一共赚了多少钱?8.两辆同一型号的汽车从同地同时同速沿一个方向出发,每年最多能带30桶汽油,每桶汽油使汽车前进60千米,每车都须返回出发点,两车可以找对方借油,为了使其中一辆车尽可能远离出发点,那么这辆汽车最远能离出发点多少千米?9.(10分)如图1,某容器由A.B.C三个长方体组成,其中A.B.C的底面积分别为25cm2.10cm2.5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现在以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止,图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.问题:(1)在注水过程中,注满A所用的时间为s;(2)求A的高度h A及注水的速度V;(3)求所注满容器所需时间及容器的高度.10.如图,纸上画了四个大小一样的圆,圆心分别是A.B.C.D,直线m通过A.B,直线n通过C.D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S﹣1),直线m.n之间被圆盖住的面积是8,阴影部分的面积是S1.S2.S3满足关系式S3=S2=S1,求S.参考答案与试题解析一.填空(共6题,每题5分)1.(5分)现在是4点20分,再过7分时针和分针第一次的夹角为30度.【分析】分针每分钟=6°,时针每分钟走=0.5°,4点20分时,分针从数字12走到数字4,时针从数字4走了0.5°×20=10°,分针和分针第一次的夹角为30度时,分针要比时针多走30°+10°,根据追及问题即可解答.【解答】解:(30+10)÷(6﹣0.5)=40÷5.5=7(分)答:再过7分时针和分针第一次的夹角为30度.故答案为:7.2.(5分)现有甲3千克纯酒精,乙2千克纯水,从甲取a千克倒入乙杯,搅拌均匀后,再从乙取a千克到甲杯,这时,甲的纯净水比乙的酒精多0千克.【分析】由甲中取出a千克纯酒精倒入乙,算出此时乙杯中纯酒精的浓度,进而根据一个数乘分数的意义,用乘法求出这时从乙中取a千克混合液中水的质量,即为甲中水的质量,再求出a千克中纯酒精的质量,用a减去这个质量,即为乙中纯酒精的质量,然后进行比较,即可得出结论.【解答】解:从甲杯中取出a千克纯酒精到入乙杯搅匀后,乙杯中酒精的浓度为,则从乙杯中取出a千克混合液中水有a•=千克,即为这时甲杯中含有的水,而乙杯中纯酒精的含量为(a﹣a•)千克,因为a﹣a•=﹣=,所以甲杯中含有的水与乙杯中含有的纯酒精一样多,即这时甲杯中混入的纯净水比乙杯中的纯酒精多0千克;故答案为:0.3.(5分)一个圆柱侧面展开长18.宽12的长方形,圆柱的体积是324或216(π取3)【分析】根据题意,本题可分别把18.12作为圆柱的底面周长进行作答,可利用圆的周长公式计算出这个圆柱的底面半径是多少,然后再利用圆柱的体积=底面积×高进行计算圆柱的体积,列式解答即可得到答案.【解答】解:(1)假设圆柱的底面周长是18,那么圆柱的高为12,圆柱的底面半径为:18÷3÷2=3,圆柱的体积为:3×32×12=27×12,=324;(2)假设圆柱的底面周长是12,则圆柱的高为18,圆柱的底面半径为:12÷2÷3=2,圆柱的体积为:3×22×18,=12×18,=216;答:这个圆柱的体积可能是324或216.故答案为:324或216.4.(5分)一个工程队18天修了三分之一,如果做了3天后,效率提高五分之一,一共要23天完成一半.【分析】先根据工作效率=工作总量÷工作时间,求出工程队的工作效率,再依据分数乘法意义,求出效率提高五分之一后的工作效率,以及做3天后,完成的工作总量,最后根据工作时间=工作总量÷工作效率即可解答.【解答】解:(﹣18×3)÷[18×(1)]+3,=()÷[]+3,=+3,=20+3,=23(天),答:一共要23天完成一半.故答案为:23.5.(5分)若自然数n使得作连式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”,如因为12+13+14不产生进位现象,所以12是连绵数,但13+14+15产生进位现象,所以12是连绵数,则不超过200的连绵数有24个.【分析】首先根据题意求出个位数和十位数满足的条件,然后根据能构成“连绵数”的条件求出不超过100的“连绵数”的个数.【解答】解:根据题意个位数需要满足要求:∵n+(n+1)+(n+2)<10,即N<2.3,∴个位数可取0,1,2三个数,∵十位数需要满足:3n<10,∴n<3.3,∴十位可以取0,1,2,3四个数,小于200的连绵数共有3×4×2=24个.故答案为:24.二.应用题(共6题,共55分)6.(7分)一个小孩拿40块糖说分给了9个人,每个人的糖都不一样.每人至少有一个,问成不成立.