年-高考-数学(对口升学)-试题+答案

合集下载

2024年广西中职对口数学高考真题-+参考答案

2024年广西中职对口数学高考真题-+参考答案

2024年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.题号一二三总分评分人得分一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下)1.已知集合M ={—1,1,x 2},则x 满足()A.x ≠0且x ≠1B.x ≠-1且x ≠0C.x ≠0D.x ≠±12.函数y=ln √x -1+的定义域为()A.{x |x ≠0且x ≠1} B.{x |x >1}C.{x |x ≥1}D.{x |0<x <1}3.下列函数为奇函数的是()A.f (x )=x 2—1B.f (x )=|x |C.21)(x x x f +=D.f (x )=sin 2x 4.下列各值的大小不正确的是()A.2ln 21<log 23B.(-2)3<(-3)3C.6-2<(-5)-2D.log 23<log 39_____1x (x -1)___5.圆心为(4,-5)且与x 轴相切的圆的方程为()A.(x -4)2+(y +5)2=42B.(x +4)2+(y -5)2=42C.(x +4)2+(y -5)2=52D.(x -4)2+(y +5)2=526.下列说法正确的是()A.若直线l 平行于平面α内的无数条直线,则l //α;B.若直线l 在平面α外,则l //α;C.若l //b,直线b ⊂α,则l //α;D.若l //b ,直线b ⊂α,则l 平行于平面α内无数条直线.7.一个笔筒有2B 24支,另一个笔筒有HB 30支,从中任取一支,则有取法.()A.24种B.30种C.54种D.720种8.从编号为1,2,3,…,10的大小相同的求中任取4个,则4个球中号码最大为7的概率()A.212B.152C.74 D.31二、填空题(本大题共5小题,每小题6分,共30分)9.不等式x 2-x -30≤0的解集为.10.已知α是第二象限的角,且tan α=-3,则cos α=.11.已知平面向量a =(1,k),向量b =(-2,5),则a //b,则k=.12.过点M(a ,-1),N(2,a )的直线,且与直线2y -x +1=0平行,则a =.13.如图,在正方体ABCD-A1B 1C 1D 1中,则异面直线A 1B 与AD 1所成角大小为.三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤)14.在等差数列{a n}中,a n=n+8,求S10.(10分)15.某宾馆有相同标准床位100张,根据经验,当宾馆每天的床价不超过100元时,床位可以全部租出去;当床价超过100元时,每提高10元将有5张床空闲,为了提高效益,该宾馆要给床位定一个合适的价格,而且该宾馆每天支出的费用是5000元.(1)当床价为150元时,当天有多少张空床?(2)写出该宾馆一天出租床位的纯收入y与床价x之间的函数关系式.(3)宾馆床价多少时,纯收入最多?2024年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。

2021年湖南省高考对口招生考试数学真题及参考答案

2021年湖南省高考对口招生考试数学真题及参考答案

湖南省普通高等学校对口招生考试数学本试题卷涉及选取题、填空题和解答题三某些,共4页,时量120分钟,满分120分一、选取题(本大题共10小题,每小题4分,共40分.在每小题给出四个选项中,只有一项是符合题目规定)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α,且α为第三象限角,则tan α=( )A.34B.43C.43- D.34-5.不等式112>-x 解集是( ) A.{0|<x x } B.{1|>x x }C.{10|<<x x }D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=•b a ,则向量a ,b夹角为( )A. ︒30B. 60°C. 120°D. 150°8.下列命题中,错误..是( ) A. 平行于同一种平面两个平面平行 B. 平行于同一条直线两个平面平行 C. 一种平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中一种相交,则必与另一种相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样办法,从该学校学生中抽取一种容量为45样本,则应抽取男生人数为 . 12. 函b x x f +=cos )((b 为常数)某些图像如图所示,则b = .13.6)1(+x 展开式中5x 系数为 (用数字作答)14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一种边长为4正方形,再将这个正方形各边中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字阐明、证明过程或演算环节)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }通项公式;(Ⅱ)设数列{n a }前n 项和为n S . 若n S =100,求n . 17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表达取出饮料中不合格瓶数.求 (Ⅰ)随机变量ξ分布列; (Ⅱ)检测出有不合格饮料概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且图像过点(5,1) (Ⅰ)求)(x f 解析式,并写出)(x f 定义域; (Ⅱ)若1)(<m f ,求m 取值范畴 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D 为AC 中点.(I)证明:BD ⊥平面C C AA 11; (Ⅱ)求直线1BA 与平面C C AA 11所成角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )焦点为1F (-1,0)、2F (1,0),点A (0,1)在椭圆C 上.(I) 求椭圆C 方程;(II)(Ⅱ)直线l 过点1F 且与1AF 垂直,l 与椭圆C 相交于M ,N 两点,求MN 长.选做题:请考生在第21,22题中选取一题作答.如果两题都做,则按所做第21题计分,作答时,请写清题号.21.(本小题满分10分) 如图,在四边形ABCD 中,6==CD BC ,4=AB ,=∠BCD 120°, =∠ABC 75°,求四边形ABCD 面积.22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才干使公司每天获得利润最大?参照答案一、选取题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A二、填空题:111. 25 12. 2 13. 6 14. 5 15.32三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n 17.解:(Ⅰ)ξ也许取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ分布列是:(Ⅱ)设事件A 表达检测出全是合格饮料,则A 表达有不合格饮料检测出全是全格饮料概率=)(A P 52260224=⋅C C C故检测出有不合格饮料概率53521)(=-=A P18.解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且图像过点(5,1)∴12log =a ∴2=a)3(log )(2-=x x f 故意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 定义域是),3(+∞,即3>m∴53<<mm 取值范畴是(3,5)19.(Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21= ∴21sin 11==∠B A BD D BA ∴301=∠D BA即直线1BA与平面C C AA 11所成角是30. 20.解:(Ⅰ)∵椭圆:C 12222=+by ax (0>>b a )焦点为1F (-1,0)、2F (1,0)∴1=c又点A (0,1)在椭圆C 上 ∴12=b∴211222=+=+=c b a∴椭圆C 方程是1222=+y x(Ⅱ)直线1AF 斜率11=AF k而直线l 过点1F 且与1AF 垂直 ∴直线l 斜率是1-=k 直线l 方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN 即MN 长是23421.解:如图,连结BD 在BCD ∆中,6==CD BC ,=∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222 )21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 面积ABCD S 四边形=ABD S ∆∆+BCD S =ABD BD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21 =45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯ =6639+22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才干使公司获得利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所示平面区域,即可行域,如图中阴影某些,四边形ABOC 作直线x y 54-=及其平行线l :554z x y +-=,直线l 表达斜率为54-,纵截距为5z 平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 获得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得利润最大,最大利润为23万元.。

2020年江西省高职三校生对口高考对口升学考试数学试题高清版附答案解析

2020年江西省高职三校生对口高考对口升学考试数学试题高清版附答案解析

2020年江西省“三校生”对口升学考试数学第Ⅰ卷(选择题70分)一、是非选择题(本大题共10小题,每小题3分,共30分。

对每小题的命题作出判断,对的选A ,错的选B )1.若数列}{a n 的通项公式12-n =a n ,则该数列为等差数列.·····························(A B )2.已知集合-1}>x |{x =A ,则{0}∈A.·······················································(AB )3.函数242-x -x =x f )(与2+x =x g )(表示的是同一函数.······························(AB )4.若10<b <a <,则22b >a .·································································(A B )5.对于非零向量a ,b ,若a+b=0,则a //b.·······················································(A B )6.已知点A (x ,-1)与点B (2,y )关于原点对称,则1-=y +x .····················(A B )7.抛物线082=y +x 的焦点坐标为(2,0).·····················································(A B )8.若3log <a log ..7070,则.>a 3·····································································(A B )9.函数-x =y 2的图像经过点(0,-1).···························································(AB )10.若角θ的顶点在坐标原点,始边为x 轴正半轴,终边经过点(-4,3),则sin θ=53.(AB )二、单项选择题(本大题共8小题,每小题5分,共40分。

对口高考数学试卷真题答案

对口高考数学试卷真题答案

1. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3答案:C解析:根据立方公式,(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3,所以选C。

2. 若m、n是方程x^2 - 2x - 3 = 0的两个根,则(m+n)^2的值为()A. 8B. 10C. 12D. 14答案:A解析:根据一元二次方程的根与系数的关系,m+n = -(-2)/1 = 2,所以(m+n)^2 = 2^2 = 4,选项A符合题意。

3. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为()A. 1B. 2C. 3D. 4答案:C解析:根据一元二次方程的求根公式,x = (-(-4) ± √((-4)^2 -4×1×3))/(2×1) = (4 ± √4)/2 = 2 ± 1,所以x的值为2或3,选项C符合题意。

4. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an = ()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A解析:根据等差数列的通项公式,an = a1 + (n-1)d,所以选A。

5. 已知函数f(x) = x^2 + kx + 1,若f(x)在x=1时取得最小值,则k的值为()A. -2B. -1C. 0D. 1答案:B解析:根据二次函数的性质,对称轴为x = -k/2,所以当x=1时,对称轴上的函数值最小,即f(1) = 1 + k + 1 = 2 + k,令2 + k = 0,解得k = -1,选项B符合题意。

2023年广西中职对口数学高考真题 +参考答案

2023年广西中职对口数学高考真题 +参考答案

2023年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下) 1.下列关系成立的是( )A.0∈∅B.2∈NC.3∈{x |-1<x <3}D.3∈{x |-1<x ≤3} 2.过点(2,0)且与y =2x -1平行的直线方程为( ) A.y =2x -4 B.121+=x yC.y =2x +4D.1-21-x y=3.函数的定义域是( ) A.[2,3] B.[1,3) C.[2,3) D.[1,3] 4.下列函数中,偶函数的是( )A.f (x )=x 2-2xB.f (x )=x 2-3C.f (x )=|x -2|D.f (x )=x+cos x22)3ln(-+-=x x y5.下列各组值的大小正确的是( ) A.log 0.50.7<log 0.53B.0.32<0.33C.ln3<1D.40.8<21.86.已知直线l 和三个不重合的平面α,β,γ,下列说法正确的是( ) A.若α⊥ β,l ⊥β,那么l ⊥ αB.若l // α,l ⊥β,那么α // βC.若α // β,l ⊥α,那么l // βD.若α ⊥ β,β⊥γ,那么α ⊥ γ7.用4种不同的颜色对下图3个区域涂色,要求相连的区域不能使用同一个颜色,则不同的涂法有( ).A.24种B.36种C.48种D.64种8.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则所取位数大于40的概率为( )A.51 B.31C.41D.21二、填空题(本大题共5小题,每小题6分,共30分) 9. 不等式3x 2+2x -1≤0的解集为 . 10.已知角α是锐角,且tan α=21,则sin α= .11.已知平面向量a=(2,-1),向量b =(m,2),则b +7a =(5,-5),则m= .12.已知圆的一般方程为x 2+2x +y 2-4y =0,则圆心坐标为 . 13.如图,在正方体ABCD-A 1B 1C 1D 1,AB=AC=1,则异面直线A 1B 与AD 1所成角大小为 .1 23三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤).(10分)14.已知数1+2,3+22,5+23,......,求数列前6项之和S615.(20分)某医药研发一种甲流新药,如果成年人按规定的剂量服用,据监测:服药后每亳升血液中含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.M(1,4)y=2a-t(1)结合图像,求k与a的值;(2)写出服药后y与t之间的函数关系式;(3)据进一步测定:每毫升血液中含药不少于0.5微克时治疗疾病有效,求服药一次治疗有效时间的范围.2023年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。

对口升学数学试题及答案

对口升学数学试题及答案

对口升学数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \frac{1}{x} \)答案:B2. 已知等差数列的首项为2,公差为3,求该数列的第5项。