【分析】假设最少的一个同学有一块,由于“每个人的糖都不一样.”,所以相邻的两个人的块数的差最小为1,也就是说,这9个人的块数最少为1~9的等差数列,那么至少需要的块数是:(1+9)×9÷2=45(块),与题干40块不符.【解答】解:根据分析可得,题设不成立.因为这9个人的块数最少为1~9的等差数列,所需块数:(1+9)×9÷2=45(块),45≠40,所以题设不成立.7.有一个商厦,进4万元的货,卖完之后,又进了8.8万元的货,进的货是第一次的两倍,并且每一次都比第一次贵4元,现在每件58元,卖完还剩150件时,打八折.问商厦一共赚了多少钱?【分析】如果第二次进和第一次同样的货要8.8÷2=4.4万元,又4.4﹣4=0.4万元=4000元,则第一次进货4000÷4=1000件,共进货2000+1000=3000件,又都定价58元,还有150件打8折,没打折部分卖的钱数是(3000﹣150)×58元,打折部分为150×58×0.8元,又总成本为4万元+8.8万元=12.8万元,即128000元,所以共赢利(3000﹣150)×58+150×58×0.8﹣128000=44260(元).【解答】解:(8.8÷2)﹣4=4.4﹣4=0.4(万元).0.4万元=4000元;4000÷4=1000(件),1000+1000×2=1000+2000=3000(件).4万元+8.8万元=12.8万元,12.8万元=128000元,(3000﹣150)×58+150×58×0.8﹣128000=3850×58+6960﹣128000=223300+6960﹣128000=44260(元).答:共赢利44260元.8.两辆同一型号的汽车从同地同时同速沿一个方向出发,每年最多能带30桶汽油,每桶汽油使汽车前进60千米,每车都须返回出发点,两车可以找对方借油,为了使其中一辆车尽可能远离出发点,那么这辆汽车最远能离出发点多少千米?【分析】甲车可以行驶到汽油用掉的时候,留汽油返程,给另一车加汽油,因为此时乙车也刚好用掉汽油的,所以乙车实际可用的汽油,所以它最远可达60×30÷2×千米.据此解答即可.【解答】解:甲车可以行驶到汽油用掉的时候,留汽油返程,给另一车加汽油,因为此时乙车也刚好用掉汽油的,所以乙车实际可用的汽油,乙车可以行驶:60×30÷2×=1800÷2×=900×=1200(千米)答:这辆汽车最远能离出发点1200千米.9.(10分)如图1,某容器由A.B.C三个长方体组成,其中A.B.C的底面积分别为25cm2.10cm2.5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现在以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止,图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.问题:(1)在注水过程中,注满A所用的时间为10s;(2)求A的高度h A及注水的速度V;(3)求所注满容器所需时间及容器的高度.【分析】(1)看折线图可得答案;(2)从图中可以看出A和B的高度和是12厘米,就设注水的速度v;则注满时甲的高度加上乙的高度就是12厘米,列方程解得;(3)根据C的容积和总容积的关系求出C的容积,再求C的高度及注满C的时间,就可以求出注满容器所需时间及容器的高度.【解答】解:(1)看图象可知,注满A所用时间为10s,(2)从图中可以看出A和B的高度和是12cm,就设注水的速度vcm3;则注满时甲的高度加上乙的高度就是12cm,列方程得:+=12,20V+40V=600,60V=600,V=10,A的高度h A:10×V÷25=10×10÷25=4(cm),答:A的高度h4为4cm,注水的速度v是10cm3;(3)设C的容积为ycm3,则有,4y=10v+8v+y,将v=10代入计算得:4y﹣y=10×10+8×10+y﹣y,3y=180,y=60,那么容器C的高度为:60÷5=12(cm),故这个容器的高度是:12+12=24(cm),注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=24(s).答:注满容器所需时间是24s及容器的高度24cm.故答案为:10.10.如图,纸上画了四个大小一样的圆,圆心分别是A.B.C.D,直线m通过A.B,直线n通过C.D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S﹣1),直线m.n之间被圆盖住的面积是8,阴影部分的面积是S1.S2.S3满足关系式S3=S2=S1,求S.【分析】观察图形可以得到四个圆之间的位置关系,根据重叠部分的面积可以列出一个方程,然后与题目中S1,S2,S3的关系联立方程组,解方程组得到S的值.【解答】解:由题设可得:所以S1=①又因为2S﹣S1﹣S2﹣S3=8,即:2S﹣2S1=8 ②把①代入②消去S1得:2S﹣2×=86S﹣10+2S=248S=34S=.。

枫杨外国语小升初数学考试题解析

枫杨外国语小升初数学考试题解析

枫杨外国语考试题详解一、填空(每题4分,共40分) 1、273用循环小数表示,小数点后第2012位上的数字是 。

解析:杂题(周期问题) 因为73=0.428571428571………… 6个一组循环 2012÷6=335……2 第二个数字是2. 答案:22、有一个数,被3除余2,被4除余1,那么这个数除以12余 。

解析:数论问题A ÷3=m ……2 等价于A ÷3=(m-1)+5 A ÷4=n ……1 等价于 A ÷4=(n-1)+5 所以A 的最小值:A=3×4+5=17 17÷12=1……5 答案:53、一个真分数的分子和分母相差102,若这个分数的分子和分母都加上23,所得的新分数约分后得41,这个真分数是 。

解析:数论问题由于分子分母都加上23,所以它们的差不变,仍然是102.此时分母是分子的4倍。

所以此时分子为102÷(4-1)=34 原分子为:34-23=11 原分母为:11+102=113 答案:1134、4时10分,时针和分针的夹角是 度。

解析:行程问题(时钟问题)这道题考查的是时钟问题。

关键在找到时针和分针的速度。

分针速度:360÷60=6(度/分钟) 时针速度:360÷12÷60=0.5(度/分钟) 从四点整开始考虑,分钟和时针都走了10分钟。

四点整的时候分针时针相差: 4×30=120(度) 120-(6-0.5) ×10=65(度) 答案:65(度)5、从1开始2012个连续自然数的积的末尾有 个连续的零。

解析:数论问题这道题考查数论中的因式分解。

关键是考虑0是怎样出现的。

因为10=2×5, 也就是说只要有一个2和一个5就会出现一个0.显然从1开始2012个连续自然数中含因数2的数远多于含因数5数。

因此只需要考虑因数5的个数就可以了。

河南省郑州市枫杨外国语小升初数学试卷(含解析)

河南省郑州市枫杨外国语小升初数学试卷(含解析)