A. 17B. 14C. 11D. 8答案:A3. 计算以下极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]A. 0B. 1C. 2D. 3答案:B4. 以下哪个选项是二项式定理的展开式?A. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)B. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \)C. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)D. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \)答案:B5. 已知函数 \( f(x) = ax^2 + bx + c \) 的图像与x轴有两个交点,且这两个交点的横坐标之和为-4,求b的值。

A. 4B. -4C. 2D. -2答案:B6. 计算以下定积分:\[ \int_{0}^{1} x^2 dx \]A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A7. 已知圆的方程为 \( (x-2)^2 + (y-3)^2 = 9 \),求该圆的半径。

A. 3B. 4C. 5D. 6答案:A8. 计算以下二重积分:\[ \iint_{D} (x^2 + y^2) dxdy \]其中D是由x=0,y=0,x+y=1构成的区域。

数学2024四川对口升学数学试题

数学2024四川对口升学数学试题

数学2024四川对口升学数学试题数学2024四川对口升学数学试题2024年四川对口升学数学试题,是四川省教育考试院组织命题的一张综合性数学试卷,旨在全面考察学生的数学基础知识和应用能力。

该试卷不仅注重基础知识的掌握,还强调数学应用能力的培养,对于学生的数学思维和解题能力都有一定的要求。

该试卷的命题范围涵盖了初中和高中数学的主要内容,包括数与代数、几何与三角、概率与统计等方面。

其中,数与代数部分主要考察学生的计算能力、方程求解能力、代数式变形能力等;几何与三角部分主要考察学生的几何图形认知能力、三角形性质应用能力等;概率与统计部分主要考察学生的概率计算能力、统计图表解读能力等。

该试卷的题型多样,包括选择题、填空题、计算题、证明题等。

其中,选择题和填空题主要考察学生的基础知识掌握情况,计算题和证明题则注重学生的数学应用能力和思维能力。

以下是根据2024年四川对口升学数学试题的关键词和内容进行撰写的一篇文章:2024年四川对口升学数学试题分析与对策2024年四川对口升学数学试题是四川省教育考试院组织命题的一张综合性数学试卷,旨在全面考察学生的数学基础知识和应用能力。

通过对该试卷的分析,我们可以发现其命题特点、考察重点和应对策略。

首先,该试卷注重基础知识的掌握,几乎涵盖了初中和高中数学的所有内容。

无论是数与代数、几何与三角还是概率与统计,都要求学生扎实掌握基础知识,才能顺利解答题目。

因此,学生在备考过程中要注重对基础知识的复习和巩固。

其次,该试卷强调数学应用能力的培养,通过各种题型的设计,让学生在解题过程中运用数学知识解决实际问题。

这就要求学生在掌握基础知识的同时,还要学会将所学知识应用于实际问题的解决中。

因此,学生在备考过程中要多做练习,提高数学应用能力。

最后,该试卷的难度适中,既考察了学生的基础知识,又充分考虑了学生的实际水平。

因此,学生在备考过程中要认真对待每一道题目,做到举一反三,理解解题思路和方法。

对口高考数学试卷配答案

对口高考数学试卷配答案

#### 一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 4x + 4,其对称轴为:A. x = 2B. y = 2C. x = -2D. y = -2答案:A2. 若a > 0,b < 0,则下列不等式中正确的是:A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 0答案:B3. 下列各数中,无理数是:A. √4B. 3.14C. √3D. 0.1010010001...答案:C4. 在△ABC中,a=3,b=4,c=5,则cosB的值为:A. 1/2B. 1/3C. 2/3D. 3/4答案:C5. 若复数z满足|z - 1| = |z + 1|,则z位于:A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A6. 已知数列{an}中,a1 = 1,an+1 = an + 2,则数列{an}的通项公式为:A. an = 2n - 1B. an = 2nC. an = nD. an = n + 1答案:A7. 下列函数中,单调递减的是:A. y = x^2B. y = 2xC. y = 1/xD. y = x^3答案:C8. 已知集合A = {x | x ≤ 3},B = {x | x ≥ -1},则A∩B为:A. [-1, 3]B. (-∞, 3]C. (-∞, -1]D. [3, +∞)答案:B9. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为:A. 0B. 1C. -1D. 不存在答案:B10. 下列各式中,等差数列的公差为2的是:A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...答案:C#### 二、填空题(每题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1, 2),则a= ,b= ,c= 。

河北对口高考真题数学答案

河北对口高考真题数学答案

河北对口高考真题数学答案河北省对口高考数学试题通常包括选择题和解答题两部分。

解答题比较繁琐,需要学生们仔细审题、分析问题、理清思路、运用所学知识解题。

下面是我为您精心整理出的河北对口高考数学试题的答案,希望对您有所帮助。

选择题部分1. 下列符合不等式$-2x+1<7$的解集的是()A. (-2, 3)B. (-3, 2)C. (-3, 3)D. [-3, 2)答案:A2. 若a是实数,且$a^2+3a-4=0$,则a的值为()A. -4, 1B. -1, 4C. 1, -4D. -4, -1答案:A3. 在平面直角坐标系中,点P(3, 4)关于原点O的对称点为()A. (-3, 4)B. (-4, -3)C. (4,3)D. (-3, -4)答案:D4. 已知函数$f(x)=ax^2+bx+c$的图象经过点(-2, 5),(1, 4),(3, -2),则a+b+c=()A. 14B. 17C. 8D. 10答案:C解答题部分1. 求函数$f(x)=x^2-2mx+m-2$的最小值。

解:首先,由完全平方公式$f(x)=x^2-2mx+m-2=\left( x-m \right) ^2-m+2$,令$y=x-m$,则$f(x)=y^2-m+2$。

因为$y^2 \ge 0$,所以$f(x)=y^2-m+2 \ge 2-m$,即$f(x)$的最小值为$2-m$。

2. 已知$a_1=2$,$a_2=1$,$a_n=\frac{1}{a_{n-1}}+\frac{1}{a_{n-2}}$(n≥3),求$a_3$及$a_4$。

解:根据已知条件可列出$a_n=a_n-1^{-1}+a_{n-2}^{-1}$,将$a_3$带入计算可得$a_3=2$,将$a_4$带入计算可得$a_4=3/2$。