河南省郑州市枫杨外国语小升初数学试卷(1月18日)一.填空(每题4分,共40分)1.(4分)2用循环小数表示,小数点后第2020位上的数字是.2.(4分)有一个数,被3除余2,被4除余1,那么这个数除以12余.3.(4分)从1开始2020个连续自然数的积的末尾有个连续的零.4.(4分)有两筐苹果,甲筐占总数的,如果从甲筐取出7.5千克放入乙筐,这时乙筐占总数的,甲筐原来有千克苹果.5.(4分)一个三角形的三个内角之比为1:2:3,则这个三角形是三角形.6.(4分)蕾蕾读一本252页的书,已读的页数等于还没有读过页数的2倍,蕾蕾读过页.7.(4分)2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球,买排球.足球.网球各1个的价钱可以买1个篮球,那么,买1个篮球的价钱可以买个网球.8.(4分)某班有60人,他们着装白色或黑色上衣,黑色或蓝色裤子,其中有12人穿白色上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有人.二.计算题(每题5分,共20分)9.(20分)计算题:(1)0.125×7.37+×3.63﹣12.5×0.1(2)1×(2﹣)+÷(3)(4):三.应用题(每题8分,共40分)10.(8分)果果和妈妈一起去超市,买洗漱用品花了总钱数的多100元,买小食品花了余下的少20元,又买了一个600元的饮水机,正好花完所带的钱,果果妈妈一共带了多少钱?11.(8分)甲.乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山的速度是各自上山速度的1.5倍.而且甲比乙速度快,甲到达山顶时,乙离山顶180米,当乙到达山顶时,甲恰好下到半山腰,那么山脚到山顶多少米?12.(8分)如图,求阴影部分的周长是多少厘米?四.附加题(10分)13.(10分)甲.乙两人同时从A地出发,在直道A.B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A.B两地相距多少米?参考答案与试题解析一.填空(每题4分,共40分)1.(4分)2用循环小数表示,小数点后第2020位上的数字是2.【分析】根据分数化成小数的方法:用分子除以分母,求出3÷7的商,看它的循环节是几位数字,根据周期问题的解法,用2020除以循环节的位数,如果能够整除第2020位上的数字计算循环节的末位上的数字,如果有余数,余数是几就从循环节的首位起数出第几位该位上的数字即是第2020位上的数字.由此解答.【解答】解:因为=0.428571428571…6个数字一组循环;2020÷6=335…2,循环节的第二个数字是2.也就是第2020位上的数字是2;故答案为:2.2.(4分)有一个数,被3除余2,被4除余1,那么这个数除以12余5.【分析】利用带余数的除法运算性质,将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数,得出A可以被3或4整除,再结合已知这个数除以3余2,除以4余1,得出B也相同,归纳出符合要求的只有5.【解答】解:将这个数看成A+B,A为可以被12整除的部分,B则为除以12的余数.A可以被12整除,则也可以被3或4整除.因为这个数“除以3余2,除以4余1”,所以B也是“除以3余2,除以4余1”,又因为B是大于等于1而小于等于11,在这个区间内,只有5是符合的.故答案是:5.3.(4分)从1开始2020个连续自然数的积的末尾有501个连续的零.【分析】这道题考查数论中的因式分解.关键是考虑0是怎样出现的.因为10=2×5,也就是说只要有一个2和一个5就会出现一个0.显然从1开始2020个连续自然数中含因数2的数远多于含因数5数.因此只需要考虑因数5的个数就可以了.这样我们需要考虑5的倍数,在2020以内,总共有2020÷5=402…2,所以有402个因数5.但是此时我们仍然需要考虑诸如25=5×5.可以提供2个5.而在2020以内,25的倍数有:2020÷25=80…12.所以又带来80个5.同样,我们考虑到125=5×5×5其中有3个5.在2102以内有2020÷125=16…12.又带来16个5.还有625=5×5×5×5.在2020以内,有2020÷625=3…137.又带来3个5.所以5的个数一共有:402+80+16+3=501(个),即从1开始2020个连续自然数的积的末尾有501个零.【解答】解:因为10=2×5,所以从1开始2020个连续自然数的积的末尾有多少个零,是由在2020以内,含有多少个因数5决定的;在2020以内,总共有2020÷5=402…2,所以有402个因数5,25的倍数有:2020÷25=80…12,125的倍数有:2020÷125=16…12,625的倍数有:2020÷625=3…137,所以5的个数一共有:402+80+16+3=501(个).即从1开始2020个连续自然数的积的末尾有501个零.故答案为:501.4.(4分)有两筐苹果,甲筐占总数的,如果从甲筐取出7.5千克放入乙筐,这时乙筐占总数的,甲筐原来有27.5千克苹果.【分析】乙筐原来占总数的(1﹣),从甲筐取出7.5千克放入乙筐,这时乙筐占总数的,7.5千克就是总数的[﹣(1﹣)],据此可列式解答.【解答】解:两筐苹果的总数是;7.5÷[﹣(1﹣)],=7.5,=7.5,=50(千克),甲筐原来的苹果数是:50×=27.5(千克).答:甲筐原来有27.5千克苹果.故答案为:27.5.5.(4分)一个三角形的三个内角之比为1:2:3,则这个三角形是直角三角形.【分析】判断这个三角形是什么三角形,要知道这个三角形最大角的度数情况,由题意知:把这个三角形的内角和180°平均分了6份,最大角占了总和的,根据分数乘法的意义求解.【解答】解:因为1+2+3=6,3÷6=,180×=90(度),所以是直角三角形,故答案为:直角.6.