以上便是我整理出的河北对口高考数学试题的答案,希望能够对您的学习有所帮助。

【以上答案仅供参考】。

2024年四川省对口升学数学试题 以及解析

2024年四川省对口升学数学试题 以及解析

四川省2024年普通高校对口招生统一考试数学试题第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知集合{}2,1,0,1,2M =--,{}0,1,2N =,则=M N ⋂().A {}2,1,0--.B {}1,0,1-.C {}0,1,2.D {}2,1,0,1,2--2.函数()()2333x f x log x -=--的定义域是().A ()3,-+¥.B [)3,-+¥.C ()3,+¥.D [)3,+¥3.3090cos cos +=o o ().A 2-.B 12-.C 12.D 24.已知平面向量()2,3=-a ,()2,1=--b ,则=×a b ().A 2-.B 1-.C 1.D 25.不等式122x <-<的解集为().A ()0,4.B (-∞,1)È(4,+∞).C ()1,3.D ()()0,13,4È6.过点()11,且与直线20x y -=垂直的直线的方程是().A 230x y +-=.B 210x y +-=.C 230x y --=.D 210x y --=7.224lg 22lg 4lg 25lg 25++=().A 1.B 2.C 4.D 258.函数()2sin y x ωϕ=+的部分图象如图所示,其中0ω>,2πϕ<,则().A 2sin 26x y π⎛⎫=- ⎪⎝⎭.B 2sin 23x y π⎛⎫=- ⎪⎝⎭.C 2sin 26y x π⎛⎫=- ⎪⎝⎭.D 2sin 23y x π⎛⎫=- ⎪⎝⎭9.已知椭圆()2222103x y m m m+=>的左焦点为()4,0-,则m 的值为().A .B .C 3.D 410.某保险公司为了解购买某险种的1000名投保人的出险次数情况,随机调查了其中100名投保人的出险次数,得到如下表格:出险次数01234³投保人数a 292583则下列结论中正确的是().A 表中a 的值为25.B 调查的这100名投保人的出险次数的均值大于1.C 购买该险种的100名投保人的出险次数是总体.D 估计购买该险种的所有投保人中,出险次数不低于3次的人数为1111.已知0.22a =,0.33b =,20.2c =,则a b c 、、的大小关系为().A a b c >>.B a c b >>.C b a c>>.D b c a >>12.设a R Î,则“1tan α=-”是“34πα=”的().A 充分不必要条件.B 必要不充分条件.C 充要条件.D 既不充分也不必要条件13.一个温度为0T C o 的物体移入恒温a C o 的室内,t 分钟后该物体的温度为T C o .已知T 与t 的关系可以表示为()0kt T a T a e -=+-,其中0k >.现将温度为90C o 的该物体移入恒温10C o 的室内,20分钟后该物体的温度为50C o ,则再过20分钟该物体的温度为.A 10C o .B 20C o .C 30C o .D 40Co 14.设αβγ、、是三个不同的平面,l m 、是两条不同的直线.给出下列四个命题:①若∥a g ,∥b g ,则a b ∥;②若a g ^,b g ^,则a b ∥;③若l ∥a ,m ∥b ,l m ∥,则a b ∥;④若l a g Ç=,m b g Ç=,l m ∥,则a b ∥.其中正确命题的个数是().A 1.B 2.C 3.D 415.已知定义在R 上的函数()f x 满足()()66f x f x -=+.当31x -£<时,()22f x x x =--;当19x £<时,()4f x x =-.则()()()()1232024f f f f +++⋅⋅⋅+=().A 328.B 332.C 336.D 340第Ⅱ卷(非选择题共90分)二、填空题(本大题共5个小题,每小题4分,共20分)16.已知抛物线22y px =过点()3,6,则p =.17.若5(2+)x a 的展开式中2x 的系数为320-,则a =.18.某植物的快速生长期约有10天,在此期间该植物每天结束时的高度都为前一天结束时的高度的2倍.已知在快速生长期的第4天结束时,该植物的高度是20毫米,那么它在第7天结束时的高度为毫米.19.已知函数()()ln 11b f x x a x ⎛⎫=++ ⎪+⎝⎭是偶函数,其中,a b ∈R ,则a b -=.20.已知平面向量,a b 满足3=a ,1=b ,则++-a b a b 的最大值是.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)为弘扬中华优秀传统文化,某学校将开展传统文化知识竞赛.已知该学校的文学、朗诵、书画、戏曲4个社团的人数分别为140,112,56,28,且每个社团的成员都只参加了1个社团.竞赛组委会拟采用分层抽样的方法从以上4个社团中抽取12名同学担任志愿者.(1)求应从这4个社团中分别抽取的志愿者人数;(2)若从抽取的12名志愿者中随机抽取3名担任竞赛分数统计员,求抽取的3名统计员中恰有2名来自同一社团的概率.22.(本小题满分12分)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且23sin sin 2122A A π⎛⎫++= ⎪⎝⎭.(1)求角A 的大小;(2)若cos sin c b A B =+,证明:ABC ∆为直角三角形.23.(本小题满分12分)如图,已知四棱锥P ABCD -的底面为长方形,PA ABCD ⊥底面,1AB PA ==,AD =E 为BC 的中点.(1)证明:PE BD ⊥;(2)求二面角P BD A --的正切值.24.(本小题满分12分)设数列{}n a 的前n 项和n S 满足:()121n n S n a +=+,且321S =.(1)求数列{}n a 的通项公式;(2)求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(本小题满分12分)设a ∈R ,函数()2335f x x ax a =-+-.(1)设函数()f x 的图象与x 轴相交于A B 、两点,且2153AB =,求a 的值;(2)若()0f x <对任意的[]1,1a ∈-恒成立,求实数x 的取值范围.26.(本小题满分12分)设k ∈R ,过定点A 的动直线240kx y k --+=和过定点B 的动直线0x ky +=相交于点M .(1)求定点A B 、的坐标,并求点M 的轨迹方程;(2)求MA +的最大值.四川省2024年普通高校对口招生统一考试数学试题相关解析第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分。

2023年四川省对口升学试题以及答案解析

2023年四川省对口升学试题以及答案解析

四川省2023年普通高校职教师资和高职班对口招生统一考试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

2.第Ⅰ卷共1个大题,15个小题。

每个小题4分,共60分。

一、选择题(本大题共15个小题,每小题4分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1.设集合{}1,2=M ,{}0,1,2,3=N ,则=⋃M N ().A {}01,.B {}12,.C {}0,1,2.D {}0,1,2,32.函数()35x f x =-的定义域是().A ()2,+¥.B [)2,+¥.C ()2,-+¥.D [)2,-+¥3.已知平面向量()43a ,=,()21b ,=,则2a b -=().A ()31,.B ()65,.C ()86,.D ()107,4.过点()27,且倾斜角为34π的直线的方程是().A 5y x =-+.B 5y x =+.C 9y x =-+.D 9y x =+5.233ππsin sin +=().A 0.B 1.C .D6.函数y sin x cos x π=+的最小正周期是().A 6p .B 3p .C p .D 2p 7.不等式13x -<的解集为().A ()4,2-.B ()3,1--.C ()2,4-.D ()1,38.某同学随机抽取100株麦苗测出其高度(单位:mm ),将所得结果分为6组:[54,58),[58,62),[62,66),[66,70),[70,74),[74,78],并绘制出如图所示的频率分布直方图,则高度不低于70mm 的株数为().A 28.B 32.C 36.D 409.双曲线221259-=x y 的渐近线为().A 35y x =±.B 45y x =±.C 53y x =±.D 54y x =±10.设104m =,1025n =,其中,m n 是正实数,则m n +=().A 2.B 4.C 10.D 2511.某水文监测站对一河道某处的水深每小时进行一次记录,结果如图所示。

2024年湖南对口高考数学试卷(含参考答案)

2024年湖南对口高考数学试卷(含参考答案)

湖南省2024年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟,满分120分。

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={1,3,5},N={3,4,5,6},则=N MA.{3,5}B.{4,6}C.{1,4,6}D.{1,3,4,5,6 } 2.已知数列{a n }的通项公式为32+=n a n ,*∈N n ,若37=m a ,则=mA.15B.17C.20D.34 3.函数xx y 1+=的图像 A.关于原点对称 B.关于x 轴对称 C.关于y 轴对称 D.关于直线y=x 对称4.从7名学生中选派2名学生分别到甲、乙两地参加社会实践活动,则不同的选派方法共有A.14种B.21种C.42种D.49种 5.已知2log ,2,3.03.03.02===c b a ,则A.c b a <<B.a b c <<C.b c a <<D.b a c << 6.下列命题中,正确的是A.平行于同一个平面的两条直线必平行B.平行于同一个平面的两个平面必平行C.过平面外一点只可以作一条直线与这个平面平行D.过直线外一点只可以作一个平面与这条直线平行 7.“()()042=+-x x ”是“2=x ”的A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件 8.函数x x y cos sin 3+=取最大值时,x 的值可以为A.6π B.4π C.3π D.2π9.光线从点M(-3,3)射到点P(1,0)后被x 轴反射,则反射光线必经过的点是A.(3,5)B.(4,2)C.(4,4)D.(5,3)10.已知函数()x f y =在)[∞+,0上单调递增,且()()x f x f =-,则不等式()()31f x f <-的解集为A.()42,- B.()4,∞- C.()∞,4 D.()()∞+∞-,,42二、填空题(本大题共5小题,每小题4分,共20分)11.某学校为了解一年级120名男生和80名女生的身高情况,计划用分层抽样的方法抽取20名学生进行测量,则抽取的男生人数为 .12.已知向量()m a ,1=,()1,2=b ,且()b b a ⊥+,则实数=m .13.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边上一点的坐标为⎪⎪⎭⎫⎝⎛-21,23,则α2sin . 14.已知函数()x x f ln =,若0>>b a ,且()()b f a f =,则=ab .15.已知点P 在圆01022=-+y y x 上运动,则点P 到直线0543=-+y x 的距离的最大值为 .三、解答题(本大题共7小题,其中第21,22小题为选做题。

2024年山西对口升学考试卷数学真题及答案

2024年山西对口升学考试卷数学真题及答案

2024年山西对口升学考试卷数学真题一、单项选择题(本大题共10小题,每小题3分,共计30分)1.{}{}4,3,2,1,012==-=B x x A ,则B A =()A.{}2,1 B.{}4,3,2,1,1- C.{}1 D.{}22.等比数列{}n a 中,6,321==a a ,则4a =()A.12B.9C.16D.243.下列函数在其定义域内是偶函数的是()A.()xx x f sin 2+= B.()xx x f cos 2+= C.()12++=x x x f D.()123++=x x x f 4.下列函数在其定义域内是单调增函数的是()A.()xx f sin = B.()xx f tan = C.()32+=x x f D.()33+=x x f 5.已知直线方程为63+=x y ,则该直线向上的方向与x 轴正方向的夹角为()A.3π B.6π C.2π D.4π6.如果向量()a b a//,3,2=,则向量b 有可能是()A.()2,1B.()6,4 C.()4,2 D.()5,37.设a 为常数项,则()32a a ⋅=()A.7a B.6a C.5a D.8a 8.在ABC ∆中,,,,C B A ∠∠∠所对应的边为cb a ,,,若 60,5,3=∠==C b a ,则c =()A.4B.19C.2D.299.抛物线x y 52=得准线方程式()A.25=x B.45=x C.25-=x D.45-=x 10.在()6q p +的二项展开式中,最大的系数是()A.6B.15C.20D.35二、填空(本大题共8小题,每题4分,共32分)11.十进制数7转化为二进制数是.12.5log 53log 33+⎪⎭⎫⎝⎛=.13.()()x x 2cos 2sin 22+=.14.设向量()()a b b a-==则,3,4,2,2=.15.已知直线23+=x y 与直线12+=ax y 平行,则a =16.已知球半径为3,则球的表面积为.17.函数21x y -=的定义域是.18.设函数()⎩⎨⎧>-≤-=0,10,22x x x x x f ,则()[]1-f f =.三、解答题(本大题共6小题,共38分)19.(6分)已知21tan ,51tan ==βα,求()βα+tan .20.(6分)设等差数列{}n a 满足10,30513=+=a a S ,求该数列第10项10a .21.(6分)求过圆422=+y x 上的点()3,1P ,且与圆相切的直线l 的方程.22.(6分)在ABC ∆中,C B A ∠∠∠,,所对应的边分别为c b a ,,,已知33,120===∠b c B ,求C ∠.23.(6分)解不等式组⎩⎨⎧->+≥-223862x x x 24.(8分)从50件产品中,任取4件,问:(1)一共有多少种不同的取法?(2)如果50件产品中有2件是次品,则抽出的4件中恰好有一件次品的抽法共有多少种?(3)如果50件产品中有2件是次品。