(4分)蕾蕾读一本252页的书,已读的页数等于还没有读过页数的2倍,蕾蕾读过180页.【分析】要求读过的页数,要用全书的页数减去已读的页数,因已读的页数等于还没有读过页数的2倍,所以全书就是还没有读过页数的(1+)倍,可求出还没有读过的书是多少页,据此可解答.【解答】解:252﹣252÷(1+2),=252﹣252,=252﹣72,=180(页);答:蕾蕾读过180页.故答案为:180.7.(4分)2个篮球的价钱可以买6个排球,6个足球的价钱可以买3个篮球,买排球.足球.网球各1个的价钱可以买1个篮球,那么,买1个篮球的价钱可以买6个网球.【分析】因为2个篮球=6个排球,3个篮球=6个足球,1个篮球=1个排球+1个足球+1个网球,所以6个篮球=6个排球+6个足球+6个网球即:6个篮球=2个篮球+3个篮球+6个网球所以:1个篮球=6个网球,据此解答即可.【解答】解:因为2个篮球=6个排球,3个篮球=6个足球,1个篮球=1个排球+1个足球+1个网球,所以,6个篮球=6个排球+6个足球+6个网球即:6个篮球=2个篮球+3个篮球+6个网球,所以:1个篮球=6个网球;故答案为:6.8.(4分)某班有60人,他们着装白色或黑色上衣,黑色或蓝色裤子,其中有12人穿白色上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有15人.【分析】此题属于利用容斥原理解答的计数问题,要求学生要认真审题,弄清各种情况的关系进行推理解答.【解答】解:有34人穿黑裤子,那么穿蓝裤子的有60﹣34=26(人),有12人穿白上衣蓝裤子,说明穿黑上衣蓝裤子的还有:26﹣12=14(人),有29人穿黑上衣,那么穿黑上衣黑裤子的有:29﹣14=15(人).答:穿黑上衣黑裤子的有15人.故答案为:15.二.计算题(每题5分,共20分)9.(20分)计算题:(1)0.125×7.37+×3.63﹣12.5×0.1(2)1×(2﹣)+÷(3)(4):【分析】(1).(2).(3)运用乘法分配律解答,(4)化345345345345=345×1001001001,123123123123=123×1001001001解答.【解答】解:(1)0.125×7.37+×3.63﹣12.5×0.1,=0.125×(7.37+3.63﹣10),=0.125×1,=0.125;(2)1×(2﹣)+÷,=×+×,=×(),=×,=3.5;(3)),=(﹣+26×)×,=(6﹣1+32)×,=37×,=0.5;(4),=246×,=246×,=690.三.应用题(每题8分,共40分)10.(8分)果果和妈妈一起去超市,买洗漱用品花了总钱数的多100元,买小食品花了余下的少20元,又买了一个600元的饮水机,正好花完所带的钱,果果妈妈一共带了多少钱?【分析】买小食品花了余下的少20元,又买了一个600元的饮水机,正好花完所带的钱,则600﹣20=580元正好是余下钱数的1﹣=,则买完洗漱用品余下钱数为580=870元;买洗漱用品花了总钱数的多100元,则870+100=970元正好是总钱数的1﹣=,则总钱数为970=1212.5元.【解答】解:买完洗漱用品余下钱数为:(600﹣20)=580÷,=870(元);总钱数为:(870+100)=970÷,=1212.5(元);答:果果妈妈一共带了1212.5元.11.(8分)甲.乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山的速度是各自上山速度的1.5倍.而且甲比乙速度快,甲到达山顶时,乙离山顶180米,当乙到达山顶时,甲恰好下到半山腰,那么山脚到山顶多少米?【分析】在乙到达山顶走180米这段时间内,甲恰好下到半山腰,因为甲下山的速度是上山速度的1.5倍,所以当甲下山走了一半()就相当于又向上走了山高的(÷1.5)=,所以乙走完上山路的时间里,甲可以走上山路的1+=倍,说明上山速度甲是乙的倍,即上山速度乙是甲的,在相同的时间内,路程比等于速度比,故当甲走到山顶的时候,乙走了全程的,即全程的(1﹣)是180米,根据已知一个数的几分之几是多少,求这个数,用除法解答即可.【解答】解:180÷[1﹣1÷(1+÷1.5)],=180÷,=720(米);答:山脚到山顶一共720米.12.(8分)如图,求阴影部分的周长是多少厘米?【分析】由图意可知:阴影部分的周长=两个圆弧的长度+1条直径,大圆弧的周长为圆的周长的一半,小圆弧的长为圆心角为30度的圆弧长,代入等量关系即可求解.【解答】解:阴影部分的周长为两个圆弧加上一条直径,π×30÷2++30,=15π+5π+30,=20π+30,=20×3.14+30,=62.8+30,=92.8(厘米);答:阴影部分的周长是92.8厘米.四.附加题(10分)13.(10分)甲.乙两人同时从A地出发,在直道A.B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A.B两地相距多少米?【分析】从题中可知,因为甲和乙的速度之比为72:48=3:2,所以相同的时间内甲的路程和乙的路程比试3:2.如果总路程有5格,第一次迎面相遇时,两人加在一起走了2个全程,总共走10格,那么甲就走了6格,乙走了4格.第二次迎面相遇两人加在一起一共走了4个全程,一共20格.这时甲走了12格,乙走了8格,相遇地点如图所示.而当甲第一次追上乙时,要比乙多走10格,所以第一次追上乙时,甲需要走30格才能追上乙,第二次追上乙还需要再走30格,第二次追上乙的地点如图所示,因此甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距为两格,由此可以求出1格的距离为:80÷2=40米,因为把全程分成了5格,所以可以求出全程的距离.【解答】解:80÷2=40(米),40×5=200(米);答:A.B两地相距200米.。