湖南省2020年对口升学高考数学试题含答案

湖南省2020年对口升学高考数学试题含答案

湖南省2020年普通高等学校对口招生考试数学试题含答案一、选择题(本大题共10小题,每小题4分,共计40分)1.已知集合{}a A ,1=,{}432,1,,=B ,且{}4,1=B A ,则=a ( ) A.1B. 2C. 3D. 42.=120sin ( )A.21 B.21- C.23又D.23-3.“1=x ”是“012=-x ”的( ) A.充分必要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分也不必要条件4.过点M(1, 3) ,N(3,t)在函数xky =的图象上,则t 的值是( ) A.1 B. 3C. 6D. 95.在平行四边形ABCD 中,AC 与BD 交于点M,α=AB ,b AD =,则=AM ( )A.b 2121-α B. b 2121+α C.b +αD.b -α6.函数f(x)=log2(x-1)的定义域为( )A.{}0>x xB.{}1≠x xC.{}2>x xD.{}1>x x7.6)1(xx -展开式中的常数项为( ) A.-20B. 20C. -120D. 1208.已知20sin =a ,40cos =b ,80tan =c ,则c b a ,,的大小关系为( )A.c b a >>B.a cb >>C.a b c >>D.x 4y ±=9. 函数||2)(f x x =,若)2()2(f a f <-,则a 的取值范围是( )A.)2,2(-B.)4,0(C.()()+∞∞-,40,D.()4,∞-10.如下图是正方体的平面展开图,则在这个正方体中以上四个命题中,正确的命题个数为湖南省2020年对口升学数学试题真题解析①BM 与ED 平行 ②CN 与BM 成60度角 ③CN 与BE 垂直 ④DM 与BN 是异面直线A.1 B. 2C. 3D. 4二、填空题(本题共5小题,每小题4分,共计20分)11.已知向量()2,1=a ,()3,2-=b ,则=•b a = .12.某校有男生300人,平均身高为173cm ,女生200人,平均身高163cm ,则该校所有学生的平均身高为 cm13.函数8cos 2-=x y 的最小值为 . 14.已知等差数列{}n a 的前和为n S ,且161=a ,132=a ,则=7S .15.过点P(2,1)作圆122=+y x 的两条切线,切点分别为A,B ,则AB 所在的直线方程为 . 三、解答题(本大题共 7 小题,其中第 21,22 题为选做题.满分 60 分.解答题应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{}n a 是首项为1,公比为2的等比数列, (I )求数列{}n a 的通项公式;(II )设数列{}n a 的前n 项和为n S ,若63=n S ,求n .17.(本小题满分10分)如图,在四棱锥ABCD S -,的底面为正方形,O 为AC 与BD 的交点,⊥SO 底面ABCD. (Ⅰ)若E ,F 分别为SA,SC 的中点,求证: //EF 平面ABCD ; (Ⅱ)若4==SA AB 求四棱锥ABCD S -的体积.N DCM E A BF第10题18.(本小题满分 10 分)盒子里装有五个大小相同的球,其中两个编号为1,两个编号为2,一个编号为3,从盒子里任取两个小球:(I )求取出的两个小球中,含有编号为3的小球的概率;(II )在取出的两相小球中,设编号的最大值为X ,求随机变量X 的分布列和数学期望率.19.(本小题满分 10 分)已知抛物线px y 22=经过点)(22,2-(I )求抛物线的标准方程(II )直线0832=--y x 与抛物线交于A,B 两点,O 为坐标原点,证明OB OA ⊥20.(本小题满分 10 分)已知函数()22-+=bx x x f .(I )若()x f 为偶函数,求不等式()0≤x f 的解集; (II )若()x f 在[]4,2-上的最大值为10,求b 的值,.A第17题DOBCFE湖南省2020年对口升学数学试题真题解析选做题:请考生在第 21题,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分 10 分)已知ABC ∆的内角A,B,C 所对的边分别为c b a ,,,且2=a ,3=b , 60=B (Ⅰ)求 A ; (Ⅱ)求C cos 的值.22.(本小题满分 10 分)某服装工人加工上衣和裤子,加工一件上衣可获利50元,加工一条裤子可获利20元;加工一 件上衣需要2小时,加工一条裤子需要1小时.由于布料限制,该工人每天最多加工3件上衣和 4条裤子,且每天工作不超过8小时,问:该工人如何安排生产才能使每天获得的利润最大?利润最大值是多少?2020年山西省对口升学考试数学参考答案一、选择题二、填空题11.4 12. 169 13. -10 14. 4915. 2x+y -1=0三、解答题16.(Ⅰ)12-=n n a (Ⅱ)6=n17.(Ⅰ) EF//AC,ABCD AC ABCD EF 平面平面⊂⊄,,所以EF 平行于平面ABCD.(Ⅱ)3232=-ABCD S V .18.(I )522514==C C P(II )X 的分布列为19.(Ⅰ)x y 42=(II )设),(),,(2211y x B y x A ,⎩⎨⎧==⎩⎨⎧==⇒=--⇒⎩⎨⎧=--=2-18160166y 08324111122y x y x y y x x y 或16-y 162121==y x x ,,所以01616x 2121=-=+=⋅→→y y x OB OA ,所以→→⊥OB OA ,故OB OA ⊥.。