2021年-小学数学-有答案-河南省郑州市枫杨外校小升初数学试卷

2021年-小学数学-有答案-河南省郑州市枫杨外校小升初数学试卷

2021年河南省郑州市枫杨外校小升初数学试卷一、填空题:(共20分)1. 8.25小时=________时________分4吨50千克=________吨2. 一个九位数,最高位的数既是奇数又是合数,十万位上的数既是质数又是偶数,个位上的数既不是质数也不是合数,其他各位上都是0,这个数写作________,改写成用“万”作单位的数是________.3. 三个连续奇数的和是129,其中最大的那个奇数是________,将它分解质因数为________.4. 如果将一根木料锯成3段,小明要用6分钟,爸爸锯木料的速度是小明的3倍,由爸爸将这根木料锯成5段,需要________分钟。

5. “春水春池满,春时春草生。

春人饮春酒,春鸟弄春色。

”中有一个字出现得最多,这个字出现的次数占全诗总字数的40%.________.(判断对错)6. 将一块长宽高分别为2m 、3m 、4m 的长方体木块,分割成四个完全相同的小长方体木块,表面积最多增加 72 m 2.7. 有甲、乙两堆煤,从甲中取出12吨放到乙中,两堆煤重量相等;从乙中取出12吨放到甲中,甲是乙的两倍。

甲、乙两堆煤共重________吨。

8. 五元钞票和两元钞票共200张,已知五元钞票的总值比两元钞票的总值多160元,五元钞票有________张。

9. 两数相除商和余数都是5,被除数、除数、商和余数的和是129,被除数是________,除数是________.10. 规定12⊙3=12×13×14,19⊙2=19×110,则12⊙4−13⊙4的值是________.二、判断(共5分)甲数的14等于乙数的16(甲数、乙数不为0),则甲乙两数之比为2:3.________.(判断对错)任何一个质数加上1,必定是合数。

________.(判断对错)半径为2厘米的圆的周长和面积相等。

________(判断对错)大于90∘的角叫做钝角,小于90∘的角叫做锐角。

枫杨外国语小升初数学考试题解析

枫杨外国语小升初数学考试题解析

枫杨外国语考试题详解一、填空(每题4分,共40分)1、273用循环小数表示,小数点后第2012位上的数字是 。

解析:杂题(周期问题) 因为73=0.428571428571………… 6个一组循环 2012÷6=335……2 第二个数字是2.答案:22、有一个数,被3除余2,被4除余1,那么这个数除以12余 。

解析:数论问题A ÷3=m ……2 等价于A ÷3=(m-1)+5A ÷4=n ……1 等价于 A ÷4=(n-1)+5所以A 的最小值:A=3×4+5=17 17÷12=1 (5)答案:53、一个真分数的分子和分母相差102,若这个分数的分子和分母都加上23,所得的新分数约分后得41,这个真分数是 。