对口高考数学试卷答案

对口高考数学试卷答案

一、选择题(本大题共10小题,每小题4分,共40分)1. 下列选项中,绝对值等于3的是()A. 3B. -3C. 0D. 2答案:A解析:绝对值表示一个数到原点的距离,所以绝对值等于3的数有两个,分别是3和-3。

2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a / 2 > b / 2D. a / 2 < b / 2答案:A解析:根据不等式的性质,如果两边同时加上或减去同一个数,不等号的方向不变;如果两边同时乘以或除以同一个正数,不等号的方向不变;如果两边同时乘以或除以同一个负数,不等号的方向改变。

因此,A选项正确。

3. 函数y = 2x - 1在定义域内是()A. 增函数B. 减函数C. 常数函数D. 无法判断答案:A解析:函数y = 2x - 1的斜率k = 2,大于0,因此该函数在其定义域内是增函数。

4. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A解析:点A(2, 3)关于x轴的对称点,横坐标不变,纵坐标取相反数,所以对称点是(2, -3)。

5. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an = ()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得到an = 2 + (10 - 1)×3 = 34。

6. 函数y = x^2 - 4x + 4的图像是()A. 双曲线B. 抛物线C. 直线D. 圆答案:B解析:函数y = x^2 - 4x + 4是一个二次函数,其图像是开口向上的抛物线。

7. 若|a| = 5,|b| = 3,则|a + b|的最大值是()A. 8B. 10C. 13D. 18答案:C解析:根据三角不等式,|a + b| ≤ |a| + |b|,所以|a + b|的最大值是|5| + |3| = 13。

湖南省 2023年普通高等学校对口招生考试数学试卷及参考答案

湖南省 2023年普通高等学校对口招生考试数学试卷及参考答案

湖南省2023年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟。

满分120分。

一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3},B={2,3,4},则A⋃B=A.{1,4}B.{2,3}C.{2,3,4}D.{1,2,3,4}2.不等式x²-2x-3≤0的解集是A.[-1,3]B.[-3,1]C.(-∞,-1)⋃[3,+∞)D.(-∞,-3)⋃[1,+∞)3.已知直线l1:y=2x+1与直线l2:x+ay=0.若l1//l2,则a的值为A.-2B.C. D.24.已知奇函数f(x)在[-3,0]上是减函数,且f(-3)=2,则f(x)在[0,3]上的最小值为A.-3B.-2C.0D.35.已知圆锥的底面圆半径为1,侧面积为2π,则该圆锥的体积为A. B.πC.3πD.23π数学试题第1页(共5页)6.已知向量a=(1,2),b=(3,2),则与向量2a-b平行的向量可以是A.(2,-1)B.(1,-2)C.(-2,-1)D.(-1,-2)7.已知函数f(x)=a²(a>0,且a≠1)满足,则不等式f(x)≥8的解集是A.(-∞,-3)B.C.(3,+∞)D.8.从某小学随机抽取100名学生,将他们的身高数据绘成频率分布直方图如下图所示.若从身高在(120,130),(130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数为A.9B.6C.4D.39.已知函数f(x)=|lgx|,),b=f(3),,则a,b,c的大小关系是A.c<a<bB.a<c<bC.c<b<aD.a<b<c10.下列命题中正确的是A.函数y=2sinx的周期为πB.函数y=sinx在区间内是减函数C.函数y=sinx的图像与函数y=cosx+3的图像有交点D.函数y=cosx的图像可由的图像向左平移个单位得到二、填空题(本大题共5小题,每小题4分,共20分)11.已知,则12.已知函数若f(a)=-4,则a=·13.某乒乓球队有5名队员,需派3名参加比赛.教练计划从2名主力队员中选1名排在第二场的位置,从其余3名非主力队员中选2名排在第一、三场位置,那么共有种不同的出场安排(用数字作答).14.已知直线I:y=x+2与圆C:x²+y²-2y=0交于A,B两点,则|AB|=15.设等差数列{an }的前n项和为Sn.若S10=20,a2+a4+a6+a8+a10=15,则Sn的最小值为·三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知函数f(x)=log₂(1+x),g(x)=log₂(1-x).(1)判断函数h(x)=f(x)-g(x)的奇偶性,并说明理由;(2)求方程f(x)=g(x)+1的解.17.(本小题满分10分)已知等比数列{an }的公比q≠1,a1=1,且a1,a3,a2成等差数列.(1)求{an}的通项公式;(2)设|,求数列{bn }的前n项和Sn.18.(本小题满分10分)为推进地区教育均衡发展,某市教育局拟从6名优秀教师中抽取人员分三批次赴农村薄弱学校进行支教,每批次需从6名教师中随机抽取2名教师支教,且每批次抽取互不影响.(1)求在这3批次支教活动中教师甲恰有2次被抽中的概率;(2)已知这6名教师中有2名数学教师,设第一批次抽到的数学教师人数为ξ,求ξ的分布列.19.(本小题满分10分)如图,在三棱锥A-BCD中,AC⊥BD.平面α交AB,BC,CD,DA分别于E,F,G,H,且AC//平面α,BD//平面α.(1)证明:四边形EFGH为矩形;(2)若AC=BD=2,求矩形EFGH面积的最大值.(第19题图)20.(本小题满分10分)已知抛物线C:x²=2py(p>0)的焦点为F(0,1),过点F的直线1交C于A,B两点.(1)求抛物线C的标准方程及其准线方程;(2)设E为C的准线与y轴的交点,直线AE,BE的斜率分别为k1,k2,证明:k₁+k₂=0.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分.作答时,请写清题号.21.(本小题满分10分)如图,已知在△ABC中,AB=3,BC=4.(1)若∠ABC=60°,求AC的长;(2)若D为AC的中点,求的值.(第21题图)22.(本小题满分10分)某客运公司用A,B两种型号的车辆承担甲地至乙地的长途客运业务,每车每天出车一次,A,B两种型号的车辆的载客量分别为30人和50人,营运成本分别为1200元/辆和2400元/辆,公司拟组建一个不超过28辆车的客运车队,并要求B型车不多于A型车8辆.如果要求每天运送从甲地去乙地的旅客不少于1000人,那么公司应配备A型车、B型车各多少辆,才能使得公司的营运成本最低,最低是多少元?湖南省2023年普通高等学校对口招生考试数学参考答案一、选择题1.D 2.A 3.B 4.B 5.A 6.B 7.C 8.D 9.C 10.D二、填空题11.012.-113.1214.215.-16三、解答题16(1)为奇函数。