解析:数论问题由于分子分母都加上23,所以它们的差不变,仍然是102.此时分母是分子的4倍。

所以此时分子为102÷(4-1)=34 原分子为:34-23=11 原分母为:11+102=113 答案:1134、4时10分,时针和分针的夹角是 度。

解析:行程问题(时钟问题)这道题考查的是时钟问题。

关键在找到时针和分针的速度。

分针速度:360÷60=6(度/分钟) 时针速度:360÷12÷60=0.5(度/分钟) 从四点整开始考虑,分钟和时针都走了10分钟。

四点整的时候分针时针相差: 4×30=120(度) 120-(6-0.5) ×10=65(度)答案:65(度)5、从1开始2012个连续自然数的积的末尾有 个连续的零。

解析:数论问题这道题考查数论中的因式分解。

关键是考虑0是怎样出现的。

因为10=2×5, 也就是说只要有一个2和一个5就会出现一个0.显然从1开始2012个连续自然数中含因数2的数远多于含因数5数。

因此只需要考虑因数5的个数就可以了。

这样我们需要考虑5的倍数,在2012以内,总共有20125=402…2,所以有402个因数5。

枫杨外国语小升初数学考试题解析

枫杨外国语小升初数学考试题解析

枫杨外国语考试题详解一、填空(每题4分,共40分)1、273用循环小数表示,小数点后第2012位上的数字是 。

解析:杂题(周期问题) 因为73=0.428571428571………… 6个一组循环 2012÷6=335……2 第二个数字是2.答案:22、有一个数,被3除余2,被4除余1,那么这个数除以12余 。

解析:数论问题A ÷3=m ……2 等价于A ÷3=(m-1)+5A ÷4=n ……1 等价于 A ÷4=(n-1)+5所以A 的最小值:A=3×4+5=17 17÷12=1 (5)答案:53、一个真分数的分子和分母相差102,若这个分数的分子和分母都加上23,所得的新分数约分后得41,这个真分数是 。

解析:数论问题由于分子分母都加上23,所以它们的差不变,仍然是102.此时分母是分子的4倍。

所以此时分子为102÷(4-1)=34 原分子为:34-23=11 原分母为:11+102=113 答案:1134、4时10分,时针和分针的夹角是 度。

解析:行程问题(时钟问题)这道题考查的是时钟问题。

关键在找到时针和分针的速度。

分针速度:360÷60=6(度/分钟) 时针速度:360÷12÷60=0.5(度/分钟) 从四点整开始考虑,分钟和时针都走了10分钟。

四点整的时候分针时针相差: 4×30=120(度) 120-(6-0.5) ×10=65(度)答案:65(度)5、从1开始2012个连续自然数的积的末尾有 个连续的零。

解析:数论问题这道题考查数论中的因式分解。

关键是考虑0是怎样出现的。

因为10=2×5, 也就是说只要有一个2和一个5就会出现一个0.显然从1开始2012个连续自然数中含因数2的数远多于含因数5数。

因此只需要考虑因数5的个数就可以了。

这样我们需要考虑5的倍数,在2012以内,总共有20125=402…2,所以有402个因数5。

2020-2021郑州市外国语新枫杨学校小学数学小升初试题及答案

2020-2021郑州市外国语新枫杨学校小学数学小升初试题及答案

2020-2021郑州市外国语新枫杨学校小学数学小升初试题及答案一、选择题1.三个人进行60米赛跑,甲用0.3分钟,乙用分钟,丙用15秒,()的速度最快.A. 甲B. 乙C. 丙D. 无法确定2.比的前项扩大3倍,比的后项不变,比值() .A. 扩大3倍B. 缩小3倍C. 不变3.糖占糖水的,则糖与水的比是().A. 1: 10B. 1: 11C. 1: 9D. 9: 104.A是自然数,如果 <1, >1,那么A是()。

A. 8B. 7C. 6D. 55.生产一批零件,其中有100个合格,1个不合格,这批零件的合格率是()。

A. ×100%B. ×100%C. ×100%D. ×100%6.已知大圆和小圆的周长之比是4:3,大圆和小圆面积之比是()。

A. 3:4B. 9:16C. 6:8D. 16:9 7.下面的平面图中,()是正方体的展开图。

A. B. C.D.8.一块玉璧的形状是一个圆环,外圆半径是3cm,内圆半径是1cm,这个圆环的面积是()(π取3.14)A. 3.14cm2B. 12.56cm2C. 25.12cm2D. 28.26cm29.一桶油,第一次用了,第二次用了剩下的,那么()A. 第一次用得多B. 第二次用得多C. 两次用得同样多D. 无法比较10.如图,以大圆的半径为直径画一小圆,大圆的周长是小圆周长的()倍。

A. 2B. 4C. 6D. 8 11.一种商品的价格先提价30%后,再打7折出售,现在售价是原价的()A. 70%B. 100%C. 109%D. 91% 12.小雨和小慧的家与学校在同一条直线上,这天两示丽人家出发走向学校,小雨每分钟走75米,小慧每分钟走65米,经过10分钟在校门口相遇。

求她们两家相距多少米,可能的算式是()。

①(75+65)×10 ②(75-65)×10 ③(75+65)×(10+10)A. ①B. ①和②C. ①和③二、填空题13.观察1、3、6、10……的排列规律,第6个数应该填________.14.一个七位数,最高位上的数既不是质数也不是合数,十万位和千位上的数都是10以内最大的质数,百位上的数是最小的合数,其余各位上的数都是0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

枫杨外国语2010年数学考题
一、
计算题(共4小题,每题5分) (1)
21-61-121-201-301-421-561 (2)【1.25+(141÷32-2.5÷331)】÷25%
(3)23-65+127-209+3011-4213 (4)8171×87+7161×76+6151×65+5141×54+4131×41+3121×3
2
二、 应用题(共8小题,每题10分)
1.一件工作,甲单独做要6小时完成,甲乙合做要4小时完成,甲做完2小时后,两人合做,还要几个小时才能完成?
2.一条宽阔的大河有A.B 两个码头,一般轮船从A 去B 要用4.5小时,回来用
3.5小时,如果水流的速度是每小时2千米,那么轮船的速度是多少?
3.如图,ABCD 是长为8,宽为6的长方形E.F 分别是AD.BC 的中点,P 为长方形内任一点,求阴影部分的面积? E A
F C P
B D
4.某校1.2两班图书馆分别有图书361本和320本,如果要使1班的图书是2班的两倍还多15本,那么需从2班调多少本到1班?
5.一些完全的相同的正方体摞在一起,从前面看如图(1)所示,从左侧看如图(2)所示,那么这些正方体的个数是几个?摞法有几种?访画出从正面看到的平面示意图。

6.14名乒乓球运动员进行男子单打比赛,先是进行淘汰赛,获胜利的运动员进行循环赛,每两人都要赛一声,决出冠.亚军,整个比赛(包括淘汰赛和循环赛)共要进行多少场?
7.甲.乙.丙三人制作工艺品,花束和花甁(一支花束和一个花瓶配成一套)若甲每小时能制作10支花束或11个花瓶;乙每小时能制作11支花束或12个花瓶;丙每小时制作12支花束或13个花瓶,若他们共同工作23小时,则最多可以制作出多少套?请说出你的方案及理由。

8.为庆祝儿童节,电影院放映《喜洋洋与灰太狼》,今天票价打6折,昨天不打折,统计收入后,发现今天卖票的收入后,发现今天卖票的收入与昨天卖票的收入相同,那么今天的观众比昨天的观众啬了的百分数是多少?(所填答案保留两个小数)。

郑州枫杨外国语2010年小升初数学考试真题参考答案
一、计算题
1. 原式=1
2
-(
1
2

1
3
)—(
1
3

1
4
)—(
1
4

1
5
)—(
1
5

1
6
)-(
1
6

1
7
)-(
1
7

1
8

=1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6

1
6

1
7

1
7

1
8

1
8
2. 11
2
3.
6
7
4. 原式=808
7
×
7
8
+70
7
6
×
6
7
+60
6
5
×
5
6
+50
5
4
×
4
5
+40
4
3
×
3
4
+30
3
2
×
2
3
=80+1+70+1+60+1+50+1+40+1+30+1
=326
二、应用题
1.(1-1
6
×2)÷
1
4

8
3。

相关文档
最新文档