数学对口高考试题及答案

数学对口高考试题及答案

数学对口高考试题及答案第一节:选择题1. 设函数$f(x)=\frac{1}{x}$,则$f\left( \frac{1}{2} \right)=$_________。

A. $-2$B. $2$C. $-\frac{1}{2}$D. $\frac{1}{2}$答案:D. $\frac{1}{2}$2. 设$a$、$b$、$c$满足条件$a+b+c=0$,则$\frac{a^3+b^3+c^3}{3abc}=$_________。

A. $-1$B. $3$C. $1$D. $-3$答案:A. $-1$3. 曲线$y=ax^2+bx+c$(a>0)与$x$轴交于两点$A$、$B$,交与$y$轴交于点$C$,且$S_{\bigtriangleup ABC}=15$,则该曲线的表达式为_________。

A. $y=2x^2+3x-1$B. $y=2x^2-3x+1$C. $y=2x^2-3x-1$D.$y=2x^2+3x+1$答案:C. $y=2x^2-3x-1$第二节:填空题1. 利用对数表,计算$log_520$的值为_________。

答案:$1.5$2. 已知函数$f(x)=\log_2{x}$,则方程$f\left( x^{2^{x}} \right)+1=f^{-1}(x)$的解为_________。

答案:$x=0$ or $x=1$3. 设$x^2+ax+b=0$,其中$a$,$b$为实数,$x_1$、$x_2$是其两个根。

若$x_1+\frac{1}{x_2}=3$,$x_2+\frac{1}{x_1}=2$,则$a$、$b$的值分别是_________。

答案:$a=-4$,$b=10$第三节:解答题1. 已知函数$f(x)=\frac{1}{x-1}$,函数$g(x)=x^2-5$,求复合函数$f(g(x))$的定义域。

解答:首先找出复合函数$f(g(x))$的表达式:$f(g(x))=\frac{1}{(x^2-5)-1}=\frac{1}{x^2-6}$。

河南省对口升学高考数学试题

河南省对口升学高考数学试题

河南省2024年对口升学高考数学试题河南省2024年对口升学高考数学试题一、选择题1、本题考查对基本概念的掌握,以及数的表示方法。

以下哪个数的绝对值最小? A. -5 B. 0 C. 1 D. 5 答案:B. 02、本题考查实数的运算。

若,则的值等于: A. 5 B. -5 C. 2 D. -2 答案:C. 23、本题考查基本三角函数知识。

若,则的值等于: A. sin(π/3)B. cos(π/3)C. tan(π/3)D. cot(π/3) 答案:A. sin(π/3)二、填空题4、本题考查数列的通项公式。

已知数列{an}的通项公式为,则 a5 的值等于 ______。

答案:-1041、本题考查平面直角坐标系的性质。

已知点P(2,3),则点P关于原点的对称点P'的坐标为 ______。

答案:(2, -3)三、解答题6、本题考查一元二次方程的解法。

解方程:x^2 - 2x - 3 = 0。

解:将方程x^2 - 2x - 3 = 0因式分解,得: (x - 3)(x + 1) = 0 解得:x1 = 3,x2 = -1。

答案:x1 = 3,x2 = -1。

61、本题考查函数的知识。

已知函数f(x)的定义域为R,且满足f(x + 1) = f(x - 1) + 4,求f(x)的解析式。

解:由题意,得f(x + 1) - f(x - 1) = 4,即,化简得f(x + 2) - f(x) = 4,则,两式相减得f(x+4)-f(x+2)=0,化简得f(x+4)=f(x+2),因此f(x+2)=f(x),即f(x)是以2为周期的周期函数,可设f(x) = ax + b,代入条件可得到a和b的值,从而求得f(x)的解析式。

具体解法如下:由上可知f(x+2)=f(x),因此f(x)是以2为周期的周期函数,可设f(x) = ax + b,代入条件可得到: a + b = b + 4 (1) a(-1 + a + b) = b + 4 (2)解得a=1,b=3,所以f(x)的解析式为f(x) = x + 3。

全国对口高考数学试卷答案

全国对口高考数学试卷答案

全国对口高考数学试卷一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. y = √(x + 1)B. y = |x|C. y = x^2 - 4x + 4D. y = 1/x答案:B2. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S5 = 25,则公差d为()A. 2B. 3C. 4D. 5答案:A3. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,3)D. (-3,2)答案:B4. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 二次函数y = -x^2 + 4x - 3的图像开口向上C. 等差数列{an}的通项公式为an = a1 + (n-1)dD. 平面向量a = (1,2)与b = (2,1)的夹角为90°答案:C5. 已知复数z = 3 + 4i,其模为()A. 5B. 7C. 9D. 12答案:A二、填空题(每题5分,共25分)6. 已知等比数列{an}的第一项a1 = 2,公比q = 3,则第5项a5 = ________。

答案:1627. 在△ABC中,∠A = 60°,∠B = 45°,则∠C = ________。

答案:75°8. 若函数f(x) = ax^2 + bx + c在x = 1时取得极小值,则a、b、c应满足的关系为 ________。

答案:b^2 - 4ac = 09. 已知向量a = (2,3),向量b = (-1,2),则向量a·b = ________。

答案:110. 若复数z = 1 - i的共轭复数为 ________。

答案:1 + i三、解答题(共75分)11. (15分)已知函数f(x) = x^3 - 3x,求f(x)的单调区间。

答案:f'(x) = 3x^2 - 3,令f'(x) = 0,得x = ±1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档